JP2008221861A - All-wheel hydraulic drive riding-type lawn mower - Google Patents

All-wheel hydraulic drive riding-type lawn mower Download PDF

Info

Publication number
JP2008221861A
JP2008221861A JP2007058286A JP2007058286A JP2008221861A JP 2008221861 A JP2008221861 A JP 2008221861A JP 2007058286 A JP2007058286 A JP 2007058286A JP 2007058286 A JP2007058286 A JP 2007058286A JP 2008221861 A JP2008221861 A JP 2008221861A
Authority
JP
Japan
Prior art keywords
wheel
pressure
rear wheel
hydraulic
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007058286A
Other languages
Japanese (ja)
Other versions
JP4886556B2 (en
Inventor
Takashi Yasui
隆 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINBA DENKO KK
Kyoeisha Co Ltd
Original Assignee
KINBA DENKO KK
Kyoeisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINBA DENKO KK, Kyoeisha Co Ltd filed Critical KINBA DENKO KK
Priority to JP2007058286A priority Critical patent/JP4886556B2/en
Publication of JP2008221861A publication Critical patent/JP2008221861A/en
Application granted granted Critical
Publication of JP4886556B2 publication Critical patent/JP4886556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To automatically switch an "all-wheel drive system" and a "front wheel drive system" when mowing a lawn while descending a slope, in a riding-type lawn mower which is driven by a hydraulic motor individually installed at each wheel by using a single hydraulic pump. <P>SOLUTION: In this lawn mower of a riding type for driving all the wheels hydraulically and driving each hydraulic motor MF, MB provided at each wheel WF, WB individually by one hydraulic pump A incorporated in a position for forming one driving loop circuit in a main pipe passage L<SB>0</SB>, a check valve V<SB>1</SB>, an automatic selector valve V<SB>2</SB>, and a relief valve V<SB>3</SB>are incorporated in a hydraulic circuit C<SB>1</SB>to switch the "all-wheel drive system" and the "front-wheel drive system" alternately by using a time immediately before the ground contact pressure of the rear wheel WB is reduced and the slip of the rear wheel WB is generated and a time when the slip of the rear wheel WB is not generated due to an increase of the ground contact pressure of the rear wheel WB as a reference. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1個の油圧ポンプにより全車輪に個別に設けられた各油圧モータを個別に駆動する形式の乗用芝刈機において、傾斜地を下って芝刈作業を行う際に、機体の全車輪が駆動される方式(以下「全車輪駆動方式」という)と前輪のみが駆動される方式(以下「前輪駆動方式」という)とが、後輪の接地圧が小さくなって滑りを生ずる直前の時点、及び前輪の作用する油圧力が保持圧から駆動圧に変化する時点で相互に自動的に切り替えられる全車輪油圧駆動乗用芝刈機に関するものである。   The present invention relates to a riding lawn mower that drives each hydraulic motor individually provided on all wheels by a single hydraulic pump. When performing lawn mowing work on a slope, all the wheels of the airframe are driven. And the method in which only the front wheels are driven (hereinafter referred to as “front wheel drive method”), the time immediately before the ground pressure of the rear wheel is reduced and the slip occurs, and The present invention relates to an all-wheel hydraulically driven riding lawn mower that is automatically switched to each other when the oil pressure acting on the front wheels changes from the holding pressure to the driving pressure.

1個の油圧ポンプによって全車輪に個別に設けられた各油圧モータを駆動する全車輪油圧駆動乗用芝刈機の構成と、その問題点について説明する。図11は、4輪構造の全車輪油圧駆動の乗用芝刈機の従来の油圧回路C2 を示す図である。4輪構造の全車輪油圧駆動の乗用芝刈機は、2個の前輪WFは、それぞれ個別の油圧モータMFで駆動されると共に、2つの後輪WBは、それぞれ個別の油圧モータMBで駆動されて、全車輪がそれぞれ個別の油圧モータで駆動される。1個の油圧ポンプAの圧力の作用する主管路L0 に対して4本のモータ管路(並列管路)L1,L2,L3,L4 が並列に接続され、主管路L0 には1個の油圧ポンプAが全体として1つの「駆動ループ回路」を形成するようにして組み込まれ、前輪用の2個の油圧モータMFと後輪用の2個の油圧モータMBからなる計4個の各油圧モータMF,MBは、それぞれ各モータ管路L1,L2,L3,L4 に組み込まれている。 The configuration and problems of an all-wheel hydraulically driven riding lawn mower that drives each hydraulic motor individually provided on all wheels by one hydraulic pump will be described. FIG. 11 is a diagram showing a conventional hydraulic circuit C 2 of a four-wheel structure all-wheel hydraulically-driven riding lawn mower. In a four-wheel structure all-wheel hydraulically driven riding lawn mower, the two front wheels WF are each driven by a separate hydraulic motor MF, and the two rear wheels WB are each driven by a separate hydraulic motor MB. All wheels are driven by individual hydraulic motors. Four motor conduit relative to the main lines L 0 to the effect of the pressure of one hydraulic pump A (parallel line) L 1, L 2, L 3, L 4 are connected in parallel, main line L 0 One hydraulic pump A is incorporated so as to form one “drive loop circuit” as a whole, and is composed of two hydraulic motors MF for front wheels and two hydraulic motors MB for rear wheels. Each of the four hydraulic motors MF, MB is incorporated in each of the motor pipelines L 1 , L 2 , L 3 , L 4 .

このため、平地において直前進又は直後進する場合には、例えば前輪及び後輪が同径で、しかも油圧モータの容量が同一であると、全車輪の周速度が同一となる必要があるので、油圧ポンプAから供給される圧油の流量Qは、各モータ管路L1,L2,L3,L4 に(Q/4)に等分して分配されて計4個の各油圧モータMF,MBを同一回転数で回転させる。この結果、乗用芝刈機は、直前進又は直後進する。一方、平地において前進又は後進の状態で旋回する場合には、内側の車輪は外側の車輪よりも周速度を小さくする必要があると共に、円旋回以外の旋回では同一側の前後の各車輪の周速度を微妙に異ならしめる必要があって、計4個の各油圧モータMF,MBは、乗用芝刈機をスムーズに旋回するのに必要な回転数を自ら選択するため、油圧ポンプAから供給される圧油の流量は、各モータ管路L1,L2,L3,L4 に非等分に分配される。このため、1個の油圧ポンプAにより4個の各油圧モータMF,MBを全て駆動する形式の油圧回路を備えた全車輪油圧駆動の乗用芝刈機は、芝面での旋回時において全車輪を常に必要回転数だけ回転させられて、特定の車輪が過回転、或いは不足回転することがないので、常に旋回がスムーズとなって、車輪により芝生が損傷されない利点がある。 For this reason, when traveling straight forward or immediately on a flat ground, for example, if the front wheels and rear wheels have the same diameter and the hydraulic motor capacity is the same, the peripheral speeds of all the wheels must be the same. The flow rate Q of the pressure oil supplied from the hydraulic pump A is equally divided into (Q / 4) to each of the motor lines L 1 , L 2 , L 3 , and L 4 for a total of four hydraulic motors. MF and MB are rotated at the same rotation speed. As a result, the riding lawn mower moves forward or immediately. On the other hand, when turning in a forward or reverse state on a flat ground, the inner wheel needs to have a lower peripheral speed than the outer wheel, and in turns other than circular turning, the circumference of each front and rear wheel on the same side is required. The speeds need to be slightly different, and a total of four hydraulic motors MF and MB are supplied from the hydraulic pump A to select the number of revolutions necessary for smoothly turning the riding lawn mower. The flow rate of the pressure oil is unevenly distributed to the motor lines L 1 , L 2 , L 3 and L 4 . For this reason, an all-wheel hydraulically-driven riding lawn mower equipped with a hydraulic circuit that drives all four hydraulic motors MF and MB by one hydraulic pump A has all wheels turned when turning on the turf surface. Since it is always rotated by the required number of revolutions and a specific wheel does not over or under rotation, there is an advantage that the turning is always smooth and the lawn is not damaged by the wheel.

しかし、山部と谷部を有する芝面において、傾斜地を下って芝刈作業を行う場合においては、図13及び図14に示されるように、平地走行時に比較して2個の前輪WFの接地圧(P11)が大きくなると共に、2個の後輪WBの接地圧(P12)が小さくなり、勾配が大きくなる程、前輪WFの接地圧(P11)と後輪WBの接地圧(P12)との差が大きくなるため、以下に述べる問題が発生していた。なお、図14(イ),(ロ)は、それぞれ傾斜地の勾配に対する機体の前輪及び後輪の接地圧と保持圧の関係を示すグラフであって、同図の「保持圧」とは、傾斜地において機体が停止又は油圧ポンプの吐出量が零で下っている状態である。即ち、接地圧(P11)の大きな前輪WFの各油圧モータMFは、傾斜地の勾配が限界を超えて大きくなると、前輪WFにより駆動回転されるため、本来の油圧モータとしての機能のみならず、油圧ポンプとしての機能も有するに至ると共に、接地圧の小さな後輪WBの各油圧モータMBは、供給される圧油によってのみ回転する油圧モータとして機能しているために、前輪WFの各油圧モータMFの吐出側の圧力(P1)と流入側の圧力(P2)の関係は逆転して、後者が前者よりも大きくなる。このような関係を有する油圧ポンプAの流入側の圧力(P2)は、自重(重力作用)により機体が急勾配の傾斜地を下ろうとするのを阻止して現状を保持させる油圧力であるため、「保持圧」と称されている。即ち、吐出側の圧力(P1)よりも大きくなった流入側の圧力(P2)は、前輪WF及び後輪WBの双方の油圧モータMF,MBを逆回転させるように作用する。このため、後輪MBの接地圧が小さくなって、芝面に対する摩擦抵抗が小さくなると、後輪WBの回転数は前輪WFの回転数よりも小さくなり、更に勾配が増して接地圧が小さくなると、後輪WBは停止した後に、逆回転するに至る。この結果、後輪WBが傾斜面に追随して回転できないために傾斜面に対して後輪が引きずられて滑る状態(以下、「ロック状態」という)となって、機体が後輪操舵の場合には、ハンドル操作が不能となって機体が暴走し、本来の経路の芝刈作業が行えなくなると共に、後輪の滑りにより芝生を大きく損傷させてしまう問題が発生していた。 However, in the case of performing lawn mowing work on a turf surface having a mountain part and a valley part, as shown in FIGS. 13 and 14, the ground pressures of the two front wheels WF are compared with those on a flat ground. As (P 11 ) increases, the ground pressure (P 12 ) of the two rear wheels WB decreases, and as the gradient increases, the ground pressure (P 11 ) of the front wheels WF and the ground pressure (P Since the difference from 12 ) becomes large, the following problems have occurred. 14 (a) and 14 (b) are graphs showing the relationship between the contact pressure and the holding pressure of the front and rear wheels of the aircraft with respect to the slope of the slope, respectively. The machine body is stopped or the discharge amount of the hydraulic pump is zero. That is, each hydraulic motor MF of the front wheel WF having a large ground pressure (P 11 ) is driven and rotated by the front wheel WF when the slope of the slope increases beyond the limit, so that it not only functions as an original hydraulic motor, Since each hydraulic motor MB of the rear wheel WB having a small ground pressure also functions as a hydraulic motor that rotates only by the supplied hydraulic oil, the hydraulic motor of the front wheel WF has a function as a hydraulic pump. The relationship between the pressure (P 1 ) on the discharge side of MF and the pressure (P 2 ) on the inflow side is reversed, and the latter becomes larger than the former. The pressure (P 2 ) on the inflow side of the hydraulic pump A having such a relationship is an oil pressure that keeps the current state by preventing the aircraft from going down a steep slope due to its own weight (gravity action). , Referred to as “holding pressure”. That is, the inflow side pressure (P 2 ) that is larger than the discharge side pressure (P 1 ) acts to reversely rotate the hydraulic motors MF and MB of both the front wheel WF and the rear wheel WB. For this reason, when the ground pressure of the rear wheel MB decreases and the frictional resistance against the turf surface decreases, the rotational speed of the rear wheel WB becomes smaller than the rotational speed of the front wheel WF, and further, the gradient increases and the ground pressure decreases. The rear wheel WB stops rotating and then rotates backward. As a result, since the rear wheel WB cannot follow the inclined surface and rotate, the rear wheel is dragged with respect to the inclined surface (hereinafter referred to as “locked state”), and the body is in the rear wheel steering. However, there was a problem that the steering wheel could not be operated and the airframe would run away, so that the lawn mowing work could not be performed on the original route, and the lawn could be seriously damaged by slipping of the rear wheels.

