JP2008222480A - Method for synthesizing ammonia - Google Patents

Method for synthesizing ammonia Download PDF

Info

Publication number
JP2008222480A
JP2008222480A JP2007061729A JP2007061729A JP2008222480A JP 2008222480 A JP2008222480 A JP 2008222480A JP 2007061729 A JP2007061729 A JP 2007061729A JP 2007061729 A JP2007061729 A JP 2007061729A JP 2008222480 A JP2008222480 A JP 2008222480A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
steam
furnace
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007061729A
Other languages
Japanese (ja)
Other versions
JP5391522B2 (en
Inventor
Katsuaki Matsuzawa
克明 松澤
Tomoya Muramoto
知哉 村本
Tetsuya Hirata
哲也 平田
Hironobu Fujiyoshi
裕信 藤吉
Toshiyuki Suda
俊之 須田
Toshiro Fujimori
俊郎 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007061729A priority Critical patent/JP5391522B2/en
Publication of JP2008222480A publication Critical patent/JP2008222480A/en
Application granted granted Critical
Publication of JP5391522B2 publication Critical patent/JP5391522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing ammonia by which ammonia can be efficiently synthesized with low fuel consumption using an inexpensive solid raw material. <P>SOLUTION: A steam added gas 17 fed to an autothermal reformer 19 is fed to a heat exchange furnace 31 into which combustion exhaust gas 5 of a fluidized bed combustion furnace 1 is introduced, and the steam added gas is heated to a required reforming temperature by heat exchange. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アンモニア合成方法に関し、特に石炭(褐炭等の低質炭を含む)、バイオマス、及び超重質油等の安価な固体原料を用いて、少ない燃料消費コストで高効率にアンモニアを合成できるようにしたアンモニア合成方法に関する。   The present invention relates to an ammonia synthesis method, and in particular, it is possible to synthesize ammonia with low fuel consumption cost and high efficiency by using inexpensive solid raw materials such as coal (including low quality coal such as lignite), biomass, and super heavy oil. The present invention relates to a method for synthesizing ammonia.

近年、アンモニアを合成するためのプラントは種々建設されており、典型的には、天然ガスによる炭化水素原料を用いて水素を製造し、該水素と窒素とを合成反応させることによりアンモニアを合成している。図6はその一例の概略を示すフローシートであり、天然ガス(主にメタンCH)の炭化水素原料aに水蒸気を混合して水蒸気改質器bに供給し、水蒸気の存在下主に次の反応式Iにて改質を行う。 In recent years, various plants for synthesizing ammonia have been constructed. Typically, hydrogen is produced from a hydrocarbon raw material using natural gas, and ammonia is synthesized by synthesizing the hydrogen and nitrogen. ing. FIG. 6 is a flow sheet showing an outline of an example thereof. Steam is mixed with a hydrocarbon raw material a of natural gas (mainly methane CH 4 ) and supplied to a steam reformer b. The reforming is performed according to the reaction formula I.

CH+HO→CO+3H・・・(I)
シフト反応(副反応):(CO+HO←→CO+H)・・・(II)
CH 4 + H 2 O → CO + 3H 2 (I)
Shift reaction (side reaction): (CO + H 2 O ← → CO 2 + H 2 ) (II)

次に、得られた改質ガスに空気を混合して自己熱改質器c(ATR=autothermal reformer)に供給し、空気の存在下残りの炭化水素を主に次の反応式III及び反応式IVにより改質する。   Next, air is mixed with the reformed gas obtained and supplied to an autothermal reformer c (ATR = autothermal reformer), and the remaining hydrocarbons in the presence of air are mainly used in the following reaction formulas III and III. Modified by IV.

2CH+O→2CO+4H(発熱反応)・・・(III) 2CH 4 + O 2 → 2CO + 4H 2 (exothermic reaction) (III)

CH+HO→CO+3H(吸熱反応)・・・(IV)
シフト反応(副反応):(CO+HO←→CO+H)・・・(V)
CH 4 + H 2 O → CO + 3H 2 (endothermic reaction) (IV)
Shift reaction (side reaction): (CO + H 2 O ← → CO 2 + H 2 ) (V)

続いて、改質ガスを温度が制御されたシフト反応器dに供給して前記式Vのシフト反応による一酸化炭素を二酸化炭素に変える反応を行わせて生成した二酸化炭素を分離する。これにより改質ガスは殆どが水素と前記空気供給による窒素のみとなるので、この水素と窒素をアンモニア合成反応器eに供給することによりアンモニアが製造される。アンモニア合成反応器eでは一般に、窒素に対する水素の比(HN比)が約3になるように作動されている。このような天然ガス等の炭化水素原料を用いてアンモニアを製造するようにしたプラントは例えば特許文献1に示されている。   Subsequently, the reformed gas is supplied to the shift reactor d whose temperature is controlled, and the carbon dioxide produced by the reaction of changing the carbon monoxide by the shift reaction of Formula V to carbon dioxide is separated. As a result, most of the reformed gas is only hydrogen and nitrogen by the air supply, and ammonia is produced by supplying the hydrogen and nitrogen to the ammonia synthesis reactor e. The ammonia synthesis reactor e is generally operated so that the ratio of hydrogen to nitrogen (HN ratio) is about 3. A plant in which ammonia is produced using a hydrocarbon raw material such as natural gas is disclosed in Patent Document 1, for example.

一方、高価な天然ガスを原料に用いることに代えて、石炭等の固体原料を用いてガス化することにより炭化水素CHを含むガス化ガスを製造し、このガス化ガスを用いてアンモニアを合成する装置が考えられている。 On the other hand, instead of using expensive natural gas as a raw material, a gasified gas containing hydrocarbon CH 4 is produced by gasifying using a solid raw material such as coal, and ammonia is produced using this gasified gas. An apparatus for synthesizing is considered.

図7はその一例を示したもので、図中、1は流動層燃焼炉、2は流動層ガス化炉であり、流動層燃焼炉1ではチャーを導入して空気Aにより流動燃焼させることにより流動媒体を加熱する。流動層燃焼炉1から排出される高温流体3は分離器4に導かれて燃焼排ガス5と流動媒体6とに分離される。   FIG. 7 shows an example. In the figure, 1 is a fluidized bed combustion furnace, 2 is a fluidized bed gasification furnace, and the fluidized bed combustion furnace 1 introduces char and fluidizes and burns it with air A. Heat the fluid medium. The high-temperature fluid 3 discharged from the fluidized bed combustion furnace 1 is guided to the separator 4 and separated into the combustion exhaust gas 5 and the fluidized medium 6.

