JP2008221120A - Electrolytic operation method of plural electrolytic cell type electrolytic water generator - Google Patents

Electrolytic operation method of plural electrolytic cell type electrolytic water generator Download PDF

Info

Publication number
JP2008221120A
JP2008221120A JP2007062325A JP2007062325A JP2008221120A JP 2008221120 A JP2008221120 A JP 2008221120A JP 2007062325 A JP2007062325 A JP 2007062325A JP 2007062325 A JP2007062325 A JP 2007062325A JP 2008221120 A JP2008221120 A JP 2008221120A
Authority
JP
Japan
Prior art keywords
electrolytic
water
electrolysis
electrolytic cell
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062325A
Other languages
Japanese (ja)
Inventor
Masahiko Katayose
政彦 片寄
Masahiro Fujita
昌浩 藤田
Yosuke Saito
洋介 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2007062325A priority Critical patent/JP2008221120A/en
Publication of JP2008221120A publication Critical patent/JP2008221120A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce electrolytic water having properties different from those of electrolytic water generated in normal electrolytic operation at an amount equal to or almost equal to that of the electrolytic water generated in the normal electrolytic operation by using a plural electrolytic cell type electrolytic water generator and carrying out electrolytic operation in an electrolytic condition different from that of the normal electrolytic operation. <P>SOLUTION: Water to be electrolyzed is supplied to a first electrolytic cell 30a and a second electrolytic cell 30b in the same condition. Electrolysis is carried out in a state where voltage is applied to either one of the first electrolytic cell 30a and the second electrolytic cell 30b and voltage application is stopped to the other electrolytic cell, and electrolytic water flowing out from the one electrolytic cell and water to be electrolyzed flowing out from the other electrolytic cell are joined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、第1の電解槽と第2の電解槽を並列して備える複数電解槽方式の電解水生成装置の電解運転方法に関する。   The present invention relates to an electrolysis operation method for an electrolyzed water generating apparatus of a multiple electrolyzer system that includes a first electrolyzer and a second electrolyzer in parallel.

電解水生成装置の一形式として、第1の電解槽と第2の電解槽を並列して備える複数電解槽方式の電解水生成装置がある。当該形式の電解水生成装置は、前記両電解槽を同一の電解条件で同期的に電解運転して、1台の電解槽の電解運転に比較して、電解生成水の生成量を2倍以上に増量すべく意図しているものである(特許文献1を参照)。
特開平8−267070号公報
As one type of electrolyzed water generating device, there is a multi-electrolyzer type electrolyzed water generating device that includes a first electrolytic cell and a second electrolytic cell in parallel. The electrolyzed water generating apparatus of this type is such that both the electrolyzers are electrolyzed synchronously under the same electrolysis conditions, and the amount of electrolyzed water produced is more than doubled compared with electrolysis of one electrolyzer. (See Patent Document 1).
Japanese Patent Laid-Open No. 8-267070

ところで、電解水生成装置の電解運転では、生成される電解生成水のpHや、有効成分の含有量の異なる特性の電解生成水を生成することを要請される場合がある。かかる要請に対応するためには、一般には、現在設定されている電解条件、たとえば電解電流値、被電解水の供給流量、電解生成水の生成流量等を、要請される特性の電解生成水が生成されるように変更する手段が採られる。しかしながら、要請される特性の電解生成水が生成されるように、上記した電解条件を設定することは簡単ではなく、また、手間がかかる作業である。   By the way, in the electrolysis operation of the electrolyzed water generating apparatus, it may be required to generate electrolyzed water having different characteristics in the pH of the generated electrolyzed water and the content of the active ingredient. In order to meet such demands, generally, the electrolysis water having the required characteristics is set so that the electrolysis conditions currently set, for example, the electrolysis current value, the supply flow rate of electrolyzed water, the production flow rate of electrolysis water, etc. Means are taken to change it to be generated. However, it is not easy and time-consuming to set the above electrolysis conditions so that electrolyzed water having the required characteristics is generated.

本発明は、複数電解槽方式の電解水生成装置に着目してなされたもので、その目的は、通常の電解運転での電解条件を変更することなく、かつ、複数電解槽方式の電解水生成装置が意図している電解生成水の生成量を大幅に変更することなく、異なる特性の電解生成水を生成することにある。   The present invention was made by paying attention to an electrolyzed water generating device of a multiple electrolyzer system, and its purpose is to generate electrolyzed water of a multiple electrolyzer system without changing electrolysis conditions in a normal electrolysis operation. The object is to generate electrolytically generated water having different characteristics without significantly changing the amount of electrolytically generated water intended by the apparatus.

本発明は、第1の電解槽と第2の電解槽を並列して備える複数電解槽方式の電解水生成装置の電解運転方法であり、当該電解運転方法は、前記第1の電解槽および前記第2の電解槽に被電解水を同一条件で供給するとともに、前記第1の電解槽および前記第2の電解槽のいずれか一方の電解槽には電圧を印加し、いずれか他方の電解槽には電圧の印加を停止した状態で電解し、前記一方の電解槽から流出する電解生成水と、前記他方の電解槽から流出する被電解水を合流させることを特徴とするものである。   The present invention is an electrolysis operation method of an electrolyzed water generating apparatus of a multiple electrolyzer system that includes a first electrolyzer and a second electrolyzer in parallel, and the electrolysis operation method includes the first electrolyzer and the electrolysis water While supplying electrolyzed water to a 2nd electrolytic cell on the same conditions, a voltage is applied to either one of the said 1st electrolytic cell and the said 2nd electrolytic cell, and the other electrolytic cell The electrolysis is performed in a state where the application of voltage is stopped, and the electrolyzed water flowing out from the one electrolytic cell and the electrolyzed water flowing out from the other electrolytic cell are combined.

本発明に係る電解運転方法において、各電解槽が有隔膜電解槽である場合や、各電解槽が有隔膜電解槽であって、各電解槽に対する電圧の印加については正負の特性を定期的に切替えて電解される場合には、前記一方の電解槽から流出する電解生成水と前記他方の電解槽から流出する被電解水との合流を、前記各電解槽が有する電解生成酸性水の専用の流出管路から流出するもの同士、および、前記各電解槽が有する電解生成アルカリ性水の専用の流出管路から流出するもの同士で行うようにすることができる。   In the electrolytic operation method according to the present invention, when each electrolytic cell is a diaphragm electrolytic cell, or when each electrolytic cell is a diaphragm electrolytic cell, positive and negative characteristics are periodically applied to the voltage applied to each electrolytic cell. When electrolysis is performed by switching, the electrolysis water that flows out from the one electrolytic bath and the electrolyzed water that flows out from the other electrolytic bath are combined with the electrolysis acidic water dedicated to each electrolytic bath. It can be carried out between those that flow out from the outflow conduits and those that flow out from the dedicated outflow conduits for the electrolyzed alkaline water of each of the electrolytic cells.

この場合、各電解槽が有する電解生成酸性水専用の流出管路同士をさらに電解生成酸性水専用の流出管路に接続する必要があり、また、各電解槽が有する電解生成アルカリ性水専用の流出管路同士をさらに電解生成アルカリ性水専用の流出管路に接続する必要があるが、これらの接続には、略Y字状の二股接続管を使用して行うことが好ましい。   In this case, it is necessary to connect the outflow pipelines dedicated to the electrolytically generated acidic water in each electrolytic cell to the outflow conduit dedicated to the electrolytically generated acidic water, and the outflow dedicated to the electrolytically generated alkaline water in each electrolytic cell. It is necessary to further connect the pipes to an outflow pipe dedicated for electrolytically generated alkaline water, and it is preferable to make these connections using a substantially Y-shaped bifurcated pipe.

本発明に係る電解運転方法は、通常、両方の電解槽を同一の電解条件で電解運転する複数電解槽方式の電解水生成装置を、特性を異にする電解生成水の生成の要請に応じて行う電解運転方法である。本発明に係る電解運転方法においては、両方の電解槽を互いに異なる電解条件で電解運転するもので、特に、いずれか一方の電解槽については、通常の電解条件を採り、いずれか他方の電解槽については、当該電解槽に対する電圧の印加を停止した状態で電解運転するもである。   In the electrolytic operation method according to the present invention, the electrolyzed water generating device of the multiple electrolyzer system that performs electrolysis operation of both electrolytic cells under the same electrolysis conditions is usually performed in response to a request for the generation of electrolyzed water having different characteristics. This is an electrolytic operation method to be performed. In the electrolytic operation method according to the present invention, both electrolytic cells are electrolytically operated under different electrolytic conditions. In particular, for either one of the electrolytic cells, the normal electrolytic condition is adopted, and either one of the electrolytic cells is operated. As for, the electrolytic operation is performed in a state where the application of the voltage to the electrolytic cell is stopped.

従って、本発明に係る電解運転を採用すれば、前記他方の電解槽に対する電圧の印加を停止するという簡単な操作によって、通常の電解運転で生成される電解生成水の生成量と同量で、かつ、通常の電解運転で生成される電解生成水が有する有効成分の濃度が約半分で、通常の電解運転で生成される電解生成水とは異なる特性の電解生成水を生成することができる。この場合、前記一方の電解槽から流出する電解生成水に対する前記他方の電解槽から流出する被電解水の合流流量を適宜に調整すれば、電解生成水の生成量を、通常の電解運転で生成される電解生成水の生成量に比較して大幅に減量することなく、適宜の特性の電解生成水を生成することができる。   Therefore, if the electrolysis operation according to the present invention is adopted, by the simple operation of stopping the application of voltage to the other electrolytic cell, the same amount as the amount of electrolyzed water produced in the normal electrolysis operation, In addition, the concentration of the active ingredient contained in the electrolyzed water generated in the normal electrolysis operation is about half, and electrolyzed water having characteristics different from those of the electrolyzed water generated in the normal electrolysis operation can be generated. In this case, if the combined flow rate of the electrolyzed water flowing out from the other electrolytic cell with respect to the electrolytically generated water flowing out from the one electrolytic cell is appropriately adjusted, the amount of electrolytic water generated can be generated in a normal electrolysis operation. Electrolytically produced water with appropriate characteristics can be produced without significantly reducing the amount of electrolytically produced water produced.

本発明に係る電解運転は、特に、各電解槽が有隔膜電解槽である電解水生成装置、各電解槽が有隔膜電解槽であって、電解槽の各電解室に対する印加電圧を定期的に正負切替えて電解される電解水生成装置に対して、本発明に係る電解運転条件を採ることにより、効果的に実施することができる。   The electrolysis operation according to the present invention particularly includes an electrolyzed water generating device in which each electrolyzer is a diaphragm electrolyzer, each electrolyzer is a diaphragm electrolyzer, and periodically applies an applied voltage to each electrolyzer in the electrolyzer. It can implement effectively by taking the electrolysis operation condition which concerns on this invention with respect to the electrolyzed water generating apparatus electrolyzed by switching positive / negative.

本発明は、第1の電解槽と第2の電解槽を並列して備える複数電解槽方式の電解水生成装置の電解運転方法である。図1および図2には、本発明に係る電解運転方法を実施するための2槽電解槽方式の電解水生成装置を示している。また、図3には、当該電解水生成装置が有する2台の有隔膜電解槽、各有隔膜電解槽に接続する被電解水の供給管路、および、各有隔膜電解槽に接続する電解水生成水の流出管路を総合して模式的に示している。   The present invention is an electrolysis operation method of an electrolyzed water generating apparatus of a multiple electrolyzer system that includes a first electrolyzer and a second electrolyzer in parallel. FIG. 1 and FIG. 2 show an electrolyzed water generating apparatus of a two-tank electrolytic cell system for carrying out the electrolytic operation method according to the present invention. Moreover, in FIG. 3, the two diaphragm membrane electrolyzers which the said electrolyzed water production | generation apparatus has, the supply line of the to-be-electrolyzed water connected to each diaphragm membrane electrolyzer, and the electrolyzed water connected to each diaphragm membrane electrolyzer The outflow pipeline of product water is shown schematically.

当該電解水生成装置は、塩水調製タンク10、塩水調製タンク10の前面側を覆蓋するフロントカバー20、2台の有隔膜電解槽30a,30b、当該電解水生成装置の電解運転を制御する制御装置40、および、原水を軟水化処理する図示しない軟水器を備え、これらの構成部品は一体となって、外箱50を構成する外箱本体51内に収納されていて、外箱本体51の正面開口部は、その側縁部に取付られている開閉扉52にて開閉可能となっている。   The electrolyzed water generator includes a salt water preparation tank 10, a front cover 20 that covers the front side of the salt water preparation tank 10, two diaphragm membrane electrolyzers 30a and 30b, and a control device that controls the electrolysis operation of the electrolyzed water generator. 40 and a water softener (not shown) for softening the raw water, these components are integrated and housed in an outer box body 51 constituting the outer box 50, and the front of the outer box body 51 The opening can be opened and closed by an opening / closing door 52 attached to the side edge.

外箱50は、外箱本体51と、外箱本体51の正面開口部を開閉する開閉扉52からなり、開閉扉52は、電解運転を開始する場合等に開らかれて、制御装置40の操作を可能にする。当該電解水生成装置の各構成部品の外箱本体51内での配置では、各構成部品の取り扱いや、各構成部品に接続する水系管路の取り回し等を考慮して、塩水調製タンク10は外箱本体51内の左側の正面開口部側に位置し、図示しない軟水器は外箱本体51内の塩水調製タンク10の後側に位置する配置状態が採られ、また、一対の電解槽30a,30bは外箱本体51内の右側の下段に位置し、制御装置40は各電解槽30a,30bの上段に位置する配置状態が採られている。   The outer box 50 includes an outer box main body 51 and an opening / closing door 52 that opens and closes a front opening of the outer box main body 51. The opening / closing door 52 is opened when an electrolytic operation is started. Enable operation. In the arrangement of each component of the electrolyzed water generating device in the outer box main body 51, the salt water preparation tank 10 is outside in consideration of the handling of each component, the handling of the water pipeline connected to each component, and the like. The water softener (not shown) is located on the left front opening side in the box body 51, and is disposed on the rear side of the salt water preparation tank 10 in the outer box body 51, and a pair of electrolytic cells 30a, 30b is located in the lower stage of the right side in the outer case main body 51, and the control apparatus 40 has the arrangement state located in the upper stage of each electrolytic cell 30a, 30b.

塩水調製タンク10は、高濃度塩水を調製するとともに、調製された高濃度塩水を貯留させるもので、貯留する高濃度塩水は、軟水器に収容されているイオン交換樹脂を再生処理するために軟水器に供給され、また、電解運転時には、各電解槽30a,30bに供給される被電解水を調製するために、水系管路における被電解水を調製する部位に供給される。高濃度塩水を調製するための塩としては、塩化ナトリウムや塩化カリウム等のアルカリ金属塩を採用することができるが、本実施形態では、被電解水として希薄食塩水を採用することから、塩化ナトリウムの代表例である食塩を採用している。従って、当該塩水調製タンク10は、高濃度食塩水を調製し、かつ、これを貯留するものである。   The salt water preparation tank 10 prepares high-concentration salt water and stores the prepared high-concentration salt water. The stored high-concentration salt water is soft water for regenerating the ion exchange resin accommodated in the water softener. In addition, during electrolysis operation, in order to prepare the electrolyzed water to be supplied to each of the electrolyzers 30a and 30b, the electrolyzed water is supplied to the site for preparing the electrolyzed water in the water pipeline. Alkali metal salts such as sodium chloride and potassium chloride can be used as the salt for preparing the high-concentration salt water. However, in this embodiment, dilute saline is used as the electrolyzed water. The salt which is a typical example of is adopted. Therefore, the said salt water preparation tank 10 prepares a high concentration salt solution, and stores this.

塩水調製タンク10内での高濃度食塩水の調製では、タンク本体の食塩投入口を覆蓋するキャップ11を取り外して、所要量の食塩を食塩投入口を通してタンク本体内に投入し、軟水器からタンク本体内に導入されている軟水化処理された原水に溶解して調製する。この場合、食塩をタンク本体内に過剰量堆積しておき、タンク本体内に供給されている軟水化された原水に漸次溶解して、飽和食塩水が生成されるようにしている。本実施形態では、当該飽和食塩水が高濃度食塩水に該当する。   In preparation of the high-concentration saline solution in the salt water preparation tank 10, the cap 11 covering the salt inlet of the tank body is removed, a required amount of salt is introduced into the tank body through the salt inlet, and the tank is supplied from the water softener. Prepare by dissolving in the softened raw water introduced into the body. In this case, an excessive amount of salt is accumulated in the tank body, and is gradually dissolved in the softened raw water supplied in the tank body so that saturated saline is generated. In the present embodiment, the saturated saline solution corresponds to a high-concentration saline solution.

軟水器は、高濃度食塩水を調製するための原水、および、被電解水を調製するための原水を軟水化処理するもので、器本体内にはイオン交換樹脂が収容されている。軟水化処理された原水は、塩水調製タンク10のタンク本体内に供給されるとともに、水系管路における被電解水を調製する部位に供給される。当該軟水器においては、器本体に収容されているイオン交換樹脂の再生処理が定期的に行われる。イオン交換樹脂の再生処理には、塩水調製タンク10にて調製された高濃度食塩水が使用され、当該再生処理の際には、塩水調製タンク10から高濃度食塩水が軟水器に供給される。   The water softener softens raw water for preparing high-concentration saline and raw water for preparing electrolyzed water, and an ion exchange resin is accommodated in the main body. The raw water subjected to the softening treatment is supplied into the tank body of the salt water preparation tank 10 and is also supplied to a site for preparing the electrolyzed water in the water system pipeline. In the water softener, the regeneration treatment of the ion exchange resin accommodated in the vessel main body is periodically performed. For the regeneration treatment of the ion exchange resin, a high-concentration saline solution prepared in the salt water preparation tank 10 is used. During the regeneration treatment, the high-concentration saline solution is supplied from the salt water preparation tank 10 to the water softener. .

各電解槽30a,30bは、同一構成の有隔膜電解槽であって、図3に模式的に示すように、槽本体31内が隔膜32にて区画されて、槽本体31内に一対の電解室R1,R2が形成されているものである。なお、符号33a,33bは、各電解室R1,R2に配設されている各電極を示している。これらの各電解槽30a,30bは公知のもので、電解槽30a,30bの各電解室R1,R2の上流側には、被電解水を供給する供給管路34の分岐管路部が接続されている。   Each electrolytic cell 30a, 30b is a diaphragm electrolytic cell having the same configuration. As schematically shown in FIG. 3, the inside of the tank body 31 is partitioned by a diaphragm 32, and a pair of electrolytic cells is formed in the tank body 31. Chambers R1 and R2 are formed. Reference numerals 33a and 33b indicate electrodes disposed in the electrolysis chambers R1 and R2. Each of these electrolytic cells 30a and 30b is a known one, and a branch line portion of a supply line 34 for supplying water to be electrolyzed is connected to the upstream side of each electrolytic chamber R1 and R2 of the electrolytic cells 30a and 30b. ing.

一方、電解槽30a,30bの電解室R1の下流側には流出管路を構成する第1の流出管路35a1,36a1がそれぞれ接続されており、また、電解槽30a,30bの電解室R2の下流側には流出管路を構成する第1の流出管路35b1,36bb1がそれぞれ接続されている。一方の電解槽30aの第1の流出管路35a1,35b1は、電磁切替弁37aを介して第2の流出管路35a2,35b2に接続されており、また、他方の電解槽30bの第1の流出管路36a1,36b1は、電磁切替弁37bを介して第2の流出管路36a2,36b2に接続されている。   On the other hand, the first outflow pipes 35a1 and 36a1 constituting the outflow pipes are respectively connected to the downstream sides of the electrolytic chambers R1 of the electrolytic tanks 30a and 30b, and the electrolytic chambers R2 of the electrolytic tanks 30a and 30b are connected. The first outflow pipes 35b1 and 36bb1 constituting the outflow pipes are respectively connected to the downstream side. The first outflow pipes 35a1, 35b1 of the one electrolytic cell 30a are connected to the second outflow pipes 35a2, 35b2 via the electromagnetic switching valve 37a, and the first outflow pipe 35a, 35b1 is connected to the first outflow pipe 30a. The outflow pipes 36a1 and 36b1 are connected to the second outflow pipes 36a2 and 36b2 through the electromagnetic switching valve 37b.

なお、一方の電解槽30aの第2の流出管路35a2と他方の電解槽30bの第2の流出管路36a2は、Y字状の二股接続管38aを介して、第3の流出管路38に接続されており、一方の電解槽30aの第2の流出管路35b2と他方の電解槽30bの第2の流出管路36b2は、Y字状の二股接続管39aを介して、互いに第3の流出管路39に接続されている。各流出管路の接続にY字状の二股接続管38a,39aを使用している理由は、後述する一方の電解槽30aから流出する電解生成水と他方の電解槽30bから流出する電解生成水を合流させる際、両電解生成水を均等の圧力で合流させることにあり、これにより、両電解生成水の合流時の圧力差に起因する片側の電解槽に及ぼす圧力を解消し得て、当該電解槽内での流量バランスの崩れを防止し得る。   The second outflow pipe 35a2 of the one electrolytic bath 30a and the second outflow pipe 36a2 of the other electrolytic bath 30b are connected to the third outflow pipe 38 via a Y-shaped bifurcated connecting pipe 38a. The second outflow pipe 35b2 of the one electrolytic bath 30a and the second outflow pipe 36b2 of the other electrolytic bath 30b are mutually connected via the Y-shaped bifurcated connecting pipe 39a. Are connected to the outflow conduit 39. The reason why the Y-shaped bifurcated connection pipes 38a and 39a are used for the connection of the respective outflow pipes is that the electrolytically generated water flowing out from one electrolytic tank 30a described later and the electrolytically generated water flowing out from the other electrolytic tank 30b are used. When joining the two electrolyzed water, the two electrolyzed waters are joined at an equal pressure, which can eliminate the pressure exerted on the electrolytic cell on one side due to the pressure difference when the two electrolyzed waters merge, The flow balance in the electrolytic cell can be prevented from being lost.

当該電解水生成装置は、制御装置40によって、その電解運転を制御される。当該電解水生成装置における通常の電解運転では、両電解槽30a,30bを同一の電解条件を採用し、各電極33a,33bには同一電圧を印加して所定時間電解運転し、所定時間経過後には、各電極33a,33bに印加する電圧を正負逆特性に切替えて、陽極側電解室を陰極側電解室に切替え、かつ、陰極側電解室を陽極側電解室に切替えて電解運転を行う。当該電解運転は、電解運転中に酸性側となってスケールが析出する陽極側電解室を陰極側電解室に切替えてアルカリ性側として、電解室に析出しているスケールを溶解して流出除去することを意図しているものである。これにより、各電解槽30a,30bでは、析出するスケールに起因する電解効率の低下を防止することができる。このため、当該電解運転では、各電極33a,33bに対する印加電圧を正負逆特性に切替える際には、これと同期して各電磁切替弁37a,37bを切替え動作させる。   The electrolyzed water generating device is controlled by the control device 40 for electrolysis operation. In a normal electrolysis operation in the electrolyzed water generating apparatus, both electrolyzers 30a and 30b are subjected to the same electrolysis conditions, the same voltage is applied to the electrodes 33a and 33b, and the electrolysis operation is performed for a predetermined time. Performs the electrolysis operation by switching the voltage applied to each electrode 33a, 33b to the positive and negative characteristics, switching the anode side electrolysis chamber to the cathode side electrolysis chamber, and switching the cathode side electrolysis chamber to the anode side electrolysis chamber. In the electrolysis operation, the anode-side electrolysis chamber where the scale is deposited during the electrolysis operation is switched to the cathode-side electrolysis chamber, and the scale deposited in the electrolysis chamber is dissolved and removed. Is intended. Thereby, in each electrolytic cell 30a, 30b, the fall of the electrolysis efficiency resulting from the scale to precipitate can be prevented. For this reason, in the electrolysis operation, when the voltage applied to the electrodes 33a and 33b is switched between the positive and negative characteristics, the electromagnetic switching valves 37a and 37b are switched in synchronism with this.

当該電解運転においては、各電解槽30a,30bの電解室R1が陽極側電解室、電解室R2が陰極側電解室であって、一方の電解槽30a側の第1の流出管路35a1,35b1が第2の流出管路35a2,35b2に接続されている場合、他方の電解槽30b側の第1の流出管路36a1,36b1が第2の流出管路36a2,36b2に接続されている場合には、一方の電解槽30aの電解室R1にて生成された電解生成酸性水は、第1の流出管路35a1および第2の流出管路35a2を通って第3の流出管路38に流入し、他方の電解槽30bの電解室R1にて生成された電解生成酸性水は、第1の流出管路36a1および第2の流出管路36a2を通って第3の流出管路38に流入することになる。   In the electrolysis operation, the electrolysis chamber R1 of each electrolyzer 30a, 30b is an anode electrolysis chamber, the electrolysis chamber R2 is a cathode electrolysis chamber, and the first outflow pipes 35a1, 35b1 on the one electrolyzer 30a side. Is connected to the second outflow pipes 35a2 and 35b2, and the first outflow pipes 36a1 and 36b1 on the other electrolytic cell 30b side are connected to the second outflow pipes 36a2 and 36b2. The electrolytically generated acidic water generated in the electrolysis chamber R1 of the one electrolytic bath 30a flows into the third outflow line 38 through the first outflow line 35a1 and the second outflow line 35a2. The electrolytically generated acidic water generated in the electrolysis chamber R1 of the other electrolyzer 30b flows into the third outflow line 38 through the first outflow line 36a1 and the second outflow line 36a2. become.

また、一方の電解槽30aの電解室R2にて生成された電解生成アルカリ性水は、第1の流出管路35b1および第2の流出管路35b2を通って第3の流出管路39に流入し、他方の電解槽30bの電解室R2にて生成された電解生成アルカリ性水は、第1の流出管路36b1および第2の流出管路36b2を通って第3の流出管路39に流入することになる。   Further, the electrolytically generated alkaline water generated in the electrolysis chamber R2 of the one electrolytic bath 30a flows into the third outflow line 39 through the first outflow line 35b1 and the second outflow line 35b2. The electrolytically generated alkaline water generated in the electrolysis chamber R2 of the other electrolytic bath 30b flows into the third outflow line 39 through the first outflow line 36b1 and the second outflow line 36b2. become.

一方、各電極33a,33bに対する印加電圧を正負逆特性に切替えられ、同時に各切替弁37a,37bが切替動作すると、一方の電解槽30aの第1の流出管路35a1,35b1は、電磁切替弁37aを介して、第2の流出管路35b2,35a2に接続され、かつ、他方の電解槽30b側の第1の流出管路36a1,36b1は、電磁切替弁37bを介して、第2の流出管路36b2,36a2に切替接続される。   On the other hand, when the applied voltages to the electrodes 33a and 33b are switched to the positive and negative characteristics and the switching valves 37a and 37b are switched at the same time, the first outflow pipes 35a1 and 35b1 of the one electrolytic cell 30a are electromagnetic switching valves. 37a is connected to the second outflow pipes 35b2 and 35a2, and the first outflow pipes 36a1 and 36b1 on the other electrolytic cell 30b side are connected to the second outflow pipe via the electromagnetic switching valve 37b. The pipes 36b2 and 36a2 are switched and connected.

これにより、一方の電解槽30aの電解室R1にて生成された電解生成アルカリ性水は、第1の流出管路35a1および第2の流出管路35b2を通って第3の流出管路39に流入し、他方の電解槽30bの電解室R1にて生成された電解生成アルカリ性水は、第1の流出管路36a1および第2の流出管路36b2を通って第3の流出管路39に流入することになる。また、一方の電解槽30aの電解室R2にて生成された電解生成酸性水は、第1の流出管路35b1および第2の流出管路35a2を通って第3の流出管路38に流入し、他方の電解槽30bの電解室R2にて生成された電解生成酸性水は、第1の流出管路36b1および第2の流出管路36a2を通って第3の流出管路38に流入することになる。従って、当該電解運転においては、第3の流出管路38,39のうち、一方の流出管路38は電解生成酸性水の専用の流出管路となり、他方の流出管路39は電解生成アルカリ性水の専用の流出管路となる。   As a result, the electrolytically generated alkaline water generated in the electrolysis chamber R1 of the one electrolytic cell 30a flows into the third outflow line 39 through the first outflow line 35a1 and the second outflow line 35b2. The electrolytically generated alkaline water generated in the electrolysis chamber R1 of the other electrolytic bath 30b flows into the third outflow line 39 through the first outflow line 36a1 and the second outflow line 36b2. It will be. The electrolytically generated acidic water generated in the electrolysis chamber R2 of the one electrolytic bath 30a flows into the third outflow line 38 through the first outflow line 35b1 and the second outflow line 35a2. The electrolytically generated acidic water generated in the electrolysis chamber R2 of the other electrolyzer 30b flows into the third outflow line 38 through the first outflow line 36b1 and the second outflow line 36a2. become. Therefore, in the electrolysis operation, one outflow line 38 of the third outflow lines 38 and 39 is a dedicated outflow line for the electrolytically generated acidic water, and the other outflow line 39 is the electrolytically generated alkaline water. This will be a dedicated outflow line.

このように、当該電解水生成装置は、通常、両方の電解槽30a,30bを同一の電解条件で電解運転を行うのに対して、本発明に係る電解運転においては、いずれか一方の電解槽では通常の電解条件を採り、いずれか他方の電解槽では当該電解槽に対する電圧の印加を停止した条件を採って電解運転する。但し、各電解槽30a,30bに対する被電解水の供給流量、および、各電解槽30a,30bからの流出流量について、両者同一とする。   Thus, while the electrolyzed water generating apparatus normally performs electrolysis operation under the same electrolysis conditions in both electrolysis tanks 30a and 30b, in the electrolysis operation according to the present invention, either one of the electrolysis tanks. Then, the normal electrolysis conditions are adopted, and the electrolysis operation is carried out under the condition that the application of voltage to the electrolysis tank is stopped in either one of the electrolysis tanks. However, both the supply flow rate of the electrolyzed water to the electrolyzers 30a and 30b and the outflow flow rate from the electrolyzers 30a and 30b are the same.

本発明に係る電解運転では、たとえば、一方の電解槽30aでは通常の電解条件を採り、他方の電解槽30bでは各電極33a,33bに対する電圧の印加を停止した状態で電解運転を行う。かかる電解条件での当該電解運転によれば、一方の電解槽30aの電解室R1では電解生成酸性水が生成されるとともに、電解室R2では電解生成アルカリ性水が生成される。一方の電解槽30aの電解室R1で生成された電解生成酸性水は、たとえば、第1の流出管路35a1および第2の流出管路35a2を通って第3の流出管路38に流入し、電解室R2で生成された電解生成アルカリ性水は、たとえば、第1の流出管路35b1および第2の流出管路35b2を通って第3の流出管路39に流入する。   In the electrolysis operation according to the present invention, for example, the electrolysis operation is performed in a state where normal electrolysis conditions are adopted in one electrolyzer 30a and the voltage application to the electrodes 33a and 33b is stopped in the other electrolyzer 30b. According to the electrolysis operation under such electrolysis conditions, electrolysis-generated acidic water is generated in the electrolysis chamber R1 of the one electrolytic bath 30a, and electrolysis-generated alkaline water is generated in the electrolysis chamber R2. The electrolytically generated acidic water generated in the electrolytic chamber R1 of the one electrolytic cell 30a flows into the third outflow line 38 through, for example, the first outflow line 35a1 and the second outflow line 35a2, The electrolytically generated alkaline water generated in the electrolysis chamber R2 flows into the third outflow line 39 through the first outflow line 35b1 and the second outflow line 35b2, for example.

一方、他方の電解槽30bの各電解室R1,R2では、被電解水は電解されることはなく、他方の電解槽30bの電解室R1に供給された被電解水は、第1の流出管路36a1および第2の流量管路36a2を通って第3の流出管路38に流入し、一方の電解槽30aから流入する電解生成酸性水と合流する。また、他方の電解槽30bの電解室R2に供給された被電解水は、第1の流出管路36b1および第2の流量管路36b2を通って第3の流出管路39に流入し、一方の電解槽30aから流入する電解生成アルカリ性水と合流する。このため、当該電解運転では、生成される電解生成酸性水の有効成分は、通常の電解運転で生成される電解生成酸性水の有効成分の約半分の濃度となり、また、生成される電解生成アルカリ性水の有効成分は、通常の電解運転で生成される電解生成アルカリ性水の有効成分の約半分の濃度となる。但し、生成される各電解生成水の生成量は、通常の電解運転で生成される各電解生成水の生成量と同量である。   On the other hand, the electrolyzed water is not electrolyzed in the electrolysis chambers R1 and R2 of the other electrolyzer 30b, and the electrolyzed water supplied to the electrolyzer chamber R1 of the other electrolyzer 30b is the first outlet pipe. It flows into the 3rd outflow line 38 through the path | route 36a1 and the 2nd flow volume line 36a2, and joins the electrolysis production | generation acidic water which flows in from one electrolytic vessel 30a. The electrolyzed water supplied to the electrolysis chamber R2 of the other electrolyzer 30b flows into the third outflow line 39 through the first outflow line 36b1 and the second flow rate line 36b2. The electrolytically generated alkaline water flowing in from the electrolytic bath 30a joins. For this reason, in the electrolysis operation, the active component of the electrolyzed acidic water generated is approximately half the concentration of the active component of the electrolyzed acid water generated in the normal electrolysis operation, and the generated electrolyzed alkaline water The active ingredient of water is about half the concentration of the active ingredient of electrolytically generated alkaline water produced by normal electrolysis operation. However, the amount of each electrolyzed water produced is the same as the amount of each electrolyzed water produced in a normal electrolysis operation.

なお、当該電解運転において、一方の電解槽30aから流出する電解生成水に対する他方の電解槽30bから流出する被電解水の合流流量を適宜に調整すれば、各電解生成水の生成量を、通常の電解運転で生成される電解生成水の生成量に比較して大きく減量させることなく、適宜の特性の電解生成水を生成することができる。   In the electrolysis operation, if the combined flow rate of the electrolyzed water flowing out from the other electrolytic tank 30b with respect to the electrolytic generated water flowing out from the one electrolytic tank 30a is appropriately adjusted, Electrolytically produced water having appropriate characteristics can be produced without greatly reducing the amount of electrolytically produced water produced in the electrolysis operation.

本発明に係る電解運転方法を実施する電解水生成装置を収納する外箱の開閉扉を開いた状態の正面図である。It is a front view of the state which opened the opening / closing door of the outer case which accommodates the electrolyzed water generating apparatus which implements the electrolysis operation method concerning the present invention. 同電解水生成装置を収納する外箱の開閉扉およびフロントパネルの一部を取外した状態の正面図である。It is a front view of the state which removed a part of opening / closing door and front panel of the outer case which accommodates the same electrolyzed water generating apparatus. 同電解水生成装置が装備する一対の電解槽、同電解槽に接続する被電解水の供給管路、同電解槽に接続する流出管路を総合して示す模式図である。It is a schematic diagram which shows collectively a pair of electrolytic cell with which the electrolyzed water generating apparatus is equipped, a supply pipe for water to be electrolyzed connected to the electrolyzer, and an outflow pipe connected to the electrolyzer.

符号の説明Explanation of symbols

10…塩水貯留タンク、11…キャップ、20…カバー部材、30a,30b…電解槽、31…槽本体、32…隔膜、R1,R2…電解室、33a,33b…電極、34…供給管路、35a1,35b1…第1の流出管路、36a1,36b1…第1の流出管路、35a2,35b2…第2の流出管路、36a2,36b2…第2の流出管路、37a,37b…電磁切替弁、38,39…第3の流出管路、38a,39a…二股接続管、40…制御装置、50…外箱、51…外箱本体、52…開閉扉。 DESCRIPTION OF SYMBOLS 10 ... Salt water storage tank, 11 ... Cap, 20 ... Cover member, 30a, 30b ... Electrolysis tank, 31 ... Tank main body, 32 ... Separator, R1, R2 ... Electrolysis chamber, 33a, 33b ... Electrode, 34 ... Supply line, 35a1, 35b1 ... first outflow line, 36a1,36b1 ... first outflow line, 35a2,35b2 ... second outflow line, 36a2,36b2 ... second outflow line, 37a, 37b ... electromagnetic switching Valves 38, 39 ... third outlet pipes, 38a, 39a ... bifurcated connecting pipes, 40 ... control device, 50 ... outer box, 51 ... outer box body, 52 ... open / close door.

Claims (2)

第1の電解槽と第2の電解槽を並列して備える複数電解槽方式の電解水生成装置の電解運転方法であり、当該電解運転方法は、前記第1の電解槽および前記第2の電解槽に被電解水を同一条件で供給するとともに、前記第1の電解槽および前記第2の電解槽のいずれか一方の電解槽には電圧を印加し、いずれか他方の電解槽には電圧の印加を停止した状態で電解し、前記一方の電解槽から流出する電解水生成水と、前記他方の電解槽から流出する被電解水を合流させることを特徴とする複数電解槽方式の電解水生成装置の電解運転方法。 An electrolysis operation method of an electrolyzed water generating device of a multiple electrolyzer system comprising a first electrolyzer and a second electrolyzer in parallel, the electrolysis operation method comprising the first electrolyzer and the second electrolysis While supplying electrolyzed water to the tank under the same conditions, a voltage is applied to one of the first electrolytic tank and the second electrolytic tank, and a voltage is applied to the other electrolytic tank. Electrolytic water generation in a multi-electrolyzer system characterized in that electrolysis is performed in a state where application is stopped, and electrolyzed water generated water flowing out from the one electrolytic cell and electrolyzed water flowing out from the other electrolytic cell are merged Electrolytic operation method of the apparatus. 請求項1に記載の電解運転方法であり、前記各電解槽はいずれもが有隔膜電解槽であって、前記一方の電解槽から流出する電解水生成水と前記他方の電解槽から流出する被電解水との合流を、前記各電解槽が有する電解生成酸性水の専用の流出管路から流出するもの同士、および、前記各電解槽が有する電解生成アルカリ性水の専用の流出管路から流出するもの同士で行うことを特徴とする複数電解槽方式の電解水生成装置の電解運転方法。 2. The electrolytic operation method according to claim 1, wherein each of the electrolytic cells is a diaphragm electrolytic cell, and the electrolyzed water generated water flowing out from the one electrolytic cell and the electrolytic cell flowing out from the other electrolytic cell. Outflows from the dedicated outflow conduits of the electrolyzed acidic water possessed by each of the electrolytic baths and from the dedicated outflow conduits of the electrolyzed alkaline water possessed by the respective electrolytic baths are combined with the electrolyzed water. An electrolysis operation method for an electrolyzed water generating device of a multiple electrolyzer system, characterized in that it is carried out between things.
JP2007062325A 2007-03-12 2007-03-12 Electrolytic operation method of plural electrolytic cell type electrolytic water generator Pending JP2008221120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062325A JP2008221120A (en) 2007-03-12 2007-03-12 Electrolytic operation method of plural electrolytic cell type electrolytic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062325A JP2008221120A (en) 2007-03-12 2007-03-12 Electrolytic operation method of plural electrolytic cell type electrolytic water generator

Publications (1)

Publication Number Publication Date
JP2008221120A true JP2008221120A (en) 2008-09-25

Family

ID=39840326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062325A Pending JP2008221120A (en) 2007-03-12 2007-03-12 Electrolytic operation method of plural electrolytic cell type electrolytic water generator

Country Status (1)

Country Link
JP (1) JP2008221120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136662A (en) * 2014-01-22 2015-07-30 株式会社日本トリム Electrolytic water generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015136662A (en) * 2014-01-22 2015-07-30 株式会社日本トリム Electrolytic water generator

Similar Documents

Publication Publication Date Title
JP6169762B1 (en) Hydrogen water generation method
WO2019235473A1 (en) Hydrogen gas dissolving device
JP2009285632A (en) Water conditioner for hydrogen-containing-electrolytic water, bathtub equipment and method for manufacturing hydrogen-containing-electrolytic water
JP2008221120A (en) Electrolytic operation method of plural electrolytic cell type electrolytic water generator
JP3978103B2 (en) Electrolyzed water generator
JP4726832B2 (en) Electrolyzed water generator
JP4726833B2 (en) Electrolyzed water generator
CN106757132A (en) Electrolysis installation
JP3267882B2 (en) Electrolyzed water generator
KR101647304B1 (en) High-purity hydrogen water purifying apparatus
JPH09192667A (en) Electrolyzed water generating device
JP3509915B2 (en) Method and apparatus for removing carbon dioxide component dissolved in water, and electrolyzed water generator equipped with the same
JP3733476B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method
JP7165119B2 (en) Electrolyzed water generation method and electrolyzed water generator
JPH07256256A (en) Apparatus for forming electrolytic ionic water
JP4092047B2 (en) Electrolyzed water generator
WO2020145379A1 (en) Dialysis device washing system
JP3677331B2 (en) Electrolyzed water generator
JP3772282B2 (en) Cleaning method for continuous electrolyzed water generating device and continuous electrolyzed water generating device provided with mechanism for carrying out this method
JPH08126885A (en) Electrolytic water generator
JPH0721191U (en) Multiple electrolyzer type electrolyzed water generator
TW202216612A (en) Electrolyzed water generating device and method for cleaning electrolyzed water generating device
JPH07155762A (en) Device for producing electrolyzed water
JP2009148678A (en) Method and apparatus for generating strongly alkaline electrolyzed water
JP2000189970A (en) Electrolytic water production device