上記した問題点を解消するために、切替バルブを使用して、全車輪を駆動する「全車輪駆動方式」と前輪のみを駆動する「前輪駆動方式」とを手動により切り替える切替バルブV10を組み込んだ油圧回路(C3)が採用されている。図12(イ),(ロ)は、それぞれ4輪構造の全車輪油圧駆動の乗用芝刈機の「全車輪駆動方式」及び「前輪駆動方式」における油圧回路C3 を示す図である。駆動方式を切り替える切替バルブV10は、図11に示される従来の油圧回路(C1)において、前輪WF用の各油圧モータMFが組み込まれた各モータ管路L1,L2 と、後輪WB用の各油圧モータMBが組み込まれた各モータ管路L3,L4 とを分断する位置に組み込まれている。 To solve the problems described above, by using the switching valve, incorporating a switching valve V 10 for switching manually between "front wheel drive system" in which the "all wheel drive system" that drives all wheels driving only the front wheels A hydraulic circuit (C 3 ) is employed. FIGS. 12A and 12B are diagrams showing the hydraulic circuit C 3 in the “all-wheel drive system” and “front-wheel drive system” of a four-wheel structure all-wheel hydraulically-driven riding lawn mower, respectively. In the conventional hydraulic circuit (C 1 ) shown in FIG. 11, the switching valve V 10 for switching the driving system includes motor lines L 1 and L 2 in which the hydraulic motors MF for the front wheels WF are incorporated, and the rear wheels. The WB hydraulic motor MB is incorporated at a position where the motor pipelines L 3 and L 4 into which the hydraulic motor MB is incorporated are divided.

このため、図12(イ)に示される「前輪駆動方式」の場合には、上記油圧回路と同様となって、平地において直前進又は直後進する場合である。一方、急勾配の傾斜地を下って芝刈作業を行う場合には、図12(ロ)に示される回路となるように運転者が手動により切替バルブV10を切り替える。これにより、1つの「駆動ループ回路」を形成していた主管路L0 は、前輪WF用の各油圧モータMFが組み込まれた各モータ管路L1,L2 を含む前輪側の「駆動ループ回路」と、後輪WB用の各油圧モータMBが組み込まれた各モータ管路L3,L4 を含む後輪側の「アイドルループ回路」との2つの「ループ回路」に分割される。この結果、油圧ポンプAの圧油は、前輪WF用の各油圧モータMFのみに供給されると共に、後輪側の「アイドルループ回路」は、油圧ポンプAの圧油が供給されないで、後輪WBの従動回転によって内部の低圧油が「アイドルループ回路」内において循環する状態となる。即ち、各前輪WFのみが駆動回転されて、各後輪WBは、従動回転される「前輪駆動方式」に切り替えられる。 For this reason, in the case of the “front wheel drive system” shown in FIG. 12 (a), it is the same as the hydraulic circuit described above, and it is a case where the vehicle moves forward or immediately on a flat ground. On the other hand, when performing mowing down the slope of the steep switches the switching valve V 10 driver manually so that the circuit shown in FIG. 12 (b). As a result, the main pipeline L 0 forming one “drive loop circuit” is a “drive loop on the front wheel side including the motor pipelines L 1 and L 2 in which the hydraulic motors MF for the front wheels WF are incorporated. The circuit is divided into two “loop circuits”, that is, an “idle loop circuit” on the rear wheel side including the motor lines L 3 and L 4 in which the hydraulic motors MB for the rear wheels WB are incorporated. As a result, the pressure oil of the hydraulic pump A is supplied only to the hydraulic motors MF for the front wheels WF, and the “idle loop circuit” on the rear wheel side is not supplied with the pressure oil of the hydraulic pump A, so that the rear wheels The low pressure oil inside circulates in the “idle loop circuit” by the driven rotation of WB. In other words, only each front wheel WF is driven to rotate, and each rear wheel WB is switched to the “front wheel drive system” in which it is driven to rotate.

このため、各後輪WBが「ロック状態」となって操舵不能となる問題点は解消されるが、切替バルブV10の操作は、作業者の判断により行うので、切替操作が遅れて「前輪駆動方式」で急勾配の傾斜地を下がってしまった場合には、後輪WBが「ロック状態」となる上記問題点が発生する。一方、切替操作が早まった場合には、機体の速度が増速された「前輪駆動方式」による刈切長が長くなって、見栄えの悪い部分(回転刃の回転数が一定のままで機体が増速すると、増速前に比較して芝生が荒く刈り取られる)の長さが長くなる問題が発生する。このように、切替バルブV10の操作のタイミングが非常に難しく、しかも下り勾配の傾斜地に達した都度、切替操作を行う必要があって、極めて面倒であるという問題があった。 For this reason, the problem that each rear wheel WB becomes “locked” and cannot be steered is solved. However, since the operation of the switching valve V 10 is performed by the operator's judgment, the switching operation is delayed. When the vehicle is lowered on a steep slope by the “drive system”, the above-described problem that the rear wheel WB is “locked” occurs. On the other hand, when the switching operation is accelerated, the cutting length by the “front wheel drive method” in which the speed of the airframe is increased is lengthened, and the unsightly part (the rotational speed of the rotary blade remains constant) When the speed is increased, there is a problem that the length of the lawn is cut roughly compared to before the speed increase). Thus, it is very difficult timing of the operation of the switching valve V 10, yet each time it reaches the slope of the descending slope, there is a need to perform a switching operation, there is a problem that it is extremely troublesome.

また、手動による切替バルブV10を備えた上記油圧回路C3 において、芝刈機が下り勾配の傾斜地に達して「保持圧」が発生したことを検出して、この検出信号により前記切替バルブV10を自動開閉するように改良した油圧回路も採用されている。改良に係る前記油圧回路は、回路内における「保持圧」の発生信号により切替バルブV10を作動させて、「全車輪駆動方式」と「前輪駆動方式」とを自動的に切り替えるものである。 Further, in the hydraulic circuit C 3 provided with the manual switching valve V 10 , it is detected that the lawn mower has reached the downhill slope and “holding pressure” is generated, and the switching valve V 10 is detected by this detection signal. A hydraulic circuit improved to automatically open and close is also adopted. The hydraulic circuit according to the improvement automatically switches between the “all wheel drive system” and the “front wheel drive system” by operating the switching valve V 10 in response to a generation signal of “holding pressure” in the circuit.

しかし、上記した改良に係る油圧回路では、回路内における「保持圧」の発生を駆動方式の切替基準としているため、後輪に滑りが発生しない下り勾配においても「前輪駆動方式」に切り替えられるために、機体の走行速度が増速する「前輪駆動方式」での刈取長が長くなって、刈面の見栄えが悪い部分の面積が大きくなると共に、「全車輪駆動方式」と「前輪駆動方式」とが相互に頻繁に切り替えられ、その結果、機体の速度が頻繁に増速又は減速されて、機体に作用する小さな衝撃力により機体が「ガクガク」した状態で走行する問題があった。この問題は、機体の前進時のみならず、後進時においても同様に発生する。このように、「保持圧」の発生により駆動方式を切り替える本油圧回路は、駆動方式の切替の基準を作業者により変更できないのが致命的な問題であった。なお、本発明に関連する先行特許文献は存在しない。   However, in the hydraulic circuit according to the above improvement, since the “holding pressure” generation in the circuit is used as a reference for switching the driving method, it can be switched to the “front wheel driving method” even on a downward slope where the rear wheel does not slip. In addition, the cutting length of the "front wheel drive system", which increases the traveling speed of the fuselage, becomes longer, and the area of the cut surface looks worse, and the "all wheel drive system" and "front wheel drive system" Are frequently switched to each other, and as a result, the speed of the airframe is frequently increased or decreased, and there is a problem of traveling in a state where the airframe is “cracked” by a small impact force acting on the airframe. This problem occurs not only when the aircraft is moving forward but also when moving backward. As described above, the hydraulic circuit that switches the driving method when the “holding pressure” is generated has a fatal problem that the reference for switching the driving method cannot be changed by the operator. There is no prior patent document related to the present invention.

本発明は、1個の油圧ポンプにより全車輪に個別に設けられた各油圧モータを駆動する形式の乗用芝刈機において、傾斜地を下って芝刈作業を行う際に、後輪の接地圧が小さくなって後輪に滑りが発生する直前の時点、及び前輪に作用する油圧力が保持圧から駆動圧に変化する時点を基準にして、「全車輪駆動方式」と「前輪駆動方式」とを相互に切替えることにより、傾斜地を下って芝刈作業を行う場合に発生する前輪駆動方式による刈取長を可能な限り短くして刈取状態を良好にし、しかも駆動方式の切替回数を少なくすると共に、切替え時において機体に作用する衝撃力を緩和して、傾斜地を下って行う芝刈作業をスムーズに行えるようにすることを課題としている。   In the riding lawn mower of the type in which each hydraulic motor individually provided on all wheels is driven by a single hydraulic pump, the ground pressure of the rear wheel is reduced when performing lawn mowing work on a slope. Based on the time immediately before the rear wheel slips and the time when the hydraulic pressure acting on the front wheel changes from the holding pressure to the driving pressure, the `` all wheel drive system '' and the `` front wheel drive system '' are mutually By switching, the cutting length of the front wheel drive system that occurs when performing lawn mowing work on an inclined ground is shortened as much as possible to improve the cutting condition, and the number of times of switching the drive system is reduced, and the body at the time of switching It is an object to reduce the impact force acting on the hill so that the lawn mowing work can be carried out smoothly down the slope.

上記課題を解決するための請求項1の発明は、主管路に対して車輪数と同数のモータ管路が並列に接続され、各モータ管路には、前輪用と後輪用の各油圧モータが前記主管路において圧油が流れる方向に沿って二分された形態でそれぞれ組み込まれて、前記主管路における1つの駆動ループ回路が形成可能な位置に組み込まれた一個の油圧ポンプにより、各車輪に設けられた各油圧モータをそれぞれ個別に駆動する形式の全車輪油圧駆動乗用芝刈機であって、前記主管路における車両後進時に油圧ポンプから吐出された圧油が流れる部分であって、しかも前輪用と後輪用の各モータ管路を二分する位置に組み込まれて、後輪側から前輪側に向けての圧油の流れのみを許容するチェックバルブと、前記主管路における油圧ポンプから吐出された圧油が流れる方向に沿って前輪用及び後輪用の各モータ管路を二分し、しかも前記チェックバルブよりも後輪側の位置に、各モータ管路と並列に接続した切替バルブ管路に組み込まれて、前記チェックバルブを挟んでその両側の部分から取り出された各パイロット圧により開閉する自動切替バルブと、前記主管路における前記チェックバルブを基準にして後輪側の部分に前記各モータ管路及び切替バルブ管路に対して並列に接続したリリーフバルブ管路に組み込まれるリリーフバルブとを備えていることを特徴としている。   According to the first aspect of the present invention for solving the above-described problems, the same number of motor lines as the number of wheels are connected in parallel to the main line, and each motor line includes a hydraulic motor for a front wheel and a rear wheel. Are incorporated in a form divided into two along the direction in which the pressure oil flows in the main pipeline, and each wheel is provided by a single hydraulic pump incorporated in a position where one drive loop circuit in the main pipeline can be formed. An all-wheel hydraulically-driven riding lawn mower of a type that individually drives each provided hydraulic motor, wherein the hydraulic oil discharged from a hydraulic pump flows in the main line when the vehicle is moving backward, and for front wheels And a check valve that allows only the flow of pressure oil from the rear wheel side toward the front wheel side, and is discharged from the hydraulic pump in the main line. The motor lines for front wheels and rear wheels are divided into two along the direction of oil flow, and they are incorporated in the switching valve lines connected in parallel with the motor lines at positions closer to the rear wheels than the check valve. And an automatic switching valve that opens and closes by each pilot pressure taken from both sides of the check valve, and each motor pipe line at the rear wheel side with respect to the check valve in the main pipe line And a relief valve incorporated in the relief valve pipe connected in parallel to the switching valve pipe.

