JP2008221647A - Phase change type optical recording medium - Google Patents
Phase change type optical recording medium Download PDFInfo
- Publication number
- JP2008221647A JP2008221647A JP2007064041A JP2007064041A JP2008221647A JP 2008221647 A JP2008221647 A JP 2008221647A JP 2007064041 A JP2007064041 A JP 2007064041A JP 2007064041 A JP2007064041 A JP 2007064041A JP 2008221647 A JP2008221647 A JP 2008221647A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- phase change
- recording
- protective layer
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
本発明は、書換え可能な相変化型光記録層を有する光記録媒体(相変化型光記録媒体)、に関するものである。その例としては、CD−RW、DVD−RW(Digital Versatile Disc ReWritable)、DVD+RW、DVD−RAM、BD−RE、HD DVD−Rewritable等が挙げられる。 The present invention relates to an optical recording medium (phase change optical recording medium) having a rewritable phase change optical recording layer. Examples thereof include CD-RW, DVD-RW (Digital Versatile Disc Rewriteable), DVD + RW, DVD-RAM, BD-RE, HD DVD-Rewriteable, and the like.
近年、高精彩な画像・動画データを保存するための大容量かつ高速記録可能な光記録媒体が求められている。繰り返し記録可能な相変化型光記録媒体としては、CD−RW、DVD+RW、DVD−RW、DVD−RAMなどが普及しており、更に大容量のブルーレイディスクやHD DVDも商品化され、更に高速化、多層化に向けて規格化が進行中である。大容量化は、記録再生する半導体レーザーを短波長にし、更にレンズのNA(Numerical Aperture)を大きくしてレーザーを絞ることにより、小さいマークが記録可能となる。ブルーレイディスクは、波長405nm、NA0.85のピックアップを用いることにより、直径12cmのディスクに1層で25GB、2層で50GBの大容量光記録媒体を実現している。HD DVDは、波長405nm、NA0.65のピックアップを用いており、1層で15GB、2層で30GBとブルーレイディスクより多少容量は小さくなるが、DVDと同じNA0.65であるため、現行のDVDに近い構成で作製することができ、コストが抑えられる利点がある。
繰り返し記録が可能な相変化型光記録媒体の場合、マークが小さくなればなる程マーク間の熱干渉が大きくなるため、最適な熱特性が得られるように光記録媒体の構成も最適化していく必要がある。この場合、特に重要となるのは反射層及び第二保護層の熱伝導率である。第二保護層には、化学安定性や記録層との密着性がよく、残留応力が小さいなどの理由から、ZnS−SiO2が広く用いられてきた。本発明者等も、ZnS−SiO2以外の誘電体を色々と検討してきたが、所望の熱伝導率が得られ、ZnS−SiO2と同様に記録層との密着性がよく、残留応力が小さい材料を見つけることはできなかった。
In recent years, there has been a demand for an optical recording medium capable of high-capacity and high-speed recording for storing high-definition image / moving image data. CD-RW, DVD + RW, DVD-RW, DVD-RAM, etc. are widely used as phase-change optical recording media that can be repeatedly recorded, and even higher-capacity Blu-ray discs and HD DVDs have been commercialized for higher speed. Standardization is in progress toward multi-layering. To increase the capacity, it is possible to record a small mark by shortening the wavelength of the semiconductor laser to be recorded / reproduced and further increasing the lens NA (Numerical Aperture) to narrow the laser. The Blu-ray disc uses a pickup with a wavelength of 405 nm and NA of 0.85 to realize a large-capacity optical recording medium of 25 GB for one layer and 50 GB for two layers on a disc having a diameter of 12 cm. The HD DVD uses a pickup with a wavelength of 405 nm and NA 0.65, and the capacity is 15 GB for one layer and 30 GB for two layers, which is slightly smaller than the Blu-ray disc, but it is the same NA 0.65 as DVD, so the current DVD Can be manufactured with a structure close to that, and there is an advantage that the cost can be suppressed.
In the case of a phase-change optical recording medium capable of repeated recording, the smaller the mark, the greater the thermal interference between the marks. Therefore, the structure of the optical recording medium will be optimized to obtain optimum thermal characteristics. There is a need. In this case, what is particularly important is the thermal conductivity of the reflective layer and the second protective layer. For the second protective layer, ZnS—SiO 2 has been widely used for reasons such as good chemical stability and good adhesion to the recording layer and low residual stress. The present inventors have also studied various dielectrics other than ZnS—SiO 2 , but a desired thermal conductivity is obtained, the adhesiveness with the recording layer is good, and the residual stress is similar to that of ZnS—SiO 2. I couldn't find a small material.
一方で、大容量データを短時間で保存再生するためには、高速で記録消去ができなければならない。高速記録するためには急冷構造のディスクが必要であり、速い結晶化速度を持つ相変化記録層及び記録層界面での結晶促進効果が重要となる。ブルーレイディスクやHD DVDなど、波長405nmの半導体レーザを用いるドライブの場合、半導体レーザの制約で高いパワーが出せないため、なるべく低いパワーで記録可能な記録感度のよい光記録媒体が望まれている。特に高速記録では、回転速度が速いため記録層に十分な熱がかかりにくく、高い記録パワーを必要とする。また記録層を2層以上持つ多層光記録媒体では、光入射面に近い記録層を介して、光入射面から遠い記録層にレーザー光が照射され強度が弱くなるので、光入射面から遠い記録層は記録感度が良いことが望まれる。
相変化材料としては、カルコゲナイド系材料であるSb−Te系、In−Se系、Ga−Te系、Ge−Te系などこれまで多くの材料について検討されてきており、特にCD−RWやDVD+RW4倍速ディスクでは、SbとTeを主成分とし、これらに何種類かの元素を添加した材料であるAgInSbTe系が実用化されてきた。
例えば、特許文献1には、GeSbTe系合金を主成分とする記録層、及びNb2O5とZrO2及び/又はZnOとの複合酸化物を主成分とする第二及び第四誘電体層(上部保護層)を有する光記録媒体が開示されている。しかし、この発明は、光の透過性と反射層の硫化防止に主眼がおかれており、高速記録や記録感度の向上に関しては述べられていない。GeSbTeのようなSbTe系合金を主成分とする記録層は、Sb量を多くすることで結晶化速度は速くなるが、同時に結晶化温度が急激に下がりアーカイバル特性が非常に悪くなるため、DVDの4倍速記録以上、ブルーレイディスク及びHD DVDの2倍速記録以上の媒体については実用化が困難である。
On the other hand, in order to store and reproduce a large amount of data in a short time, it must be possible to record and erase at high speed. In order to perform high-speed recording, a rapidly cooled disk is required, and the effect of accelerating crystallization at the interface between the phase-change recording layer having a high crystallization speed and the recording layer is important. In the case of a drive using a semiconductor laser with a wavelength of 405 nm, such as a Blu-ray disc or HD DVD, high power cannot be produced due to restrictions of the semiconductor laser. Therefore, an optical recording medium with good recording sensitivity capable of recording with as low power as possible is desired. Particularly in high-speed recording, since the rotational speed is high, it is difficult to apply sufficient heat to the recording layer, and high recording power is required. In a multilayer optical recording medium having two or more recording layers, the recording layer far from the light incident surface is irradiated with laser light through the recording layer close to the light incident surface, and the intensity is weakened. The layer is desired to have good recording sensitivity.
As phase change materials, many materials such as Sb—Te, In—Se, Ga—Te, and Ge—Te, which are chalcogenide materials, have been studied, and in particular, CD-RW and DVD + RW quadruple speed. For disks, the AgInSbTe system, which is a material mainly composed of Sb and Te and added with several kinds of elements, has been put into practical use.
For example, Patent Document 1 discloses a recording layer mainly composed of a GeSbTe-based alloy and second and fourth dielectric layers composed mainly of a composite oxide of Nb 2 O 5 and ZrO 2 and / or ZnO ( An optical recording medium having an upper protective layer) is disclosed. However, the present invention focuses on light transmission and prevention of sulfuration of the reflective layer, and does not describe high-speed recording or improvement of recording sensitivity. A recording layer mainly composed of an SbTe-based alloy such as GeSbTe increases the crystallization speed by increasing the amount of Sb, but at the same time, the crystallization temperature decreases drastically and the archival characteristics become very poor. However, it is difficult to put to practical use a medium that is more than 4 × speed recording, and that is more than 2 × speed recording of Blu-ray Disc and HD DVD.
