JP2008222764A - beta-1,3-GLUCAN/ELECTROCONDUCTIVE POLYMER COMPOSITE COVERED WITH SILICA - Google Patents

beta-1,3-GLUCAN/ELECTROCONDUCTIVE POLYMER COMPOSITE COVERED WITH SILICA Download PDF

Info

Publication number
JP2008222764A
JP2008222764A JP2007059772A JP2007059772A JP2008222764A JP 2008222764 A JP2008222764 A JP 2008222764A JP 2007059772 A JP2007059772 A JP 2007059772A JP 2007059772 A JP2007059772 A JP 2007059772A JP 2008222764 A JP2008222764 A JP 2008222764A
Authority
JP
Japan
Prior art keywords
silica
spg
sol
glucan
gel reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059772A
Other languages
Japanese (ja)
Other versions
JP5084307B2 (en
Inventor
Seiji Shinkai
征治 新海
Shuichi Haraguchi
修一 原口
Ryoji Hirose
良治 広瀬
Kazuro Sakurai
和朗 櫻井
Sosuke Numata
宗典 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Mitsui DM Sugar Co Ltd
Original Assignee
Japan Science and Technology Agency
Mitsui Sugar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Mitsui Sugar Co Ltd filed Critical Japan Science and Technology Agency
Priority to JP2007059772A priority Critical patent/JP5084307B2/en
Publication of JP2008222764A publication Critical patent/JP2008222764A/en
Application granted granted Critical
Publication of JP5084307B2 publication Critical patent/JP5084307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To construct a thermally and structurally stable composite of an electroconductive polymer nanofiber dispersed in a single chain shape, and an inorganic nanofiber. <P>SOLUTION: The organic-inorganic nanocomposite is obtained by covering a composite comprising β-1,3-glucan and an electroconductive polymer with silica gel. The nanocomposite can be produced by carrying out a sol-gel reaction of a precursor of the silica in the presence of the β-1,3-glucan/electroconductive polymer composite. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は表面をシリカで被覆され、熱的および構造的に安定化した導電性高分子ナノファイバーの調製に関する。   The present invention relates to the preparation of conducting polymer nanofibers coated with silica and thermally and structurally stabilized.

導電性ポリマーとして知られているポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレン等は、特異的なπ電子系の非局在化を特徴とする分子性のワイヤーを形成し、分子エレクトロニクス、ナノバイオ、センサー等の先端的機能材料の開発において今後期待されている有機物質である。   Polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, etc., known as conductive polymers, form molecular wires characterized by the delocalization of specific π-electron systems, molecular electronics, nanobio, sensors It is an organic substance that is expected in the future in the development of advanced functional materials such as

無機物質においても各種金属または金属酸化物をナノサイズで構造的に制御する技術の開発が各種の先端的な分野で進められている。その一環として、ゾル-ゲル法による金属酸化物の合成がある(図1参照)。その手法は、調製時のpHやゲル化時間などが脆弱な生体物質や有機分子の包括固定化に許容範囲内であることや、生成するゲルの細孔構造を幅広く制御できることなどから、酵素や微生物菌体などの生体物質や有機分子の固定化に盛んに用いられており、生成物は機械的強度に優れるためバイオセンサーなどに応用されている(非特許文献1−4)。
Iqbal Gill,Chem. Mater., 2001, 13, 3404 Kjeld J. C.van Bommel,Seiji Shinkai,Langmuir, 2002, 18, 4544-4548 MarekGrzelczak, Miguel A. Correa-Duarte, Luis M. Liz-Marzn, small, 2006, 2, 1174-1177 I. Ichinose,and T. Kunitake, Adv. Mater., 2002, 14, 34
Development of technology for structurally controlling various metals or metal oxides at nano-size in inorganic materials is also progressing in various advanced fields. Part of this is the synthesis of metal oxides by the sol-gel method (see FIG. 1). The method is suitable for comprehensive immobilization of biological materials and organic molecules whose pH and gelation time during preparation are fragile, and because the pore structure of the generated gel can be widely controlled. It is actively used to immobilize biological materials such as microbial cells and organic molecules, and the product is excellent in mechanical strength and is applied to biosensors (Non-Patent Documents 1-4).
Iqbal Gill, Chem. Mater., 2001, 13, 3404 Kjeld JCvan Bommel, Seiji Shinkai, Langmuir, 2002, 18, 4544-4548 MarekGrzelczak, Miguel A. Correa-Duarte, Luis M. Liz-Marzn, small, 2006, 2, 1174-1177 I. Ichinose, and T. Kunitake, Adv. Mater., 2002, 14, 34

天然多糖のシゾフィランはβ-1,3-グルカン系多糖の一つであり、水中では三重らせん状(t-SPG)を、DMSOのような極性有機溶媒やNaOHのような塩基の水溶液中ではランダムコイル状(s-SPG)を呈する(図2参照)。このように溶媒の性質によって可逆的にその構造を変化させる興味深い性質を示すことから、本発明者らはこのシゾフィランをナノテク材料の開発に利用してきた。   The natural polysaccharide Schizophyllan is one of β-1,3-glucan polysaccharides, which is triple-spiral (t-SPG) in water and randomly in aqueous solutions of polar organic solvents such as DMSO and bases such as NaOH. Presents a coil (s-SPG) (see FIG. 2). Since the present invention shows an interesting property of reversibly changing the structure depending on the property of the solvent, the present inventors have used this schizophyllan for the development of nanotech materials.