請求項1の発明によれば、傾斜地を下って芝刈作業を行う際に、チェックバルブにより前輪の保持圧と遮断された後輪の保持圧と、低下した後輪の接地圧との相乗作用により当該後輪が滑りを開始する直前の保持圧によりリリーフバルブが開かれて、当該後輪の保持圧が開放されると共に、当該開放直後において自動切替バルブに作用する前輪側及び後輪側の各パイロット圧の差の増大により当該自動切替バルブが開かれることにより、後輪側の各モータ回路、切替バルブ回路、及び後輪側の主管路において低圧油の「アイドルループ回路」が形成されて、全車輪駆動方式から前輪駆動方式に自動的に切り替えられる。このように、リリーフバルブが開放するように作動する圧力差は、後輪に滑りが発生する直前の保持圧(正確には、当該保持圧と油圧ポンプから吐出された圧油の圧力との差)に設定してあるので、傾斜地の下り勾配が増すことにより後輪の滑りが発生する直前において、後輪側には、前輪の保持圧がチェックバルブにより遮断された状態で、低圧油による「アイドルループ回路」が形成されるため、後輪は従動回転されて滑りの発生がなくなる。一方、後輪側に「アイドルループ回路」が形成されている状態において、前輪に作用する油圧力が保持圧から駆動圧に変化すると、上記と逆の順序に油圧回路における圧油の流れが変化して、前輪駆動方式から全車輪駆動方式に自動的に切り替えられる。   According to the first aspect of the present invention, when the lawn mowing operation is performed down the slope, the synergistic action of the holding pressure of the front wheel and the holding pressure of the rear wheel blocked by the check valve and the ground pressure of the lowered rear wheel is achieved. The relief valve is opened by the holding pressure immediately before the rear wheel starts to slide, the holding pressure of the rear wheel is released, and each of the front wheel side and the rear wheel side acting on the automatic switching valve immediately after the opening is opened. By opening the automatic switching valve due to an increase in the pilot pressure difference, an "idle loop circuit" of low-pressure oil is formed in each motor circuit on the rear wheel side, the switching valve circuit, and the main line on the rear wheel side, The all-wheel drive system is automatically switched to the front wheel drive system. As described above, the pressure difference at which the relief valve is opened is equal to the holding pressure just before the rear wheel slips (more precisely, the difference between the holding pressure and the pressure of the pressure oil discharged from the hydraulic pump). Therefore, immediately before the rear wheel slips due to an increase in the slope of the slope, the rear wheel side is closed by the check valve with the holding pressure of the front wheel. Since an “idle loop circuit” is formed, the rear wheels are driven to rotate and no slip occurs. On the other hand, when the “idle loop circuit” is formed on the rear wheel side, if the oil pressure acting on the front wheel changes from the holding pressure to the driving pressure, the flow of pressure oil in the hydraulic circuit changes in the reverse order. Thus, the front wheel drive system is automatically switched to the all-wheel drive system.

このため、全車輪駆動方式に対して機体が増速する前輪駆動方式による刈取作業は、下り傾斜地の勾配が大きくて後輪に滑りが発生する部分のみであるため(即ち、下り傾斜地における前輪駆動方式が必要不可欠な勾配の大きな部分においてのみであるため)、前輪駆動方式による刈取長は短くなって、下り勾配の傾斜地における刈取状態が良好となる。また、自動切替バルブが開いて、後輪側に「アイドルループ回路」が形成されるのは、リリーフバルブが開いた後において、自動切替バルブに作用する前輪側及び後輪側の各パイロット圧の差が一定圧以上に増大した後であって、リリーフバルブが作動してから自動切替バルブが作動するまでの間は、後輪の駆動力が所定の時間を有して低下して全車輪駆動方式から前輪駆動方式に切り替えられるので、駆動方式の切替え時における芝生の損傷を最小限に抑えることができると共に、駆動方式の切替え時において機体に作用する衝撃力は殆どなく、駆動方式の切替えがスムーズに行われるため、運転操作が楽となる。   For this reason, the cutting operation by the front wheel drive method in which the airframe speeds up relative to the all-wheel drive method is only the part where the slope of the descending slope is large and the rear wheel slips (that is, the front wheel drive on the descending slope) Since the method is indispensable only at a large portion of the slope), the cutting length by the front wheel driving method is shortened, and the cutting state on the slope with the downward slope is improved. In addition, the automatic switching valve is opened, and the “idle loop circuit” is formed on the rear wheel side after the relief valve is opened and the pilot pressures on the front wheel side and the rear wheel side acting on the automatic switching valve are reduced. After the difference increases to a certain level or more, and after the relief valve is activated until the automatic switching valve is activated, the driving force of the rear wheels decreases for a predetermined time and all wheels are driven. Since the system can be switched from the front-wheel drive system, damage to the lawn when switching the drive system can be minimized, and there is almost no impact force acting on the fuselage when switching the drive system. Since it is performed smoothly, driving operation becomes easy.

また、請求項2の発明では、傾斜地を後進で上ったり、或いは下ったり、更には平地で後進したりする場合のように、後進で芝刈作業を行う場合には、チェックバルブの作用によって、油圧ポンプから吐出された圧油は、後輪用の油圧モータには及ばない構成であるので、傾斜地の勾配の変化とは無関係に常に前輪駆動方式であって、走行中の駆動方式の切替えによる芝刈状態の変化がなくなる利点がある。   Further, in the invention of claim 2, when the lawn mowing work is carried out backward, such as when going up or down on an inclined ground, or going backward on a flat ground, by the action of the check valve, The pressure oil discharged from the hydraulic pump has a configuration that does not reach the hydraulic motor for the rear wheel, so it is always the front wheel drive system regardless of the change in the slope of the slope, and by switching the drive system during traveling There is an advantage that there is no change in the lawn mowing state.

また、請求項3の発明は、請求項1又は2の発明において、前記主管路における車両前進時に油圧ポンプから吐出された圧油が流れる部分であって、しかも前輪用と後輪用の各モータ管路を二分する位置に組み込まれる第1手動切替バルブと、前記主管路における前記チェックバルブを基準にして後輪側の部分の圧力をパイロット圧として前記自動切替バルブに対する伝達及びその遮断を行う第2手動切替バルブとを備えていることを特徴としている。   The invention of claim 3 is the portion of the invention of claim 1 or 2 in which the pressure oil discharged from the hydraulic pump flows when the vehicle moves forward in the main pipeline, and each motor for front wheels and rear wheels A first manual switching valve incorporated in a position that bisects the pipeline, and a first manual switching valve that transmits to and shuts off the automatic switching valve using the pressure at the rear wheel side as a pilot pressure with reference to the check valve in the main pipeline. And 2 manual switching valves.

請求項3の発明によれば、非芝刈作業時には、第1及び第2の各手動切替バルブをいずれも閉じることにより、前輪側及び後輪側の各主管路は、第1手動切替バルブとチェックバルブとにより遮断されると共に、チェックバルブを挟んで後輪側の主管路の圧力が自動切替バルブに対してパイロット圧として作用しないために、前輪側において「駆動ループ回路」が形成されると共に、後輪側において「アイドルループ回路」が形成されて前輪駆動方式となり、機体の走行速度が速くなる。一方、芝刈作業時には、第1及び第2の各手動切替バルブをいずれも開いて、当該第1及び第2の各手動切替バルブが組み込まれていない状態にすると、上記した理由によって、下り勾配の傾斜地において勾配に応じて全車輪駆動方式と前輪駆動方式とが自動的に切り替えられる。   According to the invention of claim 3, during the non-turf cutting operation, the first and second manual switching valves are both closed so that the main lines on the front wheel side and the rear wheel side are checked with the first manual switching valve. While being blocked by the valve and the pressure of the main pipe line on the rear wheel side does not act as a pilot pressure on the automatic switching valve across the check valve, a `` drive loop circuit '' is formed on the front wheel side, An “idle loop circuit” is formed on the rear wheel side, so that the front wheel drive system is adopted, and the traveling speed of the aircraft is increased. On the other hand, if the first and second manual switching valves are both opened and the first and second manual switching valves are not incorporated at the time of lawn mowing, for the reason described above, the downward slope is reduced. In an inclined place, the all-wheel drive method and the front wheel drive method are automatically switched according to the gradient.

請求項4の発明は、請求項3の発明において、前記第1手動切替バルブは、開通路とチェックバルブとのいずれかが選択される構成であることを特徴としており、前記第1手動切替バルブは、チェックバルブを作用状態にすることにより主管路が閉じられるため、主管路を閉じた場合において第1手動切替バルブの部分からの油漏れが少なくなる利点がある。   According to a fourth aspect of the present invention, in the third aspect of the invention, the first manual switching valve is configured such that either an open passage or a check valve is selected. Since the main pipe line is closed by putting the check valve into the operating state, there is an advantage that oil leakage from the first manual switching valve portion is reduced when the main pipe line is closed.

本発明によれば、1個の油圧ポンプにより全車輪に個別に設けられた各油圧モータを駆動する形式の乗用芝刈機において、傾斜地を下って芝刈作業を行う際に、下り勾配の変化に応じて、後輪の接地圧が小さくなって後輪に滑りが発生する直前の時点、及び後輪の接地圧の増大により前記滑りの発生がなくなった時点を基準にして、「全車輪駆動方式」と「前輪駆動方式」とが相互に自動的に切替えられるので、下り勾配の傾斜地における芝刈作業中に発生する前輪駆動方式による刈取長を可能な限り短くして刈取状態を良好にすることができ、しかも駆動方式の切替回数を少なくすると共に、切替え時において機体に作用する衝撃力を緩和して、上り下りの傾斜地における刈取作業をスムーズに行える。   According to the present invention, in a riding lawn mower of a type in which each hydraulic motor individually provided on all wheels is driven by one hydraulic pump, when performing lawn mowing work on a slope, it responds to a change in descending slope. Based on the time immediately before the rear wheel contact pressure decreases and the rear wheel slips, and the time when the slip does not occur due to the increase in the rear wheel contact pressure, the "all wheel drive system" And “front wheel drive system” are automatically switched between each other, so that the cutting length by the front wheel drive system that occurs during lawn mowing work on downhill slopes can be shortened as much as possible to improve the cutting condition. In addition, the number of times of switching the drive system is reduced, and the impact force acting on the airframe at the time of switching is alleviated, so that mowing work can be performed smoothly on uphill and downhill terrain.

以下、最良の実施形態を挙げて、本発明を更に詳細に説明する。図1は、本発明に係る駆動方式自動切替機能を有する全車輪油圧駆動乗用芝刈機の油圧回路図である。最初に、従来の油圧回路C2 ,C3 との関係において本発明に係る油圧回路C1 の構成について説明し、その後に、平地又は傾斜地と機体の前進又は後進との組み合わせに関する芝刈機の種々の刈取状態における駆動方式について逐一説明する。なお、油圧回路C1 の説明に関して、従来の油圧回路C2 ,C3 と同一部分には、同一符号を使用する。 Hereinafter, the present invention will be described in more detail with reference to the best mode. FIG. 1 is a hydraulic circuit diagram of an all-wheel hydraulically driven riding lawn mower having a drive system automatic switching function according to the present invention. First, the configuration of the hydraulic circuit C 1 according to the present invention will be described in relation to the conventional hydraulic circuits C 2 and C 3, and then various lawn mowers related to the combination of flat ground or sloping ground and forward or reverse of the airframe. The driving method in the cutting state will be described step by step. In the description of the hydraulic circuit C 1 , the same reference numerals are used for the same parts as those of the conventional hydraulic circuits C 2 and C 3 .