流動層ガス化炉2には、前記分離器4で分離した高温の流動媒体6が供給されると共に石炭等の固体原料7が供給され、更に、流動層ガス化炉2の下部からガス化剤としての水蒸気Sが供給されて流動化されることにより固体原料7のガス化が行われ、メタンCH等の炭化水素、水素H、一酸化炭素CO、二酸化炭素COが混在したガス化ガス8が生成される。又、流動層ガス化炉2において固体7をガス化する際に生成したチャーと流動媒体は循環流路9を介して流動層燃焼炉1に供給される。前記流動層燃焼炉1に供給する空気Aには、熱交換器29によって前記燃焼排ガス5と熱交換した空気が用いられ、又、前記流動層ガス化炉2に供給する水蒸気Sには、熱交換器30によって前記燃焼排ガス5と水とを熱交換して得た水蒸気が用いられる。 The fluidized bed gasification furnace 2 is supplied with a high-temperature fluidized medium 6 separated by the separator 4 and a solid raw material 7 such as coal, and is further supplied with a gasifying agent from the lower part of the fluidized bed gasification furnace 2. As a result, the solid raw material 7 is gasified by supplying and fluidizing the water vapor S as a gasification mixture of hydrocarbons such as methane CH 4 , hydrogen H 2 , carbon monoxide CO, and carbon dioxide CO 2 . Gas 8 is produced. Further, the char and the fluid medium generated when the solid 7 is gasified in the fluidized bed gasification furnace 2 are supplied to the fluidized bed combustion furnace 1 through the circulation channel 9. The air A supplied to the fluidized bed combustion furnace 1 is air exchanged with the combustion exhaust gas 5 by the heat exchanger 29, and the steam S supplied to the fluidized bed gasification furnace 2 is heated. Steam obtained by exchanging heat between the combustion exhaust gas 5 and water by the exchanger 30 is used.

流動層ガス化炉2から取り出したガス化ガス8は、ガス精製器10によりタール分等が除去され、昇圧器11により加圧された後、ガス燃料等を燃焼するバーナ12を備えた加熱炉13により加熱するようにしている。即ち、ガス化ガス8は先ず加熱部14により脱硫装置15の触媒の作動温度(例えば400〜500℃前後)に加熱されて脱硫装置15に導かれ脱硫される。更に、脱硫したガス化ガス8には水蒸気16が混合され、この水蒸気添加ガス17は、再び加熱炉13の加熱部18に導かれて自己熱改質器19の改質要求温度(例えば700℃前後)に加熱された後、自己熱改質器19に供給される。   The gasification gas 8 taken out from the fluidized bed gasification furnace 2 is removed from the tar and the like by the gas purifier 10 and is pressurized by the booster 11, and then a heating furnace provided with a burner 12 for burning gas fuel and the like. 13 for heating. That is, the gasification gas 8 is first heated by the heating unit 14 to the operating temperature of the catalyst of the desulfurization device 15 (for example, around 400 to 500 ° C.) and guided to the desulfurization device 15 for desulfurization. Further, the desulfurized gasified gas 8 is mixed with steam 16, and the steam-added gas 17 is led again to the heating unit 18 of the heating furnace 13 and the required reforming temperature of the autothermal reformer 19 (for example, 700 ° C.). And then supplied to the autothermal reformer 19.

又、空気20を昇圧機21で加圧した該空気20が、前記加熱炉13の加熱部22により所要温度に加熱された後、自己熱改質器19に供給される。このとき、自己熱改質器19に供給する空気20の温度は、前記改質要求温度(例えば700℃前後)と同一であってもよく、或いはそれより低い温度の場合もある。   Further, the air 20 obtained by pressurizing the air 20 with the booster 21 is heated to a required temperature by the heating unit 22 of the heating furnace 13 and then supplied to the self-heat reformer 19. At this time, the temperature of the air 20 supplied to the autothermal reformer 19 may be the same as the required reforming temperature (for example, around 700 ° C.) or may be lower.

自己熱改質器19では前記反応式I、II、IIIによる反応が行われて、水素H、窒素N、炭素成分(CO,CO)を含む改質ガス23が生成される。 In the autothermal reformer 19, reactions according to the above reaction formulas I, II, and III are performed, and a reformed gas 23 containing hydrogen H 2 , nitrogen N 2 , and carbon components (CO, CO 2 ) is generated.

改質ガス23は第1温度調節器24により温度が低下されて高温シフト反応手段25に導かれ、続いて第2温度調節器26により更に温度が低下されて低温シフト反応手段27に導かれ、改質ガス23中の一酸化炭素が二酸化炭素に変換されて除去される。   The temperature of the reformed gas 23 is lowered by the first temperature controller 24 and led to the high temperature shift reaction means 25, and the temperature is further lowered by the second temperature regulator 26 and led to the low temperature shift reaction means 27. Carbon monoxide in the reformed gas 23 is converted to carbon dioxide and removed.

高温シフト反応手段25及び低温シフト反応手段27で炭素成分が除去された水素Hと窒素Nはアンモニア合成反応器28に供給されてアンモニアが合成される。 Hydrogen H 2 and nitrogen N 2 from which carbon components have been removed by the high temperature shift reaction means 25 and the low temperature shift reaction means 27 are supplied to the ammonia synthesis reactor 28 to synthesize ammonia.

更に、特許文献2には、原料に石炭又はコークスを用いて酸素及び水蒸気と反応させる酸素ガス化法(部分酸化法)によりガス化ガスを生成し、続いてガス化ガス中の炭化水素を改質器を用いて改質し、得られた改質ガスからアンモニアを製造する方法がある。
特開平09−165215号公報 特開昭60−011587号公報
Furthermore, Patent Document 2 discloses that gasified gas is generated by an oxygen gasification method (partial oxidation method) in which coal or coke is used as a raw material to react with oxygen and water vapor, and then hydrocarbons in the gasified gas are modified. There is a method in which ammonia is produced from a reformed gas obtained by reforming using a quality device.
JP 09-165215 A Japanese Patent Laid-Open No. 60-011587

図7に示す方法のように、石炭等の固体原料7からガス化して得たガス化ガス8を用いてアンモニアを合成する際には、ガス化ガス8を脱硫装置15に導いて硫黄を除去する必要がある。このため、ガス化ガス8は加熱炉13に導いて先ず触媒の作動温度(例えば400〜500℃前後)まで加熱する必要がある。一方、脱硫装置15で硫黄が除去されたガス化ガス8には自己熱改質器19での水蒸気改質のための水蒸気16を混合する必要があるため、水蒸気16を混合した水蒸気添加ガス17は温度が100℃前後に低下してしまう。従って、この水蒸気添加ガス17は、自己熱改質器19の改質要求温度(例えば700℃前後)まで再び昇温する必要があり、このために加熱炉13に導いて加熱している。   When ammonia is synthesized using gasified gas 8 obtained by gasification from solid raw material 7 such as coal as in the method shown in FIG. 7, sulfur is removed by introducing gasified gas 8 to desulfurization device 15. There is a need to. For this reason, the gasification gas 8 needs to be led to the heating furnace 13 and first heated to the operating temperature of the catalyst (for example, around 400 to 500 ° C.). On the other hand, since the gasification gas 8 from which sulfur has been removed by the desulfurization apparatus 15 needs to be mixed with the steam 16 for steam reforming in the autothermal reformer 19, the steam-added gas 17 in which the steam 16 is mixed. The temperature drops to around 100 ° C. Therefore, it is necessary to raise the temperature of the steam-added gas 17 again to the required reforming temperature of the self-heat reformer 19 (for example, around 700 ° C.). For this purpose, the steam-added gas 17 is led to the heating furnace 13 and heated.

しかし、ガス化ガス8及び水蒸気添加ガス17を加熱する加熱炉13は、バーナ12でガス等の燃料を燃焼させることで加熱しているために、加熱炉13の燃料消費コストが増加する問題がある。特に、水蒸気16を混合して100℃前後に温度が低下した水蒸気添加ガス17を、再び自己熱改質器19の改質要求温度である例えば700℃前後に加熱するためには、非常に多くの燃料を燃焼する必要がある。又、アンモニアの生産量を高めるために、流動層ガス化炉2への固体原料7の供給量を増加してガス化ガス8の生成量を増加した場合には、加熱炉13で消費される燃料は更に増大し、よってアンモニア製造コストが大幅に増加するという問題がある。   However, since the heating furnace 13 that heats the gasified gas 8 and the steam-added gas 17 is heated by burning a fuel such as gas in the burner 12, there is a problem that the fuel consumption cost of the heating furnace 13 increases. is there. In particular, in order to reheat the steam-added gas 17 whose temperature has dropped to around 100 ° C. by mixing the steam 16 to around 700 ° C., which is the required reforming temperature of the self-thermal reformer 19, for example, it is very much It is necessary to burn the fuel. Further, in order to increase the production amount of ammonia, when the supply amount of the solid raw material 7 to the fluidized bed gasification furnace 2 is increased to increase the generation amount of the gasification gas 8, it is consumed in the heating furnace 13. There is a problem that the fuel is further increased, and thus the cost for producing ammonia is greatly increased.

又、特許文献2に示すように、石炭又はコークスを酸素及び水蒸気と反応させてガス化ガスを生成する酸素ガス化法では、空気から酸素を製造するための酸素発生装置が高価であり、更に運転コストも増加するという問題がある。   Moreover, as shown in Patent Document 2, in the oxygen gasification method in which coal or coke is reacted with oxygen and water vapor to generate gasified gas, an oxygen generator for producing oxygen from air is expensive, and There is a problem that the operating cost also increases.

本発明は、上記実情に鑑みてなしたもので、安価な固体原料を用いて、少ない燃料消費コストで高効率にアンモニアを合成できるようにしたアンモニア合成方法を提供しようとするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ammonia synthesis method in which ammonia can be synthesized with high efficiency at low fuel consumption cost using an inexpensive solid raw material.

請求項1の発明は、流動層燃焼炉にチャーを導入して燃焼させることにより流動媒体を加熱し、
流動層燃焼炉から排出される高温流体を分離器に導いて燃焼排ガスと流動媒体とに分離し、
分離した高温の流動媒体は流動層ガス化炉に導入し水蒸気により固体原料のガス化を行ってガス化ガスを生成すると共に、固体原料をガス化する際に生成したチャーと流動媒体は流動層燃焼炉に循環し、
流動層ガス化炉で生成したガス化ガスに水蒸気を混合した水蒸気添加ガスを改質要求温度まで加熱して自己熱改質器に供給すると共に空気を供給してガス中の炭化水素を改質し、
自己熱改質器の改質ガスを高温シフト反応手段及び低温シフト反応手段に導いて改質ガス中の炭素成分を除去し、
得られた水素と窒素とをアンモニア合成反応器に供給してアンモニアを製造するアンモニア合成方法であって、
前記自己熱改質器に供給する水蒸気添加ガスを、流動層燃焼炉の熱を利用して改質要求温度に加熱することを特徴とするアンモニア合成方法である。
The invention of claim 1 heats the fluidized medium by introducing and burning char into the fluidized bed combustion furnace,
The high-temperature fluid discharged from the fluidized bed combustion furnace is guided to a separator and separated into combustion exhaust gas and fluidized medium,
The separated high-temperature fluidized medium is introduced into a fluidized bed gasification furnace to gasify the solid raw material with water vapor to generate gasified gas, and the char and fluidized medium generated when the solid raw material is gasified are fluidized bed. Circulating to the combustion furnace,
A steam-added gas obtained by mixing steam with gasified gas generated in a fluidized bed gasifier is heated to the required reforming temperature and supplied to the autothermal reformer, and air is supplied to reform the hydrocarbons in the gas. And
The reformed gas of the autothermal reformer is led to the high temperature shift reaction means and the low temperature shift reaction means to remove the carbon component in the reformed gas,
An ammonia synthesis method for producing ammonia by supplying the obtained hydrogen and nitrogen to an ammonia synthesis reactor,
A method for synthesizing ammonia, wherein the steam-added gas supplied to the autothermal reformer is heated to a required reforming temperature by using heat of a fluidized bed combustion furnace.

上記アンモニア合成方法において、前記流動層燃焼炉から排出され分離器で分離れさた燃焼排ガスを、熱交換炉に供給して水蒸気添加ガスと熱交換することにより、水蒸気添加ガスを改質要求温度に加熱することは好ましい。   In the above ammonia synthesis method, the combustion exhaust gas discharged from the fluidized bed combustion furnace and separated by the separator is supplied to the heat exchange furnace to exchange heat with the steam addition gas, thereby changing the steam addition gas to the required reforming temperature. It is preferable to heat it to the

上記アンモニア合成方法において、前記水蒸気添加ガスを、流動層燃焼炉に設けた熱交換手段に供給して流動層燃焼炉と熱交換することにより、水蒸気添加ガスを改質要求温度に加熱することは好ましい。   In the ammonia synthesis method, the steam-added gas is heated to a reforming required temperature by supplying the steam-added gas to a heat exchange means provided in the fluidized-bed combustion furnace and exchanging heat with the fluidized-bed combustion furnace. preferable.

上記アンモニア合成方法において、高温シフト反応手段の入口の改質ガスと水を熱交換し、得られた水蒸気を流動層ガス化炉にガス化用水蒸気として供給することは好ましい。   In the above ammonia synthesis method, it is preferable to exchange heat between the reformed gas and water at the inlet of the high temperature shift reaction means and supply the obtained water vapor to the fluidized bed gasifier as gasification water vapor.

上記アンモニア合成方法において、低温シフト反応手段の入口の改質ガスと空気とを熱交換し、得られた空気を流動層燃焼炉に燃焼用空気として供給することは好ましい。   In the above ammonia synthesis method, it is preferable that heat is exchanged between the reformed gas and air at the inlet of the low temperature shift reaction means, and the obtained air is supplied to the fluidized bed combustion furnace as combustion air.

本発明のアンモニア合成方法によれば、自己熱改質器に供給する水蒸気添加ガスを、流動層燃焼炉の熱を用いて改質要求温度に加熱するので、従来のように水蒸気添加ガスをバーナ燃焼による加熱炉で加熱する方法に比してバーナによる燃料消費コストを大幅に削減することができ、よって安価な石炭等の固体原料を用いて、少ない燃料消費コストで高効率にアンモニアを合成できるという優れた効果を奏し得る。   According to the ammonia synthesis method of the present invention, the steam-added gas supplied to the autothermal reformer is heated to the required reforming temperature using the heat of the fluidized bed combustion furnace. Compared with the method of heating in a furnace heated by combustion, the fuel consumption cost by the burner can be greatly reduced, and therefore ammonia can be synthesized with low fuel consumption cost and high efficiency by using cheap solid materials such as coal. An excellent effect can be achieved.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、図7に示した装置に適用する本発明の一形態例を示すフローシートであり、図中同一の符号を付した部分は同一部材を表わしており、以下では本発明の特徴部分についてのみ詳述する。   FIG. 1 is a flow sheet showing an embodiment of the present invention applied to the apparatus shown in FIG. 7. In FIG. 1, the same reference numerals denote the same members. Only will be described in detail.

図1に示す如く、流動層ガス化炉2に石炭等の固体燃料7を供給してガス化し、ガス化時に生成するチャーを流動媒体と共に流動層燃焼炉1に循環してチャーを燃焼することにより流動媒体を加熱し、前記流動層ガス化炉2からのガス化ガス8を用いてアンモニアを合成する設備において、流動層燃焼炉1から排出される高温流体3を燃焼排ガス5と流動媒体6とに分離するようにしている分離器4からの高温の燃焼排ガス5を、熱交換炉31に供給する。熱交換炉31には、脱硫装置15に供給するガス化ガス8を燃焼排ガス5との熱交換により加熱する加熱部14と、自己熱改質器19に供給する水蒸気添加ガス17を燃焼排ガス5との熱交換により加熱する加熱部18と、自己熱改質器19に供給する空気20を燃焼排ガス5との熱交換により加熱する加熱部22とを備えている。ここで、流動層ガス化炉2で石炭をガス化する際に流動層燃焼炉1から排出される燃焼排ガス5の温度は例えば900〜1000℃前後の高温に保持されている。   As shown in FIG. 1, solid fuel 7 such as coal is supplied to a fluidized bed gasification furnace 2 to gasify it, and the char generated during gasification is circulated to the fluidized bed combustion furnace 1 together with a fluidized medium to burn the char. In the facility for heating the fluidized medium by the above and synthesizing ammonia using the gasified gas 8 from the fluidized bed gasification furnace 2, the high temperature fluid 3 discharged from the fluidized bed combustion furnace 1 is converted into the combustion exhaust gas 5 and the fluidized medium 6. The high-temperature combustion exhaust gas 5 from the separator 4 that is to be separated is supplied to the heat exchange furnace 31. The heat exchange furnace 31 includes a heating unit 14 that heats the gasification gas 8 supplied to the desulfurization device 15 by heat exchange with the combustion exhaust gas 5, and a steam addition gas 17 supplied to the self-heat reformer 19. And a heating unit 22 that heats the air 20 supplied to the self-heat reformer 19 by heat exchange with the combustion exhaust gas 5. Here, the temperature of the combustion exhaust gas 5 discharged from the fluidized bed combustion furnace 1 when coal is gasified in the fluidized bed gasification furnace 2 is maintained at a high temperature of, for example, about 900 to 1000 ° C.

更に、図1の高温シフト反応手段25の入口には改質ガス23と水とを熱交換する熱交換器32を設け、熱交換によって得た水蒸気Sは流動層ガス化炉2にガス化用水蒸気として供給するようにしている。又、低温シフト反応手段27の入口には、改質ガス23と空気とを熱交換する熱交換器33を設け、熱交換によって得た空気Aは流動層燃焼炉1に燃焼用空気として供給するようにしている。   Further, a heat exchanger 32 for exchanging heat between the reformed gas 23 and water is provided at the inlet of the high temperature shift reaction means 25 in FIG. 1, and the steam S obtained by the heat exchange is supplied to the fluidized bed gasification furnace 2 for gasification. It is made to supply as water vapor. A heat exchanger 33 for exchanging heat between the reformed gas 23 and air is provided at the inlet of the low temperature shift reaction means 27, and the air A obtained by the heat exchange is supplied to the fluidized bed combustion furnace 1 as combustion air. I am doing so.

以下に図1の形態の作動を説明する。   The operation of the embodiment shown in FIG. 1 will be described below.

流動層燃焼炉1から導出される燃焼排ガス5は900〜1000℃前後の高温を有しており、しかも大量に排出されるため、燃焼排ガス5が保有する熱量は非常に大きい。   The combustion exhaust gas 5 derived from the fluidized bed combustion furnace 1 has a high temperature of about 900 to 1000 ° C. and is discharged in a large amount, so that the combustion exhaust gas 5 has a very large amount of heat.

従って、水蒸気16が混合されて温度が低下した水蒸気添加ガス17を熱交換炉31の加熱部18に供給すると、熱交換炉31に導入された燃焼排ガス5により、自己熱改質器19が要求する700℃前後の改質要求温度に容易に加熱することができる。更に、燃焼排ガス5の保有熱量は十分に大きいので、ガス化ガス8を加熱部14によって脱硫装置15の触媒の作動温度(例えば400〜500℃前後)に加熱することは容易であると共に、空気20を加熱部22により自己熱改質器19に供給する温度に加熱することも容易である。   Accordingly, when the steam-added gas 17 whose temperature has been reduced by mixing the steam 16 is supplied to the heating unit 18 of the heat exchange furnace 31, the self-heat reformer 19 requires the combustion exhaust gas 5 introduced into the heat exchange furnace 31. It can be easily heated to the required reforming temperature of around 700 ° C. Furthermore, since the amount of heat retained by the combustion exhaust gas 5 is sufficiently large, it is easy to heat the gasified gas 8 to the operating temperature of the catalyst of the desulfurization device 15 (for example, around 400 to 500 ° C.) by the heating unit 14 and air. It is also easy to heat 20 to the temperature supplied to the self-heat reformer 19 by the heating unit 22.

このとき、自己熱改質器19に供給する水蒸気添加ガス17の温度、脱硫装置15に供給するガス化ガス8の温度、自己熱改質器19に供給する空気20の温度は、熱交換を行う各加熱部18,14,22の伝熱面積を選定することで調節することができ、更に熱交換炉31の形状を変更する、又は、該熱交換炉31に導入する燃焼排ガス5の導入位置を変更する等の変更を加えて調節することができる。   At this time, the temperature of the steam addition gas 17 supplied to the autothermal reformer 19, the temperature of the gasification gas 8 supplied to the desulfurization device 15, and the temperature of the air 20 supplied to the autothermal reformer 19 are exchanged. The heat transfer area of each heating unit 18, 14, 22 to be performed can be adjusted, and the shape of the heat exchange furnace 31 is changed, or the combustion exhaust gas 5 introduced into the heat exchange furnace 31 is introduced. Adjustments can be made with changes such as changing the position.

上記したように、自己熱改質器19に供給する水蒸気添加ガス17を、熱交換炉31にに導入する燃焼排ガス5の熱を利用して改質要求温度に加熱するので、従来のように水蒸気添加ガスをバーナ燃焼による加熱炉で加熱する方法に比して、燃料の使用量を大幅に削減することができ、よって安価な石炭等の固体原料を用いて、少ない燃料消費コストで高効率にアンモニアを合成することができる。   As described above, the steam-added gas 17 supplied to the self-heat reformer 19 is heated to the required reforming temperature using the heat of the combustion exhaust gas 5 introduced into the heat exchange furnace 31, so Compared to the method of heating the steam-added gas in a heating furnace using burner combustion, the amount of fuel used can be greatly reduced. Therefore, using low-cost solid materials such as coal, high efficiency with low fuel consumption cost Ammonia can be synthesized.

又、高温シフト反応手段25の入口に改質ガス23と水とを熱交換する熱交換器32を設けて得られた水蒸気Sを流動層ガス化炉2にガス化用水蒸気として供給すると共に、低温シフト反応手段27の入口に改質ガス23と空気とを熱交換する熱交換器33を設けて得られた空気Aを流動層燃焼炉1に燃焼用空気として供給するようにしたので、元々高温シフト反応手段25及び低温シフト反応手段27の入口では改質ガス23の温度を冷却して低下させる必要があるため、この改質ガス23の温度低下分の熱を用いて改質用の水蒸気S及び燃焼用の空気Aを得ることができ、エネルギーを有効に利用することができる。   In addition, the steam S obtained by providing the heat exchanger 32 for exchanging heat between the reformed gas 23 and water at the inlet of the high temperature shift reaction means 25 is supplied to the fluidized bed gasification furnace 2 as gasification steam, Since the air A obtained by providing the heat exchanger 33 for exchanging heat between the reformed gas 23 and air at the inlet of the low temperature shift reaction means 27 is supplied to the fluidized bed combustion furnace 1 as combustion air originally. Since it is necessary to cool and lower the temperature of the reformed gas 23 at the inlets of the high temperature shift reaction means 25 and the low temperature shift reaction means 27, the steam for reforming is used by using the heat corresponding to the temperature drop of the reformed gas 23. S and combustion air A can be obtained, and energy can be used effectively.

図2は本発明の他の形態例を示すフローシートであり、この形態では、流動層燃焼炉1の外部全周に又は一部に、前記水蒸気添加ガス17を流通させる熱交換流路34を一体に形成した熱交換手段35を設け、前記水蒸気16が混合された水蒸気添加ガス17を前記熱交換流路34に通すことにより改質要求温度に加熱し、加熱された水蒸気添加ガス17を自己熱改質器19に供給するようにしている。   FIG. 2 is a flow sheet showing another embodiment of the present invention. In this embodiment, a heat exchange channel 34 through which the steam-added gas 17 is circulated is provided on the entire outer periphery or part of the fluidized bed combustion furnace 1. An integrally formed heat exchange means 35 is provided, and the steam-added gas 17 mixed with the steam 16 is passed through the heat-exchange channel 34 to be heated to the required reforming temperature. The heat reformer 19 is supplied.

前記熱交換手段35としては、図2に示すように流動層燃焼炉1の外部に熱交換流路34を一体に設ける以外に、図3に示す如く、流動層燃焼炉1の内部に熱交換流路36を一体に形成する方法、或いは、図4に示す如く、流動層燃焼炉1の外面に沿って伝熱流路37を配設して更にその外側を外壁38で覆う方法、又は、図5に示す如く、流動層燃焼炉1の内部に伝熱流路39を配設する方法等を採用してもよい。   As the heat exchanging means 35, as shown in FIG. 2, a heat exchanging channel 34 is integrally provided outside the fluidized bed combustion furnace 1, as shown in FIG. A method of integrally forming the flow path 36, or a method of disposing a heat transfer flow path 37 along the outer surface of the fluidized bed combustion furnace 1 and covering the outside with an outer wall 38, as shown in FIG. As shown in FIG. 5, a method of disposing a heat transfer passage 39 inside the fluidized bed combustion furnace 1 may be adopted.

又、図2の形態では、脱硫装置15に供給するガス化ガス8を加熱部14により加熱すると共に、自己熱改質器19に供給する空気20を加熱部22により加熱する加熱炉40を備えており、該加熱炉40には加熱を行うためのバーナ41が備えられている。この加熱炉40は、脱硫装置15に供給するガス化ガス8と、自己熱改質器19に供給する空気20を加熱するためのものであり、これらを加熱するための熱量は、前記水蒸気添加ガス17を改質要求温度の700℃前後まで加熱する熱量に比して非常に小さく、よってバーナ41の燃料の消費は非常に少ない量で済むことになる。   In the embodiment of FIG. 2, a heating furnace 40 for heating the gasified gas 8 supplied to the desulfurization device 15 by the heating unit 14 and heating the air 20 supplied to the self-heat reformer 19 by the heating unit 22 is provided. The heating furnace 40 is provided with a burner 41 for heating. The heating furnace 40 is for heating the gasified gas 8 supplied to the desulfurization apparatus 15 and the air 20 supplied to the self-heat reformer 19, and the amount of heat for heating them is determined by the addition of steam. The amount of heat for heating the gas 17 to around 700 ° C., which is the required reforming temperature, is very small, so that the fuel consumption of the burner 41 is very small.

尚、図2の形態においても、高温シフト反応手段25の入口に改質ガス23と水とを熱交換する熱交換器32を設けて得られた水蒸気Sを流動層ガス化炉2にガス化用水蒸気として供給すると共に、低温シフト反応手段27の入口に改質ガス23と空気とを熱交換する熱交換器33を設けて得られた空気Aを流動層燃焼炉1に燃焼用空気として供給するようにしてもよい。このようにすると、分離器4出口の燃焼排ガス5から、ガス化用の水蒸気Sと燃焼用の空気Aを加熱するための抜熱を省略できるので、分離器4からの燃焼排ガス5の熱をすべて後段のボイラの蒸気発生等に利用することができる。   2, the steam S obtained by providing the heat exchanger 32 for heat exchange between the reformed gas 23 and water at the inlet of the high temperature shift reaction means 25 is gasified into the fluidized bed gasification furnace 2. The air A obtained by providing a heat exchanger 33 for heat exchange between the reformed gas 23 and air at the inlet of the low temperature shift reaction means 27 is supplied to the fluidized bed combustion furnace 1 as combustion air. You may make it do. In this way, the heat removal for heating the gasification steam S and the combustion air A can be omitted from the combustion exhaust gas 5 at the outlet of the separator 4, so the heat of the combustion exhaust gas 5 from the separator 4 can be reduced. All can be used for steam generation of the boiler at the latter stage.

以下に図2の形態の作動を説明する。   The operation of the embodiment shown in FIG. 2 will be described below.

流動層燃焼炉1の内部温度は通常900〜1200℃前後の高温に保持されており、従って、前記水蒸気添加ガス17を流動層燃焼炉1に設けた熱交換手段35に通すと、水蒸気16が混合されて温度が低下した水蒸気添加ガス17は、自己熱改質器19が要求する700℃前後の改質要求温度に容易に加熱される。   The internal temperature of the fluidized bed combustion furnace 1 is normally maintained at a high temperature of about 900 to 1200 ° C. Therefore, when the steam-added gas 17 is passed through the heat exchange means 35 provided in the fluidized bed combustion furnace 1, the steam 16 is The steam-added gas 17 whose temperature has been reduced by mixing is easily heated to the required reforming temperature of about 700 ° C. required by the autothermal reformer 19.

このとき、水蒸気添加ガス17の温度は、流動層燃焼炉1に設けられる熱交換手段35の伝熱面積を選定することによって調節することができる。   At this time, the temperature of the steam addition gas 17 can be adjusted by selecting the heat transfer area of the heat exchange means 35 provided in the fluidized bed combustion furnace 1.

又、脱硫装置15に供給するガス化ガス8は、加熱炉40に備えた加熱部14により例えば400〜500℃前後加熱され、自己熱改質器19に供給する空気20は加熱炉40に備えた加熱部22により所定温度に加熱される。この加熱炉40において、脱硫装置15に供給するガス化ガス8を加熱する熱量、及び自己熱改質器19に供給する空気20を加熱する熱量は、前記水蒸気添加ガス17を改質要求温度の700℃前後まで加熱する熱量に比して非常に小さいので、バーナ41で燃焼する燃料の消費量は非常に小さく抑えることができる。   Further, the gasification gas 8 supplied to the desulfurization apparatus 15 is heated by, for example, about 400 to 500 ° C. by the heating unit 14 provided in the heating furnace 40, and the air 20 supplied to the self-heat reformer 19 is provided in the heating furnace 40. The heating unit 22 is heated to a predetermined temperature. In this heating furnace 40, the amount of heat for heating the gasification gas 8 supplied to the desulfurization device 15 and the amount of heat for heating the air 20 supplied to the self-heat reformer 19 are set so that the steam-added gas 17 has the required reforming temperature. Since it is very small compared to the amount of heat heated to around 700 ° C., the amount of fuel consumed by the burner 41 can be kept very small.

なお、本発明のアンモニア合成方法は、上記形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the ammonia synthesis method of the present invention is not limited to the above embodiment, and it is needless to say that various modifications can be made without departing from the scope of the present invention.

本発明を実施する一形態例のフローシートである。It is a flow sheet of an example which carries out the present invention. 本発明を実施する他の形態例のフローシートである。It is a flow sheet of another example which carries out the present invention. 流動層燃焼炉に備えた熱交換手段の他の例を示す概略側面図である。It is a schematic side view which shows the other example of the heat exchange means with which the fluidized bed combustion furnace was equipped. 流動層燃焼炉に備えた熱交換手段の更に他の例を示す概略側面図である。It is a schematic side view which shows the further another example of the heat exchange means with which the fluidized bed combustion furnace was equipped. 流動層燃焼炉に備えた熱交換手段の更に他の例を示す概略側面図である。It is a schematic side view which shows the further another example of the heat exchange means with which the fluidized bed combustion furnace was equipped. 天然ガスを用いてアンモニアを製造する従来の一例を示すフローシートである。It is a flow sheet which shows an example of the conventional which manufactures ammonia using natural gas. 固体原料を用いて生成したガス化ガスからアンモニアを製造する従来の一例を示すフローシートである。It is a flow sheet which shows an example of the past which manufactures ammonia from gasification gas generated using a solid material.

符号の説明Explanation of symbols

1 流動層燃焼炉
2 流動層ガス化炉
3 高温流体
4 分離器
5 燃焼排ガス
6 流動媒体
7 固形原料
8 ガス化ガス
16 水蒸気
17 水蒸気添加ガス
19 自己熱改質器
20 空気
23 改質ガス
25 高温シフト反応手段
27 低温シフト反応手段
28 アンモニア合成反応器
32 熱交換器
33 熱交換器
35 熱交換手段
A 空気
S 水蒸気
DESCRIPTION OF SYMBOLS 1 Fluidized bed combustion furnace 2 Fluidized bed gasification furnace 3 High temperature fluid 4 Separator 5 Combustion exhaust gas 6 Fluid medium 7 Solid raw material 8 Gasification gas 16 Steam 17 Steam addition gas 19 Self-heat reformer 20 Air 23 Reforming gas 25 High temperature Shift reaction means 27 Low temperature shift reaction means 28 Ammonia synthesis reactor 32 Heat exchanger 33 Heat exchanger 35 Heat exchange means A Air S Steam

Claims (5)

流動層燃焼炉にチャーを導入して燃焼させることにより流動媒体を加熱し、
流動層燃焼炉から排出される高温流体を分離器に導いて燃焼排ガスと流動媒体とに分離し、
分離した高温の流動媒体は流動層ガス化炉に導入し水蒸気により固体原料のガス化を行ってガス化ガスを生成すると共に、固体原料をガス化する際に生成したチャーと流動媒体は流動層燃焼炉に循環し、
流動層ガス化炉で生成したガス化ガスに水蒸気を混合した水蒸気添加ガスを改質要求温度まで加熱して自己熱改質器に供給すると共に空気を供給してガス中の炭化水素を改質し、
自己熱改質器の改質ガスを高温シフト反応手段及び低温シフト反応手段に導いて改質ガス中の炭素成分を除去し、
得られた水素と窒素とをアンモニア合成反応器に供給してアンモニアを製造するアンモニア合成方法であって、
前記自己熱改質器に供給する水蒸気添加ガスを、流動層燃焼炉の熱を利用して改質要求温度に加熱することを特徴とするアンモニア合成方法。
Heating the fluidized medium by introducing char into the fluidized bed combustion furnace and burning it,
The high-temperature fluid discharged from the fluidized bed combustion furnace is guided to a separator and separated into combustion exhaust gas and fluidized medium,
The separated high-temperature fluidized medium is introduced into a fluidized bed gasification furnace to gasify the solid raw material with water vapor to generate gasified gas, and the char and fluidized medium generated when the solid raw material is gasified are fluidized bed. Circulating to the combustion furnace,
A steam-added gas obtained by mixing steam with gasified gas generated in a fluidized bed gasifier is heated to the required reforming temperature and supplied to the autothermal reformer, and air is supplied to reform the hydrocarbons in the gas. And
The reformed gas of the autothermal reformer is led to the high temperature shift reaction means and the low temperature shift reaction means to remove the carbon component in the reformed gas,
An ammonia synthesis method for producing ammonia by supplying the obtained hydrogen and nitrogen to an ammonia synthesis reactor,
A method of synthesizing ammonia, comprising heating a steam-added gas supplied to the self-heat reformer to a required reforming temperature using heat of a fluidized bed combustion furnace.
前記流動層燃焼炉から排出され分離器で分離れさた燃焼排ガスを、熱交換炉に供給して水蒸気添加ガスと熱交換することにより、水蒸気添加ガスを改質要求温度に加熱することを特徴とする請求項1に記載のアンモニア合成方法。   Combustion exhaust gas discharged from the fluidized bed combustion furnace and separated by a separator is supplied to a heat exchange furnace to exchange heat with the steam addition gas, thereby heating the steam addition gas to the required reforming temperature. The ammonia synthesis method according to claim 1. 前記水蒸気添加ガスを、流動層燃焼炉に設けた熱交換手段に供給して流動層燃焼炉と熱交換することにより、水蒸気添加ガスを改質要求温度に加熱することを特徴とする請求項1に記載のアンモニア合成方法。   The steam addition gas is heated to a required reforming temperature by supplying the steam addition gas to a heat exchange means provided in a fluidized bed combustion furnace and exchanging heat with the fluidized bed combustion furnace. A method for synthesizing ammonia. 高温シフト反応手段の入口の改質ガスと水を熱交換し、得られた水蒸気を流動層ガス化炉にガス化用水蒸気として供給することを特徴とする請求項1〜3のいずれか1つに記載のアンモニア合成方法。   Heat exchange is performed between the reformed gas and water at the inlet of the high temperature shift reaction means, and the obtained steam is supplied to the fluidized bed gasification furnace as steam for gasification. A method for synthesizing ammonia. 低温シフト反応手段の入口の改質ガスと空気とを熱交換し、得られた空気を流動層燃焼炉に燃焼用空気として供給することを特徴とする請求項1〜4のいずれか1つに記載のアンモニア合成方法。   The reformed gas and air at the inlet of the low temperature shift reaction means are subjected to heat exchange, and the obtained air is supplied to the fluidized bed combustion furnace as combustion air. The ammonia synthesis method described.
JP2007061729A 2007-03-12 2007-03-12 Ammonia synthesis method Active JP5391522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061729A JP5391522B2 (en) 2007-03-12 2007-03-12 Ammonia synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061729A JP5391522B2 (en) 2007-03-12 2007-03-12 Ammonia synthesis method

Publications (2)

Publication Number Publication Date
JP2008222480A true JP2008222480A (en) 2008-09-25
JP5391522B2 JP5391522B2 (en) 2014-01-15

Family

ID=39841525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061729A Active JP5391522B2 (en) 2007-03-12 2007-03-12 Ammonia synthesis method

Country Status (1)

Country Link
JP (1) JP5391522B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075260A (en) * 2009-10-02 2011-04-14 Ihi Corp Heat radiation recovery device for industrial furnace
JP2011521872A (en) * 2008-05-21 2011-07-28 アルケマ フランス Hydrocyanic acid containing bioresource carbon
CN104560201A (en) * 2013-10-25 2015-04-29 昊华工程有限公司 Production process and system of high-purity hydrogen and ammonia synthesis process and system
WO2019215925A1 (en) * 2018-05-11 2019-11-14 日揮グローバル株式会社 Ammonia production plant and method for producing ammonia
KR20220022587A (en) * 2020-08-19 2022-02-28 보국에너텍주식회사 Low nitrogen oxide pyrolysis gasification system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011587A (en) * 1983-05-31 1985-01-21 ケイアールダブリュ エネルギー システムズ インク Gasification for manufacturing ammonia
JPS6036321A (en) * 1983-07-05 1985-02-25 フオスター・ホイーラー・エナージイ・コーポレイシヨン Manufacture of ammonia from carbon-containing supply flow
JPS60141618A (en) * 1983-12-28 1985-07-26 Mitsubishi Heavy Ind Ltd Manufacture of ammonia by vapor reforming method
US4541841A (en) * 1982-06-16 1985-09-17 Kraftwerk Union Aktiengesellschaft Method for converting carbon-containing raw material into a combustible product gas
US4545976A (en) * 1983-11-10 1985-10-08 Exxon Research & Engineering Co. Hydrocarbon steam reforming using series steam superheaters
JPS6128725A (en) * 1984-06-28 1986-02-08 クルツプ−コツパ−ス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Post-treatment of partially oxidized gas
JP2005041959A (en) * 2003-07-25 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed gasification system
WO2005075343A1 (en) * 2004-02-03 2005-08-18 Ebara Corporation Hydrocarbon material processing system and method
JP2006520739A (en) * 2003-03-18 2006-09-14 ケロッグ ブラウン アンド ルート,インコーポレイテッド Self-thermal reformer for hydrogen production-reformer exchanger arrangement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541841A (en) * 1982-06-16 1985-09-17 Kraftwerk Union Aktiengesellschaft Method for converting carbon-containing raw material into a combustible product gas
JPS6011587A (en) * 1983-05-31 1985-01-21 ケイアールダブリュ エネルギー システムズ インク Gasification for manufacturing ammonia
JPS6036321A (en) * 1983-07-05 1985-02-25 フオスター・ホイーラー・エナージイ・コーポレイシヨン Manufacture of ammonia from carbon-containing supply flow
US4545976A (en) * 1983-11-10 1985-10-08 Exxon Research & Engineering Co. Hydrocarbon steam reforming using series steam superheaters
JPS60141618A (en) * 1983-12-28 1985-07-26 Mitsubishi Heavy Ind Ltd Manufacture of ammonia by vapor reforming method
JPS6128725A (en) * 1984-06-28 1986-02-08 クルツプ−コツパ−ス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Post-treatment of partially oxidized gas
JP2006520739A (en) * 2003-03-18 2006-09-14 ケロッグ ブラウン アンド ルート,インコーポレイテッド Self-thermal reformer for hydrogen production-reformer exchanger arrangement
JP2005041959A (en) * 2003-07-25 2005-02-17 Ishikawajima Harima Heavy Ind Co Ltd Fluidized bed gasification system
WO2005075343A1 (en) * 2004-02-03 2005-08-18 Ebara Corporation Hydrocarbon material processing system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012054905; 日本瓦斯協会,燃料協会 訳: ガスメーキング , 19670110, p.139-142, 丸善 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521872A (en) * 2008-05-21 2011-07-28 アルケマ フランス Hydrocyanic acid containing bioresource carbon
JP2011075260A (en) * 2009-10-02 2011-04-14 Ihi Corp Heat radiation recovery device for industrial furnace
CN104560201A (en) * 2013-10-25 2015-04-29 昊华工程有限公司 Production process and system of high-purity hydrogen and ammonia synthesis process and system
WO2019215925A1 (en) * 2018-05-11 2019-11-14 日揮グローバル株式会社 Ammonia production plant and method for producing ammonia
JP6664033B1 (en) * 2018-05-11 2020-03-13 日揮グローバル株式会社 Ammonia production plant and method for producing ammonia
US11021373B2 (en) 2018-05-11 2021-06-01 Jgc Corporation Ammonia production plant and ammonia production method
KR20220022587A (en) * 2020-08-19 2022-02-28 보국에너텍주식회사 Low nitrogen oxide pyrolysis gasification system
KR102411128B1 (en) 2020-08-19 2022-06-22 보국에너텍주식회사 Low nitrogen oxide pyrolysis gasification system

Also Published As

Publication number Publication date
JP5391522B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5919393B2 (en) Method and apparatus for converting carbon dioxide to carbon monoxide
AU2007240969B2 (en) Methods and systems for gasifying a process stream
RU2495914C2 (en) Apparatus and methods of processing hydrogen and carbon monoxide
CA2482404C (en) A process and apparatus for the production of synthesis gas
US9132402B2 (en) Apparatus, systems, and processes for producing syngas and products therefrom
CN106103339B (en) For using the method for generating liquid hydrocarbon product by the synthetic gas that the reforming reactor based on oxygen transport membrane generates by FISCHER-TROPSCH methods
Moneti et al. Influence of the main gasifier parameters on a real system for hydrogen production from biomass
CN104937078B (en) For the mixing arrangement of liquid fuel production and when the gasification unit in the mixing arrangement is in the method run under less than its designed productive capacity or while not running runs the mixing arrangement
CA2619714A1 (en) Synthesis gas and carbon dioxide generation method
AU749318B2 (en) Method of manufacturing a synthesis gas to be employed for the synthesis of gasoline, kerosene and gas oil
CA2330302A1 (en) Method and apparatus for the production of synthesis gas
JP5391522B2 (en) Ammonia synthesis method
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
JP4427173B2 (en) Syngas production method
JP4438791B2 (en) Ammonia production method and apparatus
JP5256811B2 (en) Gas generating furnace purging method and apparatus
JP4681101B2 (en) Method for producing synthesis gas for gasoline, light oil and kerosene
JP4795517B2 (en) Method for producing synthesis gas for synthesizing gasoline, kerosene and light oil
JP3904161B2 (en) Method and apparatus for producing hydrogen / carbon monoxide mixed gas
GB2187751A (en) Integrated synthesis gas production
CA3205154A1 (en) Method for preparing a synthesis gas
JP5886443B2 (en) Syngas production method and apparatus
US20230159330A1 (en) Apparatus and Method for Producing Synthesis Gas
JP3947266B2 (en) Hydrogen production method and apparatus used therefor
TW202408660A (en) Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5391522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250