例えば、我々はSPGがs-SPGからt-SPGへと巻き戻る過程において、様々な疎水性高分子ゲスト(ポリアニリン、ポリチオフェンなど)を共存させておくことにより、SPGのらせん構造内部にゲストの高分子鎖1本を取り込ませ、ファイバー状に成形することを可能とした(図3および図4;非特許文献5−7、特許文献1−3)。SPGのらせん内部に取り込まれた高分子ゲストはSPG内部にインシュレートされることにより、主鎖が伸びたことに由来する共役長の増加や、SPGのらせん構造に由来した特有のねじれ構造をとることもわかっている。さらに、SPGによる複合化は導電性高分子間の凝集を効果的に抑制し、導電性高分子本来の電気化学的、光化学的機能の保持に重要な役割を果たしている。従来、導電性高分子をベースとした機能性材料の開発は凝集体やフィルムなどのバルク状態を対象として行われてきたが、本系の採用により導電性高分子1本の構造を制御し、高分子鎖1本1本の機能をナノメートルレベルで制御できる全く新しいシステムの構築が可能となるはずである。
C. Li, M.Numata, M. Takeuti, S. Shinkai, Angew. Chem., 117, 2 (2005) C. Li, M.Numata, T. Hasegawa, K. Sakurai, S. Shinkai, Chem. Lett., 34, 1354 (2005). C. Li, M.Numata, A.-H. Bae, K. Sakurai, S. Shinkai, J. Am. Chem. Soc., 127, 4548 (2005). 特開2006−131735号公報 特開2006−160770号公報 特開2006−241334号公報
For example, in the process of SPG rewinding from s-SPG to t-SPG, we have various hydrophobic polymer guests (polyaniline, polythiophene, etc.) coexisting in the spiral structure of SPG. One molecular chain was taken in and made into a fiber shape (FIGS. 3 and 4; Non-Patent Documents 5-7 and Patent Documents 1-3). Polymer guests incorporated into the SPG helix are insulated inside the SPG, resulting in an increase in conjugation length resulting from the extension of the main chain and a unique twisted structure derived from the SPG helix structure. I know that. Furthermore, SPG complexation effectively suppresses aggregation between conductive polymers and plays an important role in maintaining the original electrochemical and photochemical functions of conductive polymers. Conventionally, the development of functional materials based on conductive polymers has been carried out for the bulk state of aggregates and films, but by adopting this system, the structure of one conductive polymer is controlled, It should be possible to construct a completely new system that can control the function of each polymer chain at the nanometer level.
C. Li, M. Numata, M. Takeuti, S. Shinkai, Angew. Chem., 117, 2 (2005) C. Li, M. Numata, T. Hasegawa, K. Sakurai, S. Shinkai, Chem. Lett., 34, 1354 (2005). C. Li, M. Numata, A.-H. Bae, K. Sakurai, S. Shinkai, J. Am. Chem. Soc., 127, 4548 (2005). JP 2006-131735 A JP 2006-160770 A JP 2006-241334 A

さらに我々は、β-1,3-グルカンのらせん状構造体の内部に形成される疎水性空間に、有機系ポリマーだけでなく、無機系の金属酸化物(シリカ)のポリマーをゲストとして挿入することを可能としている(特許文献4)。しかしながら、有機系ポリマー(導電性高分子)と無機系ポリマー(シリカゲル)とをナノレベルで複合体化する技術は本発明が完成されるまでは認められなかった。
特開2006−248819号公報
Furthermore, we insert not only organic polymers but also inorganic metal oxide (silica) polymers as guests into the hydrophobic space formed inside the helical structure of β-1,3-glucan. (Patent Document 4). However, a technique for forming a composite of an organic polymer (conductive polymer) and an inorganic polymer (silica gel) at the nano level has not been recognized until the present invention is completed.
JP 2006-248819 A

本発明の目的は、熱的・構造的に安定で、単一鎖で分散した導電性高分子ナノファイバーと無機物ナノファイバーとの複合体を構築することにある。   An object of the present invention is to construct a composite of electrically conductive polymer nanofibers and inorganic nanofibers that are thermally and structurally stable and dispersed in a single chain.

本発明者は、β-1,3-グルカンをインターフェースとすることにより、導電性高分子/シリカゲル系の有機・無機ナノコンポジットを形成させることに成功し、本発明を導き出した。
すなわち、本発明は、β-1,3-グルカンと導電性高分子から成る複合体をシリカゲルで被覆した有機・無機ナノコンポジットを提供するものである。
本発明は、さらに、上記のナノコンポジットを製造する方法であって、β-1,3-グルカンと導電性高分子から成る複合体の存在下にシリカの前駆体に対してゾル−ゲル反応を進行させる方法を提供する。
The present inventor succeeded in forming a conductive polymer / silica gel-based organic / inorganic nanocomposite by using β-1,3-glucan as an interface, and derived the present invention.
That is, the present invention provides an organic / inorganic nanocomposite in which a complex composed of β-1,3-glucan and a conductive polymer is coated with silica gel.
The present invention further provides a method for producing the nanocomposite described above, wherein a sol-gel reaction is performed on a silica precursor in the presence of a composite comprising β-1,3-glucan and a conductive polymer. Provide a way to proceed.