そこで、SbTe系に変わる材料として、Ga−Sb系、Ge−Sb系、In−Sb系などが提案されている。
特許文献2では、(Sb1−xGex)1−yIny(但し、0.1≦x≦0.25、0.05≦y≦0.4)を主成分とする記録層が開示されている。しかし、この発明は、記録マーク長も大きく、記録線速も遅かった時期のものであり、上部保護層には従来どおりのZnS−SiO2が用いられている。
特許文献3では、MγInαSbβ(0.73≦β/(α+β)≦0.90)M=Ge,Te,O,S,Se,Al,Ag,Mn,Cu,Au,Nの記録層が開示されているが、第二誘電体には従来どおりのZnS−SiO2が用いられている。
特許文献4では、(Sb100−xInx)100−yZny(10原子%≦x≦27原子%、1原子%≦y≦10原子%)の記録層が開示されているが、上部保護層としてはZnS−SiO2や透明導電膜系の材料が用いられており、記録感度や記録層との密着性などに関しては述べられていない。
Therefore, Ga—Sb, Ge—Sb, In—Sb, and the like have been proposed as materials that can be changed to SbTe.
Patent Document 3 discloses a recording layer of MγInαSbβ (0.73 ≦ β / (α + β) ≦ 0.90) M = Ge, Te, O, S, Se, Al, Ag, Mn, Cu, Au, and N. However, conventional ZnS—SiO 2 is used for the second dielectric.
本発明は、前記従来における問題を解決し、記録感度が良く、高速記録特性が良好であり、密着性がよい低コストの相変化型光記録媒体の提供を目的とする。 An object of the present invention is to solve the problems in the prior art and to provide a low-cost phase-change optical recording medium having good recording sensitivity, high-speed recording characteristics, and good adhesion.
上記課題は次の1)〜8)の発明によって解決される。
1) 記録再生光の入射側から順に、少なくとも下部保護層、相変化型記録層、上部保護層、反射層を有し、相変化型記録層が、InとSbを主成分とする合金からなり、該合金中のInとSbの含有量をα、β(原子%)として、α、βが下記の条件を満足し、上部保護層が単層でかつNb2O5を主成分とすることを特徴とする相変化型光記録媒体。
0.73≦β/(α+β)≦0.90
2) 上部保護層が、Nb2O5に加えてZrO2及び/又はZnOを含むことを特徴とする1)記載の相変化型光記録媒体。
3) 上部保護層の膜厚が4〜20nmであることを特徴とする1)又は2)記載の相変化型光記録媒体。
4) 記録再生光の入射側から見て手前側のカバー層と奥側の基板の間に、相変化型記録層を有する情報層が中間層を介して複数形成され、記録再生光の入射側から見て、一番奥側以外の各情報層が、下部保護層、相変化型記録層、上部保護層、半透明反射層、熱拡散層の5層を含み、かつ一番奥側の情報層が、下部保護層、相変化型記録層、上部保護層、反射層を含む構造の相変化型光記録媒体において、一番奥側の相変化型記録層が、InとSbを主成分とする合金からなり、該合金中のInとSbの含有量をα、β(原子%)として、α、βが下記の条件を満足し、一番奥側の上部保護層が単層でかつNb2O5を主成分とすることを特徴とする相変化型光記録媒体。
0.73≦β/(α+β)≦0.90
5) 一番奥側の上部保護層が、Nb2O5に加えてZrO2及び/又はZnOを含むことを特徴とする4)記載の相変化型光記録媒体。
6) 一番奥側の上部保護層の膜厚が4〜20nmであることを特徴とする4)又は5)記載の相変化型光記録媒体。
7) InとSbを主成分とする合金が下記組成式で表わされるものであることを特徴とする1)〜6)の何れかに記載の相変化型光記録媒体。
InαSbβGeγZnδTeε(α、β、γ、δ、εは原子%)
0.73≦β/(α+β)≦0.90
α+β≧65
γ+δ+ε≦30
0≦γ≦15
0≦δ≦15
0≦ε≦15
8) 反射層がAg又はAg合金からなることを特徴とする1)〜7)の何れかに記載の相変化型光記録媒体。
The above problems are solved by the following inventions 1) to 8).
1) In order from the recording / reproducing light incident side, at least a lower protective layer, a phase change recording layer, an upper protective layer, and a reflective layer are provided, and the phase change recording layer is made of an alloy containing In and Sb as main components. The contents of In and Sb in the alloy are α and β (atomic%), α and β satisfy the following conditions, the upper protective layer is a single layer, and Nb 2 O 5 is the main component. A phase change optical recording medium characterized by the above.
0.73 ≦ β / (α + β) ≦ 0.90
2) The phase change optical recording medium according to 1), wherein the upper protective layer contains ZrO 2 and / or ZnO in addition to Nb 2 O 5 .
3) The phase change optical recording medium according to 1) or 2), wherein the thickness of the upper protective layer is 4 to 20 nm.
4) A plurality of information layers having a phase change recording layer are formed between the cover layer on the near side as viewed from the incident side of the recording / reproducing light and the inner substrate via the intermediate layer, and the incident side of the recording / reproducing light , Each information layer other than the innermost side includes five layers of a lower protective layer, a phase change recording layer, an upper protective layer, a translucent reflective layer, and a heat diffusion layer, and the innermost information layer In a phase change optical recording medium having a structure including a lower protective layer, a phase change recording layer, an upper protective layer, and a reflective layer, the innermost phase change recording layer is composed mainly of In and Sb. The contents of In and Sb in the alloy are α and β (atomic%), α and β satisfy the following conditions, and the uppermost upper protective layer is a single layer and Nb 2. A phase change optical recording medium comprising 2 O 5 as a main component.
0.73 ≦ β / (α + β) ≦ 0.90
5) The phase change optical recording medium according to 4), wherein the uppermost upper protective layer contains ZrO 2 and / or ZnO in addition to Nb 2 O 5 .
6) The phase change optical recording medium according to 4) or 5), wherein the thickness of the innermost protective layer on the innermost side is 4 to 20 nm.
7) The phase change optical recording medium according to any one of 1) to 6), wherein the alloy mainly composed of In and Sb is represented by the following composition formula:
InαSbβGeγZnδTeε (α, β, γ, δ, ε are atomic%)
0.73 ≦ β / (α + β) ≦ 0.90
α + β ≧ 65
γ + δ + ε ≦ 30
0 ≦ γ ≦ 15
0 ≦ δ ≦ 15
0 ≦ ε ≦ 15
8) The phase change optical recording medium according to any one of 1) to 7), wherein the reflective layer is made of Ag or an Ag alloy.
以下、上記本発明について詳しく説明する。
本発明の光記録媒体は、例えば図1に示すように、記録再生光の入射側から順に、カバー層、下部保護層、相変化型記録層、上部保護層、反射層、基板を有し、更に必要に応じてその他の層を有する。
(上部保護層)
本発明では、上部保護層は、単層でかつNb2O5を主成分とする材料からなる。ここで、主成分とは材料全体の50モル%以上を占めるこという。
記録線密度が低いCD−RWや低速記録のDVD+RWでは、化学的安定性が良く、記録層との密着性が優れており、低い熱伝導率を持つZnS−SiO2が上部保護層に最適であり、頻繁に用いられてきた。しかし、高速記録のDVD+RWや高密度のブルーレイディスクやHD DVDになると、高速で小さいマークをより制御よく記録するため熱のコントロールが非常に重要となり、低い熱伝導率を持つZnS−SiO2では十分な特性を出すことが出来ないことが分った。高速記録を行なうために結晶化速度が速い記録層を用いる場合、アモルファスマーク周辺からの再結晶化が起こりやすく、マークが細くなり、変調度が小さくなりやすい。この再結晶化領域をなるべく小さくするには、再結晶化が起こる温度に保持される時間をなるべく短くした方が良いので、上部保護層に熱伝導率が高い材料を用いて急冷構造とするのが好ましい。高い熱伝導率を持つ材料としては、透明導電膜として知られるIn2O3、ZnO、SnOを主成分とするものやそれらの混合物、あるいは、TiO2、Al2O3、ZrO2を主成分とするものやそれらの混合物があるが、この中にも、記録特性がよい材料はあるものの、熱伝導率が高すぎて、記録するのに高い記録パワーを必要としてしまうという課題があることが分った。
Hereinafter, the present invention will be described in detail.