本発明に係る油圧回路C1 は、従来の油圧回路C2 ,C3 と同様に、1個の油圧ポンプAの圧力の作用する主管路L0 に対して4本のモータ管路L1,L2,L3,L4 が並列に接続され、主管路L0 には1個の可逆性の油圧ポンプAが全体として1つの「駆動ループ回路」を形成するようにして組み込まれ、前輪用の2個の油圧モータMFと後輪用の2個の油圧モータMBからなる計4個の各油圧モータMF,MBは、それぞれ各モータ管路L1,L2,L3,L4 に組み込まれている。ループを形成する主管路L0 は、機体の前進時に油圧ポンプAから吐出されて各油圧モータMF,MBの流入口に圧油を流す第1主管路L01と、各油圧モータMF,MBの流出口から流出された圧油を油圧ポンプAの流入口に流す第2主管路L02とから成る。 Similar to the conventional hydraulic circuits C 2 and C 3 , the hydraulic circuit C 1 according to the present invention includes four motor pipes L 1 , 4 for the main pipe L 0 on which the pressure of one hydraulic pump A acts. L 2 , L 3 , L 4 are connected in parallel, and one reversible hydraulic pump A is incorporated in the main line L 0 so as to form one “drive loop circuit” as a whole. The four hydraulic motors MF and MB, each consisting of two hydraulic motors MF and two rear-wheel hydraulic motors MB, are incorporated in the motor lines L 1 , L 2 , L 3 and L 4 , respectively. It is. The main line L 0 that forms a loop is a first main line L 01 that is discharged from the hydraulic pump A and flows pressure oil to the inlets of the hydraulic motors MF and MB when the airframe moves forward, and the hydraulic lines MF and MB. It comprises a second main line L 02 for flowing the pressure oil flowing out from the outlet to the inlet of the hydraulic pump A.

第2主管路L02における前輪用の2つの各モータ管路L1,L2 と後輪用の2つの各モータ管路L3,L4 を当該第2主管路L02を圧油が流れる方向に沿って二分する位置には、機体の前進時を基準にして後輪側の油圧モータMBから流出された圧油が前輪側の油圧ポンプAの側に向けての流れは許容するが、その逆の流れを阻止するチェックバルブV1 が組み込まれている。当該チェックバルブV1 は、傾斜地の下り勾配が大きくなった場合に、前輪側の各モータ管路L1,L2 に形成される「駆動ループ回路」とは別の「アイドルループ回路」を後輪側の各モータ管路L3,L4 に形成可能にするためのバルブである。また、ループを形成している主管路L0 における油圧ポンプAから吐出された圧油の流れる方向に沿って前輪用及び後輪用の各モータ管路L1,L2,L3,L4 を二分する部分であって、しかも機体の前進時において油圧ポンプAに向けて圧油が流れる第2主管路L02の前記チェックバルブV1 及び後述の第1手動切替バルブV4 よりも下流側の部分には、前記各モータ管路L1,L2,L3,L4 と並列に切替バルブ管路L5 が接続されて、当該切替バルブ管路L5 には、当該切替バルブ管路L5 を開閉する自動切替バルブV2 が組み込まれている。自動切替バルブV2 は、チェックバルブV1 で分断された第2主管路L02の当該チェックバルブV1 の両側の部分の各圧力P3 ,P4 をパイロット圧として作用させて、自身に備えた復帰スプリングSの復帰圧力Psと前記各圧力P3 ,P4 との関係によって、開通路1と閉通路2のいずれかを選択するバルブである。 Flow pressure oil to the second main pipe line L 02 two motors line L 1 of, L 2 and each motor line two for the rear wheels L 3, L 4 for the front wheels in the second main pipe line L 02 At the position that bisects along the direction, the flow of the hydraulic oil flowing out from the hydraulic motor MB on the rear wheel side toward the hydraulic pump A on the front wheel side with respect to the time of forward movement of the fuselage is allowed, A check valve V 1 for preventing the reverse flow is incorporated. The check valve V 1 moves behind an “idle loop circuit” that is different from the “drive loop circuit” formed in each of the motor lines L 1 and L 2 on the front wheel side when the slope of the slope becomes large. This is a valve that can be formed in each of the motor lines L 3 and L 4 on the wheel side. Further, the motor lines L 1 , L 2 , L 3 , L 4 for the front wheels and the rear wheels are arranged along the flow direction of the pressure oil discharged from the hydraulic pump A in the main line L 0 forming the loop. a portion bisecting the, moreover downstream side of the first manual switching valve V 4 of the check valve V 1 and below the second main pipe line L 02 through which the pressurized oil towards the hydraulic pump a at the time of forward movement of the aircraft Is connected to a switching valve line L 5 in parallel with each of the motor lines L 1 , L 2 , L 3 , L 4. The switching valve line L 5 is connected to the switching valve line L 5. An automatic switching valve V 2 that opens and closes L 5 is incorporated. Automatic switching valve V 2 is allowed to act second main pipe line the pressure of the check both sides of the valve V 1 of the L 02 P 3, P 4, which are separated by the check valve V 1 as a pilot pressure, with its own The valve selects either the open passage 1 or the closed passage 2 according to the relationship between the return pressure Ps of the return spring S and the pressures P 3 and P 4 .

また、主管路L0 における前記チェックバルブV1 よりも後輪側の部分には、各モータ管路L1,L2,L3,L4 及び切替バルブ管路L5 に対して並列となってリリーフバルブ管路L6 が接続され、当該リリーフバルブ管路L6 にリリーフバルブV3 が組み込まれている。リリーフバルブV3 は、下り傾斜地において勾配が大きくなって後輪WBの保持圧が大きくなった場合に、第2主管路L02におけるチェックバルブV1 よりも後輪側の部分の圧力(保持圧)P3 と、第1主管路L01における後述の第1手動切替バルブV4 よりも後輪側の部分の圧力P2 との圧力差が設定値を超えた場合に開く定差式のリリーフバルブであって、当該バルブV3 が開く場合の前記圧力差を調整する調整スプリング3を備えている。 Further, a portion of the main line L 0 on the rear wheel side of the check valve V 1 is in parallel with each of the motor lines L 1 , L 2 , L 3 , L 4 and the switching valve line L 5 . The relief valve pipe L 6 is connected, and the relief valve V 3 is incorporated in the relief valve pipe L 6 . Relief valve V 3, when the holding pressure of the rear wheel WB with gradient increases is greater in the downlink slope, the pressure of the portion of the rear wheel side of the check valve V 1 in the second main pipe line L 02 (holding pressure ) and P 3, Teisashiki relief opening when the pressure difference between the pressure P 2 of the first manual switching part of the rear wheel side of the valve V 4 will be described later in the first main pipe line L 01 has exceeded the set value a valve is provided with an adjusting spring 3 for adjusting the pressure difference if the valve V 3 is opened.

また、本発明に係る油圧回路C1 には、「全車輪駆動方式」と「前輪駆動方式」とを手動により切り替えるための第1及び第2の各手動切替バルブV4 ,V5 が組み込まれている。第1手動切替バルブV4 は、第1主管路L01に組み込まれていて、機体の前進時において油圧ポンプAから吐出された圧油が後輪側に流れるのを阻止するチェックバルブ4と、同様の圧油が後輪側に流れるのを許容する開通路5とを備えていて、電磁力によりいずれか一方が選択される。また、第2手動切替バルブV5 は、「前輪駆動方式」の状態において、「アイドルループ回路」を形成している第2主管路L02のチェックバルブV1 よりも後輪側の部分の圧力P3 がパイロット圧として前記自動切替バルブV2 に作用するのを阻止すると共に、「全車輪駆動方式」の状態において、前記パイロット圧が自動切替バルブV2 に作用するように切り替えるためのバルブであって、タンク6に通じるドレン通路7と開通路8とを備えていて、電磁力によりいずれか一方が選択される。なお、図1においてP1 は、第1主管路L01における第1手動切替バルブV4 よりも前輪側の部分の圧力を示す。第1及び第2の各手動切替バルブV4 ,V5 については、前者のチェックバルブ4と後者のドレン通路7とが同時に「作用状態」になると共に、前者の開通路5と後者の開通路8とが同時に「作用状態」となる。更に、第1手動切替バルブV4 を構成するチェックバルブ4は、第1主管路L01を遮断する作用を果たすものであり、管路遮断時において油漏れが少ない利点があるが、一般の遮断弁(閉通路)で構成することも可能である。 The hydraulic circuit C 1 according to the present invention incorporates first and second manual switching valves V 4 and V 5 for manually switching between the “all-wheel drive system” and the “front wheel drive system”. ing. The first manual switching valve V 4 is incorporated in the first main line L 01 , and the check valve 4 that prevents the pressure oil discharged from the hydraulic pump A from flowing to the rear wheel side when the aircraft is moving forward, An open passage 5 that allows similar pressure oil to flow to the rear wheel side is provided, and either one is selected by electromagnetic force. Further, the second manual switching valve V 5 is a pressure at a portion on the rear wheel side of the check valve V 1 of the second main pipe line L 02 forming the “idle loop circuit” in the “front wheel drive system” state. with P 3 is prevented from acting on the automatic switching valve V 2 as the pilot pressure, in the state of "all wheel drive system", in the valve for the pilot pressure to switch to act on the automatic switching valve V 2 Thus, a drain passage 7 and an open passage 8 communicating with the tank 6 are provided, and one of them is selected by electromagnetic force. In FIG. 1, P 1 indicates the pressure in the front wheel side portion of the first main pipeline L 01 relative to the first manual switching valve V 4 . For each of the first and second manual switching valves V 4 and V 5 , the former check valve 4 and the latter drain passage 7 are simultaneously in an “operating state”, and the former opening passage 5 and the latter opening passage. At the same time, “8” is the “action state”. Further, the check valve 4 constituting the first manual switching valve V 4 serves to shut off the first main pipeline L 01 and has an advantage of less oil leakage when the pipeline is shut off. A valve (closed passage) may be used.

次に、図2ないし図10を参照にして、平地又は傾斜地と機体の前進又は後進との組み合わせに関する芝刈機の種々の走行状態で芝刈作業を行う場合における駆動方式について逐一説明する。なお、図2ないし図10において、油圧回路C1 の管路の各部分の圧力の大きさは、線の太さにより表示(区別)してあるが、この線の太さは、同一の図面における相対的な大きさの差を表示しているのみであって、他の図面との関係においては圧力の大きさの差は考慮しておらず、また前輪WF及び後輪WBは図示していない。 Next, with reference to FIG. 2 thru | or FIG. 10, the drive system in the case of performing a lawn mowing operation | work in the various driving | running | working state of a lawn mower regarding the combination of a flat ground or an inclined ground and the advance or reverse of a body is demonstrated one by one. 2 to 10, the magnitude of the pressure in each part of the pipeline of the hydraulic circuit C 1 is indicated (distinguished) by the thickness of the line. The thickness of this line is the same in the drawing. Only the relative difference in size is displayed, and the difference in pressure is not considered in relation to other drawings, and the front wheel WF and the rear wheel WB are not shown. Absent.

〔前輪2輪駆動で平地を前進〕
図2は、平地において芝刈作業を行うことなく、前輪2輪駆動で前進走行する場合の油圧回路図である。この平地走行の場合には、第1手動切替バルブV4 のチェックバルブ4を「作用状態」にすると共に、第2手動切替バルブV5 のドレン通路7を「作用状態」にして、油圧ポンプAを駆動させる。この場合は、油圧ポンプAから吐出された圧油は、第1主管路L01において第1手動切替バルブV4 のチェックバルブ4で遮断されて、後輪用の各油圧モータMBの側には流れないと共に、前輪用の各油圧モータMFから流出された圧油は、第2主管路L02においてチェックバルブV1 により遮断されて、後輪側の各油圧モータMBの側には流れない。また、第2手動切替バルブV5 は、ドレン通路7が「作用状態」となっていて、第2主管路L02におけるチェックバルブV1 よりも前輪側の圧力P4 は、自動切替バルブV2 に対してパイロット圧として作用しているが、第2主管路L02におけるチェックバルブV1 よりも後輪側の圧力P3 は、自動切替バルブV2 に対してパイロット圧として作用していない。このため、(P3 >Ps)の関係が成立するため、自動切替バルブV2 は開通路1が「作用状態」となる。なお、第2主管路L02のチェックバルブV1 の部分においては、後輪側の圧力P3 は前輪側の圧力P4 よりも小さいので、チェックバルブV1 の部分では後輪側から前輪側には低圧油は流れない。
[Advance on flat ground by driving two front wheels]
FIG. 2 is a hydraulic circuit diagram in the case of traveling forward with two-wheel drive of the front wheels without performing lawn mowing work on a flat ground. In the case of this flat ground traveling, the check valve 4 of the first manual switching valve V 4 is set to the “operating state” and the drain passage 7 of the second manual switching valve V 5 is set to the “operating state”. Drive. In this case, the pressure oil discharged from the hydraulic pump A is blocked by the check valve 4 of the first manual switching valve V 4 in the first main line L 01 , and on the side of each hydraulic motor MB for the rear wheels. The pressure oil that does not flow and that flows out from each front wheel hydraulic motor MF is blocked by the check valve V 1 in the second main line L 02 and does not flow to each hydraulic motor MB on the rear wheel side. In the second manual switching valve V 5 , the drain passage 7 is in the “operating state”, and the pressure P 4 on the front wheel side of the check valve V 1 in the second main pipeline L 02 is the automatic switching valve V 2. However, the pressure P 3 on the rear wheel side of the check valve V 1 in the second main line L 02 does not act as a pilot pressure on the automatic switching valve V 2 . For this reason, since the relationship of (P 3 > Ps) is established, the open passage 1 of the automatic switching valve V 2 is in the “operating state”. In the check valve V 1 portion of the second main line L 02 , the pressure P 3 on the rear wheel side is smaller than the pressure P 4 on the front wheel side, so in the check valve V 1 portion from the rear wheel side to the front wheel side. There is no low pressure oil flowing through.