有機系のコンポジットを機能性材料として利用しようとする場合に、有機物固有の柔軟性や分解性が強度や耐久性を著しく低下させ、実用化を阻む主な要因となる場合がある。本発明は、一旦得られた有機系複合体の表面で選択的にゾル-ゲル反応を進行させ、得られるシリカによって有機系複合体の表面を被覆・安定化させた、新規な有機・無機ハイブリッドである。本発明の複合体は物理的・化学的に安定である。また、複合体表面を無機物で被覆することにより、β-1,3-グルカンの形成するらせん構造内部にインシュレートされた導電性高分子は本来の機能を半永久的に保持できるようになるものと期待される。従来行われてきた導電性高分子への直接的なゾル-ゲル反応では、反応時に起こる高分子間の凝集により、無機物内での高分子固有の機能発現が困難であったが、本発明によれば、β-1,3-グルカンによるインシュレート効果により導電性高分子の1本1本を孤立分散させ、その機能を保持したまま無機物で被覆、固定化することを可能とする利点がある(図5参照)。   When an organic composite is to be used as a functional material, the flexibility and decomposability inherent in organic matter may significantly reduce strength and durability, and may be a major factor that hinders practical use. The present invention is a novel organic / inorganic hybrid in which a sol-gel reaction is selectively advanced on the surface of an organic composite once obtained, and the surface of the organic composite is coated and stabilized by the obtained silica. It is. The composite of the present invention is physically and chemically stable. In addition, by covering the surface of the composite with an inorganic material, the conductive polymer insulated inside the helical structure formed by β-1,3-glucan can retain its original function semipermanently. Be expected. In a conventional direct sol-gel reaction to a conductive polymer, it was difficult to express the function unique to the polymer in the inorganic substance due to aggregation between the polymers that occurred during the reaction. According to this, there is an advantage that it is possible to disperse and disperse each of the conductive polymers one by one by the insulation effect by β-1,3-glucan, and to cover and fix with an inorganic substance while maintaining its function. (See FIG. 5).

本発明で使用可能な導電性高分子は特に制限されるものではなく、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレンなどから選ぶことができる。また、インターフェースの役割を果たすβ-1,3-グルカンに関しては、シゾフィラン、レンチナン、スクレログルカンの如き、6位に側鎖のグルコースを有するものが好適に使用される。   The conductive polymer that can be used in the present invention is not particularly limited, and can be selected from, for example, polythiophene, polypyrrole, polyaniline, polyacetylene, polyphenylene vinylene, and the like. As for β-1,3-glucan that plays the role of an interface, those having side chain glucose at the 6-position, such as schizophyllan, lentinan, and scleroglucan, are preferably used.

以上のようなβ-1,3-グルカンと導電性高分子から成る複合体は、先に本発明者らが開示した方法により調製することができる(特許文献3)。すなわち、β-1,3-グルカンと導電性高分子とを極性溶媒(好ましくは、ジメチルスルホキシド:DMSO)中で混合し、水を加えて常温で静置することにより熟成(通常は1日〜3日間)すればよい。   A complex composed of β-1,3-glucan and a conductive polymer as described above can be prepared by the method previously disclosed by the present inventors (Patent Document 3). That is, β-1,3-glucan and a conductive polymer are mixed in a polar solvent (preferably, dimethyl sulfoxide: DMSO), and aged by adding water and allowing to stand at room temperature (usually 1 day to 3 days).

本発明に従えば、以上のようにして得られたβ-1,3-グルカン/導電性高分子複合体の存在下にシリカの前駆体に対してゾル−ゲル反応を進行させる。ゾル−ゲル反応そのものは常法に従って実施される。すなわち、上記のβ-1,3-グルカン/導電性高分子複合体を含有する水溶液に、シリカの前駆体、ゾル−ゲル反応触媒、および必要な有機溶媒を添加してゾル−ゲル反応を進行させることにより、シリカ前駆体が加水分解され、重縮合してシリカポリマー(シリカゲル)が形成される(図1参照)。シリカの前駆体としては、ケイ素のアルコキシドやクロリド、例えば、テトラエトキシシラン(テトラエチルオキシシラン)、メチルトリエトキシシラン、テトラクロロシランなどが使用でき、好ましい例としてテトラエトキシシラン(TEOS)が挙げられる。ゾル−ゲル反応触媒としては、よく知られているように、酸、アルカリ、アミン等が使用でき、好ましい例としてベンジルアミンなどが挙げられる。好ましい有機溶媒としては、例えば、エタノールが挙げられる。このようなゾル−ゲル反応の結果、β-1,3-グルカン/導電性高分子の表面がシリカで被覆されたコンポジット(有機・無機ナノコンポジット)が得られる。
以下、本発明の特徴をさらに詳細に示すため実施例を記す。
According to the present invention, a sol-gel reaction is allowed to proceed on the silica precursor in the presence of the β-1,3-glucan / conductive polymer complex obtained as described above. The sol-gel reaction itself is carried out according to a conventional method. That is, a silica precursor, a sol-gel reaction catalyst, and a necessary organic solvent are added to the aqueous solution containing the above β-1,3-glucan / conductive polymer complex to advance the sol-gel reaction. As a result, the silica precursor is hydrolyzed and polycondensed to form a silica polymer (silica gel) (see FIG. 1). Examples of the silica precursor include silicon alkoxides and chlorides, such as tetraethoxysilane (tetraethyloxysilane), methyltriethoxysilane, and tetrachlorosilane. Preferred examples include tetraethoxysilane (TEOS). As is well known, acid, alkali, amine and the like can be used as the sol-gel reaction catalyst, and preferred examples include benzylamine. A preferable organic solvent includes, for example, ethanol. As a result of such a sol-gel reaction, a composite (organic / inorganic nanocomposite) in which the surface of β-1,3-glucan / conductive polymer is coated with silica is obtained.
Examples are given below to illustrate the features of the present invention in more detail.