The optical recording medium of the present invention has a cover layer, a lower protective layer, a phase change recording layer, an upper protective layer, a reflective layer, and a substrate in order from the incident side of the recording / reproducing light, for example, as shown in FIG. Furthermore, it has another layer as needed.
(Upper protective layer)
In the present invention, the upper protective layer is a single layer and made of a material mainly composed of Nb 2 O 5 . Here, the main component means to occupy 50 mol% or more of the entire material.
For CD-RW with low recording linear density and DVD + RW for low-speed recording, chemical stability is good, adhesion to the recording layer is excellent, and ZnS-SiO 2 having low thermal conductivity is optimal for the upper protective layer. Yes, it has been used frequently. However, when it comes to high-speed recording DVD + RW, high-density Blu-ray discs, and HD DVDs, heat control becomes very important for recording small marks at high speed with good control, and ZnS-SiO 2 with low thermal conductivity is sufficient. It turned out that it was not possible to bring out the characteristic. When a recording layer having a high crystallization speed is used for high-speed recording, recrystallization from the periphery of the amorphous mark tends to occur, the mark becomes thin, and the modulation degree tends to be small. In order to make this recrystallization region as small as possible, it is better to shorten the time during which recrystallization is held at a temperature at which recrystallization occurs. Therefore, the upper protective layer should be made of a material with high thermal conductivity to have a rapid cooling structure. Is preferred. As a material having high thermal conductivity, a material containing In 2 O 3 , ZnO, SnO known as a transparent conductive film as a main component or a mixture thereof, or TiO 2 , Al 2 O 3 , ZrO 2 as a main component Although some of these materials have good recording characteristics, there is a problem that the thermal conductivity is too high and a high recording power is required for recording. I understand.
ブルーレイディスクやHD DVDなど、波長405nmの半導体レーザを用いるドライブの場合、半導体レーザの制約で高いパワーが出せないため、なるべく低いパワーで記録可能な記録感度のよい光記録媒体が望まれている。特に、高速記録では、回転速度が速いため、記録層に十分な熱がかかりにくく、高い記録パワーを必要とする。
本発明の光記録媒体は、特に405nmの半導体レーザを用いるブルーレイディスクやHD DVDの場合に効果が大きい。ブルーレイディスクでは4倍速記録以上での効果が大きく、HD DVDでは3倍速記録以上での効果が大きい。
また記録層を2層以上持つ多層光記録媒体では、光入射面に近い記録層を介して、光入射面から遠い記録層にレーザー光が照射されるため、レーザー光の強度が弱くなるので、光入射面から遠い記録層は記録感度が良いことが望まれる。そのため、多層光記録媒体の光入射面から遠い方の記録層と上部保護層に本発明を適用すると効果が大きい。
In the case of a drive using a semiconductor laser with a wavelength of 405 nm, such as a Blu-ray disc or HD DVD, high power cannot be produced due to restrictions of the semiconductor laser. Therefore, an optical recording medium with good recording sensitivity capable of recording with as low power as possible is desired. In particular, in high-speed recording, since the rotational speed is high, it is difficult to apply sufficient heat to the recording layer, and high recording power is required.
The optical recording medium of the present invention is particularly effective in the case of a Blu-ray disc or HD DVD using a 405 nm semiconductor laser. Blu-ray discs are more effective than 4x recording, and HD DVDs are more effective than 3x recording.
Further, in a multilayer optical recording medium having two or more recording layers, the laser beam is irradiated to the recording layer far from the light incident surface through the recording layer close to the light incident surface, so the intensity of the laser light is weakened. It is desired that the recording layer far from the light incident surface has good recording sensitivity. Therefore, applying the present invention to the recording layer and the upper protective layer far from the light incident surface of the multilayer optical recording medium has a great effect.
また、上部保護層が記録層と接する場合、上部保護層は記録層の結晶化を補助する役割も担うので、良い記録特性を得るには記録層材料と上部保護層の組み合わせも重要である。そこで、高線速記録に有利なInSbを主成分とする合金を記録層に用い、様々な材料の上部保護層との組み合わせを検討した結果、Nb2O5を主成分とする材料は、InSb合金の結晶化を促進する効果を併せ持ち、高速で繰り返し記録する際にアモルファスマークを消去しやすくするが、マークが細くなり過ぎることはなく、十分な変調度が取れるため高速記録特性がよく、また透明導電膜として知られるIn2O3、ZnO、SnOを主成分とする材料よりも熱伝導率が低いため、熱が逃げすぎることもなく、低いパワーで記録でき、記録感度が良い光記録媒体が得られることが分った。 Further, when the upper protective layer is in contact with the recording layer, the upper protective layer also plays a role of assisting the crystallization of the recording layer. Therefore, in order to obtain good recording characteristics, the combination of the recording layer material and the upper protective layer is also important. Therefore, as a result of studying combinations of various materials with an upper protective layer using an alloy containing InSb, which is advantageous for high linear velocity recording, as a recording layer, a material containing Nb 2 O 5 as a main component is InSb. It also has the effect of promoting crystallization of the alloy, and makes it easy to erase amorphous marks when repeatedly recording at high speeds, but the marks do not become too thin and sufficient modulation is obtained, so high speed recording characteristics are good, and An optical recording medium having a low recording power and good recording sensitivity, since heat conductivity is lower than that of a material mainly composed of In 2 O 3 , ZnO, and SnO, which is known as a transparent conductive film, so that heat does not escape too much. It was found that
Nb2O5にZnO及び/又はZrO2などを添加してもよい。添加量を増やすと記録感度はやや落ちるが、記録層との密着性が向上し、保存信頼性が優れた光記録媒体が得られる。製品化のときには、記録層と上部保護層の密着性も考慮し保存信頼性と記録感度が両立する構成を用いるのが好ましい。Nb2O5が50モル%以上であれば、この酸化物の特性を十分発揮させることができ、密着性が向上し、保存信頼性と記録感度が両立できる。ZrO2を添加すると密着性が向上するが、より一層密着性を向上させるには、ZnOを添加すると良い。
反射層にAgを用いた場合、Nb2O5単独の場合でも、ZnOやZrO2などを添加した複合酸化物の場合でも、Agの拡散を防ぐことができる。また、反射層と記録層の間の層を一層にすることができるので、少ない層数の光記録媒体が得られ、低コスト化に有利である。また、Nb2O5を主成分とする材料は、吸収が小さく透過率が高い利点がある。
上部保護層の膜厚は4〜20nmとするのがよい。4nm未満では、記録層に熱が吸収しにくくなってジッタが悪化し、20nmを超えると記録層に熱が篭りすぎてアモルファス化しにくくなりジッタが悪化する。高速記録で特に良いジッタを得るには、4〜10nmとするのが好ましい。
ZnO and / or ZrO 2 may be added to Nb 2 O 5 . Increasing the amount added slightly reduces the recording sensitivity, but improves the adhesion to the recording layer and provides an optical recording medium with excellent storage reliability. At the time of commercialization, it is preferable to use a configuration in which both storage reliability and recording sensitivity are compatible in consideration of the adhesion between the recording layer and the upper protective layer. When Nb 2 O 5 is 50 mol% or more, the characteristics of this oxide can be sufficiently exhibited, the adhesion is improved, and both storage reliability and recording sensitivity can be achieved. The addition of ZrO 2 improves the adhesion, but ZnO may be added to further improve the adhesion.
When Ag is used for the reflective layer, diffusion of Ag can be prevented even in the case of Nb 2 O 5 alone or in the case of a complex oxide to which ZnO, ZrO 2 or the like is added. In addition, since the layer between the reflective layer and the recording layer can be formed as a single layer, an optical recording medium having a small number of layers can be obtained, which is advantageous for cost reduction. In addition, a material mainly composed of Nb 2 O 5 has an advantage of low absorption and high transmittance.
The film thickness of the upper protective layer is preferably 4 to 20 nm. If the thickness is less than 4 nm, the recording layer hardly absorbs heat and the jitter is deteriorated. If the thickness exceeds 20 nm, the recording layer is heated too much to be amorphous and the jitter is deteriorated. In order to obtain particularly good jitter in high-speed recording, the thickness is preferably 4 to 10 nm.