この結果、前輪用の各油圧モータMFが組み込まれた各モータ管路L1 ,L2 と、圧力P1 ,P4 を発生する前輪側の主管路L0 との間において、各油圧モータMFにより各前輪WFが駆動される「駆動ループ回路」が形成されると共に、後輪用の各油圧モータMBが組み込まれた各モータ管路L3 ,L4 及び切替バルブ管路L5 と、圧力P2 ,P3 を発生する後輪側の主管路L0 との間において、従動回転する各後輪WBにより管路内の低圧油が循環させられる「アイドルループ回路」が形成されて、平地において前輪WFの2輪により機体が駆動されて前進走行する。なお、「アイドルループ回路」における後輪側の各油路モータMBの流入側及び流出側の各圧力P2 ,P3 は等しく、当該各圧力P2 ,P3 と、油圧ポンプAの吐出側、及び流入側の各圧油の圧力P1 ,P4 とは、(P1 >P4 >P2 =P3 )の関係にある。 As a result, each hydraulic motor MF is connected between the motor pipes L 1 and L 2 in which the hydraulic motors MF for the front wheels are incorporated and the main pipe L 0 on the front wheel side that generates the pressures P 1 and P 4. As a result, a “drive loop circuit” for driving each front wheel WF is formed, and each motor line L 3 , L 4 and each switching valve line L 5 in which each rear wheel hydraulic motor MB is incorporated, and pressure An “idle loop circuit” is formed in which low-pressure oil in the pipeline is circulated by each rear wheel WB that is driven to rotate between the main pipeline L 0 on the rear wheel side that generates P 2 and P 3. The vehicle is driven forward by the two wheels of the front wheel WF. Note that the pressures P 2 and P 3 on the inflow side and the outflow side of each oil passage motor MB on the rear wheel side in the “idle loop circuit” are equal, and the respective pressures P 2 and P 3 and the discharge side of the hydraulic pump A , And the pressures P 1 and P 4 of the pressure oil on the inflow side have a relationship of (P 1 > P 4 > P 2 = P 3 ).

このように、芝刈作業を行うことなく、前輪2輪駆動で平地で前進する場合には、前輪側の主管路L0 にのみ「駆動ループ回路」が形成されて、後輪側の主管路L0 には「アイドルループ回路」が形成されるために、油圧ポンプAの回転数が同一の場合には、後述の4輪駆動に比較して、増速されるため、ゴルフ場等の芝生の部分まで走行する場合に、高速で移動できる。 In this way, when the vehicle moves forward on a flat ground without driving the lawn mower, a “drive loop circuit” is formed only in the main pipeline L 0 on the front wheel side, and the main pipeline L on the rear wheel side. Since an “idle loop circuit” is formed at 0, when the rotational speed of the hydraulic pump A is the same, the speed is increased compared to the four-wheel drive described later. When traveling to a part, you can move at high speed.

〔前輪2輪駆動で緩傾斜地を前進下り〕
図3は、芝刈作業を行うことなく、前輪2輪駆動で勾配αの緩傾斜地を前進で下る場合の油圧回路図である。勾配αの緩傾斜地において、前輪2輪駆動で前進して下る場合は、平地で前進走行する場合に比較して、前輪WFの接地圧P11が平地よりも大きくなるために、油圧ポンプAの流入側の圧力P4'が、平地における圧力P4 よりも僅かに大きい(P1 >P4'>P4 )点が異なるのみで、他は全て平地の場合と同様である。
[Advancing and descending a gentle slope by driving two front wheels]
FIG. 3 is a hydraulic circuit diagram in a case where the front wheel is driven by a two-wheel drive and a gentle slope with a gradient α is descended forward without performing lawn mowing work. In the case where the vehicle is moving forward by driving the two front wheels on a gently sloping ground with a slope α, the ground pressure P 11 of the front wheel WF is larger than that on the flat ground as compared with the case of traveling forward on a flat ground. The only difference is that the pressure P 4 ′ on the inflow side is slightly larger than the pressure P 4 on the flat ground (P 1 > P 4 ′> P 4 ).

〔前輪2輪駆動で平地を後進〕
図4は、芝刈作業を行うことなく、前輪2輪駆動で平地を後進走行する場合の油圧回路図である。この後進走行においては、油圧ポンプAが逆回転するために、平地で前進走行する場合に比較して、「駆動ループ回路」内の圧油、及び「アイドルループ回路」内の低圧油がいずれもが逆方向に循環する点、及び「駆動ループ回路」において第2主管路L02内の圧油の圧力P4 が第1主管路L01内の圧油の圧力P1 よりも高い(P4 >P1 >P2 =P3 )点の2点が異なるのみである。
[Reverse on flat ground by driving two front wheels]
FIG. 4 is a hydraulic circuit diagram in a case where the vehicle travels backward on a flat ground with two-wheel drive of the front wheels without performing lawn mowing work. In this reverse travel, since the hydraulic pump A rotates in the reverse direction, the pressure oil in the “drive loop circuit” and the low pressure oil in the “idle loop circuit” are both compared to the case of traveling forward on a flat ground. Circulates in the opposite direction, and in the “drive loop circuit”, the pressure P 4 of the pressure oil in the second main line L 02 is higher than the pressure P 1 of the pressure oil in the first main line L 01 (P 4 > P 1 > P 2 = P 3 ).

〔前輪2輪駆動で緩傾斜地を後進下り〕
図5は、芝刈作業を行うことなく、前輪2輪駆動で勾配αの緩傾斜地を後進で下る場合の油圧回路図である。勾配αの緩傾斜地において、前輪2輪駆動により後進して走行する場合は、油圧ポンプAが逆回転するために、同様の緩傾斜地で前進して走行する場合に比較して、「駆動ループ回路」内の圧油、及び「アイドルループ回路」内の低圧油がいずれもが逆方向に循環する点、及び「駆動ループ回路」において第2主管路L02内の圧油の圧力P4 が第1主管路L01内の圧油の圧力P1'よりも高い(P4 >P1'>P2 =P3 )点の2点が異なるのみである。なお、前輪2輪駆動で緩傾斜地を下る場合は、平地で後進する場合に比較して前輪WFの接地圧が小さくなるので、「駆動ループ回路」の第1主管路L01内の圧油の圧力P1'は、平地を後進する場合における第1主管路L01内の圧油の圧力P1 よりも僅かに低い(P1'<P1 )。
[Two front wheels drive back and forth on a gentle slope]
FIG. 5 is a hydraulic circuit diagram in a case where the front wheel is driven two-wheels and a gentle slope with a gradient α is descended backward without performing lawn mowing work. In the case where the vehicle travels backward by two-wheel drive on the front wheel on a gentle slope with a slope α, the hydraulic pump A rotates in the reverse direction. ”And the low pressure oil in the“ idle loop circuit ”circulate in the opposite direction, and the pressure P 4 of the pressure oil in the second main line L 02 in the“ drive loop circuit ” The only difference is the two points (P 4 > P 1 ′> P 2 = P 3 ) that are higher than the pressure P 1 ′ of the pressurized oil in the one main line L 01 . It should be noted that the ground pressure of the front wheel WF is smaller when traveling on a gentle slope with two front wheels driven than when traveling backward on a flat ground, so the pressure oil in the first main line L 01 of the “drive loop circuit” is reduced. The pressure P 1 ′ is slightly lower than the pressure P 1 of the pressure oil in the first main line L 01 when moving backward on the flat ground (P 1 ′ <P 1 ).

〔4輪駆動で平地を前進〕
図6は、4輪駆動で平地を前進して芝刈作業を行う場合の油圧回路図である。芝刈作業を行う場合には、第1手動切替バルブV4 の開通路5を「作用状態」にすると共に、第2手動切替バルブV5 の開通路8を「作用状態」にして、油圧ポンプAを駆動させる。この場合は、油圧ポンプAから吐出された圧油は、第1主管路L01において第1手動切替バルブV4 の開通路5を通過して、後輪用の各油圧モータMBの側に流れると共に、後輪用の各油圧モータMBから流出された圧油は、第2主管路L02においてチェックバルブV1 を通過して油圧ポンプAの側に流れる。また、第2手動切替バルブV5 は、開通路8が「作用状態」となっていて、第2主管路L02におけるチェックバルブV1 を挟んで両側の各圧力P3 ,P4 は等しくて、自動切替バルブV2 に対してパイロット圧として作用している。そして、第1主管路L01の各圧力P1 ,P2 、第2主管路L02の各圧力P3 ,P4 及び自動切替バルブV2 の復帰スプリングSの圧力Psとの間には、(P1 =P2 >P3 =P4 )、(P4 <P3 +Ps)の各関係が成立しているため、自動切替バルブV2 は閉通路2が「作用状態」となって、当該自動切替バルブV2 が閉じられる。
[Advance on flat ground with four-wheel drive]
FIG. 6 is a hydraulic circuit diagram in the case of performing lawn mowing work by moving forward on flat ground with four-wheel drive. When performing lawn mowing work, the open passage 5 of the first manual switching valve V 4 is set to the “operating state”, and the open passage 8 of the second manual switching valve V 5 is set to the “operating state”. Drive. In this case, the pressure oil discharged from the hydraulic pump A flows through the open passage 5 of the first manual switching valve V 4 in the first main line L 01 and flows to the side of each hydraulic motor MB for the rear wheels. At the same time, the pressure oil flowing out from each hydraulic motor MB for the rear wheels passes through the check valve V 1 in the second main line L 02 and flows toward the hydraulic pump A. Further, the second manual switching valve V 5 has the open passage 8 in the “operating state”, and the pressures P 3 and P 4 on both sides across the check valve V 1 in the second main pipeline L 02 are equal. , acting as a pilot pressure to the automatic switching valve V 2. Between the pressures P 1 and P 2 of the first main line L 01 , the pressures P 3 and P 4 of the second main line L 02 , and the pressure Ps of the return spring S of the automatic switching valve V 2 , Since the relationships (P 1 = P 2 > P 3 = P 4 ) and (P 4 <P 3 + Ps) are established, the automatic switching valve V 2 has the closed passage 2 in the “operating state”. the automatic switching valve V 2 is closed.

このように、自動切替バルブV2 が閉じられると共に、第2主管路L02におけるチェックバルブV1 を挟んだ両側の部分の各圧力P3 ,P4 は等しくて、当該チェックバルブV1 は、後輪側から前輪側に向けての圧油の流れのみを許容するため、油圧ポンプAから吐出された圧油は、第1手動切替バルブV4 の前において各モータ管路L1 ,L2 を流れて前輪用の各油圧モータMFを駆動させると共に、第1手動切替バルブV4 を通過して各モータ管路L3 ,L4 を流れて後輪用の各油圧モータMBを駆動させ、後輪用の各油圧モータMBから流出した圧油は、チェックバルブV1 を通過して油圧ポンプAに戻される。このため、全体として一つの「駆動ループ回路」が形成されて、4輪駆動となる。4輪駆動であるため、油圧ポンプAの回転数が同一の場合には、前輪2輪駆動に比較して、機体は減速されて、機体は芝刈作業に適した低速度で走行する。 In this way, the automatic switching valve V 2 is closed, and the pressures P 3 and P 4 on both sides of the second main line L 02 across the check valve V 1 are equal, and the check valve V 1 In order to allow only the flow of pressure oil from the rear wheel side toward the front wheel side, the pressure oil discharged from the hydraulic pump A is supplied to the motor lines L 1 and L 2 in front of the first manual switching valve V 4. the flow with driving each hydraulic motor MF for the front wheels to drive the respective hydraulic motors MB for the rear wheels by a first manual switching valve V 4 and passes through the respective motor line L 3, L 4 flows, The pressure oil flowing out from each rear wheel hydraulic motor MB passes through the check valve V 1 and is returned to the hydraulic pump A. For this reason, one “drive loop circuit” is formed as a whole, and four-wheel drive is performed. Due to the four-wheel drive, when the rotational speed of the hydraulic pump A is the same, the aircraft is decelerated compared to the front-wheel two-wheel drive, and the aircraft travels at a low speed suitable for lawn mowing work.

〔4輪駆動で緩傾斜地を前進下り〕
図7は、4輪駆動で勾配αの緩傾斜地を前進で下って芝刈作業を行う場合の油圧回路図である。勾配αの緩傾斜地において、4輪駆動で前進して芝刈作業を行う場合は、平地で前進して芝刈作業を行う場合に比較して、前輪WFの接地圧P11が平地よりも大きくなるために、第2主管路L02の圧力P3', P4'が、平地における圧力P4 よりも僅かに大きい(P1 >P3'=P4'>P3 =P4 )点が異なるのみで、他は全て平地で芝刈作業を行う場合と同様である。なお、勾配αの緩傾斜地においては平地の場合と同様に、油圧ポンプAの吐出側の圧力P1 は流入側の圧力P4'よりも大きい状態を維持していて、油圧回路内には「保持圧」は発生していない。
[Four wheel drive down a gentle slope]
FIG. 7 is a hydraulic circuit diagram in the case of performing lawn mowing work by moving down a gentle slope with a slope α by four-wheel drive. When a lawn mowing operation is performed with a four-wheel drive on a gentle slope with a slope α, the ground pressure P 11 of the front wheel WF is larger than that on a plain compared with a case where the lawn mowing operation is performed on a flat ground. The pressures P 3 ′ and P 4 ′ of the second main pipeline L 02 are slightly higher than the pressure P 4 on the flat ground (P 1 > P 3 ′ = P 4 ′> P 3 = P 4 ). However, everything else is the same as when mowing on a flat ground. Note that, on a gentle slope with a slope α, the pressure P 1 on the discharge side of the hydraulic pump A is maintained higher than the pressure P 4 ′ on the inflow side, as in the case of flat ground. No "holding pressure" has occurred.

〔4輪駆動で急傾斜地を前進下り〕
図8−Aは、4輪駆動で勾配βの急傾斜地を前進で下って芝刈作業を行う場合において4輪駆動が維持されている状態の油圧回路図である。勾配αの緩傾斜地から勾配αよりも大きな勾配βの急傾斜地に移行して、4輪駆動で前進して急傾斜地を下って芝刈作業を行う場合は、前輪WFの接地圧P11と後輪WBの接地圧P12との差が大きくなると共に、自重(重力作用)により急傾斜面を下ろうとする作用が増大するために、油圧ポンプAの吐出側の圧力P1 と流入側の圧力P4 との関係が逆転して、流入側の圧力P4 が吐出側の圧力P1 よりも大きくなって、油圧回路内に「保持圧」が発生する。この「保持圧」が発生しても、第2主管路L02のチェックバルブV1 を挟んで両側の部分の各圧力P3 ,P4 が等しい関係は、「保持圧」の発生前と同様であるので、当該「保持圧」が小さい間は、チェックバルブV1 の部分を後輪側から前輪側に向けて「保持圧」の発生原因となっている高圧油が流れ続ける。
[Four-wheel drive to move forward and down a steep slope]
FIG. 8A is a hydraulic circuit diagram in a state where the four-wheel drive is maintained when the lawn mowing operation is performed by moving forward on a steep slope with a slope β by four-wheel drive. When shifting from a gentle slope with a slope α to a steep slope with a slope β larger than the slope α, and moving forward with a four-wheel drive and going down the steep slope, the ground pressure P 11 of the front wheel WF and the rear wheel Since the difference between the ground pressure P 12 of WB and the ground pressure P 12 increases, and the action of lowering the steeply inclined surface due to its own weight (gravity action) increases, the discharge-side pressure P 1 and the inflow-side pressure P of the hydraulic pump A The relationship with 4 is reversed, the pressure P 4 on the inflow side becomes larger than the pressure P 1 on the discharge side, and “holding pressure” is generated in the hydraulic circuit. Even if this “holding pressure” is generated, the relationship in which the pressures P 3 and P 4 on both sides of the second main line L 02 across the check valve V 1 are equal is the same as before the “holding pressure” is generated. Therefore, while the “holding pressure” is small, the high-pressure oil that causes the generation of the “holding pressure” continues to flow from the rear wheel side toward the front wheel side of the check valve V 1 .

そして、急傾斜地の勾配が更に大きくなって勾配γ(α<β<γ)に至ると、「保持圧」が更に大きくなって、チェックバルブV1 に作用している第2主管路L02の圧力P4 は更に大きくなり、リリーフバルブV3 に作用している第2主管路L02の圧力P3 と第1主管路L01の圧力P2 との差圧〔P3 −P2 (=P1 )〕が、当該リリーフバルブV3 が作動を開始する設定圧P10に達すると、当該リリーフバルブV3 が開かれる。図8−B及び図8−Cは、それぞれ4輪駆動で勾配γの急傾斜地を前進で下って芝刈作業を行う場合において4輪駆動から前輪2輪駆動に切り替えられる前後の各油圧回路図である。ここで、リリーフバルブV3 が作動を開始する「設定圧P10」は、急傾斜地の勾配が大きくなることにより、後輪WBの接地圧P12が小さくなって、当該後輪WBに「滑り」が発生する直前の第2主管路L02の圧力P3 (保持圧として後輪WBに作用する油圧力)と第1主管路L01の圧力P2 との差圧である。個々の乗用芝刈機において、予め後輪が「滑り」を開始する時点の傾斜地の勾配は、機体の重量、機体の重心位置、芝面に対する後輪の摩擦抵抗等の既知データにより予め判明しているので、前記「設定圧」は、個々の芝刈機に対応して設定可能であって、この「設定圧」は、リリーフバルブV3 の調整スプリング3により調整可能である。 Then, when the gradient of the steep slope is further increased to reach the gradient γ (α <β <γ), the “holding pressure” is further increased, and the second main pipe line L 02 acting on the check valve V 1 is increased. the pressure P 4 is further increased, the pressure difference [P 3 -P 2 between the pressure P 3 of the second main pipe line L 02 acting on the relief valve V 3 and the pressure P 2 of the first main pipe line L 01 (= P 1)] is, when the relief valve V 3 reaches the set pressure P 10 which starts operation, the relief valve V 3 is opened. FIGS. 8B and 8C are hydraulic circuit diagrams before and after switching from four-wheel drive to front-wheel two-wheel drive when performing lawn mowing work by moving forward on a steep slope with a gradient γ by four-wheel drive. is there. Here, the “set pressure P 10 ” at which the relief valve V 3 starts operating increases the ground slope P 12 of the rear wheel WB due to the increase in the slope of the steep slope, and the “slip” is applied to the rear wheel WB. Is the pressure difference between the pressure P 3 in the second main line L 02 (oil pressure acting on the rear wheel WB as a holding pressure) and the pressure P 2 in the first main line L 01 immediately before the occurrence of “ In each riding lawn mower, the slope of the slope at the time when the rear wheels start “sliding” is determined in advance from known data such as the weight of the aircraft, the center of gravity of the aircraft, and the frictional resistance of the rear wheels against the grass surface. Therefore, the “set pressure” can be set corresponding to each lawnmower, and this “set pressure” can be adjusted by the adjustment spring 3 of the relief valve V 3 .

そして、リリーフバルブV3 が開いてリリーフバルブ管路L6 に第2主管路L02から第1主管路L01の側に向けて圧油が流れると、後輪側の第1主管路L01と第2主管路L02とが連通すると共に、チェックバルブV1 によって、前輪側の第2主管路L02の圧力P4 は高圧に保持されたままとなるので、「保持圧」を発生させていた後輪側の第2主管路L02の高圧の圧力P3 は、急激に低下して、後輪側の第1主管路L01の圧力P2 (当該圧力P2 は、前輪側の第1主管路L01の圧力P1 と等しい)と同等となる。このようにして、後輪側の第2主管路L02の圧力P3 が低下すると、自動切替バルブV2 にパイロット圧として作用するチェックバルブV1 を挟んで両側の第2主管路L02の各圧力P3 ,P4 の差が大きくなって、(P4 >P3 +Ps)の関係が成立するに至ると、自動切替バルブV2 の開通路1が「作用状態」となって、当該自動切替バルブV2 が開いて、「アイドルループ」が形成される〔図8−C参照〕。 Then, when the relief valve V 3 is opened and pressure oil flows into the relief valve pipe L 6 from the second main pipe L 02 toward the first main pipe L 01 , the rear wheel side first main pipe L 01 is reached. And the second main pipe line L 02 communicate with each other, and the pressure P 4 in the second main pipe line L 02 on the front wheel side is kept at a high pressure by the check valve V 1 , thereby generating a “holding pressure”. The high pressure P 3 in the second main line L 02 on the rear wheel side that has been reduced rapidly decreases to the pressure P 2 in the first main line L 01 on the rear wheel side (the pressure P 2 is Equivalent to the pressure P 1 of the first main line L 01 ). In this way, when the pressure P 3 in the second main line L 02 on the rear wheel side decreases, the check valve V 1 acting as a pilot pressure on the automatic switching valve V 2 is sandwiched between the second main lines L 02 on both sides. When the difference between the pressures P 3 and P 4 becomes large and the relationship of (P 4 > P 3 + Ps) is established, the open passage 1 of the automatic switching valve V 2 becomes “active state”, The automatic switching valve V 2 is opened to form an “idle loop” (see FIG. 8C).

これにより、(P4 >P1 =P2 =P3 )の関係が成立して、図 8−Cに示されるように、前輪側の「駆動ループ回路」と後輪側の「アイドルループ回路」とが独立して形成され、傾斜地の勾配γが小さくなることによる後輪WBの接地圧の増大により「滑り」の発生の恐れがなくなる時点〔図14(ロ)参照〕まで、「駆動ループ回路」と「アイドルループ回路」とが併存して、「前輪2輪駆動」が維持される。一方、「前輪2輪駆動」の状態において、傾斜地の勾配が小さくなって前輪WFに作用する油圧力が保持圧から駆動圧に変化すると、〔P4 <Ps+P3 (=P2 =P1 )〕の関係が成立して、自動切替バルブV2 が閉じられる。これにより、チェックバルブV1 において後輪側から前輪側への圧油の流れが発生して、「4輪駆動」に戻る。 As a result, the relationship of (P 4 > P 1 = P 2 = P 3 ) is established, and as shown in FIG. 8C, the “drive loop circuit” on the front wheel side and the “idle loop circuit on the rear wheel side” Until the point at which there is no risk of “slip” due to an increase in the ground pressure of the rear wheel WB due to a decrease in the slope γ of the slope (see FIG. 14B). The “circuit” and the “idle loop circuit” coexist and “front wheel two-wheel drive” is maintained. On the other hand, in the state of “front wheel two wheel drive”, when the slope of the slope becomes small and the oil pressure acting on the front wheel WF changes from the holding pressure to the driving pressure, [P 4 <Ps + P 3 (= P 2 = P 1 ) ] Is established, and the automatic switching valve V 2 is closed. As a result, a flow of pressure oil from the rear wheel side to the front wheel side occurs in the check valve V 1 , and the flow returns to “four-wheel drive”.

このように、「4輪駆動」の状態で、後輪の「滑り」を発生させる大きな勾配を有する傾斜地を前進で下って芝刈作業を行う場合には、後輪に「滑り」が発生する直前において「4輪駆動」から「前輪2輪駆動」に自動的に切り替えられて、後輪側に「アイドルループ回路」が形成されるため、後輪WBは、急傾斜地を滑ることなく、小さくなった接地圧P12によって従動回転されて、「アイドルループ回路」内の低圧油を循環させると共に、「前輪2輪駆動」の状態において傾斜地の勾配が小さくなって、前輪WFに作用する油圧力が保持力から駆動力に変化すると、自動的に「4輪駆動」に戻される。後輪側に「アイドルループ」が形成された状態においては、後輪WFは、「滑り」を生ずることなく、接地圧P12により従動回転されるために操舵可能である。このため、後輪の「滑り」を発生させる大きな勾配を有する傾斜地を前進で下って芝刈作業を行う場合において、後輪に「滑り」を発生させる程度の大きな勾配の部分においてのみ「前輪2輪駆動」で運転されて、「滑り」の発生の恐れがない部分は全て「4輪駆動」で運転されるので、「4輪駆動」よりも走行速度が速くなる「前輪2輪駆動」で芝刈作業が行われる部分の長さを必要最少長さにすることができて、傾斜地の芝生を綺麗に刈り取ることができる(図15参照)。 Thus, in the state of “4-wheel drive”, when performing lawn mowing work on a slope having a large gradient that causes “slip” of the rear wheel in a forward direction, immediately before “slip” occurs on the rear wheel. Automatically switches from “4-wheel drive” to “front-wheel 2-wheel drive”, and an “idle loop circuit” is formed on the rear wheel side, so that the rear wheel WB becomes smaller without slipping on a steep slope. The low pressure oil in the “idle loop circuit” is circulated by the ground pressure P 12 and the slope of the slope is reduced in the “front wheel two-wheel drive” state, and the oil pressure acting on the front wheel WF is reduced. When the holding force changes to the driving force, it is automatically returned to “four-wheel drive”. In a state where the “idle loop” is formed on the rear wheel side, the rear wheel WF is steerable because it is driven and rotated by the ground pressure P 12 without causing “slip”. For this reason, when a lawn mowing operation is performed by moving forward on a slope with a large gradient that causes a “slip” of the rear wheel, the “two front wheels” are selected only in the portion of the large gradient that causes the “slip” of the rear wheel. All parts that are driven by "drive" and are not likely to cause "slip" are driven by "four-wheel drive", so lawn mowing is performed by "front-wheel two-wheel drive", which is faster than "four-wheel drive" The length of the part where the work is performed can be reduced to the minimum necessary length, and the lawn on the slope can be cut off beautifully (see FIG. 15).

また、自動切替バルブV2 が開いて、後輪側に「アイドルループ回路」が形成されるのは、リリーフバルブV3 が開いた後において、自動切替バルブV2 に作用する前輪側のバイロット圧P4 と後輪側のパイロット圧P3 の差が一定圧以上に増大した後であって、リリーフバルブV3 が作動してから自動切替バルブV2 が作動するまでの間は、後輪WBの駆動力が短時間内において段階的に小さくなって「4輪駆動」から「前輪2輪駆動」に切り替えられ、急激に切り替えられるのではないため、駆動方式の切替え時における芝生の損傷を最小限に抑えることができる結果、傾斜地における芝生を綺麗に刈り取ることができると共に、駆動方式の切替え時において機体に作用する衝撃力は殆どなく、駆動方式の切替えがスムーズに行われるため、運転操作も楽になる。 Also, the automatic switching valve V 2 is opened, and the “idle loop circuit” is formed on the rear wheel side because the front wheel side pilot pressure acting on the automatic switching valve V 2 after the relief valve V 3 is opened. After the difference between P 4 and the pilot pressure P 3 on the rear wheel side increases to a certain level or more, and after the relief valve V 3 operates until the automatic switching valve V 2 operates, the rear wheel WB The driving force of the vehicle is gradually reduced within a short period of time and switched from “4-wheel drive” to “front-wheel 2-wheel drive”. As a result of being able to limit to the limit, it is possible to clean the lawn on the sloping ground, and there is almost no impact force acting on the fuselage at the time of switching the driving method, and the switching of the driving method is performed smoothly, The rolling operation also becomes easy.

〔4輪駆動で傾斜地を後進上り〕
図9は、4輪駆動で勾配αの緩傾斜地を後進で上って芝刈作業を行う場合の油圧回路図である。この場合は、油圧ポンプAから吐出された圧油は、第2主管路L02に組み込まれたチェックバルブV1 によって後輪側の各油路モータMBが組み込まれた各モータ管路L3 ,L4 に供給されないので、必然的に前輪側に「駆動ループ回路」が形成されると共に、後輪側に「アイドルループ回路」が形成されて、結果的に「前輪2輪駆動」となる。なお、管路の各部分の圧力は、(P4 >P1 =P2 =P3 )の関係となる。
[Going uphill on a four-wheel drive]
FIG. 9 is a hydraulic circuit diagram in the case of performing lawn mowing work by going up a gentle slope with a slope α by four-wheel drive. In this case, the pressure oil discharged from the hydraulic pump A is supplied to each motor line L 3 in which the rear wheel side oil line motor MB is incorporated by the check valve V 1 incorporated in the second main line L 02 . Since it is not supplied to L 4 , a “drive loop circuit” is inevitably formed on the front wheel side, and an “idle loop circuit” is formed on the rear wheel side, resulting in “front wheel two-wheel drive”. The pressure of each portion of the tube path, a relationship of (P 4> P 1 = P 2 = P 3).

〔4輪駆動で傾斜地を後進下り〕
図10は、4輪駆動で勾配αの緩傾斜地を後進で下って芝刈作業を行う場合の油圧回路図である。この場合も、4輪駆動で傾斜地を後進上りする場合と同様に、結果的に「前輪2輪駆動」となる点は同じであるが、4輪駆動で傾斜地を後進上りする場合に比較して、前輪WFの接地圧が小さくなる分、管路の各部分の圧力P1', P2', P3' は、(P4 >P1'=P2'=P3', P1'>P1 ,P2 >P2',P3 >P3')の関係が成立する。
[Four-wheel drive, going down and down the slope]
FIG. 10 is a hydraulic circuit diagram in the case of performing lawn mowing work by going down a gentle slope with a slope α by four-wheel drive. In this case, as in the case of going up and down on a slope with four-wheel drive, the result is that “front wheel two-wheel drive” is the same, but compared to the case of going up and down on a slope with four-wheel drive. The pressures P 1 ′, P 2 ′, and P 3 ′ of the respective parts of the pipe line are (P 4 > P 1 ′ = P 2 ′ = P 3 ′, P 1 ′) because the ground pressure of the front wheel WF is reduced. > P 1 , P 2 > P 2 ′, P 3 > P 3 ′).

このように、油圧回路C1 を「4輪駆動」にした状態で、機体を後進させた場合は、平地を含めて傾斜地の勾配とは無関係に「前輪2輪駆動」となって、駆動方式の切替えの発生がなくなるため、機体の走行が安定する利点がある。 As described above, when the vehicle is moved backward while the hydraulic circuit C 1 is set to “four-wheel drive”, “front-wheel two-wheel drive” is performed regardless of the slope of the slope including the flat ground. Therefore, there is an advantage that the airframe travels stably.

また、請求項1の発明では、第1及び第2の手動切替バルブは不可欠ではないので、上記実施例の油圧回路C1 において第1及び第2の手動切替バルブV4 ,V5 を組み込まない回路は、常に「4輪駆動」となる。上記実施例の油圧回路C1 のように第1及び第2の手動切替バルブV4 ,V5 を組み込んだ回路では、「前輪2輪駆動」と「4輪駆動」とを手動により切り替えられるため、「前輪2輪駆動」の選択により、道路のような芝生面以外の部分を走行する場合に高速走行ができる利点がある。 In the first aspect of the invention, the first and second manual switching valves are not indispensable. Therefore, the first and second manual switching valves V 4 and V 5 are not incorporated in the hydraulic circuit C 1 of the above embodiment. The circuit is always “4-wheel drive”. In the circuit incorporating the first and second manual switching valves V 4 and V 5 as in the hydraulic circuit C 1 of the above embodiment, “front wheel two-wheel drive” and “four wheel drive” can be manually switched. By selecting “front wheel two-wheel drive”, there is an advantage that high speed traveling is possible when traveling on a portion other than the lawn surface such as a road.

本発明に係る駆動方式自動切替機能を有する全車輪油圧駆動乗用芝刈機の油圧回路図である。1 is a hydraulic circuit diagram of an all-wheel hydraulically driven riding lawn mower having a drive system automatic switching function according to the present invention. 平地において芝刈作業を行うことなく、前輪2輪駆動で前進走行する場合の油圧回路図である。It is a hydraulic circuit diagram in the case of traveling forward with two-wheel drive of front wheels without performing lawn mowing work on a flat ground. 芝刈作業を行うことなく、前輪2輪駆動で勾配αの緩傾斜地を前進で下る場合の油圧回路図である。FIG. 5 is a hydraulic circuit diagram in a case where the front wheel is driven by two wheels and is moved forward on a gentle slope with a gradient α without performing lawn mowing work. 芝刈作業を行うことなく、前輪2輪駆動で平地を後進走行する場合の油圧回路図である。It is a hydraulic circuit diagram in the case of traveling backward on a flat ground with two-wheel front wheel drive without performing lawn mowing work. 芝刈作業を行うことなく、前輪2輪駆動で勾配αの緩傾斜地を後進で下る場合の油圧回路図である。It is a hydraulic circuit diagram in the case of descending slowly on a gentle slope with a slope α by driving two front wheels without performing lawn mowing work. 4輪駆動で平地を前進して芝刈作業を行う場合の油圧回路図である。It is a hydraulic circuit diagram in the case of performing lawn mowing work by moving forward on flat ground with four-wheel drive. 4輪駆動で勾配αの緩傾斜地を前進で下って芝刈作業を行う場合の油圧回路図である。It is a hydraulic circuit diagram in the case of performing lawn mowing work by moving forward on a gentle slope with a gradient α by four-wheel drive. 4輪駆動で勾配βの急傾斜地を前進で下って芝刈作業を行う場合において4輪駆動が維持されている状態の油圧回路図である。FIG. 5 is a hydraulic circuit diagram in a state where four-wheel drive is maintained when performing lawn mowing work by moving forward on a steep slope with a slope β by four-wheel drive. 4輪駆動で勾配γの急傾斜地を前進で下って芝刈作業を行う場合において前輪2輪駆動に切り替えられる直前の油圧回路図である。FIG. 4 is a hydraulic circuit diagram immediately before switching to front-wheel two-wheel drive in a case where lawn mowing work is performed by moving forward on a steep slope with a gradient γ by four-wheel drive. 4輪駆動で勾配γの急傾斜地を前進で下って芝刈作業を行う場合において前輪2輪駆動に切り替えられた後の油圧回路図である。FIG. 5 is a hydraulic circuit diagram after switching to front-wheel two-wheel drive in a case where lawn mowing is performed by moving forward on a steep slope with a gradient γ by four-wheel drive. 4輪駆動で勾配αの緩傾斜地を後進で上って芝刈作業を行う場合の油圧回路図である。It is a hydraulic circuit diagram in the case of performing lawn mowing work by ascending backwards on a gentle slope with a gradient α by four-wheel drive. 4輪駆動で勾配αの緩傾斜地を後進で下って芝刈作業を行う場合の油圧回路図である。It is a hydraulic circuit diagram in the case of performing lawn mowing work by going down a gentle slope with a slope α by four-wheel drive. 4輪構造の全車輪油圧駆動の乗用芝刈機の従来の油圧回路C2 を示す図である。It is a diagram illustrating a conventional hydraulic circuit C 2 of the total wheel hydraulic drive riding lawn mower for a four-wheel structure. (イ),(ロ)は、それぞれ4輪構造の全車輪油圧駆動の乗用芝刈機の「全車輪駆動方式」及び「前輪駆動方式」における油圧回路C3 を示す図である。(A), (b) is a diagram showing a hydraulic circuit C 3 of the "all wheel drive system" and "front-wheel drive system" on all wheels hydraulic drive riding lawnmower respective four wheels structure. 傾斜地を前進で下って芝刈作業を行う場合の前輪WF及び後輪WBの各接地圧P11,P12を示す図である。It is a diagram showing each contact pressure P 11, P 12 of the front wheel WF and the rear wheel WB in the case of performing mowing down the slope in advance. (イ),(ロ)は、それぞれ傾斜地の勾配に対する機体の前輪及び後輪の接地圧と保持圧の関係を示すグラフである。(A) and (B) are graphs showing the relationship between the contact pressure and the holding pressure of the front and rear wheels of the aircraft with respect to the slope of the slope. 本発明に係る油圧回路C1 及び従来の油圧回路を備えた各芝刈機によって傾斜地を前進で下って芝刈作業を行う場合の「4輪駆動」と「前輪2輪駆動」との各部分を示す図である。Each part of “four-wheel drive” and “front-wheel two-wheel drive” in the case of performing lawn mowing work with a lawn mower having a hydraulic circuit C 1 according to the present invention and a conventional hydraulic circuit moving forward on a sloping ground is shown. FIG.

符号の説明Explanation of symbols

A:油圧ポンプ
1 :油圧回路
0 :主管路
01:第1主管路
02:第2主管路
1 〜L4 :モータ管路
5 :切替バルブ管路
6 :リリーフバルブ管路
MF:前輪用の油圧モータ
MB:後輪用の油圧モータ
1 :前輪側の第1主管路の圧力
2 :後輪側の第1主管路の圧力
3 :後輪側の第2主管路の圧力
4 :前輪側の第2主管路の圧力
1 :チェックバルブ
2 :自動切替バルブ
3 :リリーフバルブ
4 :第1手動切替バルブ
5 :第2手動切替バルブ
WF:前輪
WB:後輪
A: Hydraulic pump
C 1 : Hydraulic circuit
L 0 : Main pipeline
L 01 : First main pipeline
L 02: second main pipe line L 1 ~L 4: Motor conduit
L 5 : Switching valve pipeline
L 6 : Relief valve pipeline
MF: Hydraulic motor for front wheels
MB: Hydraulic motor for rear wheels
P 1 : Pressure in the first main pipe on the front wheel side
P 2 : Pressure in the first main pipeline on the rear wheel side
P 3 : Pressure in the second main pipeline on the rear wheel side
P 4 : Pressure in the second main pipeline on the front wheel side
V 1 : Check valve
V 2: automatic switching valve
V 3: relief valve
V 4 : First manual switching valve
V 5 : Second manual switching valve
WF: Front wheel
WB: Rear wheel

Claims (4)

主管路に対して車輪数と同数のモータ管路が並列に接続され、各モータ管路には、前輪用と後輪用の各油圧モータが前記主管路において圧油が流れる方向に沿って二分された形態でそれぞれ組み込まれて、前記主管路における1つの駆動ループ管路が形成可能な位置に組み込まれた一個の油圧ポンプにより、各車輪に設けられた各油圧モータをそれぞれ個別に駆動する形式の全車輪油圧駆動乗用芝刈機であって、
前記主管路における車両後進時に油圧ポンプから吐出された圧油が流れる部分であって、しかも前輪用と後輪用の各モータ管路を二分する位置に組み込まれて、後輪側から前輪側に向けての圧油の流れのみを許容するチェックバルブと、
前記主管路における油圧ポンプから吐出された圧油が流れる方向に沿って前輪用及び後輪用の各モータ管路を二分し、しかも前記チェックバルブよりも後輪側の位置に、各モータ管路と並列に接続した切替バルブ管路に組み込まれて、前記チェックバルブを挟んでその両側の部分から取り出された各パイロット圧により開閉する自動切替バルブと、
前記主管路における前記チェックバルブを基準にして後輪側の部分に前記各モータ管路及び切替バルブ管路に対して並列に接続したリリーフバルブ管路に組み込まれるリリーフバルブとを備え、
傾斜地を下って芝刈作業を行う際に、前記チェックバルブにより前輪の保持圧と遮断された後輪の保持圧と、低下した後輪の接地圧との相乗作用により当該後輪が滑りを開始する直前において前記リリーフバルブを開いて、当該後輪の保持圧を開放すると共に、当該開放直後において前記自動切替バルブに作用する前輪側及び後輪側の各パイロット圧の差の増大により当該自動切替バルブが開かれることにより、後輪側において低圧油のアイドルループ回路が形成されて、全車輪駆動方式から前輪駆動方式に自動的に切り替えられるように構成したことを特徴とする全車輪油圧駆動乗用芝刈機。
The same number of motor pipelines as the number of wheels are connected in parallel to the main pipeline, and the hydraulic motors for front wheels and rear wheels are divided into two along the direction in which the pressure oil flows in the main pipeline. Each hydraulic motor provided on each wheel is individually driven by a single hydraulic pump that is incorporated in the above-described form and is incorporated at a position where one drive loop pipeline in the main pipeline can be formed. All-wheel hydraulically driven riding lawn mower
In the main line, the pressure oil discharged from the hydraulic pump flows when the vehicle moves backward, and is installed in a position that bisects the motor lines for the front wheels and the rear wheels, from the rear wheel side to the front wheel side. A check valve that only allows the flow of pressurized oil towards
The motor pipelines for the front wheels and the rear wheels are divided into two along the direction in which the pressure oil discharged from the hydraulic pump in the main pipeline flows, and each motor pipeline is located at a position closer to the rear wheels than the check valve. And an automatic switching valve that is opened and closed by each pilot pressure taken from both sides of the check valve with the check valve interposed therebetween,
A relief valve incorporated in a relief valve pipe connected in parallel to each motor pipe and a switching valve pipe in a portion on the rear wheel side with respect to the check valve in the main pipe;
When performing lawn mowing work on an incline, the rear wheel starts to slide due to the synergistic effect of the holding pressure of the front wheel and the holding pressure of the rear wheel blocked by the check valve and the ground pressure of the lowered rear wheel. The relief valve is opened immediately before to release the holding pressure of the rear wheel, and immediately after the opening, the automatic switching valve is increased by increasing the difference between the pilot pressures on the front wheel side and the rear wheel side that act on the automatic switching valve. All wheel hydraulically driven riding lawn mower characterized in that a low pressure oil idle loop circuit is formed on the rear wheel side by automatically opening from the all wheel driving method to the front wheel driving method. Machine.
車両後進時には、チェックバルブの作用により常に前輪駆動方式であることを特徴とする請求項1に記載の全車輪油圧駆動乗用芝刈機。   2. The all-wheel hydraulically-driven riding lawn mower according to claim 1, wherein when driving the vehicle backward, the front-wheel drive system is always used due to the action of a check valve. 前記主管路における車両前進時に油圧ポンプから吐出された圧油が流れる部分であって、しかも前輪用と後輪用の各モータ管路を二分する位置に組み込まれる第1手動切替バルブと、
前記主管路における前記チェックバルブを基準にして後輪側の部分の圧力をパイロット圧として前記自動切替バルブに対する伝達したり、その遮断を行う第2手動切替バルブと、
を備えていることを特徴とする請求項1又は2に記載の全車輪油圧駆動乗用芝刈機。
A first manual switching valve which is a portion where pressure oil discharged from a hydraulic pump flows when the vehicle moves forward in the main pipeline, and which is incorporated at a position that bisects the motor pipelines for front wheels and rear wheels;
A second manual switching valve that transmits or shuts off the pressure of the rear wheel side portion as a pilot pressure to the automatic switching valve with reference to the check valve in the main pipeline;
The all-wheel hydraulically-driven riding lawn mower according to claim 1 or 2, characterized by comprising:
前記第1手動切替バルブは、開通路とチェックバルブとのいずれかが選択される構成であることを特徴とする請求項3に記載の全車輪油圧駆動乗用芝刈機。   The all-wheel hydraulically-driven riding lawn mower according to claim 3, wherein the first manual switching valve is configured to select either an open passage or a check valve.
JP2007058286A 2007-03-08 2007-03-08 All-wheel hydraulically driven lawn mower Active JP4886556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007058286A JP4886556B2 (en) 2007-03-08 2007-03-08 All-wheel hydraulically driven lawn mower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007058286A JP4886556B2 (en) 2007-03-08 2007-03-08 All-wheel hydraulically driven lawn mower

Publications (2)

Publication Number Publication Date
JP2008221861A true JP2008221861A (en) 2008-09-25
JP4886556B2 JP4886556B2 (en) 2012-02-29

Family

ID=39840990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007058286A Active JP4886556B2 (en) 2007-03-08 2007-03-08 All-wheel hydraulically driven lawn mower

Country Status (1)

Country Link
JP (1) JP4886556B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251657A (en) * 2010-06-03 2011-12-15 Ihi Construction Machinery Ltd Hydraulic circuit for four-wheel drive vehicle
EP2850930A1 (en) 2013-09-24 2015-03-25 Iseki & Co., Ltd. Working vehicle
CN111549755A (en) * 2019-02-11 2020-08-18 卡特彼勒路面机械公司 Traction control method for rotary mixer
US20210337727A1 (en) * 2018-10-09 2021-11-04 Globe (Jiangsu) Co., Ltd Lawn mower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123939A (en) * 1987-11-10 1989-05-16 Sanyo Electric Co Ltd Heat pump type-air conditioner
JPH03248921A (en) * 1990-02-28 1991-11-06 Kiyoueishiya:Kk Rotally hydraulic drive type lawn mower
JPH10109555A (en) * 1996-08-26 1998-04-28 Ransomes America Corp Hydraulic circuit and vehicle
JP2000198363A (en) * 1999-01-08 2000-07-18 Sumitomo Eaton Hydraulics Co Ltd Hydraulic four-wheel drive system
JP2002219959A (en) * 2001-01-23 2002-08-06 Kyoeisha Co Ltd Full hydraulic driven lawn mower of four-wheel structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123939A (en) * 1987-11-10 1989-05-16 Sanyo Electric Co Ltd Heat pump type-air conditioner
JPH03248921A (en) * 1990-02-28 1991-11-06 Kiyoueishiya:Kk Rotally hydraulic drive type lawn mower
JPH10109555A (en) * 1996-08-26 1998-04-28 Ransomes America Corp Hydraulic circuit and vehicle
JP2000198363A (en) * 1999-01-08 2000-07-18 Sumitomo Eaton Hydraulics Co Ltd Hydraulic four-wheel drive system
JP2002219959A (en) * 2001-01-23 2002-08-06 Kyoeisha Co Ltd Full hydraulic driven lawn mower of four-wheel structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251657A (en) * 2010-06-03 2011-12-15 Ihi Construction Machinery Ltd Hydraulic circuit for four-wheel drive vehicle
EP2850930A1 (en) 2013-09-24 2015-03-25 Iseki & Co., Ltd. Working vehicle
US20210337727A1 (en) * 2018-10-09 2021-11-04 Globe (Jiangsu) Co., Ltd Lawn mower
CN111549755A (en) * 2019-02-11 2020-08-18 卡特彼勒路面机械公司 Traction control method for rotary mixer
CN111549755B (en) * 2019-02-11 2024-01-02 卡特彼勒路面机械公司 Traction control method for rotary mixer

Also Published As

Publication number Publication date
JP4886556B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
US8528685B2 (en) All-wheel steering system and vehicle incorporating the same
JP4886556B2 (en) All-wheel hydraulically driven lawn mower
AU712292B2 (en) Parallel-series four-wheel-drive hydraulic circuit for a riding lawn mower
JPH08510972A (en) All-in-one hydraulic drive
JP4908388B2 (en) Hydraulic drive circuit for 4-wheel lawn mower
JP3717434B2 (en) Work machine transmission structure
JP2006009272A (en) Travel drive unit of wheel-traveling type asphalt finisher
JP4189272B2 (en) Hydraulically driven vehicle
JP2005096507A (en) Riding type working vehicle
JP2002219959A (en) Full hydraulic driven lawn mower of four-wheel structure
JP3437775B2 (en) Hydraulic four-wheel drive system
JP2007039031A (en) Travel drive device of working vehicle
JP3897702B2 (en) Driving transmission structure of work vehicle
JP5971862B2 (en) Work machine
JPH03248921A (en) Rotally hydraulic drive type lawn mower
JP5222084B2 (en) Work vehicle turning control device
EP3581421B1 (en) Tractor with bypass group for stationary steering
JPH08142901A (en) Spin-turn mechanism
JPH06153658A (en) Traveling device in harvester of sugar cane
JP3613804B2 (en) Four-wheel drive force control device
JPH0154483B2 (en)
JP4422254B2 (en) Crawler car
JP2008306972A (en) Combine harvester
JP5134557B2 (en) Combine traveling control device
JP2005132139A (en) Riding type working vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4886556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250