SPG/PT-1複合体の調製 表1の組成に従って調製したシゾフィラン(SPG)のDMSO溶液とポリチオフェン(PT-1)のDMSO溶液を混合し、水を加え、室温で熟成することによってSPG/PT-1複合体溶液を調製した(特許文献3参照)。 Preparation of SPG / PT-1 complex SPG / PT-1 by mixing schizophyllan (SPG) DMSO solution and polythiophene (PT-1) DMSO solution prepared according to the composition in Table 1, adding water and aging at room temperature -1 complex solution was prepared (see Patent Document 3).

上記SPG/PT-1 複合体溶液のUV-vis、CDスペクトル測定を行ない、図6の結果を得た。
SPG非存在溶液(only PT-1)と比較すると、SPG存在下の溶液(SPG/PT-1)は吸収ピークが約60nm程度長波長シフトしていることが確認された。従来の知見からこのシフトはSPGのらせん内部にPT-1が取り込まれたことに由来する。また、SPG存在下の溶液のCDスペクトルからPT-1の吸収領域にPT-1のらせん構造に由来するCDシグナルが確認された。UV-visスペクトルにおいて、PT-1の会合に由来する振電バンド(〜600nm)が確認されないことから、このCDシグナルはPT-1がSPGのらせん内部に取り込まれることによって、主鎖のねじれた構造をとっていることが示されSPG/PT-1複合体の形成が確認された。
The UV-vis and CD spectra of the SPG / PT-1 complex solution were measured, and the results shown in FIG. 6 were obtained.
Compared with the SPG non-existing solution (only PT-1), it was confirmed that the solution in the presence of SPG (SPG / PT-1) had a long wavelength shift of about 60 nm in the absorption peak. This shift is due to the fact that PT-1 was incorporated into the SPG helix from conventional knowledge. In addition, a CD signal derived from the helical structure of PT-1 was confirmed in the absorption region of PT-1 from the CD spectrum of the solution in the presence of SPG. In the UV-vis spectrum, the vibronic band (~ 600nm) derived from PT-1 association was not confirmed, so this CD signal was twisted in the main chain by PT-1 being incorporated into the SPG helix. It was shown that the structure was taken and formation of the SPG / PT-1 complex was confirmed.

SPG/PT-1/Silica複合体の調製(ゾル-ゲル反応) 実施例1で得られたSPG/PT-1複合体溶液を用いてテトラエトキシシラン(TEOS)のゾル-ゲル反応を行い、SPG/PT-1/Silica複合体を調製した。配合比率は表.2に従った。 Preparation of SPG / PT-1 / Silica Complex (Sol-Gel Reaction) Using the SPG / PT-1 complex solution obtained in Example 1, a sol-gel reaction of tetraethoxysilane (TEOS) was carried out. / PT-1 / Silica complex was prepared. The blending ratio follows Table.2.

溶液調合後、室温で2〜10日かけてゾル-ゲル反応を進行させた。2日後、TEOS添加溶液からは沈殿が確認された(図9)。リファレンスであるTEOS未添加の溶液からはこのような沈殿が確認されないことから、この沈殿物はゾル-ゲル反応によって生成したSPG/PT-1/Silicaの三元系複合体であると考えられる。得られた沈殿を遠心(8,500rpm、30min)にて回収し、その後生成物をエタノールにて十分に洗浄して未反応のTEOSやPT-1を取り除いた。   After preparing the solution, the sol-gel reaction was allowed to proceed for 2 to 10 days at room temperature. Two days later, precipitation was confirmed from the TEOS-added solution (FIG. 9). Since such a precipitate is not confirmed from the reference TEOS-free solution, this precipitate is considered to be an SPG / PT-1 / Silica ternary complex formed by a sol-gel reaction. The resulting precipitate was recovered by centrifugation (8,500 rpm, 30 min), and then the product was thoroughly washed with ethanol to remove unreacted TEOS and PT-1.

SPG/PT-1/Silica複合体のキャラクタリゼーション 得られた複合体について、TEM
観察を行うことにより、生成したシリカが鋳型を反映した構造をとっているのか確認を行った。観察条件はゾル-ゲル反応後に得られた沈殿物をエタノールによって洗浄した後に、カーボン支持膜TEMグリッドにキャストし、十分に乾燥させた後に観察を行った。ゾル-ゲル反応を行ったSPG/PT-1/Silica複合体はSPG/PT-1複合体のモルフォロジーを反映したファイバー状の構造を取っていることが確認された(図8)。そのコントラストはPT-1のものよりも明らかに強く、生成したシリカであることがわかる。元素分析を行ったところ図9のようなスペクトルが得られた。また、Siだけでなく、小さなピークだが確かにSの存在も確認された。このことからこのコントラストの化合物中にはゾル-ゲル反応によるシリカとPT-1が存在していることがわかった。O原子とSi原子の存在比を調べたところ、O76%に対しSiは24%であった。ゾル-ゲル反応によって生じたシリカをSiO2とすると30 %ほどOが過剰に存在していることになるが、この過剰分はSPGに起因するものと考えられる。
Characterization of SPG / PT-1 / Silica complex
By observing, it was confirmed whether the produced silica had a structure reflecting the template. The observation conditions were that the precipitate obtained after the sol-gel reaction was washed with ethanol, then cast on a carbon support film TEM grid and sufficiently dried, and then observed. It was confirmed that the SPG / PT-1 / Silica complex subjected to the sol-gel reaction had a fiber-like structure reflecting the morphology of the SPG / PT-1 complex (FIG. 8). The contrast is clearly stronger than that of PT-1, indicating that the silica is produced. When elemental analysis was performed, a spectrum as shown in FIG. 9 was obtained. Moreover, not only Si, but a small peak, S was confirmed. This indicates that silica and PT-1 by sol-gel reaction exist in this contrast compound. When the abundance ratio of O atoms and Si atoms was examined, Si was 24% against O76%. If the silica produced by the sol-gel reaction is SiO 2 , about 30% of O is present in excess. This excess is thought to be due to SPG.

