JP2008221246A - Method and apparatus for applying three-dimensional experimental simulation to plastic working - Google Patents

Method and apparatus for applying three-dimensional experimental simulation to plastic working Download PDF

Info

Publication number
JP2008221246A
JP2008221246A JP2007059621A JP2007059621A JP2008221246A JP 2008221246 A JP2008221246 A JP 2008221246A JP 2007059621 A JP2007059621 A JP 2007059621A JP 2007059621 A JP2007059621 A JP 2007059621A JP 2008221246 A JP2008221246 A JP 2008221246A
Authority
JP
Japan
Prior art keywords
model
radiation
image
processing
plastic working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007059621A
Other languages
Japanese (ja)
Other versions
JP4771338B2 (en
Inventor
Yuji Mure
雄二 牟禮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima Prefecture
Original Assignee
Kagoshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima Prefecture filed Critical Kagoshima Prefecture
Priority to JP2007059621A priority Critical patent/JP4771338B2/en
Publication of JP2008221246A publication Critical patent/JP2008221246A/en
Application granted granted Critical
Publication of JP4771338B2 publication Critical patent/JP4771338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for evaluating and checking a working process designing, a die-designing or a countermeasure of working defect, etc., after obtaining the inner part deforming information of complicated shape parts applying three-dimensional plastic deformation. <P>SOLUTION: A model die is used and a model material resembled with the deforming characteristic of a metallic material is used, and the model material embedding a gage mark is plastic-worked with the model die. The movement of the gage mark is picked up as one image by switching at one scene in the image at the timing in the irradiation with radiation from two directions forming a parallax and thereafter, the three-dimensional coordinate of the gage mark is calculated in arbitrary plastic working step from the working start to the working finish, from the two-dimensional gage mark image in two direction forming the parallax, and the gage mark data and the model die shape data are piled up and indicated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鍛造加工や押出し加工等の塑性加工において、3次元的に変形する複雑形状部品の内部変形情報を得て、加工プロセス設計、金型設計又は加工欠陥対策等を評価・検討することを目的とする塑性加工の3次元実験シミュレーション方法及び装置に関するものである。   The present invention obtains internal deformation information of complex-shaped parts that deform three-dimensionally in plastic processing such as forging and extrusion, and evaluates and examines processing process design, mold design, or countermeasures for processing defects, etc. The present invention relates to a method and apparatus for three-dimensional experimental simulation of plastic working for the purpose.

従来、3次元的に変形する複雑形状部品の塑性加工による加工プロセス設計及び金型設計の評価・検討は次のように行っていた。   Conventionally, evaluation and examination of machining process design and mold design by plastic working of complex shape parts that deform three-dimensionally have been performed as follows.

(1)実試作結果からの評価・検討
設計された複雑形状部品に対して、被加工材料及び加工設備を選定し、加工プロセスとそれに応じた金型設計を行う。次に、加工プロセス設計と金型設計の妥当性を判定するために、金型を実際に製作して、実試作し、その結果からそれらの良否を判断していた。しかし、この方法では、結果の良否の判断を熟練技術者の過去の経験や勘に頼ることが多く、どこを改良すべきか客観的に判断するための数値的なデータが得られなかった。また、試作の繰り返しが数回に及び、多大な時間とコストを要していた。しかも、熟練技術者による試行錯誤の末、ようやく最適化された結果を得ても、そのプロセスを体系化できないため、3次元的に変形する複雑形状部品の場合、得られた経験則を他部品へ適用できないでいた。
(1) Evaluation / examination based on actual prototype results Select the material to be processed and the processing equipment for the designed complex shape parts, and design the processing process and the corresponding mold. Next, in order to determine the appropriateness of the machining process design and the mold design, the mold was actually manufactured and actually prototyped, and the quality was judged from the result. However, this method often relies on the past experience and intuition of the skilled engineer to judge the quality of the result, and numerical data for objectively judging where to improve cannot be obtained. In addition, the trial production was repeated several times, which required a lot of time and cost. In addition, after trial and error by a skilled engineer, even if the optimized result is finally obtained, the process cannot be systematized. Could not be applied to.

(2)計算機シミュレーションによる評価・検討
有限要素法を用いた数値計算力学による計算機シミュレーション技術を用いて、被加工材料の変形過程を解析して評価・検討する方法がある。この方法では、解析を行う際に、複雑な各種境界条件や入力条件等が必要となる。特に、金型に及ぼす影響を考慮して各種条件を解析に導入すると計算工程は複雑で非効率的なものとなる。全く新規の加工に関してはそのような条件は仮定でしかない。さらに、時々刻々と変化している被加工材料と金型との接触条件、摩擦条件などを一定値として仮定しているため、実現象と大きく異なる結果が得られる場合もあり、信頼性に欠けており、目安程度にしか利用されていない。また、3次元的に変形する複雑形状部品の場合、解析時間に数日から1週間程度を要し、得られた結果の妥当性を検証する術もない。さらに、条件設定のミスを完全に排除することは難しく、条件の再設定や実現象に即した解析プログラムの修正を余儀なくされていた。
(2) Evaluation / examination by computer simulation There is a method of analyzing and evaluating / determining the deformation process of a work material using a computer simulation technique by numerical mechanics using a finite element method. This method requires various complicated boundary conditions, input conditions, and the like when performing analysis. In particular, if various conditions are introduced into the analysis in consideration of the influence on the mold, the calculation process becomes complicated and inefficient. Such a condition is only an assumption for a completely new process. In addition, since the contact conditions and friction conditions between the workpiece and the mold, which change from moment to moment, are assumed to be constant values, results that differ greatly from actual phenomena may be obtained, and reliability is lacking. It is used only as a guideline. In addition, in the case of a complex shaped part that deforms three-dimensionally, the analysis time takes several days to one week, and there is no way to verify the validity of the obtained results. Furthermore, it is difficult to completely eliminate mistakes in setting conditions, and it has been necessary to reset the conditions and modify the analysis program in accordance with the actual phenomenon.

(3)モデル材料を用いた実験的シミュレーションによる評価・検討
金属材料と類似の変形特性を示す油粘土等のモデル材料と樹脂製のモデル型を用いた模擬実験によって、材料変形の可視化を行い、評価・検討する方法がある(例えば、特許文献1、非特許文献1参照)。特許文献1は、平面ひずみ及び軸対称部品を対象としており、3次元的な変形を伴う複雑形状部品の材料内部の変形現象の可視化はできない。また、加工開始から加工終了までを所定の加工量に分け逐次加工するため、逐次加工段階ごとの可視化しかできず、連続的な加工現象の可視化はできない。また、非特許文献1は、定常変形を対象としており、塑性加工時に定常変形となったところで加工を止め、加工品を取り出し、薄層状にカットすることで、内部変形を同定しているため、鍛造のような非定常変形において全工程を網羅するには多くの逐次加工段階で加工を止め、それぞれで薄層状にカットする過程を経る必要があるため、多大な時間とコストを要するという欠点があった。
(3) Evaluation / examination by experimental simulation using model materials Visualization of material deformation is performed by simulation experiments using model materials such as oil clay and resin models that show deformation characteristics similar to those of metal materials. There are methods for evaluation and examination (for example, see Patent Document 1 and Non-Patent Document 1). Patent document 1 is intended for plane strain and axisymmetric parts, and it is impossible to visualize the deformation phenomenon inside the material of a complex shaped part accompanied by three-dimensional deformation. In addition, since the processing from the start to the end of processing is divided into predetermined processing amounts and sequentially processed, it is possible to visualize only the sequential processing steps, and it is not possible to visualize the continuous processing phenomenon. In addition, Non-Patent Document 1 is intended for steady deformation, and stops processing when it becomes steady deformation during plastic processing, takes out the processed product, and identifies the internal deformation by cutting it into a thin layer, In order to cover all processes in unsteady deformation such as forging, it is necessary to stop the processing in many sequential processing stages and cut through a thin layer in each step, so there is a disadvantage that it takes a lot of time and cost there were.