(記録層)
繰り返し記録可能な相変化型光記録媒体の高速記録特性は、記録層材料が持つアモルファス化のしやすさや結晶化速度に加え、記録層と接する層との界面状態や上部保護層の熱特性にも大きく影響されるため、InSb合金が60原子%以上の記録層組成と上部保護層の組み合わせについて検討した。記録層と誘電体層の間に界面層を設けて高速記録特性を改善するのも1つの方法ではあるが、層数が多くなりコストがかかってしまうことや薄い膜厚を均一に設けるのが難しいことなどから、上部保護層が両方の機能を持ち合わせるのが好ましい。
InSb合金を主成分とする材料は、低融点で結晶化速度が速く高速記録に適しているが、Inが多すぎると結晶安定性が悪くなり、Sbが多すぎるとアモルファス安定性が悪くなるという問題がある。そこで両者のバランスを考慮し、該合金中のInとSbの含有量をα、β(原子%)として、α、βが下記の条件を満足するようにする。
0.73≦β/(α+β)≦0.90
0.73未満では結晶化速度が遅くなるため記録マークが消去しきれず、4X記録が難しくなる。また、0.9を超えると結晶化速度が速くなりすぎて、アモルファスマークが形成しづらくなるため、やはり4X記録が難しくなる。
(Recording layer)
The high-speed recording characteristics of phase-change optical recording media that can be repeatedly recorded include the ease of amorphization and crystallization speed of the recording layer material, as well as the interface state with the layer in contact with the recording layer and the thermal characteristics of the upper protective layer. Therefore, the combination of the recording layer composition with an InSb alloy of 60 atomic% or more and the upper protective layer was examined. Although it is one method to improve the high-speed recording characteristics by providing an interface layer between the recording layer and the dielectric layer, the number of layers is increased and the cost is increased, and a thin film thickness is provided uniformly. The upper protective layer preferably has both functions because of difficulties.
A material containing an InSb alloy as a main component has a low melting point and a high crystallization speed, and is suitable for high-speed recording. However, if there is too much In, crystal stability will deteriorate, and if there is too much Sb, amorphous stability will deteriorate. There's a problem. Therefore, considering the balance between the two, the contents of In and Sb in the alloy are α and β (atomic%) so that α and β satisfy the following conditions.
0.73 ≦ β / (α + β) ≦ 0.90
If it is less than 0.73, the crystallization speed becomes slow, so that the recording mark cannot be completely erased, and 4X recording becomes difficult. On the other hand, if it exceeds 0.9, the crystallization speed becomes too fast and it becomes difficult to form amorphous marks, so that 4X recording becomes difficult.
更に、InSb合金にGe、Zn、Te、Se、B、Al、Ga、Sn、Cuなどの元素を添加して特性を改善することが好ましい。
特に好ましいのは、InαSbβGeγZnδTeη(α、β、γ、δ、ηは原子%、10≦α≦25、60≦β≦80、0≦γ≦15、0≦δ≦15、0≦η≦5)である。Geは再生光安定性を改善する効果があるが、添加量が多すぎると結晶化速度が遅くなり高速記録特性が悪くなるので15原子%以下とするのが好ましい。Znはアーカイバル特性を改善する効果があるが、Geと同様に添加量が多すぎると結晶化速度が遅くなり高速記録特性が悪くなるので15原子%以下とするのが好ましい。Teは結晶の安定性を改善する効果があるが、添加量が多すぎると再生光安定性が悪くなるので5原子%以下とするのが好ましい。
記録層の膜厚は6〜18nmが適しており、6nmより薄いと光吸収能が低下し記録層としての機能を失うことがある。また、18nmより厚いと記録感度が悪くなる。
記録層の形成はスパッタリング法により行なうのが好ましい。スパッタリングターゲットの作製方法の一例を挙げると、予め仕込み量を秤量しガラスアンプル中で加熱溶融し、その後、これを取り出して粉砕機により粉砕し、得られた粉末を加熱焼結することによって円盤状のターゲットを得ることができる。
Furthermore, it is preferable to add an element such as Ge, Zn, Te, Se, B, Al, Ga, Sn, or Cu to the InSb alloy to improve the characteristics.
Particularly preferred is InαSbβGeγZnδTeη (α, β, γ, δ, η is atomic%, 10 ≦ α ≦ 25, 60 ≦ β ≦ 80, 0 ≦ γ ≦ 15, 0 ≦ δ ≦ 15, 0 ≦ η ≦ 5). It is. Ge has an effect of improving the stability of reproduction light. However, if the addition amount is too large, the crystallization speed is lowered and the high-speed recording characteristics are deteriorated. Zn has an effect of improving the archival characteristics, but if it is added too much like Ge, the crystallization speed is lowered and the high-speed recording characteristics are deteriorated. Te has an effect of improving the stability of the crystal, but if the addition amount is too large, the stability of the reproduction light is deteriorated, so that it is preferably 5 atomic% or less.
The film thickness of the recording layer is suitably 6 to 18 nm, and if it is thinner than 6 nm, the light absorption ability is lowered and the function as the recording layer may be lost. On the other hand, if it is thicker than 18 nm, the recording sensitivity becomes worse.
The recording layer is preferably formed by sputtering. As an example of a method for producing a sputtering target, a charged amount is previously weighed and heated and melted in a glass ampoule, and then taken out and pulverized by a pulverizer, and the obtained powder is heated and sintered to form a disk shape. Can get the target.
(反射層)
反射層は、熱伝導率が高いAg又はAg−Bi、Ag−In、Ag−Pd、Ag−Pd−Cu、Ag−Cu等のAg合金が適している。結晶化速度が速い記録層を用いる場合、アモルファスマーク周辺からの再結晶化が起こりやすく、マークが細くなり、変調度が小さくなりやすい。この再結晶化領域をなるべく小さくするには、再結晶化が起こる温度に保持される時間をなるべく短くした方が良いので、反射層に熱伝導率が高いAg又はAg合金を用いた急冷構造とするのが好ましい。また、高速記録では膜厚が厚いほど変調度が大きくなるので厚い方が好ましいが、厚すぎると膜剥離が生じやすくなるので、反射層の膜厚は100〜300nmが好ましい。
反射層にAg又はAg合金を用いた場合に、上部保護層にSを含む材料を用いると、上部保護層に含まれているSと反射層に含まれているAgが反応し、Ag2Sが生成してしまうため、保存信頼性が悪化する。しかし、本発明のように、上部保護層にSを含まないNb2O5を主成分とする薄膜を用いれば、上部保護層が硫化防止層の役割も担うことができ、反射層と記録層の間の層を一層にすることができるので、層数が少なく材料費が抑えられた低コストの光記録媒体が得られる。
(Reflective layer)
As the reflective layer, Ag having a high thermal conductivity or Ag alloy such as Ag-Bi, Ag-In, Ag-Pd, Ag-Pd-Cu, and Ag-Cu is suitable. When a recording layer having a high crystallization speed is used, recrystallization from the periphery of the amorphous mark tends to occur, the mark becomes thin, and the modulation degree tends to be small. In order to make this recrystallization region as small as possible, it is better to shorten the time for which recrystallization is held at a temperature at which recrystallization occurs. Therefore, a rapid cooling structure using Ag or an Ag alloy having high thermal conductivity for the reflective layer It is preferable to do this. Also, in high speed recording, the thicker the film thickness, the greater the degree of modulation. Therefore, a thicker film is preferable. However, if the film thickness is too large, film peeling tends to occur. Therefore, the thickness of the reflective layer is preferably 100 to 300 nm.
When Ag or an Ag alloy is used for the reflective layer, if a material containing S is used for the upper protective layer, S contained in the upper protective layer reacts with Ag contained in the reflective layer, and Ag 2 S , The storage reliability deteriorates. However, if a thin film mainly containing Nb 2 O 5 not containing S is used for the upper protective layer as in the present invention, the upper protective layer can also serve as an anti-sulfurization layer, and the reflective layer and the recording layer Therefore, a low-cost optical recording medium with a small number of layers and reduced material costs can be obtained.