ゾル-ゲル反応時の経時変化観察 ゾル-ゲル転写機構をより詳しく考察するために、経時変化をTEMにより観察した。TEOSを加えてから2日後、3日後、10日後のサンプルをそれぞれ遠心(8,500rpm、15min)によって精製し、対象とした。黒いシリカの球が並んだような2日後のサンプルに始まり、3日後、10日後と経過するにつれてよりはっきりしたシリカファイバーが生成しているのがわかる(図10−12左)。10日後になるとその構造はSEMにても観察することができ(図12右)、直径は約15nmと非常に細いシリカが生成していることがわかった。ゾル-ゲル反応の進行によってSPG/PT-1複合体がバンドル化していく様子も見られないことから、SPG/PT-1複合体の1本鎖をシリカによって被覆できているものと考えられる。 Observation of aging during sol-gel reaction In order to consider the sol-gel transfer mechanism in more detail, aging was observed by TEM. Samples 2 days, 3 days, and 10 days after addition of TEOS were purified by centrifugation (8,500 rpm, 15 min), respectively, and used as subjects. It can be seen that a clearer silica fiber is formed with the passage of the sample after 2 days like black silica spheres lined up, and after 3 days and 10 days (FIG. 10-12 left). After 10 days, the structure could be observed by SEM (FIG. 12 right), and it was found that a very thin silica with a diameter of about 15 nm was formed. Since it is not observed that the SPG / PT-1 composite is bundled with the progress of the sol-gel reaction, it is considered that one chain of the SPG / PT-1 composite is covered with silica.

〔比較例1〕
SPGの効果の確認 これまでにSPG/PT-1複合体を鋳型に用いることで、複合体1本を取り込んだと考えられるシリカファイバーの生成を可能にしてきた。このようなシリカファイバーの調製はSPGの非存在下ではどのような結果になるのか、リファレンスの実験を行った。
溶液調製はSPGを用いない以外、前記の実施例と同じ表3の条件にて行った。
[Comparative Example 1]
Confirmation of the effect of SPG By using the SPG / PT-1 complex as a template, it has been possible to produce silica fibers that are considered to have incorporated one complex. A reference experiment was conducted to see what kind of results would be obtained in the absence of SPG.
The solution was prepared under the same conditions as in Table 3 except that SPG was not used.

溶液調製後、10日かけてゾル-ゲル反応を進行させた。10日後、生成した沈殿を回収し、エタノールによって十分洗浄した。得られたPT-1/silica複合体についてTEM観察を行った。図13に示したように、得られたシリカは明らかに太く、PT-1非存在下と変わらないものであった。PT-1のみを鋳型に用いても、生成するシリカのモルフォロジーには変化をあたえず、PT-1には鋳型としての能力がないことを示している。この結果からSPGはPT-1の主鎖構造を剛直にすることによって、鋳型としての分子の硬さをPT-1に付与し、安定したシリカ複合体を生成する働きをなしていることが示された。   After the solution preparation, the sol-gel reaction was allowed to proceed over 10 days. Ten days later, the produced precipitate was recovered and washed thoroughly with ethanol. The obtained PT-1 / silica complex was subjected to TEM observation. As shown in FIG. 13, the obtained silica was obviously thick and the same as in the absence of PT-1. Even if only PT-1 is used as a template, the morphology of the silica produced does not change, indicating that PT-1 does not have the ability as a template. These results indicate that SPG has the function of generating a stable silica composite by imparting the hardness of the molecule as a template to PT-1 by making the main chain structure of PT-1 rigid. It was done.

SPGへの触媒機能の付与 これまではPT-1側鎖に存在する4級アミンカチオンをターゲットにしたTEOSのゾル-ゲル転写を行ってきた。また触媒にベンジルアミンを用いることで、TEOSの加水分解を促進してきた。本系のイメージは溶液中にて生成したTEOSオリゴマーのシラノールアニオンがPT-1側鎖のカチオンと相互作用し、徐々にシリカがSPG/PT-1複合体の周りを覆っていくというものである(図14)。しかし、側鎖にアミンを導入したSPGを用いることで、SPGにゾル-ゲル反応の触媒機能も付与することができないかと考えた。このように鋳型に触媒機能を持たせると、TEOSは鋳型の近傍にて加水分解され重合していくため、TOESオリゴマーが付着していく前記の手法に比べ、滑らかなシリカが得られると言う報告がある(Langmuir, 18, 4544 (2002).)。そこで今回この側鎖修飾SPG(SPG-NH-)を用いてSURFACE MECHANISMのゾル-ゲル転写を試みた。溶液調製は表4に従って行った。 Providing catalytic function to SPG So far, TEOS sol-gel transfer targeting quaternary amine cations existing in the PT-1 side chain has been performed. Moreover, the hydrolysis of TEOS has been promoted by using benzylamine as a catalyst. The image of this system is that the silanol anion of the TEOS oligomer formed in the solution interacts with the cation of the PT-1 side chain, and the silica gradually covers the SPG / PT-1 complex. (FIG. 14). However, we thought that the catalytic function of sol-gel reaction could be imparted to SPG by using SPG with amine introduced in the side chain. In this way, when the template has a catalytic function, TEOS is hydrolyzed and polymerized in the vicinity of the template, so that a smooth silica can be obtained compared to the above-mentioned method in which the TOES oligomers are attached. (Langmuir, 18, 4544 (2002).) Therefore, this time, we attempted sol-gel transfer of SURFACE MECHANISM using this side chain modified SPG (SPG-NH-). Solution preparation was performed according to Table 4.