特許第3345662号Japanese Patent No. 3345662 吉田、伊藤著 「Visioplasticityによるひずみ(速度)および応力の解析」日本塑性加工学会誌 第33巻 第379号(1992−1)P34−39Yoshida, Ito, “Analysis of strain (velocity) and stress by Visioplasticity”, Journal of Japan Society for Technology of Plasticity, Vol. 33, No. 379 (1992-1) P34-39

3次元的に塑性変形する複雑形状部品の加工において、加工プロセスあるいは金型設計が適切ではない場合、金属材料が金型に充満しない欠肉や、材料流動の不安定に起因する加工品表面の巻き込み等欠陥が発生する。これら欠陥の原因を解明するため時々刻々と変化する成形品内部変形の様子を実時間で可視化する必要があるが、従来技術では難しいという問題点がある。   When machining a complex shape part that is plastically deformed three-dimensionally, if the machining process or mold design is not appropriate, the metal material will not fill the mold, and the surface of the workpiece may be caused by material instability. Defects such as entrainment occur. In order to elucidate the cause of these defects, it is necessary to visualize in real time the state of internal deformation of a molded article that changes from moment to moment, but there is a problem that it is difficult with the prior art.

本発明は、以上の従来技術における問題点に鑑みてなされたものであり、3次元的に塑性変形する複雑形状部品の内部変形の様子を連続的に可視化する方法及び装置を提供することを目的とするものである。   The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a method and an apparatus for continuously visualizing the internal deformation of a complex-shaped part that is three-dimensionally plastically deformed. It is what.

本発明の塑性加工の3次元実験シミュレーション方法は、モデル型を使用し、かつ金属材料の変形特性と類似したモデル材料を使用して、所定形状のモデル材料の内部に標点を埋め込む工程と、前記モデル型に装填した前記モデル材料を連続的に塑性加工し、同時に前記塑性加工に伴う前記標点の動きを、視差を形成する2方向からの放射線により、放射線照射のタイミングを映像の1コマごとに切り換えて1つの映像として撮像する工程と、前記映像を記録する工程と、記録された映像を視差を形成する2方向ごとの静止画に分別する工程と、前記視差を形成する2方向ごとに分別された静止画を用いて加工開始から加工終了までの任意の塑性加工段階で標点の2次元座標を演算する工程と、前記視差を形成する2方向ごとに分別された標点の2次元座標を用いて加工開始から加工終了までの任意の塑性加工段階で標点の3次元座標を演算する工程と、加工開始から加工終了までの任意の塑性加工段階において、前記3次元座標での標点データとモデル型の形状データとを重ね合わせて表示する工程と、前記標点データとモデル型の形状データとを重ね合わせて表示した結果に基づいて加工の良否を判定する工程からなることとすることにより前記課題を解決したものである。   The method of three-dimensional experimental simulation of plastic working of the present invention uses a model mold and uses a model material similar to the deformation characteristics of a metal material to embed a gauge mark inside the model material of a predetermined shape, The model material loaded in the model mold is continuously plastically processed, and at the same time, the movement of the mark accompanying the plastic processing is determined by the radiation from the two directions forming the parallax, and the timing of radiation irradiation is displayed in one frame of the image. Switching each time and imaging as one video, recording the video, sorting the recorded video into still images for each of two directions forming the parallax, and for each of the two directions forming the parallax A step of calculating the two-dimensional coordinates of the mark at an arbitrary plastic processing stage from the start of processing to the end of processing using the still image classified into two, and the standard separated for each of the two directions forming the parallax. The three-dimensional coordinates of the target point are calculated at an arbitrary plastic processing stage from the start of processing to the end of processing using the two-dimensional coordinates of the above, and at the arbitrary plastic processing stage from the start of processing to the end of processing, the three-dimensional coordinates From the step of superimposing and displaying the gauge data and the model type shape data in the process, and the step of judging the quality of the processing based on the result of superimposing and displaying the mark data and the model type shape data Thus, the above-described problem is solved.

本発明の塑性加工の3次元実験シミュレーション方法は、放射線の波長が1pmから10nmであることとした。これにより、モデル材料内部の非破壊検査が可能となる。   In the three-dimensional experimental simulation method for plastic working according to the present invention, the wavelength of radiation is from 1 pm to 10 nm. Thereby, the nondestructive inspection inside the model material can be performed.

本発明の塑性加工の3次元実験シミュレーション方法は、標点がモデル材料及びモデル型より密度が高い物質とし、標点とモデル材料及び標点とモデル型との密度差が12グラム毎立方センチメートル以上であることとした。これにより、コントラストの良い標点の放射線透過映像を得ることができる。   The plastic processing three-dimensional experimental simulation method of the present invention uses a material whose mark is higher in density than the model material and the model mold, and the density difference between the mark and the model material and between the mark and the model mold is 12 grams per cubic centimeter or more. It was supposed to be. As a result, it is possible to obtain a radiographic image of a target with good contrast.

本発明の塑性加工の3次元実験シミュレーション方法は、モデル材料及びモデル型が実際の金型及び被加工材料の形状と実質的に同一または相似の形状を有してなることとした。これにより、モデル型とモデル材料のシミュレーション実験にて得られる標点の動きは、実際の金型と被加工材料として金属材料を用いた加工における材料内部の変形と類似となる。   In the three-dimensional experimental simulation method for plastic working according to the present invention, the model material and the model mold have substantially the same or similar shapes as the shapes of the actual mold and the workpiece material. Thereby, the movement of the target point obtained by the simulation experiment of the model mold and the model material is similar to the deformation inside the material in the process using the metal material as the actual mold and the work material.

本発明の塑性加工の3次元実験シミュレーション装置は、複数の標点が埋め込まれたモデル材料と、前記モデル材料を塑性加工するためのモデル型と、前記モデル材料を塑性加工する加圧装置と、前記加圧装置が一体となったモデル型設置台と、前記モデル型設置台が移動するためのモデル型設置台用レールと、前記モデル型設置台を移動させるためのモデル型設置台位置制御装置と、塑性加工に伴う標点の動きを視差を形成して撮像するための2台の放射線発生器と、前記2台の放射線発生器の照射タイミングを映像の1コマごとに切り替える放射線照射制御装置と、前記放射線発生器を設置するための放射線発生器設置台と、前記放射線発生器設置台が移動するための放射線発生器設置台用レールと、前記放射線発生器設置台を移動させるための放射線発生器設置台位置制御装置と、標点の放射線透過像を光学像に変換するイメージインテンシファイアと、前記イメージインテンシファイアにより得られた光学像を所定の大きさの光学映像に変換する光学系と、前記光学系により変換された所定の大きさの光学映像をアナログ映像信号に変換する1台の放射線用TVカメラと、前記アナログ映像信号を記録するためのビデオキャプチャーと、前記モデル型設置台及び前記放射線発生器設置台の位置を制御するプログラムと、前記撮像された視差を形成する2方向からの放射線による映像を1コマごとに方向ごとの時系列画像として切り分け静止画像として保存するプログラムと、前記視差を形成する方向ごとの時系列画像を用いて任意の塑性加工段階における標点の2次元座標を演算処理するプログラムと、前記任意の塑性加工段階における標点の2次元座標から3次元座標を演算処理するプログラムと、前記プログラム等が収納された演算処理装置と、前記演算処理結果とモデル型の形状データを重ね合わせて表示する表示装置とからなることとすることにより前記課題を解決したものである。なお、前記加圧装置とは、油圧あるいは電動プレス機である。   The plastic processing three-dimensional experimental simulation apparatus of the present invention includes a model material in which a plurality of marks are embedded, a model mold for plastic processing of the model material, and a pressure device for plastic processing of the model material, A model type installation table in which the pressurizing device is integrated, a model type installation table rail for moving the model type installation table, and a model type installation table position control device for moving the model type installation table And two radiation generators for imaging the movement of the target accompanying plastic working by forming a parallax, and a radiation irradiation control device that switches the irradiation timing of the two radiation generators for each frame of the image A radiation generator installation table for installing the radiation generator, a radiation generator installation rail for moving the radiation generator installation table, and moving the radiation generator installation table Radiation generator installation table position control device for the above, an image intensifier for converting a radiation transmission image of a target point into an optical image, and an optical image obtained by the image intensifier into an optical image of a predetermined size An optical system for conversion, one radiation TV camera for converting an optical image of a predetermined size converted by the optical system into an analog video signal, a video capture for recording the analog video signal, A program for controlling the position of the model-type installation table and the radiation generator installation table, and the images of the radiation from the two directions forming the imaged parallax are divided into time-series images for each direction as a still image. Two-dimensional coordinates of the mark at any plastic working stage using a program to be stored and a time-series image for each direction in which the parallax is formed A program for arithmetic processing, a program for arithmetic processing of the three-dimensional coordinates from the two-dimensional coordinates of the target point in the arbitrary plastic working stage, an arithmetic processing device in which the programs are stored, the arithmetic processing result and the model type This problem is solved by comprising a display device that displays the shape data in a superimposed manner. The pressurizing device is a hydraulic or electric press.

本発明の塑性加工の3次元実験シミュレーション装置は、モデル型設置台が放射線用TVカメラを真上から見て、放射線用TVカメラの撮像面に対して垂直方向に移動することとした。これにより、放射線により撮像された標点映像を放射線用TVカメラの視野に収めたり、視認性を向上させるために拡大縮小することができる。   In the three-dimensional experimental simulation apparatus for plastic working according to the present invention, the model-type installation base moves in a direction perpendicular to the imaging surface of the radiation TV camera when the radiation TV camera is viewed from directly above. Thereby, the target image imaged by the radiation can be accommodated in the field of view of the radiation TV camera, and can be enlarged or reduced in order to improve the visibility.

本発明の塑性加工の3次元実験シミュレーション装置は、2台の放射線発生器を設置した放射線発生器設置台が、放射線用TVカメラを真上から見て、放射線発生器の視差形成を維持しながら放射線用TVカメラの撮像面と平行に横方向へ独立して同方向あるいは逆方向に移動することとした。これにより、視差を形成する2方向からの放射線により撮像された標点の透過映像を放射線用TVカメラの視野に収まるように2個の放射線発生器の間隔を変更することができる。   The plastic processing three-dimensional experimental simulation apparatus according to the present invention is configured such that a radiation generator installation table including two radiation generators maintains parallax formation of the radiation generator when viewed from directly above the radiation TV camera. It was decided to move in the same direction or in the opposite direction independently in the horizontal direction parallel to the imaging surface of the radiation TV camera. Thereby, it is possible to change the interval between the two radiation generators so that the transmission image of the target image picked up by the radiation from the two directions forming the parallax falls within the field of view of the radiation TV camera.

本発明によると次のような優れた効果がある。
(1)3次元的に塑性変形する複雑形状部品の加工において、加工プロセスあるいは金型設計が適切ではない場合、金属材料が金型に充満しない欠肉や、材料流動の不安定に起因する加工品表面の巻き込み等の欠陥が発生する。これらの原因を解明するため、時々刻々と変化する成形品の内部変形を連続的に可視化することができる。
(2)標点を埋め込んだ1つのモデル材料を用いたシミュレーション実験による材料内部変形の可視化において、単一焦点の放射線発生器で視差を形成する方法も考えられるが、その方法ではある瞬間の3次元情報しか得られないのに対し、本発明では時間軸を加えた実時間で3次元的に塑性変形する現象の可視化が可能となる。
(3)数値計算モデルが不要で、過去の経験や勘といった熟練度を必要とせずに、加工プロセス設計及び金型設計における主要検討項目を、任意に、また広範囲に変えたシミュレーションができる。
(4)被加工材料と金型間の接触条件、摩擦条件、境界条件、材料の変形特性などが実験結果に包含されているため、実現象に即したシミュレーション結果が得られる。
The present invention has the following excellent effects.
(1) When machining complex shaped parts that are plastically deformed three-dimensionally, if the machining process or the mold design is not appropriate, the metal material will not fill the mold, and the process may be caused by unstable material flow. Defects such as entrainment of the product surface occur. In order to elucidate these causes, it is possible to continuously visualize the internal deformation of the molded product that changes every moment.
(2) In the visualization of internal deformation of a material by a simulation experiment using one model material in which a target is embedded, a method of forming a parallax with a single focus radiation generator is also conceivable. While only dimensional information can be obtained, the present invention makes it possible to visualize the phenomenon of plastic deformation three-dimensionally in real time with the addition of a time axis.
(3) A numerical calculation model is not required, and simulation can be performed in which the main examination items in machining process design and die design are arbitrarily and widely changed without requiring skill levels such as past experience and intuition.
(4) Since the experimental results include the contact conditions between the work material and the mold, the friction conditions, the boundary conditions, the deformation characteristics of the materials, and the like, a simulation result corresponding to the actual phenomenon can be obtained.

本発明による塑性加工の3次元実験シミュレーション方法の一実施形態について説明する。本発明による塑性加工の3次元実験シミュレーション方法による加工プロセス設計は、図1の(1)〜(9)に示される過程により行われる。
(1)加工前の素材形状を決定し、モデル材料を用いて素材を製作する。素材の内部には、予めモデル材料よりも密度が高い標点を埋め込んでおく。
(2)モデル型を設計・製作する。
(3)塑性加工に伴う標点の動きを視差を形成する放射線により撮像する。
(4)任意時間に得られた視差画像中の標点の2次元座標を用いて、標点の3次元座標を演算する。
(5)表示装置上に標点とモデル型の重ね合わせ画像を表示する。
(6)加工の良否を判定する。良の判定の場合には、設計が終了する。否の判定の場合には、次の(7)〜(9)のいづれかまたは複数を行って、良の判定が出るまでこれを繰り返す。
(7)(6)の結果を参考に素材形状を変更して、(1)に戻る。
(8)(6)の結果を参考にモデル型の形状を変更して、(2)に戻る。
(9)(6)の結果を参考に加工条件を変更して、(3)に戻る。
An embodiment of a three-dimensional experimental simulation method for plastic working according to the present invention will be described. The machining process design by the three-dimensional experimental simulation method for plastic working according to the present invention is performed by the processes shown in (1) to (9) of FIG.
(1) The material shape before processing is determined, and the material is manufactured using the model material. A mark having a higher density than the model material is embedded in the material in advance.
(2) Design and manufacture model molds.
(3) An image of the movement of the mark accompanying plastic working is taken with radiation forming parallax.
(4) The three-dimensional coordinates of the mark are calculated using the two-dimensional coordinates of the mark in the parallax image obtained at an arbitrary time.
(5) Display a superposed image of a gauge and a model type on the display device.
(6) The quality of processing is determined. If the determination is good, the design ends. In the case of a negative determination, one or more of the following (7) to (9) are performed, and this is repeated until a good determination is obtained.
(7) Change the material shape with reference to the result of (6), and return to (1).
(8) Change the shape of the model type with reference to the result of (6), and return to (2).
(9) Change the processing conditions with reference to the result of (6), and return to (3).

以上の方法によって、モデル材料の変形特性あるいはモデル材料とモデル型間の摩擦分布が時々刻々と変化する加工においても、それらの影響を受けた標点の3次元的な位置を演算するためのデータが得られるため、実現象に即した可視化を行うことができ、高い信頼性が期待できる。以上のことにより、本発明による塑性加工の3次元実験シミュレーション方法によれば、工具形状・潤滑条件・素材形状など加工プロセスにおける主要検討項目を、任意に、また、広範囲に変えたシミュレーションを容易に実施できる。   Data for calculating the three-dimensional position of a gauge point affected by the above method even in machining in which the deformation characteristics of the model material or the friction distribution between the model material and the model mold changes every moment. Therefore, visualization according to the actual phenomenon can be performed, and high reliability can be expected. As described above, according to the three-dimensional experimental simulation method for plastic working according to the present invention, it is possible to easily perform simulation in which the main examination items in the machining process such as the tool shape, the lubrication condition, and the material shape are arbitrarily changed over a wide range. Can be implemented.

次に、本発明による塑性加工の3次元実験シミュレーション装置を図2、図3に示して説明する。本発明による塑性加工の3次元実験シミュレーション装置40は、
(a)視差を形成する位置に配置された放射線発生器11a、11bと、放射線発生器11a、11bを設置するための放射線発生器設置台12a、12bと、放射線発生器設置台12a、12bを放射線用TVカメラを真上から見て、放射線用TVカメラの撮像面と平行に横方向へ移動させるための放射線発生器設置台用レール13と、2台の放射線発生器11a、11bの照射タイミングを映像の1コマごとに切り替えるための放射線照射制御装置14と、放射線発生器設置台用レール13における放射線発生器設置台12a、12bの位置を制御する放射線発生器位置制御装置15とを備える放射線機構部10と、
(b)モデル材料で作製した素材21と、素材21を塑性加工するための樹脂製のモデル型22と、プレス機能を果たす加圧装置23と、放射線の撮像対象となる金属製の標点24と、モデル型22を設置するモデル型設置台25と、モデル型設置台位置制御装置28と、モデル型設置台25を放射線の照射方向に移動させるためのモデル型設置台用レール26と、素材21を加圧するパンチ29とを備える加圧機構部20と、
(c)標点24の放射線映像を光学像に変換するイメージインテンシファイア31と、イメージインテンシファイア31により得られた光学像を所定の大きさの光学映像に変換する光学系32と、光学系32により変換された所定の大きさの光学映像をアナログ映像信号に変換する放射線用TVカメラ33と、映像を記録するためのビデオキャプチャー34と、各種処理プログラム35が収納された演算処理装置36と、演算処理結果とモデル型22の形状データを重ね合わせて表示する表示装置37とを備えるデータ処理機構部30とからなる。(放射線の被曝を防御する防御壁は図示せず)
Next, a three-dimensional experimental simulation apparatus for plastic working according to the present invention will be described with reference to FIGS. The three-dimensional experimental simulation apparatus 40 for plastic working according to the present invention includes:
(A) radiation generators 11a and 11b arranged at positions where parallax is formed, radiation generator installation bases 12a and 12b for installing the radiation generators 11a and 11b, and radiation generator installation bases 12a and 12b The radiation generator installation table rail 13 for moving the radiation TV camera in a lateral direction parallel to the imaging surface of the radiation TV camera when viewed from directly above, and irradiation timings of the two radiation generators 11a and 11b The radiation irradiation control device 14 for switching the image for each frame of the image, and the radiation generator position control device 15 for controlling the positions of the radiation generator installation bases 12a and 12b on the radiation generator installation rail 13 A mechanism unit 10;
(B) A material 21 made of a model material, a resin model die 22 for plastic processing of the material 21, a pressurizing device 23 that performs a pressing function, and a metal mark 24 that is an object of radiation imaging. A model type installation table 25 for installing the model type 22, a model type installation table position control device 28, a rail 26 for the model type installation table for moving the model type installation table 25 in the radiation direction, and a material A pressurizing mechanism unit 20 comprising a punch 29 for pressurizing 21;
(C) An image intensifier 31 that converts a radiographic image of the mark 24 into an optical image, an optical system 32 that converts an optical image obtained by the image intensifier 31 into an optical image of a predetermined size, and optical A radiation TV camera 33 that converts an optical image of a predetermined size converted by the system 32 into an analog image signal, a video capture 34 for recording the image, and an arithmetic processing unit 36 in which various processing programs 35 are stored. And a data processing mechanism unit 30 including a display device 37 that displays the calculation processing result and the shape data of the model mold 22 in a superimposed manner. (The defensive wall that protects against radiation exposure is not shown)

本発明による塑性加工の3次元実験シミュレーション装置40を使用して、金型設計の段階で、金属材料の変形特性(応力−ひずみ曲線の傾き、すなわちN値)を再現(N値を同一とする)できる市販のプラスチシン(油粘土)、カラークレイ(油粘土)、Filia(ワックス)をモデル材料として用いることにより、素材形状の検討や成形性の検討を容易に、安価に、短期間で行うことができる。   Using the three-dimensional experimental simulation apparatus 40 for plastic working according to the present invention, the deformation characteristics (slope of stress-strain curve, that is, the N value) of the metal material are reproduced (the N value is the same) at the mold design stage. ) By using commercially available plasticine (oil clay), color clay (oil clay), and Filia (wax) as model materials, it is possible to easily examine the shape of the material and the formability in a short period of time. Can do.

ここで、放射線発生器11a、11bの放射線で透過撮影された複数の標点24の映像のコマ構成を図4に示して説明する。放射線発生器11a、11bの照射タイミングを映像の1コマごとに切り替える放射線照射制御装置14により放射線透過撮影された標点24の放射線用TVカメラ33における映像は、映像の1コマごとに放射線発生器11aで放射線を照射し、撮像した標点24の映像50a、放射線発生器11bで放射線を照射し、撮像した標点24の映像50bが時系列に、交互に51a、51b、52a、52b・・・のように納められている。ここで、NTSC信号による映像の1コマは1/30秒間隔であるので、加工における標点の移動時間を特定することができ、標点24の移動速度の演算が可能となる。   Here, the frame configuration of the images of the plurality of target points 24 that are transmitted and photographed with the radiation of the radiation generators 11a and 11b will be described with reference to FIG. An image of the radiation TV camera 33 of the target 24 taken by the radiation irradiation control device 14 that switches the irradiation timing of the radiation generators 11a and 11b for each frame of the image is displayed on the radiation TV camera 33 for each frame of the image. 11a is irradiated with radiation, and the image 50a of the captured target 24 is irradiated with the radiation generator 11b. The captured image 24b of the captured target 24 is alternately displayed in time series 51a, 51b, 52a, 52b,.・ It is paid as follows. Here, since one frame of the video by the NTSC signal is 1/30 second interval, it is possible to specify the moving time of the mark in the processing, and it is possible to calculate the moving speed of the mark 24.

本発明による塑性加工の3次元実験シミュレーション方法におけるデータ処理は図5(1)〜(5)に示される過程により行われる。
(1)照射タイミングを映像の1コマごとに切り換える放射線照射制御装置14によって2方向からの放射線により、モデル材料に埋め込まれた複数の標点24の視差映像が1つの映像として得られ、その映像をビデオキャプチャーにより記録し、演算処理装置36に保存する。
(2)視差を形成する2方向からの放射線による視差映像を1コマごとに方向別に切り分け、時系列の静止画として保存する。
(3)時系列の静止画中の全ての標点24の2次元座標を演算する。なお、この処理は画像処理ソフトウエアの重心座標探索機能を代用してもよい。
(4)視差を形成する時系列の静止画像における標点24の2次元座標から3次元座標を演算する。
(5)表示装置上に標点24の3次元データとモデル型の3次元形状データを重ね合わせて時系列で表示する。
なお、(5)から後の処理は、図1(6)となる。
Data processing in the three-dimensional experimental simulation method for plastic working according to the present invention is performed according to the processes shown in FIGS.
(1) A parallax image of a plurality of target points 24 embedded in a model material is obtained as one image by radiation from two directions by the radiation irradiation control device 14 that switches the irradiation timing for each frame of the image. Is recorded by video capture and stored in the arithmetic processing unit 36.
(2) A parallax image due to radiation from two directions forming a parallax is segmented for each frame and stored as a time-series still image.
(3) The two-dimensional coordinates of all the reference points 24 in the time-series still image are calculated. Note that this processing may substitute for the barycentric coordinate search function of the image processing software.
(4) The three-dimensional coordinates are calculated from the two-dimensional coordinates of the mark 24 in the time-series still image forming the parallax.
(5) The three-dimensional data of the target 24 and the model-type three-dimensional shape data are superimposed on the display device and displayed in time series.
The processing after (5) is as shown in FIG. 1 (6).

本発明による塑性加工の3次元実験シミュレーション方法における標点24の3次元座標の演算処理手順を図6にて説明する。この演算では標点24の撮像27a、27bのほか、既知である放射線発生器11a、11b及び放射線用TVカメラ33の撮像面38の位置情報を用いる。   The calculation processing procedure of the three-dimensional coordinates of the reference point 24 in the plastic processing three-dimensional experiment simulation method according to the present invention will be described with reference to FIG. In this calculation, in addition to the imaging 27 a and 27 b of the target point 24, the known position information of the radiation generators 11 a and 11 b and the imaging surface 38 of the radiation TV camera 33 is used.

図6において、f1は放射線発生器11aの焦点座標、f2は放射線発生器11bの焦点座標、aは求める標点24の座標、a1は放射線発生器11aから照射された放射線により撮像された標点24の放射線用TVカメラ33の撮像面38における透過画像の座標、a2は放射線発生器11bから照射された放射線により撮像された標点24の放射線用TVカメラ33の撮像面38における透過画像の座標、Oは原点(0、0、0)を示している。   In FIG. 6, f1 is the focal point coordinate of the radiation generator 11a, f2 is the focal point coordinate of the radiation generator 11b, a is the coordinate of the target point 24 to be obtained, and a1 is the target point imaged by the radiation emitted from the radiation generator 11a. The coordinates of the transmission image on the imaging surface 38 of the radiation TV camera 33 of 24, a2 is the coordinates of the transmission image on the imaging surface 38 of the radiation TV camera 33 of the target 24 imaged by the radiation irradiated from the radiation generator 11b. , O indicates the origin (0, 0, 0).

ここで、焦点座標f1、f2は、焦点間距離をL、放射線発生器11aと放射線用TVカメラ33の撮像面38間の距離をFとすると、f1(−L/2、0、F)とf2(L/2、0、F)として表される。また、a1(X1、Y1、0)、a2(X2、Y2、0)とし、求める座標aをa(X、Y、Z)とする。   Here, the focal coordinates f1 and f2 are f1 (−L / 2, 0, F), where L is the distance between the focal points, and F is the distance between the radiation generator 11a and the imaging surface 38 of the radiation TV camera 33. It is expressed as f2 (L / 2, 0, F). Further, a1 (X1, Y1, 0) and a2 (X2, Y2, 0) are set, and a desired coordinate a is set to a (X, Y, Z).

以上の座標において、f1及びa1を通る直線は、次の式で表される。
また、f2及びa2を通る直線は、次の式で表される。
(1)、(2)に基本座標を代入すると、次の関係が成り立つ。
(3)、(4)の関係からX座標について整理すると、次の関係が成り立つ。
以上の関係から求める座標aは、次のようになる。
In the above coordinates, a straight line passing through f1 and a1 is expressed by the following equation.
A straight line passing through f2 and a2 is expressed by the following equation.
Substituting basic coordinates into (1) and (2) establishes the following relationship.
If the X coordinate is arranged from the relationship of (3) and (4), the following relationship is established.
The coordinates a obtained from the above relationship are as follows.

本発明による塑性加工の3次元実験シミュレーション方法の実施例として、ヘリカルギヤの鍛造加工現象を可視化した結果について説明する。加工対象は、図7に示したヘリカルギヤ60で、円柱部61と3次元的に変形するギヤ部61aを有する。   As an example of the three-dimensional experimental simulation method for plastic working according to the present invention, the result of visualizing the forging phenomenon of the helical gear will be described. The processing target is the helical gear 60 shown in FIG. 7, and has a cylindrical portion 61 and a gear portion 61 a that deforms three-dimensionally.

シミュレーション実験は、モデル材料として金属材料の変形特性(応力−ひずみ曲線の傾き、すなわちN値)を再現(N値を同一とする)できる市販のFilia(ワックス)を用いた。なお、その他のモデル材料であるプラスチシン(油粘土)やカラークレイ(油粘土)を用いてもよい。図8に加工前のFilia(ワックス)製素材を示す。素材の製作は、次の(1)〜(6)の手順で行った。
(1)溶融したFilia(ワックス)をよく混練し、素材の形状に応じて作製された金属製の円筒型枠の中空部へFilia(ワックス)を流し込む。
(2)円筒型枠に振動を与え、Filia(ワックス)内の気泡を除去する。
(3)Filia(ワックス)を−20℃の環境下で1時間程度保持し、Filia(ワックス)が収縮したところで円柱状になったFilia(ワックス)を円筒型枠から取り出す。
(4)円柱状Filia(ワックス)を中心軸を通る面で半分割し、2つの半円柱素材71、71aとする。
(5)半分割した半円柱素材71の分割面に4mmの等間隔に直径1mmの超硬合金製の球形の標点24を複数配置する。なお、標点24の配置は、溶融時にFilia(ワックス)と標点を同時に混練し、モデル材料内部に任意に埋め込んでもよい。
(6)半円柱素材71、71aの分割面を合わせてヘリカルギヤの加工前素材70とする。
In the simulation experiment, a commercially available Filia (wax) capable of reproducing the deformation characteristics (slope of the stress-strain curve, that is, the N value) of the metal material (with the same N value) was used as the model material. Other model materials such as plasticine (oil clay) and color clay (oil clay) may be used. FIG. 8 shows a Filia (wax) material before processing. The material was manufactured according to the following procedures (1) to (6).
(1) The melted Filia (wax) is well kneaded, and the Filia (wax) is poured into the hollow portion of a metal cylindrical frame made according to the shape of the material.
(2) Apply vibration to the cylindrical form to remove bubbles in Fila (wax).
(3) Hold Fila (wax) in an environment of −20 ° C. for about 1 hour, and when Fila (wax) contracts, remove Fila (wax) that has become columnar from the cylindrical form.
(4) Cylindrical Fila (wax) is divided in half by a plane passing through the central axis to form two semi-cylindrical materials 71 and 71a.
(5) A plurality of spherical marks 24 made of cemented carbide with a diameter of 1 mm are arranged at equal intervals of 4 mm on the divided surface of the half-divided half-cylinder material 71. In addition, the arrangement | positioning of the mark 24 may mix | blend Filia (wax) and a mark simultaneously at the time of a fusion | melting, and may be arbitrarily embedded in a model material.
(6) The split surfaces of the semi-cylindrical materials 71 and 71a are combined to form a helical gear pre-processing material 70.

シミュレーション実験に使用したモデル型を図9に示す。モデル型の製作は、2液のエポキシ樹脂を型枠へ注型し、硬化させた後、型枠から取り出し、所定寸法に削り出した。樹脂製のヘリカルギヤ成形用モデル型84を樹脂製のケース83に挿入し、樹脂製の受圧板85をヘリカルギヤ成形用モデル型84の下方に置いた。   The model type used for the simulation experiment is shown in FIG. In manufacturing the model mold, two-component epoxy resin was poured into a mold and cured, then taken out from the mold and cut into a predetermined dimension. The resin-made helical gear molding model die 84 was inserted into the resin case 83, and the resin pressure receiving plate 85 was placed below the helical gear molding model die 84.

加工前素材70をヘリカルギヤ成形用モデル型84に装填して、最大荷重が9.8kNの加圧装置のラム81に設置したパンチ82により加工した。加工は加工開始から加工終了まで連続的に加圧速度1mm/sの条件で実施した。なお、潤滑剤としてワセリンをヘリカルギヤ成形用モデル型84に薄く一様に塗布した。また、変形中は、軟X線を線源とする放射線発生器11a、11bにて90kV、80μAで放射線を照射し、標点24の透過映像を撮像したデータより標点24の3次元座標を演算した。   The material 70 before processing was loaded into a helical gear molding model die 84 and processed by a punch 82 installed on a ram 81 of a pressurizing device having a maximum load of 9.8 kN. Processing was carried out continuously under the condition of a pressing speed of 1 mm / s from the start of processing to the end of processing. Vaseline as a lubricant was thinly and uniformly applied to the helical gear molding model 84. During deformation, the radiation generators 11a and 11b using soft X-rays as the radiation source emit radiation at 90 kV and 80 μA, and the three-dimensional coordinates of the target point 24 are obtained from data obtained by capturing a transmission image of the target point 24. Calculated.

シミュレーション実験で得た放射線透過画像例を図10に示す。なお、図の標点24に相当する白点は、視認性を容易にするために画像処理したものである。図10からヘリカルギヤ部61aの成形の進行に伴って標点24が広がることが確認できる。   An example of a radiation transmission image obtained in a simulation experiment is shown in FIG. In addition, the white point corresponding to the mark 24 in the figure is an image processed for easy visibility. From FIG. 10, it can be confirmed that the mark 24 spreads as the helical gear portion 61a is formed.

シミュレーション実験で得た放射線透過画像を基に標点24の3次元座標を演算し、表示装置に表示した結果を図11に示す。図11から材料内部の3次元的な様子が明確に確認できる。   FIG. 11 shows the result of calculating the three-dimensional coordinates of the mark 24 based on the radiation transmission image obtained in the simulation experiment and displaying it on the display device. From FIG. 11, the three-dimensional state inside the material can be clearly confirmed.

上述の発明は、鍛造加工、押出し加工等の塑性加工において、3次元的に変形する複雑形状部品の加工プロセス設計または金型設計または加工欠陥対策等の基礎データを得て、評価・検討するために利用可能である。   The above-mentioned invention is for obtaining, evaluating and examining basic data such as machining process design or mold design or countermeasures for machining defects of complex-shaped parts deformed three-dimensionally in plastic working such as forging and extrusion. Is available.

塑性加工の3次元実験シミュレーション方法の機能説明図Functional explanatory diagram of 3D experiment simulation method of plastic working 塑性加工の3次元実験シミュレーション装置の上面図Top view of 3D experimental simulation equipment for plastic working 塑性加工の3次元実験シミュレーション装置の加圧機構部の側面図Side view of the pressurization mechanism of a three-dimensional experimental simulation device for plastic working 放射線により透過撮影された標点の映像構成図Video composition diagram of a gyroscope taken through radiation 塑性加工の3次元実験シミュレーション方法におけるデータ処理フロー図Data processing flow diagram in 3D experimental simulation method of plastic working 標点の3次元座標演算のための説明図Explanatory drawing for 3D coordinate calculation of gage 実施例で用いたヘリカルギヤHelical gear used in the example 実施例で用いた加工前のワックス製素材Wax material before processing used in the examples 実施例で用いたモデル型Model type used in the examples 実施例で撮像した標点の放射線透過画像Radiation transmission image of the target imaged in the example 実施例で演算した標点の3次元データの表示装置への表示結果Display results of the three-dimensional data of the target points calculated in the embodiment on the display device

符号の説明Explanation of symbols

10 放射線機構部
11a 放射線発生器(L)
11b 放射線発生器(R)
12a 放射線発生器設置台(L)
12b 放射線発生器設置台(R)
13 放射線発生器設置台用レール
14 放射線照射制御装置
15 放射線発生器位置制御装置
20 加圧機構部
21 素材
22 モデル型
23 加圧装置
24 標点
25 モデル型設置台
26 モデル型設置台用レール
27a 標点の撮像(L)
27b 標点の撮像(R)
28 モデル型設置台位置制御装置
29 パンチ
30 データ処理機構部
31 イメージインテンシファイア
32 光学系
33 放射線用TVカメラ
34 ビデオキャプチャー
35 各種プログラム
36 演算処理装置
37 表示装置
38 放射線用TVカメラの撮像面
40 塑性加工の3次元実験シミュレーション装置
50a 放射線発生器10aによる標点の視差映像の1コマ目
50b 放射線発生器10bによる標点の視差映像の1コマ目
51a 放射線発生器10aによる標点の視差映像の2コマ目
51b 放射線発生器10bによる標点の視差映像の2コマ目
52a 放射線発生器10aによる標点の視差映像の3コマ目
52b 放射線発生器10bによる標点の視差映像の3コマ目
60 ヘリカルギヤ
61 ヘリカルギヤの円柱部
61a ヘリカルギヤのギヤ部
70 加工前素材
71 標点を配置した半円柱素材
71a 半円柱素材
80 シミュレーション実験で使用したモデル型
81 プレスのラム
82 パンチ
83 ケース
84 ヘリカルギヤ成形用モデル型
85 受圧板
10 Radiation mechanism part 11a Radiation generator (L)
11b Radiation generator (R)
12a Radiation generator installation stand (L)
12b Radiation generator installation stand (R)
DESCRIPTION OF SYMBOLS 13 Radiation generator installation table rail 14 Radiation irradiation control device 15 Radiation generator position control device 20 Pressurization mechanism part 21 Material 22 Model type 23 Pressurization device 24 Marking point 25 Model type installation table 26 Model type installation table rail 27a Imaging the gauge (L)
27b Image of the target (R)
28 Model Type Installation Table Position Control Device 29 Punch 30 Data Processing Mechanism Unit 31 Image Intensifier 32 Optical System 33 Radiation TV Camera 34 Video Capture 35 Various Programs 36 Arithmetic Processing Device 37 Display Device 38 Imaging Surface of Radiation TV Camera 40 3D experiment simulation apparatus for plastic working 50a First frame of parallax image of the target point by the radiation generator 10a 50b First frame of parallax image of the target point by the radiation generator 10b 51a The parallax image of the target point by the radiation generator 10a Second frame 51b Second frame of the parallax image of the mark by the radiation generator 10b 52a Third frame of the parallax image of the mark by the radiation generator 10a 52b Third frame of the parallax image of the mark by the radiation generator 10b 60 Helical gear 61 Cylindrical part of helical gear 61a Helicopter Semicylindrical material 71a semicylincrical material 80 simulation modeling used in the experiments of arranging the gear portion 70 before processing material 71 gauge marks Rugiya 81 press ram 82 punch 83 Case 84 helical molding modeling 85 pressure receiving plate

Claims (8)

モデル型を使用し、かつ金属材料の変形特性と類似したモデル材料を使用して、所定形状のモデル材料の内部に標点を埋め込む工程と、前記モデル型に装填した前記モデル材料を連続的に塑性加工し、同時に前記塑性加工に伴う前記標点の動きを、視差を形成する2方向からの放射線により、放射線照射のタイミングを映像の1コマごとに切り換えて1つの映像として撮像する工程と、前記映像を記録する工程と、記録された映像を視差を形成する2方向ごとの静止画に分別する工程と、前記視差を形成する2方向ごとに分別された静止画を用いて加工開始から加工終了までの任意の塑性加工段階で標点の2次元座標を演算する工程と、前記視差を形成する2方向ごとに分別された標点の2次元座標を用いて加工開始から加工終了までの任意の塑性加工段階で標点の3次元座標を演算する工程と、加工開始から加工終了までの任意の塑性加工段階において前記3次元座標での標点データとモデル型の形状データとを重ね合わせて表示する工程と、前記標点データとモデル型の形状データとを重ね合わせて表示した結果に基づいて加工の良否を判定する工程とを有することを特徴とする塑性加工の3次元実験シミュレーション方法。   Using a model mold and using a model material similar to the deformation characteristics of a metal material, embedding a gauge point inside the model material of a predetermined shape, and continuously loading the model material loaded in the model mold A step of performing plastic processing, and simultaneously imaging the movement of the mark accompanying the plastic processing as a single image by switching the timing of radiation irradiation for each frame of the image by radiation from two directions forming a parallax; The process of recording the video, the process of separating the recorded video into still images for each of two directions forming a parallax, and processing from the start of processing using the still images sorted for each of the two directions forming the parallax Arbitrary processing from the start of processing to the end of processing using the two-dimensional coordinates of the target point, which is divided for each of the two directions forming the parallax, and the step of calculating the two-dimensional coordinates of the target point at any plastic processing stage until the end The process of calculating the 3D coordinates of the mark at the plastic working stage, and the mark data at the 3D coordinates and the model shape data are superimposed and displayed at any plastic working stage from the start of machining to the end of machining. A three-dimensional experimental simulation method for plastic working, comprising: a step of determining the quality of processing based on a result of superimposing and displaying the gage data and model shape data. 放射線の波長が1pmから10nmであることを特徴とする請求項1に記載の塑性加工の3次元実験シミュレーション方法。   The three-dimensional experimental simulation method for plastic working according to claim 1, wherein the wavelength of the radiation is from 1 pm to 10 nm. 標点がモデル材料及びモデル型より密度が高い物質からなることを特徴とする請求項1に記載の塑性加工の3次元実験シミュレーション方法。   The three-dimensional experimental simulation method for plastic working according to claim 1, wherein the reference point is made of a model material and a substance having a higher density than the model mold. 標点とモデル材料及び標点とモデル型の密度差が12グラム毎立方センチメートル以上であることを特徴とする請求項1に記載の塑性加工の3次元実験シミュレーション方法。   2. The three-dimensional experimental simulation method for plastic working according to claim 1, wherein the density difference between the gauge point and the model material and between the gauge point and the model mold is 12 grams per cubic centimeter or more. モデル材料及びモデル型が、実際の金型及び被加工材料の形状と実質的に同一または相似の形状を有してなることを特徴とする請求項1に記載の塑性加工の3次元実験シミュレーション方法。   2. The three-dimensional experimental simulation method for plastic working according to claim 1, wherein the model material and the model mold have substantially the same or similar shapes as the shapes of the actual mold and the workpiece material. . 複数の標点が埋め込まれたモデル材料と、前記モデル材料を塑性加工するためのモデル型と、前記モデル材料を塑性加工する加圧装置と、前記加圧装置が一体となったモデル型設置台と、前記モデル型設置台が移動するためのモデル型設置台用レールと、前記モデル型設置台を移動させるためのモデル型設置台位置制御装置と、塑性加工に伴う標点の動きを視差を形成して撮像するための2台の放射線発生器と、前記2台の放射線発生器の照射タイミングを映像の1コマごとに切り替える放射線照射制御装置と、前記放射線発生器を設置するための放射線発生器設置台と、前記放射線発生器設置台が移動するための放射線発生器設置台用レールと、前記放射線発生器設置台を移動させるための放射線発生器設置台位置制御装置と、標点の放射線透過像を光学像に変換するイメージインテンシファイアと、前記イメージインテンシファイアにより得られた光学像を所定の大きさの光学映像に変換する光学系と、前記光学系により変換された所定の大きさの光学映像をアナログ映像信号に変換する1台の放射線用TVカメラと、前記アナログ映像信号を記録するためのビデオキャプチャーと、前記モデル型設置台及び前記放射線発生器設置台の位置を制御するプログラムと、前記撮像された視差を形成する2方向からの放射線による映像を1コマごとに方向ごとの時系列画像として切り分け静止画像として保存するプログラムと、前記視差を形成する方向ごとの時系列画像を用いて任意の塑性加工段階における標点の2次元座標を演算処理するプログラムと、前記任意の塑性加工段階における標点の2次元座標から3次元座標を演算処理するプログラムと、前記プログラム等が収納された演算処理装置と、前記演算処理結果とモデル型の形状データを重ね合わせて表示する表示装置とからなることを特徴とする塑性加工の3次元実験シミュレーション装置。   A model material in which a plurality of marks are embedded, a model mold for plastic processing of the model material, a pressure device for plastic processing of the model material, and a model mold installation base in which the pressure device is integrated A model type installation table rail for moving the model type installation table, a model type installation table position control device for moving the model type installation table, Two radiation generators for forming and imaging, a radiation irradiation control device for switching the irradiation timing of the two radiation generators for each frame of an image, and radiation generation for installing the radiation generator A radiation generator installation table, a radiation generator installation table rail for moving the radiation generator installation table, a radiation generator installation table position control device for moving the radiation generator installation table, An image intensifier for converting a transmission image into an optical image, an optical system for converting an optical image obtained by the image intensifier into an optical image of a predetermined size, and a predetermined size converted by the optical system One radio TV camera for converting the optical image into an analog video signal, a video capture for recording the analog video signal, and the positions of the model type installation table and the radiation generator installation table are controlled. A program, a program for cutting and storing a captured image of radiation from two directions forming a parallax as a time-series image for each direction as a still image, and a time-series image for each direction forming the parallax And a program for computing the two-dimensional coordinates of the mark at an arbitrary plastic working stage, and at the arbitrary plastic working stage A program for calculating the three-dimensional coordinates from the two-dimensional coordinates of the reference point, an arithmetic processing device storing the program, and a display device for displaying the arithmetic processing result and model-type shape data in a superimposed manner A three-dimensional experimental simulation apparatus for plastic working, characterized in that モデル型設置台は、放射線用TVカメラを真上から見て、放射線用TVカメラの撮像面に対して垂直方向に移動することを特徴とする請求項6に記載の塑性加工の3次元実験シミュレーション装置。   The three-dimensional experimental simulation of plastic working according to claim 6, wherein the model-type installation base moves in a direction perpendicular to the imaging surface of the radiation TV camera when the radiation TV camera is viewed from directly above. apparatus. 2台の放射線発生器設置台は、放射線用TVカメラを真上から見て、放射線発生器の視差形成を維持しながら放射線用TVカメラの撮像面と平行に横方向へ独立して同方向あるいは逆方向に移動することを特徴とする請求項6に記載の塑性加工の3次元実験シミュレーション装置。   The two radiation generator installation stands can be viewed in the same direction independently in the horizontal direction in parallel with the imaging surface of the radiation TV camera while maintaining the parallax formation of the radiation generator when viewed from directly above the radiation TV camera. The three-dimensional experiment simulation apparatus for plastic working according to claim 6, wherein the apparatus moves in the reverse direction.
JP2007059621A 2007-03-09 2007-03-09 3D experiment simulation method and apparatus for plastic working Active JP4771338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059621A JP4771338B2 (en) 2007-03-09 2007-03-09 3D experiment simulation method and apparatus for plastic working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059621A JP4771338B2 (en) 2007-03-09 2007-03-09 3D experiment simulation method and apparatus for plastic working

Publications (2)

Publication Number Publication Date
JP2008221246A true JP2008221246A (en) 2008-09-25
JP4771338B2 JP4771338B2 (en) 2011-09-14

Family

ID=39840444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059621A Active JP4771338B2 (en) 2007-03-09 2007-03-09 3D experiment simulation method and apparatus for plastic working

Country Status (1)

Country Link
JP (1) JP4771338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373666B1 (en) 2012-06-13 2014-03-13 경상대학교산학협력단 A method of Automatic generation of process information for metal forming simulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909725B2 (en) * 2013-01-23 2016-04-27 鹿児島県 Method for specifying 3D dead zone shape in extrusion process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759763A (en) * 1993-08-25 1995-03-07 Hitachi Gazo Joho Syst:Kk Three-dimensional object measuring system
JP2005326178A (en) * 2004-05-12 2005-11-24 Kobe Steel Ltd Shape measuring device for hot-rolled cylindrical work and hot forging method of cylindrical body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759763A (en) * 1993-08-25 1995-03-07 Hitachi Gazo Joho Syst:Kk Three-dimensional object measuring system
JP2005326178A (en) * 2004-05-12 2005-11-24 Kobe Steel Ltd Shape measuring device for hot-rolled cylindrical work and hot forging method of cylindrical body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373666B1 (en) 2012-06-13 2014-03-13 경상대학교산학협력단 A method of Automatic generation of process information for metal forming simulation

Also Published As

Publication number Publication date
JP4771338B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
EP3026632A2 (en) Improvements in or relating to digital image correlation systems
US20160303646A1 (en) Sand casting mold production system and sand casting mold production method for producing sand casting mold
JP2019055584A (en) System and method for advanced additive manufacturing
JP2016175404A (en) Lamination shaping method using lamination shaping device
CN106903425B (en) Method for handling workpiece
JP2017119284A (en) Deformation processing support system and deformation processing support method
CA2583780C (en) Virtual programming of formed component trajectories
JP4771338B2 (en) 3D experiment simulation method and apparatus for plastic working
TW201609302A (en) Method and device for generating robot control program
JP5909725B2 (en) Method for specifying 3D dead zone shape in extrusion process
WO2018186213A1 (en) Deformation processing support system and deformation processing support method
US20020090130A1 (en) Apparatus and method for correlating part design geometry, manufacturing tool geometry, and manufactured part geometry
JP2008224293A (en) Three-dimensional visualization method and device for material internal deformation by rotational parallax
JP2008221249A (en) Method and apparatus for three-dimensionally visualizing deformation of inner part of material with parallel translation parallax
US11127204B2 (en) Boundary characteristic-based part processing in support of additive manufacturing
Felling et al. A New Video Extensometer System for Testing Materials Undergoing Severe Plastic Deformation
JP2006320996A (en) Method of manufacturing second die
WO2019171559A1 (en) Powder material evaluation device, powder material evaluation method, and powder material evaluation program
KR101358282B1 (en) A contactlessly diagnosing device for analyzing formed shapes and cracks of sheet metal for test and a software for it
JP2010176573A (en) Mold design device and method therefor
Hecht et al. Triangulation based digitizing of tooling and sheet metal part surfaces-Measuring technique, analysis of deviation to CAD and remarks on use of 3D-coordinate fields for the finite element analysis
JP2011145876A (en) Die production method and creation method for die machining data
Zhang et al. Test of Inclined Double Beads on Aluminum Sheets
JP2004272782A (en) Method and system for generating shape data
Ćirić et al. Mechanical Design of the Bicycle Inner Tube Assembly Tool Based on the Reverse Engineering Methodology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250