(下部保護層)
下部保護層は、記録層の劣化変質を防ぎ、記録層の接着強度を高め、かつ記録特性を高めるなどの作用効果を有する。その材料としては、例えばSiO、SiO2、ZnO、SnO2、Al2O3、TiO2、In2O3、MgO、ZrO2などの金属酸化物、Si3N4、AlN、TiN、BN、ZrNなどの窒化物、ZnS、In2S3、TaS4などの硫化物、SiC、TaC、B4C、WC、TiC、ZrCなどの炭化物やダイヤモンド状カーボン、あるいは、それらの混合物が挙げられる。中でも、ZnSとSiO2の混合物は、耐熱性、低熱伝導率性、化学的安定性に優れており、膜の残留応力が小さく、繰り返し記録によっても記録感度、消去比などの特性劣化が起きにくく、記録層との密着性にも優れている点で好ましい。
また、上記材料あるいはそれらの混合物の単層でも2層以上の多層構造としても良い。
下部保護層は、その膜厚を変えることにより光記録媒体の反射率が大きく変わるので、光記録媒体の反射率が小さくなるように下部保護層の膜厚を調整することにより、光記録媒体の記録感度を上げることもできる。しかし、ブルーレイディスクやHD DVDなどそれぞれの規格で決められている反射率の範囲から外れると、ドライブが光記録媒体の信号を読み取りにくくなるので、下部保護層の膜厚は反射率が対象とする規格値内となるように調整するのが好ましい。例えば下部保護層にZnS−SiO2(20モル%)を用いた場合、DVD+RWでは40〜80nm、ブルーレイディスクでは20〜50nm、HD DVDでは30〜60nmとするのが好ましい。
(Lower protective layer)
The lower protective layer has effects such as preventing deterioration and deterioration of the recording layer, increasing the adhesive strength of the recording layer, and improving recording characteristics. Examples of the material include metal oxides such as SiO, SiO 2 , ZnO, SnO 2 , Al 2 O 3 , TiO 2 , In 2 O 3 , MgO, and ZrO 2 , Si 3 N 4 , AlN, TiN, BN, Examples thereof include nitrides such as ZrN, sulfides such as ZnS, In 2 S 3 and TaS 4 , carbides such as SiC, TaC, B 4 C, WC, TiC and ZrC, diamond-like carbon, and mixtures thereof. Among them, the mixture of ZnS and SiO 2 is excellent in heat resistance, low thermal conductivity, and chemical stability, has small film residual stress, and does not easily deteriorate characteristics such as recording sensitivity and erasure ratio even by repeated recording. From the viewpoint of excellent adhesion to the recording layer.
Further, a single layer of the above materials or a mixture thereof or a multilayer structure of two or more layers may be used.
Since the reflectance of the optical recording medium is greatly changed by changing the film thickness of the lower protective layer, adjusting the film thickness of the lower protective layer so that the reflectance of the optical recording medium is decreased, Recording sensitivity can also be increased. However, if it falls outside the range of reflectivity determined by each standard such as Blu-ray Disc and HD DVD, it becomes difficult for the drive to read the signal of the optical recording medium, so the thickness of the lower protective layer is subject to reflectivity It is preferable to adjust so as to be within the standard value. For example, when ZnS—SiO 2 (20 mol%) is used for the lower protective layer, the thickness is preferably 40 to 80 nm for DVD + RW, 20 to 50 nm for Blu-ray Disc, and 30 to 60 nm for HD DVD.
(基板)
基板の材料としては、通常、ガラス、セラミックス、樹脂などが用いられるが、成形性、コストの点から樹脂製基板が好適である。
樹脂としては、例えば、ポリカーボネート樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン共重合体樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フッ素樹脂、ABS樹脂、ウレタン樹脂などが挙げられるが、成形性、光学特性、コストの点からポリカーボネート樹脂やアクリル樹脂が好ましい。
(substrate)
As the substrate material, glass, ceramics, resin, and the like are usually used, but a resin substrate is preferable in terms of moldability and cost.
Examples of the resin include polycarbonate resin, acrylic resin, epoxy resin, polystyrene resin, acrylonitrile-styrene copolymer resin, polyethylene resin, polypropylene resin, silicone resin, fluorine resin, ABS resin, and urethane resin. Polycarbonate resin and acrylic resin are preferable from the viewpoint of properties, optical characteristics, and cost.
(カバー層)
ブルーレイディスクのように、高NAの対物レンズを用いる場合は、カバー層は0.3mm以下の厚さ、好ましくは0.06〜0.2mmの厚さが要求されるため、シート状であることが好ましい。紫外線硬化樹脂からなる接着剤をスピンコート法により塗布し、その上にポリカーボネートフィルムを貼り合わせてカバー層を形成してもよい。
DVD+RWやHD DVDのように、NAが0.6〜0.65程度の場合は、厚さが0.6mmのカバー基板を用い、紫外線硬化樹脂を保護層上に塗布しカバー基板を乗せてこれを硬化させ、カバー層を形成してもよい。
(Cover layer)
When using a high NA objective lens such as a Blu-ray disc, the cover layer is required to have a thickness of 0.3 mm or less, preferably 0.06 to 0.2 mm. Is preferred. The cover layer may be formed by applying an adhesive made of an ultraviolet curable resin by a spin coating method and bonding a polycarbonate film thereon.
When the NA is about 0.6 to 0.65, such as DVD + RW and HD DVD, a cover substrate with a thickness of 0.6 mm is used, an ultraviolet curable resin is applied on the protective layer, and the cover substrate is placed on the cover substrate. May be cured to form a cover layer.
本発明によれば、記録感度が良く、高速記録特性が良好であり、密着性がよい低コストの相変化型光記録媒体を提供できる。 According to the present invention, it is possible to provide a low-cost phase change type optical recording medium having good recording sensitivity, good high-speed recording characteristics, and good adhesion.
以下、実施例及び比較例を示して本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、スパッタリング法による製膜は、枚葉スパッタ装置(UNAXIS社製)を用いて、Arガス雰囲気中で投入電力1〜5kW、Arガス圧力2×10−3Torrの条件で行なった。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further more concretely, this invention is not limited by these Examples. The film formation by the sputtering method was performed using a single wafer sputtering apparatus (manufactured by UNAXIS) in an Ar gas atmosphere under conditions of an input power of 1 to 5 kW and an Ar gas pressure of 2 × 10 −3 Torr.
(実施例1)
―相変化型光記録媒体の作製―
直径12cm、厚さ1.1mmで、溝深さ22nm、溝幅0.165μm、トラックピッチ0.32μmの案内溝を有するポリカーボネート基板上に、スパッタリング法により、反射層、上部保護層、記録層、下部保護層を順に製膜した。
反射層は、Ag−Bi(0.5重量%)をターゲットに用い、膜厚140nmとした。
上部保護層は、Nb2O5をターゲットに用い、膜厚8nmとした。
記録層は、InSbをターゲットに用い、膜厚11nmとした。InとSbの比率は、0.7≦β/(α+β)≦0.94の間で変化させた。
下部保護層は、ZnS−SiO2(20モル%)をターゲットに用い、膜厚33nmとした。
更に、下部保護層の上に、紫外線硬化樹脂からなる接着剤(日本化薬社製DVD003)をスピンコート法により厚さ25μmとなるように塗布し、その上に、厚さ75μmのポリカーボネートフィルム(帝人社製)を貼り合わせて、厚さ0.1mmのカバー層を形成した。
以上により、実施例1の相変化型光記録媒体を作製した。
(Example 1)
-Fabrication of phase change optical recording media-
On a polycarbonate substrate having a guide groove having a diameter of 12 cm, a thickness of 1.1 mm, a groove depth of 22 nm, a groove width of 0.165 μm, and a track pitch of 0.32 μm, a reflection layer, an upper protective layer, a recording layer, A lower protective layer was formed in order.
The reflective layer was made of Ag-Bi (0.5 wt%) as a target and had a thickness of 140 nm.
The upper protective layer was Nb 2 O 5 as a target and had a thickness of 8 nm.
The recording layer used InSb as a target and had a thickness of 11 nm. The ratio of In and Sb was changed between 0.7 ≦ β / (α + β) ≦ 0.94.
The lower protective layer was made of ZnS—SiO 2 (20 mol%) as a target and had a thickness of 33 nm.
Further, an adhesive made of an ultraviolet curable resin (DVD003 manufactured by Nippon Kayaku Co., Ltd.) is applied on the lower protective layer so as to have a thickness of 25 μm by a spin coat method, and a polycarbonate film (75 μm thick) ( A cover layer having a thickness of 0.1 mm was formed.
Thus, the phase change optical recording medium of Example 1 was produced.
−初期結晶化−
上記相変化型光記録媒体に対し、フォーカシング機能を付加したレーザーヘッドを有する初期化装置(日立コンピュータ社製POP120−SSS)を用い、該記録媒体を一定線速度14m/sで回転させ、波長810nm、幅約1μm、長さ96μm、パワー1400mWのレーザー光を半径方向に送り50μm/rで移動させながら照射して初期結晶化を行なった。
−評価−
初期結晶化後の相変化型光記録媒体について、波長405nm、開口数NA0.85のピックアップヘッドを有するブルーレイディスク評価装置(パルステック工業社製ODU−1000)を用いて記録再生を行い、ジッター(σ/Tw)を評価した。ジッターは、1倍速(4.92m/s)で再生し、リミットエコライザーを用いて得た値であり、ブルーレイディスクの4倍速で17PP変調方式による最短マーク長0.149μmのランダムパタンを繰り返し10回記録したときの値である。記録ストラテジは、アモルファスマークを形成するパルスの周期を2Tとする、2T周期ストラテジを用い、記録パワー(Pw)を7.5mWに固定し、記録ストラテジを最適化してジッターを評価した。
結果を図2に示す。なお、図2(a)は、図2(b)に示すデータをグラフ化したものである。
図から分るように、0.73≦β/(α+β)≦0.9の範囲では、ジッタが7%以下という十分実用可能なレベルであり、0.77≦β/(α+β)≦0.85の範囲では、ジッタが6.5%以下という更に優れた値が得られた。
-Initial crystallization-
An initialization device (POP120-SSS manufactured by Hitachi Computer Co., Ltd.) having a laser head with a focusing function is used to rotate the recording medium at a constant linear velocity of 14 m / s, and a wavelength of 810 nm. Initial crystallization was performed by irradiating a laser beam having a width of about 1 μm, a length of 96 μm, and a power of 1400 mW in a radial direction while moving the laser beam at 50 μm / r.
-Evaluation-
Recording and reproduction of the phase-change optical recording medium after the initial crystallization was performed using a Blu-ray disc evaluation apparatus (ODU-1000 manufactured by Pulstec Industrial Co., Ltd.) having a pickup head with a wavelength of 405 nm and a numerical aperture NA of 0.85, and jitter ( (σ / Tw) was evaluated. Jitter is a value obtained by using a limit equalizer while reproducing at 1 × speed (4.92 m / s), and repeating a random pattern with a shortest mark length of 0.149 μm by the 17PP modulation method at 4 × speed of Blu-
The results are shown in FIG. FIG. 2 (a) is a graph of the data shown in FIG. 2 (b).
As can be seen from the figure, in the range of 0.73 ≦ β / (α + β) ≦ 0.9, the jitter is a sufficiently practical level of 7% or less, and 0.77 ≦ β / (α + β) ≦ 0. In the range of 85, a further excellent value of jitter of 6.5% or less was obtained.
(実施例2〜6、比較例1〜2)
上部保護層及び記録層のターゲットの組成を、表1の実施例2〜6及び比較例1〜2の欄に示したものに変えた点以外は、実施例1と同様の手順で各相変化型光記録媒体を作製し、初期結晶化を行った。但し、実施例2では上部保護層のターゲットは変えなかった。
初期結晶化後の各相変化型光記録媒体について、記録パワー(Pw)を変化させた点以外は、実施例1と同様にして記録再生を行い、ジッターの記録パワー依存性を評価した。記録パワーを変化させたとき、最も低いジッタ(ボトムジッタ)が得られる記録パワーが最適記録パワーであり、最適記録パワーが低いほど記録感度が良い光記録媒体である。
実施例2〜4と比較例1〜2の評価結果を図3に、実施例5〜6の評価結果を図4に示す。
図から分るように、上部保護層にZnO−Al2O3を用いた比較例1は、最適記録パワー9mWでボトムジッタは8.2%であった。
また、記録層にGe15Sb70Sn15(原子%)を用いた比較例2は、最適記録パワー9mWでボトムジッタは8.4%であった。
これに対し、記録層にIn17Sb76Zn7(原子%)、上部保護層にNb2O5を用いた実施例2は、最適記録パワーが7mWと低く、ボトムジッタも6.2%と小さかった。
また、実施例3、4は、それぞれNb2O5とZrO2又はZnOを20モル%混合した複合酸化物を上部保護層に用いたが、最適記録パワーが7.5mWと低く、ボトムジッタも、それぞれ6.2%、6.3%と小さかった。
実施例5、6は、上部保護層のZrO2とZnOの比率を多くして50モル%混合したNb2O5複合酸化物を用いたが、最適記録パワーが7.5mWと低く、ボトムジッタも、それぞれ6.2%、6.3%と小さかった。
(Examples 2-6, Comparative Examples 1-2)
Each phase change was carried out in the same procedure as in Example 1 except that the composition of the target of the upper protective layer and the recording layer was changed to those shown in the columns of Examples 2 to 6 and Comparative Examples 1 and 2 in Table 1. Type optical recording media were prepared and subjected to initial crystallization. However, in Example 2, the target of the upper protective layer was not changed.
For each phase-change optical recording medium after the initial crystallization, recording / reproduction was performed in the same manner as in Example 1 except that the recording power (Pw) was changed, and the recording power dependency of jitter was evaluated. The recording power at which the lowest jitter (bottom jitter) is obtained when the recording power is changed is the optimum recording power. The lower the optimum recording power, the better the recording sensitivity.
The evaluation results of Examples 2 to 4 and Comparative Examples 1 and 2 are shown in FIG. 3, and the evaluation results of Examples 5 to 6 are shown in FIG.
As can be seen, Comparative Example 1 using ZnO—Al 2 O 3 for the upper protective layer had an optimum recording power of 9 mW and a bottom jitter of 8.2%.
In Comparative Example 2 in which Ge 15 Sb 70 Sn 15 (atomic%) was used for the recording layer, the optimum recording power was 9 mW and the bottom jitter was 8.4%.
On the other hand, in Example 2 in which In 17 Sb 76 Zn 7 (atomic%) was used for the recording layer and Nb 2 O 5 was used for the upper protective layer, the optimum recording power was as low as 7 mW and the bottom jitter was as small as 6.2%. It was.
In Examples 3 and 4, a composite oxide in which 20 mol% of Nb 2 O 5 and ZrO 2 or ZnO were mixed was used for the upper protective layer, but the optimum recording power was as low as 7.5 mW, and the bottom jitter was They were 6.2% and 6.3%, respectively.
In Examples 5 and 6, Nb 2 O 5 composite oxide in which the ratio of ZrO 2 and ZnO in the upper protective layer was increased and mixed by 50 mol% was used, but the optimum recording power was as low as 7.5 mW and the bottom jitter was also low. And 6.2% and 6.3%, respectively.
−保存信頼性評価−
実施例2〜4の相変化型光記録媒体に対し、ブルーレイディスクの4倍速でランダムパターンを記録した後、80℃85%RHの条件下で300時間保存し、アーカイバル特性を評価した。また、剥離テストとして、カバー層に、カッターにより直行する2本の切れ目を入れ、そこに市販の粘着テープ(3M製メンディングテープ)を貼り、一度指で押さえ付けた後、粘着テープを表面に対して垂直方向に引き剥がすテストを行った。
その結果、実施例2の光記録媒体は、ジッタは変化しなかったものの、所々にピンホールが見られた。また、剥離テストでは一部が隔離し、密着性が悪いことが分った。
実施例3、4の光記録媒体は、ピンホールが殆ど見られず、アーカイバル特性も良好であった。また、剥離テストでは、膜が剥がれにくく、密着性が良いことが分った。
特に実施例4の光記録媒体は、80℃85%RHの条件下で500時間保存した場合でもアーカイバル特性が良好であり、最も好ましい構成であった。また、500時間保存後でも、剥離テストにおいて膜が剥がれにくく、密着性が良かった。
-Storage reliability evaluation-
Random patterns were recorded on the phase change optical recording media of Examples 2 to 4 at 4 times the speed of a Blu-ray Disc, and then stored for 300 hours under conditions of 80 ° C. and 85% RH, and archival characteristics were evaluated. Also, as a peel test, cut two straight lines with a cutter in the cover layer, apply a commercially available adhesive tape (3M mending tape) to it, and press it with your finger once. On the other hand, the test which peels to a perpendicular direction was done.
As a result, although the jitter did not change in the optical recording medium of Example 2, pinholes were observed in some places. In the peel test, part of the film was isolated and the adhesion was poor.
In the optical recording media of Examples 3 and 4, almost no pinholes were observed and the archival characteristics were good. In the peel test, it was found that the film was difficult to peel off and the adhesion was good.
In particular, the optical recording medium of Example 4 had the best archival characteristics even when stored under conditions of 80 ° C. and 85% RH for 500 hours, and was the most preferred configuration. In addition, even after storage for 500 hours, the film was hardly peeled off in the peel test, and the adhesion was good.
(比較例3)
上部保護層をZnS−SiO2(20モル%)に変えた点以外は、実施例2と同様にして、相変化型光記録媒体を作製し初期結晶化した。
この相変化型光記録媒体について、実施例2と同様にして評価したところ、初回記録はジッタ7%と良かったが、繰り返し10回記録したときはジッタが12%以上と悪くなり、記録ストラテジを調整しても12%以下にはならなかった。
(Comparative Example 3)
A phase change optical recording medium was produced and initially crystallized in the same manner as in Example 2 except that the upper protective layer was changed to ZnS—SiO 2 (20 mol%).
The phase change optical recording medium was evaluated in the same manner as in Example 2. As a result, the initial recording was good with a jitter of 7%. However, when repeated recording was performed 10 times, the jitter was worse than 12%, and the recording strategy was reduced. Even after adjustment, it was not less than 12%.
(比較例4)
記録層と上部保護層ZnS−SiO2の間に、〔ZrO2(3モル%Y2O3)〕−20モル%TiO2からなる界面層を設けた点以外は、実施例2と同様にして、表2に示す層構成の相変化型光記録媒体を作製し初期結晶化した。
この相変化型光記録媒体について、実施例2と同様にして評価したところ、初回記録はジッタ6.5%と良かったが、繰り返し10回記録したときはジッタが11%以上と悪くなり、記録ストラテジを調整しても11%以下にはならなかった。
(Comparative Example 4)
Between the recording layer and the upper protective layer ZnS-SiO 2, [ZrO 2 (3 mol% Y 2 O 3)] - except having a surface layer consisting of 20 mol% TiO 2, in the same manner as in Example 2 Thus, a phase change optical recording medium having a layer structure shown in Table 2 was prepared and initially crystallized.
This phase change optical recording medium was evaluated in the same manner as in Example 2. As a result, the initial recording was good with a jitter of 6.5%, but when repeated recording was repeated 10 times, the jitter became worse with 11% or more. Even after adjusting the strategy, it did not fall below 11%.
(実施例7)
記録層をIn17Sb77Ge3Zn3(原子%)、上部保護層をNb2O5−ZrO2(20モル%)に変え、上部保護層の膜厚を3〜21nmの間で変化させた点以外は、実施例2と同様の手順で光記録媒体を作製し初期結晶化した。
この相変化型光記録媒体について、実施例2と同様にしてブルーレイディスクの4倍速で繰り返し10回記録したときのジッタを評価した。なお、記録パワーは7.5mWに固定した。
結果を図5に示すが、3〜21nmの範囲でのジッタは、何れも8.%以下で実用可能なレベルであり、4〜20nmの範囲では、ジッタが7.0%以下と良好であり、特に、4〜10nmの範囲では、ジッタ6.5%以下と更に良好であった。
(Example 7)
The recording layer was changed to In 17 Sb 77 Ge 3 Zn 3 (atomic%), the upper protective layer was changed to Nb 2 O 5 —ZrO 2 (20 mol%), and the thickness of the upper protective layer was changed between 3 to 21 nm. Except for these points, an optical recording medium was prepared and crystallized in the same manner as in Example 2.
With respect to this phase change type optical recording medium, jitter was evaluated in the same manner as in Example 2 when recording was repeated 10 times at a 4 × speed of the Blu-ray Disc. The recording power was fixed at 7.5 mW.
The results are shown in FIG. 5, and the jitter in the range of 3 to 21 nm is 8. %, The jitter is as good as 7.0% or less in the range of 4 to 20 nm, and especially in the range of 4 to 10 nm, the jitter is even better as 6.5% or less. .
(実施例8〜13)
層構成を表3に示すように変えた点以外は、実施例2と同様にして、実施例8〜13の各光記録媒体を作製し初期結晶化した。
これらの相変化型光記録媒体について、実施例2と同様にして、ブルーレイディスクの4倍速で繰り返し10回記録したときのジッタを評価した。
そのときの最適記録パワーとジッタを表3に示すが、実施例8〜13の何れも、最適記録パワーは8mW以下であり、ジッタも7%以下と良好であった。
(Examples 8 to 13)
Except for the point that the layer configuration was changed as shown in Table 3, the optical recording media of Examples 8 to 13 were prepared and initially crystallized in the same manner as Example 2.
For these phase change optical recording media, the jitter was evaluated in the same manner as in Example 2 when recording was repeated 10 times at a 4 × speed of the Blu-ray Disc.
The optimum recording power and jitter at that time are shown in Table 3. In each of Examples 8 to 13, the optimum recording power was 8 mW or less, and the jitter was 7% or less.
(実施例14)
記録層のターゲットを、組成式InαSbβGeγZnδTeε(α、β、γ、δ、εは原子%)で表されるものに変えた点以外は、実施例1と同様の手順で相変化型光記録媒体を作製し、初期結晶化を行った後、実施例1と同様にしてジッタを評価した。
但し、β/α+βは0.80に固定した。
結果を図6〜図9に示すが、α+βについては、図6から分るように、65原子%以上ならばジッタ8.0以下であり、70原子%以上ではジッタ7.0以下と良好であった。
また、γについては、図7から分るように、15原子%以下ならばジッタ8.0以下であり、10原子%以下ではジッタ7.1以下と良好であった。
また、δについては、図8から分るように、15原子%以下ならばジッタ8.0以下であり、5原子%以下ではジッタ7.0以下と良好であった。
また、εについては、図9から分るように、15原子%以下ならばジッタ8.0以下であり、10原子%以下ではジッタ7.0以下と良好であった。
(Example 14)
A phase-change optical recording medium was prepared in the same procedure as in Example 1 except that the recording layer target was changed to one represented by the composition formula InαSbβGeγZnδTeε (α, β, γ, δ, and ε are atomic%). After fabrication and initial crystallization, jitter was evaluated in the same manner as in Example 1.
However, β / α + β was fixed at 0.80.
The results are shown in FIG. 6 to FIG. 9. As can be seen from FIG. 6, as for α + β, jitter is 8.0 or less when 65 atomic% or more, and jitter is 7.0 or less when 70 atomic% or more. there were.
As can be seen from FIG. 7, the jitter was 8.0 or less when it was 15 atomic% or less, and the jitter was 7.1 or less when it was 10 atomic% or less.
As can be seen from FIG. 8, when δ is 15 atomic% or less, the jitter is 8.0 or less, and when it is 5 atomic% or less, the jitter is 7.0 or less.
As can be seen from FIG. 9, when ε is 15 atomic% or less, the jitter is 8.0 or less, and when it is 10 atomic% or less, the jitter is 7.0 or less.
(実施例15)
ポリカーボネート基板上に、反射層Ag−Bi(0.5重量%)、上部保護層Nb2O5−ZrO2(20モル%)、第一記録層InSbGeTe、下部保護層ZnS−SiO2(20モル%)、樹脂中間層(UV硬化樹脂、三菱マテリアル社製SD318)、第五誘電体層IZO、放熱層Ag、第四誘電体層ZnO−Al2O3(2重量%)、第二記録層AgInSbTe、第三誘電体層ZnS−SiO2、カバー層を順次形成して、図5に示す層構成の2層相変化型光記録媒体を作製した。各層の厚さは下記の通りであり、樹脂中間層はスピンコート法で形成し、カバー層は紫外線硬化樹脂からなる接着剤(日本化薬社製DVD003)をスピンコート法により厚さ25μmとなるように塗布し、その上に厚さ75μmのポリカーボネートフィルム(帝人社製)を貼り合わせて形成した。その他の層は、スパッタリング法により厚さを制御しながら形成した。
反射層:100nm、上部保護層:8nm、第一記録層:11nm、下部保護層:35nm、樹脂中間層:35μm、第五誘電体層:30nm、放熱層:8nm、第四誘電体層:6nm、第二記録層:6nm、第三誘電体層:30nm
上記2層相変化型光記録媒体の第一記録層及び第二記録層を実施例1と同様にして初期結晶化した後、実施例1と同様にして、第一記録層にブルーレイディスクの2倍速記録でランダムパタンを繰り返し10回記録し、記録パワー及び記録ストラテジを最適化し、ジッターの記録パワー依存性を評価した。
その結果、ボトムジッタは8%であり、そのときの最適記録パワーは10mWと比較的低いパワーで記録することができた。
(Example 15)
On a polycarbonate substrate, reflective layer Ag-Bi (0.5 wt%), an upper protective layer Nb 2 O 5 -ZrO 2 (20 mol%), the first recording layer InSbGeTe, lower protective layer ZnS-SiO 2 (20 mol %), Resin intermediate layer (UV curable resin, Mitsubishi Materials Corporation SD318), fifth dielectric layer IZO, heat dissipation layer Ag, fourth dielectric layer ZnO—Al 2 O 3 (2 wt%), second recording layer AgInSbTe, a third dielectric layer ZnS-SiO 2 , and a cover layer were formed in this order to produce a two-layer phase change optical recording medium having the layer structure shown in FIG. The thickness of each layer is as follows, the resin intermediate layer is formed by a spin coat method, and the cover layer is made of an ultraviolet curable resin adhesive (DVD003 manufactured by Nippon Kayaku Co., Ltd.) to a thickness of 25 μm by the spin coat method. Then, a 75 μm-thick polycarbonate film (manufactured by Teijin Ltd.) was laminated thereon to form. The other layers were formed while controlling the thickness by a sputtering method.
Reflective layer: 100 nm, upper protective layer: 8 nm, first recording layer: 11 nm, lower protective layer: 35 nm, resin intermediate layer: 35 μm, fifth dielectric layer: 30 nm, heat dissipation layer: 8 nm, fourth dielectric layer: 6 nm Second recording layer: 6 nm, Third dielectric layer: 30 nm
After first crystallizing the first recording layer and the second recording layer of the above two-layer phase change optical recording medium in the same manner as in Example 1, the first recording layer is subjected to Blu-
As a result, the bottom jitter was 8%, and the optimum recording power at that time could be recorded with a relatively low power of 10 mW.
(比較例5)
記録層のターゲットの組成を、Ge3.5Sb72Te24.5(原子%)に変えた点以外は、実施例1と同様の手順で相変化型光記録媒体を作製し、初期結晶化を行った。この媒体は前述した引用文献1に係る媒体に相当するものである。
この相変化型光記録媒体について、実施例1と同様にして、ブルーレイディスクの4倍速で記録再生を行いジッタを評価した。その結果、初回記録はジッタ7%と良かったが、繰り返し10回記録ではジッタが13%以上と悪くなり、記録ストラテジを調整しても13%以下にはならず、実用に耐えないことが分かった。
(Comparative Example 5)
A phase change optical recording medium was prepared in the same procedure as in Example 1 except that the composition of the target of the recording layer was changed to Ge 3.5 Sb 72 Te 24.5 (atomic%). Went. This medium corresponds to the medium according to the cited reference 1 described above.
This phase change optical recording medium was recorded and reproduced at a speed four times that of a Blu-ray disc in the same manner as in Example 1 to evaluate jitter. As a result, the initial recording was good with a jitter of 7%. However, it was found that the jitter was poor with 13% or more after 10 times of repetitive recording, and even if the recording strategy was adjusted, it was not 13% or less. It was.
Claims (8)
0.73≦β/(α+β)≦0.90 In order from the incident side of the recording / reproducing light, it has at least a lower protective layer, a phase change recording layer, an upper protective layer, and a reflective layer, and the phase change recording layer is made of an alloy containing In and Sb as main components, The contents of In and Sb in the alloy are α and β (atomic%), α and β satisfy the following conditions, the upper protective layer is a single layer, and Nb 2 O 5 is the main component. A phase change optical recording medium.
0.73 ≦ β / (α + β) ≦ 0.90
0.73≦β/(α+β)≦0.90 A plurality of information layers having a phase change recording layer are formed through an intermediate layer between the cover layer on the front side when viewed from the incident side of the recording / reproducing light and the substrate on the far side, and viewed from the incident side of the recording / reproducing light. In addition, each information layer other than the innermost side includes five layers of a lower protective layer, a phase change recording layer, an upper protective layer, a translucent reflective layer, and a heat diffusion layer, and the innermost information layer includes In the phase change optical recording medium having a structure including the lower protective layer, the phase change recording layer, the upper protective layer, and the reflective layer, the innermost phase change recording layer is an alloy containing In and Sb as main components. The contents of In and Sb in the alloy are α and β (atomic%), α and β satisfy the following conditions, the innermost upper protective layer is a single layer, and Nb 2 O A phase change optical recording medium comprising 5 as a main component.
0.73 ≦ β / (α + β) ≦ 0.90
InαSbβGeγZnδTeε(α、β、γ、δ、εは原子%)
0.73≦β/(α+β)≦0.90
α+β≧65
γ+δ+ε≦30
0≦γ≦15
0≦δ≦15
0≦ε≦15 The phase change optical recording medium according to any one of claims 1 to 6, wherein the alloy mainly composed of In and Sb is represented by the following composition formula.
InαSbβGeγZnδTeε (α, β, γ, δ, ε are atomic%)
0.73 ≦ β / (α + β) ≦ 0.90
α + β ≧ 65
γ + δ + ε ≦ 30
0 ≦ γ ≦ 15
0 ≦ δ ≦ 15
0 ≦ ε ≦ 15
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064041A JP2008221647A (en) | 2007-03-13 | 2007-03-13 | Phase change type optical recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007064041A JP2008221647A (en) | 2007-03-13 | 2007-03-13 | Phase change type optical recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008221647A true JP2008221647A (en) | 2008-09-25 |
Family
ID=39840806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007064041A Pending JP2008221647A (en) | 2007-03-13 | 2007-03-13 | Phase change type optical recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008221647A (en) |
-
2007
- 2007-03-13 JP JP2007064041A patent/JP2008221647A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4059714B2 (en) | Optical recording medium | |
JP4834666B2 (en) | Information recording medium and manufacturing method thereof | |
JP4006410B2 (en) | Information recording medium | |
JP2005267779A (en) | Multilayer phase change type information recording medium and recording and reproducing method therefor | |
JPWO2004085167A1 (en) | Information recording medium and manufacturing method thereof | |
TWI246078B (en) | Information recording medium | |
JP2005122872A (en) | Two-layer phase-change type information recording medium and its recording and reproducing method | |
KR100912450B1 (en) | Optical recording medium and optical recording method | |
JP2002074741A (en) | Optical information recording medium | |
JP4248486B2 (en) | Phase change optical recording medium | |
JP4125566B2 (en) | Multi-layer phase change optical information recording medium and recording / reproducing method thereof | |
JP4397838B2 (en) | Multilayer phase change optical recording medium | |
JP2008221647A (en) | Phase change type optical recording medium | |
JP4086689B2 (en) | Optical information recording medium and manufacturing method thereof | |
JP4308866B2 (en) | Information recording medium | |
JP2007098933A (en) | Optical recording medium | |
JP2004025801A (en) | Phase change type information recording medium | |
WO2005044578A1 (en) | Optical recoding medium and its manufacturing method, sputtering target, usage of optical recording medium, and optical recorder | |
JP2002230839A (en) | Optical recording medium | |
JP2005129205A (en) | Information recording medium and its manufacturing method | |
JP2006212880A (en) | Phase change type optical recording medium | |
JP4184203B2 (en) | Phase change optical information recording medium and manufacturing method thereof | |
JP4216178B2 (en) | Multi-layer phase change information recording medium and recording / reproducing method thereof | |
JP2005193663A (en) | Optical recording medium | |
KR20050026477A (en) | Multi-stack optical data storage medium and use of such medium |