リファレンスとしてSPGのみの溶液も同様に調製した。溶液を調製後、2〜10日かけてゾル-ゲル反応を進行させた。その後エタノールによって洗浄し、得られたシリカ複合体についてTEM観察を行った。SPGNH-/PT-1/Silica錯体の場合の結果(図15−16)およびSPGのみの結果(図17)を比較することから、SPG-NH-の場合、ベンジルアミン触媒を用いなくてもゾル-ゲル反応が進行し、SPG-NH-/PT-1複合体を鋳型としたシリカファイバーの生成が確かめられた。SPG-NH-のゾル-ゲル反応への触媒効果はリファレンスであるSPGのみでは全くシリカの生成が確認されないことからも示される。   A solution containing only SPG was prepared in the same manner as a reference. After preparing the solution, the sol-gel reaction was allowed to proceed over 2-10 days. Thereafter, it was washed with ethanol, and the obtained silica composite was observed with TEM. Since the results for the SPGNH- / PT-1 / Silica complex (FIGS. 15-16) and the results for the SPG alone (FIG. 17) are compared, the SPG-NH- sol can be used without a benzylamine catalyst. -The gel reaction progressed, confirming the formation of silica fibers using the SPG-NH- / PT-1 complex as a template. The catalytic effect of SPG-NH- on the sol-gel reaction is also shown by the fact that the formation of silica is not confirmed at all with the reference SPG alone.

SPG/PT-1/Silica複合体のスペクトル評価 触媒を用いて調製したSPG/PT-1/Silica複合体を分光学的に評価した。ゾル-ゲル反応によって得られた沈殿物を十分に洗浄した後に凍結乾燥し、淡黄色粉末(図18)を得た。この粉末のATR-FT-IRスペクトルの1000cm-1付近に注目して見ると(図19)、シリカのみ(破線)ではSi-O-Siに由来する1062cm-1のピークが確認された。またSPGのみの場合にはC-O伸縮に由来する1036cm-1のピークが確認された。一方、今回得られたSPG/PT-1/Silica複合体のピークを見ると、前記リファレンスの2つのピークのほぼ中間となる1049cm-1にピークを持ち、裾の方も二つのピークの足し合わせであることが分かる。このことから沈殿物には確かにシリカが生成していることがマクロな粉末状態において示された。次いで、UV-visとCDスペクトルによりシリカ被覆PT-1がSPGによって誘起されたらせん構造を維持しているのかどうかの確認を行った。サンプルはエタノールによる洗浄によって未複合のPT-1を十分に除いた後に凍結乾燥し、得られた粉末を蒸留水に再分散させたものを用いた。図20の結果から、分散状態のためスペクトルはブロード化しているものの、シリカ複合体からは確かにSPGとPT-1の相互作用を示すCDシグナルが確認された。このことはPT-1がシリカ内部でゾル-ゲル反応前と変わらないキラルなコンフォメーションを維持していることを示している。このことからSPG/PT-1複合体を鋳型にゾル-ゲル転写を行うことによって、PT-1の三次構造を制御した精密なゾル-ゲル転写が可能であることが示された。 Spectral evaluation of SPG / PT-1 / Silica complex SPG / PT-1 / Silica complex prepared using a catalyst was evaluated spectroscopically. The precipitate obtained by the sol-gel reaction was sufficiently washed and then lyophilized to obtain a pale yellow powder (FIG. 18). When attention was paid to the vicinity of 1000 cm −1 of the ATR-FT-IR spectrum of this powder (FIG. 19), a peak of 1062 cm −1 derived from Si—O—Si was confirmed only for silica (broken line). In the case of SPG alone, a peak at 1036 cm −1 derived from CO stretching was confirmed. On the other hand, looking at the peak of the SPG / PT-1 / Silica complex obtained this time, it has a peak at 1049 cm -1 , which is almost in the middle of the two peaks of the reference, and the tail is the sum of the two peaks. It turns out that it is. From this, it was shown in a macro powder state that silica was certainly formed in the precipitate. Next, it was confirmed by UV-vis and CD spectra whether silica-coated PT-1 maintained a helical structure induced by SPG. The sample used was obtained by sufficiently removing uncomplexed PT-1 by washing with ethanol and then freeze-drying, and redispersing the obtained powder in distilled water. From the result of FIG. 20, although the spectrum was broadened due to the dispersion state, a CD signal indicating an interaction between SPG and PT-1 was confirmed from the silica composite. This indicates that PT-1 maintains a chiral conformation in silica that is the same as before the sol-gel reaction. This indicates that precise sol-gel transfer with controlled tertiary structure of PT-1 is possible by performing sol-gel transfer using SPG / PT-1 complex as a template.

本発明により、導電性高分子をナノファイバー状に分散・安定化させることができる。本発明は分子エレクトロニクスなどのナノテクノロジー材料の開発に有用と期待される。   According to the present invention, the conductive polymer can be dispersed and stabilized in the form of nanofibers. The present invention is expected to be useful for the development of nanotechnology materials such as molecular electronics.

ゾルゲル反応のスキームを例示する。Illustrates the sol-gel reaction scheme. SPGの化学構造と構造変化を示す。The chemical structure and structural change of SPG are shown. PT-1の化学構造を示す。The chemical structure of PT-1 is shown. SPG/PT-1複合体のイメージを示す。An image of the SPG / PT-1 complex is shown. SPG/PT-1複合体を鋳型に用いた無機物の調製イメージを示す。The preparation image of the inorganic substance which used SPG / PT-1 composite as a template is shown. SPG/PT-1複合体のUV-visおよびCDスペクトル(実施例1)を示す。The UV-vis and CD spectrum (Example 1) of a SPG / PT-1 composite are shown. TEOS有(左)、および無(右)におけるSPG/PT-1複合体溶液の像(実施例2)を示す。The image (Example 2) of the SPG / PT-1 composite solution with TEOS (left) and without (right) is shown. ゾル-ゲル反応2日後のSPG/PT-1/silica複合体のTEM像 (1)(実施例3)TEM image of SPG / PT-1 / silica composite 2 days after sol-gel reaction (1) (Example 3) ナノファイバーのEDXスペクトル特性(実施例3)を示す。The EDX spectrum characteristic (Example 3) of a nanofiber is shown. ゾル-ゲル反応2日後のSPG/PT-1/silica複合体のTEM像(2)(実施例4)を示す。The TEM image (2) (Example 4) of the SPG / PT-1 / silica complex 2 days after a sol-gel reaction is shown. ゾル-ゲル反応3日後のSPG/PT-1/silica複合体のTEM像(実施例4)を示す。The TEM image (Example 4) of the SPG / PT-1 / silica complex 3 days after sol-gel reaction is shown. ゾル-ゲル反応10日後のSPG/PT-1/silica複合体のTEM像(左)およびSEM像(右)(実施例4)を示す。The TEM image (left) and SEM image (right) (Example 4) of the SPG / PT-1 / silica complex 10 days after the sol-gel reaction are shown. PT-1/silica複合体のTEM像(比較例1)を示す。The TEM image (comparative example 1) of a PT-1 / silica complex is shown. 従来のゾル-ゲル反応機構(溶液機構)(実施例5)を示す。The conventional sol-gel reaction mechanism (solution mechanism) (Example 5) is shown. SPG-NH-/PT-1/Silica複合体(実施例6)を示す。The SPG-NH- / PT-1 / Silica complex (Example 6) is shown. ゾル-ゲル反応2日後のSPG-NH-/silica複合体のTEM像(実施例6)を示す。The TEM image (Example 6) of the SPG-NH- / silica complex 2 days after sol-gel reaction is shown. ゾル-ゲル反応2日後のSPGのTEM像(実施例6)を示す。The TEM image (Example 6) of SPG 2 days after sol-gel reaction is shown. SPG/PT-1/Silica複合体(実施例7)を示す。The SPG / PT-1 / Silica complex (Example 7) is shown. SPG/PT-1/Silica複合体(実線)、Silica(点線)、およびS(破線)のIRスペクトル(実施例7)を示す。IR spectra (Example 7) of SPG / PT-1 / Silica complex (solid line), Silica (dotted line), and S (dashed line) are shown. ゾル-ゲル反応前(実線)および反応後(破線)のUV-visスペクトル(実施例7)を示す。The UV-vis spectrum (Example 7) before the sol-gel reaction (solid line) and after the reaction (broken line) is shown.

Claims (5)

β-1,3-グルカンと導電性高分子から成る複合体をシリカゲルで被覆したことを特徴とする有機・無機ナノコンポジット。   An organic / inorganic nanocomposite characterized in that a composite of β-1,3-glucan and a conductive polymer is coated with silica gel. 導電性高分子がポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリフェニレンビニレンから選ばれたものであることを特徴とする請求項1のナノコンポジット。   2. The nanocomposite according to claim 1, wherein the conductive polymer is selected from polythiophene, polypyrrole, polyaniline, polyacetylene, and polyphenylene vinylene. β-1,3-グルカンがシゾフィラン、レンチナン、スクレログルカンから選ばれたものであることを特徴とする請求項1のナノコンポジット。   The nanocomposite according to claim 1, wherein β-1,3-glucan is selected from schizophyllan, lentinan and scleroglucan. 請求項1のナノコンポジットを製造する方法であって、β-1,3-グルカンと導電性高分子から成る複合体の存在下にシリカの前駆体に対してゾル-ゲル反応を進行させることを特徴とする方法。   The method for producing a nanocomposite according to claim 1, wherein a sol-gel reaction is allowed to proceed on a silica precursor in the presence of a composite comprising β-1,3-glucan and a conductive polymer. Feature method. シリカの前駆体としてテトラエチルオキシシランを用いることを特徴とする請求項4の製造方法。
5. The method according to claim 4, wherein tetraethyloxysilane is used as a silica precursor.
JP2007059772A 2007-03-09 2007-03-09 Β-1,3-glucan / conductive polymer composite coated with silica Expired - Fee Related JP5084307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059772A JP5084307B2 (en) 2007-03-09 2007-03-09 Β-1,3-glucan / conductive polymer composite coated with silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059772A JP5084307B2 (en) 2007-03-09 2007-03-09 Β-1,3-glucan / conductive polymer composite coated with silica

Publications (2)

Publication Number Publication Date
JP2008222764A true JP2008222764A (en) 2008-09-25
JP5084307B2 JP5084307B2 (en) 2012-11-28

Family

ID=39841763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059772A Expired - Fee Related JP5084307B2 (en) 2007-03-09 2007-03-09 Β-1,3-glucan / conductive polymer composite coated with silica

Country Status (1)

Country Link
JP (1) JP5084307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023248A (en) * 2014-07-22 2016-02-08 Dic株式会社 Thermoplastic resin composition, production method and molded article thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131735A (en) * 2004-11-05 2006-05-25 Japan Science & Technology Agency POLYANILINE/beta-1,3-GLUCAN COMPLEX
JP2006160770A (en) * 2004-12-02 2006-06-22 Japan Science & Technology Agency Fiber-like electroconductive polymer and its manufacturing method
JP2006241334A (en) * 2005-03-04 2006-09-14 Japan Science & Technology Agency Spiral electroconductive polymer nano wire/polysaccharide composite
JP2006248819A (en) * 2005-03-09 2006-09-21 Japan Science & Technology Agency Metal oxide nanofiber/polysaccharide composite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131735A (en) * 2004-11-05 2006-05-25 Japan Science & Technology Agency POLYANILINE/beta-1,3-GLUCAN COMPLEX
JP2006160770A (en) * 2004-12-02 2006-06-22 Japan Science & Technology Agency Fiber-like electroconductive polymer and its manufacturing method
JP2006241334A (en) * 2005-03-04 2006-09-14 Japan Science & Technology Agency Spiral electroconductive polymer nano wire/polysaccharide composite
JP2006248819A (en) * 2005-03-09 2006-09-21 Japan Science & Technology Agency Metal oxide nanofiber/polysaccharide composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023248A (en) * 2014-07-22 2016-02-08 Dic株式会社 Thermoplastic resin composition, production method and molded article thereof

Also Published As

Publication number Publication date
JP5084307B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
Cheng et al. Facile one-step extraction and oxidative carboxylation of cellulose nanocrystals through hydrothermal reaction by using mixed inorganic acids
Abutalib et al. Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite
Xu et al. In situ polymerization approach to graphene-reinforced nylon-6 composites
Mallakpour et al. Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles
Feng et al. Simultaneous reduction and surface functionalization of graphene oxide by chitosan and their synergistic reinforcing effects in PVA films
Long et al. Preparation and characterization of graphene oxide and it application as a reinforcement in polypropylene composites
Pontón et al. The effects of the chemical composition of titanate nanotubes and solvent type on 3-aminopropyltriethoxysilane grafting efficiency
Pan et al. Microwave absorption and infrared emissivity of helical polyacetylene@ multiwalled carbon nanotubes composites
Wu et al. Synthesis and properties of poly (butylene terephthalate)/multiwalled carbon nanotube nanocomposites prepared by in situ polymerization and in situ compatibilization
He et al. In situ synthesis of polymer-modified boron nitride nanosheets via anionic polymerization
Heydari et al. Facile polymerization of β-cyclodextrin functionalized graphene or graphene oxide nanosheets using citric acid crosslinker by in situ melt polycondensation for enhanced electrochemical performance
Ben Doudou et al. Hybrid carbon nanotube—silica/polyvinyl alcohol nanocomposites films: preparation and characterisation
Soares et al. Carrageenan–Silica Hybrid Nanoparticles Prepared by a Non‐Emulsion Method
Zhou et al. Decoration of Fe3O4 nanoparticles on the surface of poly (acrylic acid) functionalized multi‐walled carbon nanotubes by covalent bonding
Kausar Polyaniline composites with nanodiamond, carbon nanotube and silver nanoparticle: Preparation and properties
Shieh et al. An investigation on dispersion of carbon nanotubes in chitosan aqueous solutions
Barik et al. Mg–Al LDH reinforced PMMA nanocomposites: A potential material for packaging industry
Garcia et al. Carbon nanotubes/chitin nanowhiskers aerogel achieved by quaternization‐induced gelation
Mallakpour et al. Preparation and characterization of optically active poly (amide-imide)/TiO2 bionanocomposites containing N-trimellitylimido-L-isoleucine linkages: using ionic liquid and ultrasonic irradiation
Bahramnia et al. The effect of 3-(triethoxy silyl) propyl amine concentration on surface modification of multiwall carbon nanotubes
Szwarc-Rzepka et al. Immobilization of multifunctional silsesquioxane cage on precipitated silica supports
Anandraj et al. Zirconia sulphate dispersed polymer composites for electronic applications
JP5084307B2 (en) Β-1,3-glucan / conductive polymer composite coated with silica
Kumar et al. Fabrication of conducting polyaniline–multiwalled carbon nanotube nanocomposites and their use as templates for loading gold nanoparticles
Mallakpour et al. Surface modification of alumina with biosafe molecules: Nanostructure, thermal, and mechanical properties of PVA nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees