JP2008221109A - Liquid separation membrane module - Google Patents

Liquid separation membrane module Download PDF

Info

Publication number
JP2008221109A
JP2008221109A JP2007061932A JP2007061932A JP2008221109A JP 2008221109 A JP2008221109 A JP 2008221109A JP 2007061932 A JP2007061932 A JP 2007061932A JP 2007061932 A JP2007061932 A JP 2007061932A JP 2008221109 A JP2008221109 A JP 2008221109A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane module
membrane
permeate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007061932A
Other languages
Japanese (ja)
Inventor
Hideki Yamada
英樹 山田
Koichi Baba
幸一 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2007061932A priority Critical patent/JP2008221109A/en
Publication of JP2008221109A publication Critical patent/JP2008221109A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure which is capable of reducing flow resistance of permeate and back washing liquid, is excellent in back washing performance and, moreover, is excellent in productivity in an inner pressure type hollow fiber liquid separation membrane module. <P>SOLUTION: In the inner pressure type hollow fiber liquid separation membrane module, a housing inner diameter is changed in the housing length direction, the housing inner diameter near a permeate outlet is thickened, thereby, a gap between a hollow fiber membrane bundle and the housing near the permeate outlet is enlarged without reducing a packing amount of hollow fiber membranes and a flow path cross-section of the permeate and back washing liquid is enlarged. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内圧式中空糸型液体分離膜モジュールの内部構造に関する。   The present invention relates to an internal structure of an internal pressure type hollow fiber type liquid separation membrane module.

膜分離技術による分離精製技術は、その高度な分離機能や省エネルギー性等の特長を高く評価され、一段と普及が進みつつある。その適用分野を例示すると、海水及びかん水の脱塩による淡水の製造、表流水や地下水の飲料水化、半導体工業や医薬品工業において用いられる純水・超純水の製造、家庭排水や工業排水、都市下水等の下排水処理および下排水からの水回収、発酵液や廃液からの有価物の回収、等々の液体処理分野、空気からの酸素富化や窒素富化、天然ガスからのヘリウムの回収、石油の3次回収での炭酸ガスの分離等のガス分離分野等の幅広い分野に渡っている。   Separation and purification technology based on membrane separation technology is highly evaluated for its features such as its advanced separation function and energy saving, and it is becoming increasingly popular. Examples of its application fields are production of fresh water by desalination of seawater and brine, surface water and groundwater drinking water, production of pure water and ultrapure water used in the semiconductor industry and pharmaceutical industry, household wastewater and industrial wastewater, Sewerage treatment of municipal sewage and water recovery from wastewater, recovery of valuable materials from fermentation liquor and waste liquid, etc., liquid treatment field, oxygen enrichment and nitrogen enrichment from air, helium recovery from natural gas It covers a wide range of fields, such as gas separation fields such as carbon dioxide separation in the third recovery of oil.

流体分離膜は、その分離対象および分離メカニズムに基づき、逆浸透膜、ナノろ過膜、限外ろ過膜、精密ろ過膜等の液体分離膜、または、酸素富化膜、窒素分離膜、炭酸ガス分離膜等のガス分離膜等に分類される。一方、流体分離膜の形態に着目すると、中空糸膜、管状膜、平膜、スパイラル膜等に分類される。本発明においては流体分離膜のうち、とくに内圧式中空糸型液体分離膜についての発明である。なお以降、本発明において、特に断りのない限り、膜モジュールとは、内圧式中空糸型液体分離膜を、配管を接続することにより使用可能な状態に組み立てたもののことを指すものとする。   A fluid separation membrane is a liquid separation membrane such as a reverse osmosis membrane, nanofiltration membrane, ultrafiltration membrane, microfiltration membrane, or oxygen-enriched membrane, nitrogen separation membrane, carbon dioxide gas separation based on the separation target and separation mechanism. It is classified as a gas separation membrane such as a membrane. On the other hand, when focusing on the form of the fluid separation membrane, it is classified into a hollow fiber membrane, a tubular membrane, a flat membrane, a spiral membrane and the like. In the present invention, among the fluid separation membranes, the invention is particularly about the internal pressure type hollow fiber type liquid separation membrane. Hereinafter, in the present invention, unless otherwise specified, the membrane module refers to an internal pressure type hollow fiber type liquid separation membrane assembled in a usable state by connecting a pipe.

近年、限外濾過膜および精密濾過膜による膜濾過法を浄水処理における除濁手段として活用する動きが世界的に高まっている。従来浄水処理に汎用されてきた砂濾過法に比べて濾過精度が高く、クリプトスポリジウム等の耐塩素性を有する病原性原虫等の除去性が高い点等が高く評価されていることがその一因と考えられる。膜濾過法の更なる普及に向けて、設備コストと運転コストの低減が求められており、このような要求に応えるため、膜モジュールおよび膜濾過システムに種々の改良が進められている。例えば運転コストを低減するためには、運転圧力あたり透水量を増加させること、供給水量に対する生産水量の比率すなわち回収率を向上させること、薬洗頻度を低減させること、膜寿命を延長させること、等が有効であると考えられる。また、設備コストの低減については、膜モジュール体積あたりの透水量を増加させること、膜モジュールを大型化すること、等が有効であると考えられる。   In recent years, there has been a worldwide movement to utilize a membrane filtration method using an ultrafiltration membrane and a microfiltration membrane as a turbidity removal means in water purification treatment. One of the reasons is that it is highly evaluated for its high filtration accuracy compared to the sand filtration method that has been widely used for water purification treatment in the past, and high removability of pathogenic protozoa that have chlorine resistance such as Cryptosporidium. it is conceivable that. In order to further spread the membrane filtration method, it is required to reduce the equipment cost and the operation cost. In order to meet such a demand, various improvements are being made to the membrane module and the membrane filtration system. For example, in order to reduce the operating cost, increase the water permeability per operating pressure, improve the ratio of the production water volume to the supply water volume, that is, the recovery rate, reduce the frequency of chemical washing, extend the membrane life, Etc. are considered effective. Further, it is considered effective to reduce the facility cost by increasing the water permeation amount per membrane module volume, increasing the size of the membrane module, and the like.

このような背景から、従来、膜モジュールの改良として、膜モジュールの大型化と膜面積あたり透過水量の向上が進められてきた。しかしながら、これにより、膜モジュール内の透過水流動に関する圧力損失が増大して運転圧力あたり透水量が低下、膜モジュール内の逆洗液流動に関する圧力損失が増大して洗浄効率が低下しそれを補うため洗浄液量の増大と回収率の低下、逆洗時に逆洗液入口から遠い部分の逆洗圧力が低下してその部分が十分に洗浄されず逆洗不均一となりそれを補うための洗浄液量の増大と回収率の低下あるいは膜寿命の低下または薬洗頻度の増大、といった問題点が顕在化してきた。これらの問題点を解決するのに有用と思われる下記のような技術が、特許文献に開示されている。   From such a background, conventionally, as an improvement of the membrane module, an increase in the size of the membrane module and an increase in the amount of permeated water per membrane area have been promoted. However, this increases the pressure loss related to the permeate flow in the membrane module and decreases the amount of water per operating pressure, and increases the pressure loss related to the backwash liquid flow in the membrane module to reduce the cleaning efficiency and compensate for it. For this reason, the amount of cleaning liquid is increased and the recovery rate decreases. Problems such as an increase and a decrease in recovery rate, a decrease in film life, or an increase in the frequency of drug washing have become apparent. The following techniques which are considered to be useful for solving these problems are disclosed in the patent literature.

特許文献1には、毛管濾過膜の長手方向略全長に渡り、波型または穴の開いた二重壁からなる排出薄膜を設ける技術が開示されている。前記排出薄膜は、ケースの中心部にケース長軸方向に設けられた排出導管と接続され、透過水はこの排出導管を経てモジュールの外部に排出される。一方、排出薄膜は、逆洗時にはモジュール外に逆洗液を導入する逆洗液流路となる。この構成により、透過水の強い流れによる中空糸膜損傷を防ぐことができる上、排出パイプを設ける場合に比べて充填膜面積を増すことができ、モジュールの濾過能力を向上させることができる旨、記載されている。しかしながら、排出薄膜を排出導管に接続する構造をとっているため、部材点数が多くかつ構造が複雑で、生産性に劣るとの問題がある。また、断面扇形の排出薄膜の間隙に中空糸膜を均一かつ密に充填することは困雑であり、膜の充填密度を上げることができないため、コンパクト性に劣り、また生産性にも劣る点で問題である。
特開2000−246063号公報
Patent Document 1 discloses a technique of providing a discharge thin film made of a double wall having a wave shape or a hole over substantially the entire length in the longitudinal direction of a capillary filtration membrane. The discharge thin film is connected to a discharge conduit provided in the center of the case in the longitudinal direction of the case, and the permeated water is discharged to the outside of the module through the discharge conduit. On the other hand, the discharged thin film serves as a backwash liquid channel for introducing backwash liquid outside the module during backwashing. According to this configuration, it is possible to prevent damage to the hollow fiber membrane due to a strong flow of permeated water, and it is possible to increase the filling membrane area as compared with the case where a discharge pipe is provided, and to improve the filtration capacity of the module. Are listed. However, since the discharge thin film is connected to the discharge conduit, the number of members is large, the structure is complicated, and the productivity is poor. In addition, it is difficult to uniformly and densely fill the hollow fiber membrane in the gap between the discharge thin films with a cross-sectional fan shape, and the packing density of the membrane cannot be increased, resulting in poor compactness and poor productivity. It is a problem.
JP 2000-246063 A

特許文献2には、ケースの中央部に、少なくとも一部がネット状部分を有する筒状集水体を設け、これを介して透過水のモジュール外への排出および逆洗時の逆洗液のモジュール内への導入を行う技術が開示されている。ケースの外周面に透過水出口を備える膜モジュールにこの技術を適応する場合、集水体と透過水出口を連通する連絡流路が必要である。このため、モジュール内部構造が複雑となり、生産性に劣るとの問題が生じる。また、前記した集水体と透過水出口を連結する流路を形成するために、その部分に中空糸膜を充填することができなくなり、このため有効膜面積が減少し、コンパクト性にも欠けるものとなってしまう。
特開2005−270944号公報
In Patent Document 2, a cylindrical water collecting body having at least a part of a net-like portion is provided at the center of the case, and a module for backwashing liquid at the time of draining permeated water out of the module and backwashing through this is provided. A technique for introducing the information into the network is disclosed. When this technology is applied to a membrane module having a permeated water outlet on the outer peripheral surface of the case, a communication channel that connects the water collector and the permeated water outlet is necessary. For this reason, the internal structure of the module becomes complicated, resulting in a problem that the productivity is inferior. In addition, since the flow path connecting the water collector and the permeate outlet is formed, it is impossible to fill the portion with a hollow fiber membrane, which reduces the effective membrane area and lacks compactness. End up.
JP 2005-270944 A

特許文献3には、中空芯膜束をくびれ部を形成した保護筒内に設置する技術が記載され、この発明により、中空糸膜外側の流れが良くなり、かつ、安価にモジュールができる旨記載されている。しかしながら、くびれをつけた保護筒へ中空糸膜を充填する操作が煩雑かつ困難であり、生産性に劣るだけでなく、生産工程において中空糸膜を損傷させる恐れがあるとの問題を含んでいる。
特開平10−337449号公報
Patent Document 3 describes a technique for installing a hollow core membrane bundle in a protective cylinder formed with a constricted portion. According to this invention, the flow outside the hollow fiber membrane is improved and a module can be manufactured at low cost. Has been. However, the operation of filling the hollow cylinder with the constricted protective cylinder is complicated and difficult, and not only the productivity is inferior, but also there is a problem that the hollow fiber membrane may be damaged in the production process. .
Japanese Patent Laid-Open No. 10-337449

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、第一に、透過時に透過水の流路となる透過液室における圧力損失が低く、逆洗時に逆洗液の流路となる透過液室における圧力損失が低く、なおかつ膜モジュール全体が均一に洗浄される、エネルギー効率が高く長寿命の内圧式中空糸型液体分離膜モジュールを提供することにある。第二に、第一の課題を解決しておりながら、構造的に簡素で生産性に優れる内圧式中空糸型流体分離膜モジュールを提供することにある。   The present invention has been made against the background of such prior art problems. That is, the object of the present invention is, firstly, the pressure loss in the permeate chamber that becomes the flow path of the permeate during permeation is low, and the pressure loss in the permeate chamber that becomes the flow path of the backwash liquid during backwashing is low. It is another object of the present invention to provide an internal pressure type hollow fiber type liquid separation membrane module with high energy efficiency and long life, in which the entire membrane module is uniformly washed. Secondly, it is to provide an internal pressure type hollow fiber type fluid separation membrane module which is simple in structure and excellent in productivity while solving the first problem.

本発明者らは鋭意検討した結果、以下に示す手段により、上記二つの課題を同時に解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の構成からなる。
(1) 外周面に一つまたは複数の透過水出口を備える筒状ケースを備え、
前記筒状ケース内に中空糸膜束を備え、
前記中空糸膜束は、その両端部において中空糸型分離膜相互間および中空糸型分離膜と前記筒状ケースの間隙が封止され、前記筒状ケースの両端部で中空糸型分離膜内腔部が開口されており、
前記中空糸膜束と前記筒状ケースとの間隙である断面略環状の空間からなり、前記透過水出口と連通する透過液室を備え、
前記筒状ケースの内面の形状が、円錐台、底面を共有する複数の円錐台の結合体、または、底面を共有する少なくとも一つの円錐台と少なくとも一つの円柱の結合体、のいずれかの側面形状によって規定されている
ことを特徴とする内圧式中空糸型液体分離膜モジュール
(2) 前記筒状ケースの内面の形状が、1個の円錐台と、左記円錐台の下底面と底面を共有する1個の円柱と、左記円錐台の上底面と底面を共有する1個の円柱との結合体の側面形状によって規定されていることを特徴とする(1)に記載の内圧式中空糸型液体分離膜モジュール。
(3) 前記透過水出口が、前記円錐台の下底面と底面を共有する円柱によって規定されている部分に連結する形で形成されていることを特徴とする(2)に記載の内圧式中空糸型液体分離膜モジュール。
(4) 前記筒状ケースの内面の形状が、2個の円錐台と、左記2個の円錐台の下底面に挟まれるかたちで底面を共有する1つの円柱と、左記円錐台の上底面と各々の底面を共有する2個の円柱との結合体の側面形状によって規定されていることを特徴とする(1)に記載の内圧式中空糸型液体分離膜モジュール。
(5) 前記透過水出口が、前記2個の円錐台の下底面と底面を共有する円柱によって規定されている部分に連結する形で形成されていることを特徴とする(4)に記載の内圧式中空糸型液体分離膜モジュール。
As a result of intensive studies, the present inventors have found that the above two problems can be solved simultaneously by the means described below, and have reached the present invention. That is, this invention consists of the following structures.
(1) A cylindrical case having one or more permeate outlets on the outer peripheral surface,
A hollow fiber membrane bundle is provided in the cylindrical case,
The hollow fiber membrane bundle is sealed between the hollow fiber type separation membranes and between the hollow fiber type separation membranes and the cylindrical case at both ends, and the hollow fiber membrane bundles are sealed in the hollow fiber type separation membranes at both ends of the cylindrical case. The cavity is open,
It comprises a substantially annular space in cross section that is a gap between the hollow fiber membrane bundle and the cylindrical case, and includes a permeate chamber that communicates with the permeate outlet,
The shape of the inner surface of the cylindrical case is any one of a truncated cone, a combination of a plurality of truncated cones sharing a bottom surface, or a combination of at least one truncated cone and at least one cylinder sharing a bottom surface. Internal pressure hollow fiber type liquid separation membrane module characterized by the shape (2) The shape of the inner surface of the cylindrical case shares one truncated cone and the bottom and bottom surfaces of the truncated cone The internal pressure type hollow fiber mold according to (1), characterized in that it is defined by a side shape of a combined body of one circular cylinder and a single circular cylinder sharing the upper and bottom surfaces of the truncated cone. Liquid separation membrane module.
(3) The internal pressure type hollow according to (2), wherein the permeated water outlet is formed so as to be connected to a portion defined by a cylinder that shares a bottom surface and a bottom surface of the truncated cone. Thread type liquid separation membrane module.
(4) The shape of the inner surface of the cylindrical case is two truncated cones, one cylinder sharing the bottom surface sandwiched between the lower bottom surfaces of the two truncated cones, and the upper bottom surface of the truncated cones 2. The internal pressure hollow fiber type liquid separation membrane module according to (1), characterized in that it is defined by a side shape of a combined body of two cylinders sharing each bottom surface.
(5) The permeated water outlet is formed so as to be connected to a portion defined by a cylinder sharing the bottom and bottom surfaces of the two truncated cones. Internal pressure type hollow fiber type liquid separation membrane module.

本発明によると、運転圧力および逆洗圧力を低減することが可能となり、エネルギー効率が向上し、運転コストを低減させることができる。また、逆洗時、膜全体を均一に洗浄できるので、逆洗時間低減、逆洗液使用量低減、逆洗間隔延長、膜寿命延長が可能となり、運転の際のエネルギー効率を向上させ、運転コストを低減させる効果がある。さらに、膜モジュールの内部構造が単純なので膜モジュールの製造コストも低く抑えることができる。   According to the present invention, the operating pressure and the backwash pressure can be reduced, energy efficiency can be improved, and the operating cost can be reduced. In addition, since the entire membrane can be washed uniformly during backwashing, it is possible to reduce backwashing time, use backwashing liquid, extend backwashing interval, and extend membrane life, improve energy efficiency during operation, This has the effect of reducing costs. Furthermore, since the internal structure of the membrane module is simple, the manufacturing cost of the membrane module can be kept low.

ここで、内圧式中空糸型液体分離膜モジュールを用いて表流水や地下水から浄水を得る場合を例にとって、本発明について説明を行う。   Here, the present invention will be described by taking as an example the case of obtaining purified water from surface water or groundwater using an internal pressure type hollow fiber type liquid separation membrane module.

図1は、透過水出口110がケースの軸方向に対して端部付近に1つある場合の実施態様の一例の内圧式中空糸型浄水膜モジュールの全体を示す模式図である。この膜モジュールは、筒状のケース100と、その軸方向の端部を塞ぐ一対のキャップ200,300とを備え、ケース100とキャップ200,300は締結手段700によって締結されている。ケース100の内部には、中空糸膜保護筒420に包まれた多数の中空糸膜410からなる中空糸膜束400がケースの軸方向に延びるように配置されている。ケース100は、その内部空間が、一つの同心円錐台と、その両底面に連結された円錐台と底面を共有する2つの円柱の結合体から形成され、さらに左記円錐台の上底面と底面を共有する円柱と連通するように、透過水出口110が備えられている。ケース100の内径はケース長さ方向で変化しており、透過水出口付近で太く、透過水出口から遠ざかるほど細く形成されている。中空糸膜束400の直径は一定なので、中空糸膜束400の外周とケース100の内周の間隙は、透過水出口に近づくほど広くなる。中空糸膜保護筒420の外周面は、膜間差圧に比べて無視できる程度に小さな通水抵抗で通水可能な網状または多数の穴の開いた壁状となっている。中空糸膜410によって原水がろ過され、水の浄化が行われる。各中空糸膜410の上端部及び下端部は封止樹脂500によりケース本体100に封止固定されている。すなわち、複数の中空糸膜410の相互間隙および中空糸膜410とケース本体100の内壁面との間隙に封止樹脂500が充填され、これによって中空糸膜410は液密に固定されている。中空糸膜410は、その上下両端が開口された状態で、上端部及び下端部のみが封止樹脂500で固定されており、それ以外の中間部分が浄水機能を果たす。透過液室800は、ケース100と中空糸膜束400の間隙である断面が略環状の空間からなり、その上下端は上端部および下端部の封止樹脂500で区切られる。透過液室800の上端部付近には透過水出口110が形成されている。一方、各キャップ200,300は鏡板状のキャップ本体210,310からなり、各々開口220、320が形成されている。透過液室の上端付近にはエア抜き口120(非図示)が形成されていてもよい。また、透過液室の下端付近にはドレン口130(非図示)が形成されていても良い。   FIG. 1 is a schematic view showing an entire internal pressure type hollow fiber type water purification membrane module as an example of an embodiment in the case where there is one permeated water outlet 110 in the vicinity of the end with respect to the axial direction of the case. This membrane module includes a cylindrical case 100 and a pair of caps 200 and 300 that close the ends in the axial direction. The case 100 and the caps 200 and 300 are fastened by fastening means 700. Inside the case 100, a hollow fiber membrane bundle 400 made up of a large number of hollow fiber membranes 410 wrapped in a hollow fiber membrane protective cylinder 420 is disposed so as to extend in the axial direction of the case. The case 100 has an internal space formed by a concentric truncated cone and a combination of two circular cylinders that share the bottom and the truncated cone connected to both bottom surfaces. A permeate outlet 110 is provided so as to communicate with the shared cylinder. The inner diameter of the case 100 changes in the length direction of the case, and is thicker in the vicinity of the permeate outlet and thinner as it gets farther from the permeate outlet. Since the diameter of the hollow fiber membrane bundle 400 is constant, the gap between the outer periphery of the hollow fiber membrane bundle 400 and the inner periphery of the case 100 becomes wider as it approaches the permeate outlet. The outer peripheral surface of the hollow fiber membrane protection cylinder 420 has a net shape or a wall shape with a large number of holes through which water can be passed with a water flow resistance that is negligibly small compared to the transmembrane pressure difference. The raw water is filtered by the hollow fiber membrane 410 to purify the water. The upper end portion and the lower end portion of each hollow fiber membrane 410 are sealed and fixed to the case body 100 by a sealing resin 500. That is, the sealing resin 500 is filled in the gaps between the plurality of hollow fiber membranes 410 and the gap between the hollow fiber membranes 410 and the inner wall surface of the case body 100, thereby fixing the hollow fiber membranes 410 in a liquid-tight manner. In the hollow fiber membrane 410, the upper and lower ends thereof are opened, and only the upper end and the lower end are fixed with the sealing resin 500, and the other intermediate portion fulfills the water purification function. The permeate chamber 800 is a space having a substantially annular cross section, which is a gap between the case 100 and the hollow fiber membrane bundle 400, and the upper and lower ends thereof are partitioned by the upper end portion and the lower end sealing resin 500. A permeate outlet 110 is formed near the upper end of the permeate chamber 800. On the other hand, the caps 200 and 300 are made of cap-shaped cap bodies 210 and 310, and openings 220 and 320 are formed, respectively. An air vent 120 (not shown) may be formed near the upper end of the permeate chamber. Further, a drain port 130 (not shown) may be formed near the lower end of the permeate chamber.

図2は、透過水出口110がケースの軸方向に対して端部付近に1つある場合の従来技術の一例の内圧式中空糸型浄水膜モジュールの全体を示す模式図である。ケース100は、その内部空間が一つの円柱から形成され、さらに透過水出口110が備えられている。ケース100の内径がケース長さ方向で変化せず一定である点が、図1に示した本発明の実施態様の一例とは異なり、このため中空糸膜束400の外周とケース100の内周の間隙は、透過水出口からの距離によらず一定となっている。 FIG. 2 is a schematic diagram showing the entire internal pressure type hollow fiber type water purification membrane module as an example of the prior art when there is one permeate outlet 110 near the end with respect to the axial direction of the case. The case 100 has an inner space formed by a single cylinder, and further includes a permeate outlet 110. Unlike the example of the embodiment of the present invention shown in FIG. 1, the inner diameter of the case 100 does not change in the case length direction and is constant. Therefore, the outer periphery of the hollow fiber membrane bundle 400 and the inner periphery of the case 100 are different. The gap is constant regardless of the distance from the permeate outlet.

膜濾過をクロスフローで行う場合および逆洗する場合の水の流れを図6および図7で説明する。図6に示すように、加圧された原水は開口220を介して中空糸膜の内側に供給され、原水の一部または全量は中空糸膜を透過して透過水出口110から膜モジュールの外部に流出しこれが生産水となり、残りは開口320から膜濾過されないまま膜モジュールの外部に流出する。原水には種々の夾雑物質が含まれるため、膜濾過を継続すると前記夾雑物質が膜面に蓄積して膜濾過抵抗を上昇させる。前記夾雑物質を除去し膜濾過抵抗が上昇していくことを防ぐために数十分〜数時間の間隔で定期的に逆洗を行うことが一般的である。その際には、図7に示すように、透過水出口110から清浄な水または塩素等の酸化剤や酸、アルカリ、界面活性剤またはこれらの混合物等の適切な洗浄剤を含む清浄な水を加圧供給し、開口220、320の一方または双方から排出する。逆洗流量は、膜濾過抵抗の上昇具合や夾雑物質の量と種類、逆洗時間、洗浄液の種類等の条件によりに適切に調整され、逆洗を効率よく行うために、生産水の流量の1.5〜5倍程度とすることが一般的である。透過水出口110から流入する大流量の洗浄液の直撃により透過水出口110の正面部分の中空糸膜410に大きな力がかかり、中空糸膜に破損を生じることがないように、透過水出口110に分散板600を設置している。図3に分散板600の斜視模式図を示した。なお、逆洗液に含まれる洗浄剤が生産水に混入することが好ましくない場合には、清浄な水によるすすぎや初期濾過水の廃棄等の操作により、生産水に洗浄剤が混入することを防ぐことができる。   The flow of water when membrane filtration is performed by crossflow and when backwashing is described with reference to FIGS. As shown in FIG. 6, the pressurized raw water is supplied to the inside of the hollow fiber membrane through the opening 220, and a part or all of the raw water passes through the hollow fiber membrane and passes through the permeate outlet 110 to the outside of the membrane module. This flows into the production water, and the remainder flows out of the membrane module through the opening 320 without being filtered. Since raw water contains various contaminants, when the membrane filtration is continued, the contaminants accumulate on the membrane surface and increase the membrane filtration resistance. In order to remove the contaminants and prevent the membrane filtration resistance from increasing, it is common to perform backwashing periodically at intervals of several tens of minutes to several hours. In that case, as shown in FIG. 7, clean water or clean water containing an appropriate cleaning agent such as an oxidizer such as chlorine, an acid, an alkali, a surfactant, or a mixture thereof is supplied from the permeate outlet 110. Pressurized and discharged from one or both openings 220, 320. The backwash flow rate is appropriately adjusted according to conditions such as the degree of increase in membrane filtration resistance, the amount and type of contaminants, backwash time, type of cleaning liquid, etc. Generally, it is about 1.5 to 5 times. A large force is applied to the hollow fiber membrane 410 in the front portion of the permeate outlet 110 due to the direct hit of the cleaning liquid flowing in from the permeate outlet 110 so that the hollow fiber membrane is not damaged. A dispersion plate 600 is installed. FIG. 3 shows a schematic perspective view of the dispersion plate 600. If it is not desirable that the cleaning agent contained in the backwash liquid is mixed into the production water, it is recommended that the cleaning agent be mixed into the production water by rinsing with clean water or discarding the initial filtered water. Can be prevented.

膜モジュール内における透過水の流れについて考察すると、中空糸膜束400の内部には高密度で中空糸膜410が充填されているため、中空糸膜束の外部に流路が形成されていれば、透過水は中空糸膜束内部を通過するよりも中空糸膜束の外部を主に流れる。中空糸膜束外部に流出した透過水は、図6に太い矢印で示したように、膜モジュールから透過水を排出する透過水出口110側に向かって流れる。透過水の流量は、透過水出口110から遠い位置では小さく、透過水出口110に近づくにつれて累積的に大きくなる。このため、図4に示すように透過水出口110からの距離に関わらず中空糸膜束400の外周とケース100の内周の距離が均等である従来の膜モジュールにおいては、透過水出口110に近づくにつれて流路断面積あたり通水量が大きくなり、大きな圧力損失が発生し、モジュール内の流動に無駄なエネルギーが消費されていた。これに対し、左記流量の大小に応じて流路断面積の大小を調整すれば、膜モジュール全体の流動抵抗を低減できるものと考えられる。ここで左記流路断面積の調整手段をケース長軸方向の流れについて考えたところ、ケース内部空間の形状を変更し、透過水出口付近を太く、透過水出口から遠ざかるにつれて細くすることによって、透過水の流動抵抗を低減できることに想到し、本発明をなすにいたった。   Considering the flow of permeated water in the membrane module, since the hollow fiber membrane bundle 400 is filled with the hollow fiber membrane 410 at a high density, a flow path is formed outside the hollow fiber membrane bundle. Permeated water mainly flows outside the hollow fiber membrane bundle rather than passing inside the hollow fiber membrane bundle. The permeated water that has flowed out of the hollow fiber membrane bundle flows toward the permeated water outlet 110 that discharges the permeated water from the membrane module, as indicated by thick arrows in FIG. The flow rate of the permeated water is small at a position far from the permeated water outlet 110 and increases cumulatively as the permeated water outlet 110 is approached. Therefore, in the conventional membrane module in which the distance between the outer periphery of the hollow fiber membrane bundle 400 and the inner periphery of the case 100 is equal regardless of the distance from the permeate outlet 110 as shown in FIG. As the distance approached, the amount of water flow per channel cross-sectional area increased, causing a large pressure loss, and wasted energy for flow in the module. On the other hand, it is considered that the flow resistance of the entire membrane module can be reduced by adjusting the size of the channel cross-sectional area according to the size of the flow rate on the left. Here, the flow channel cross-sectional area adjusting means was considered for the flow in the long axis direction of the case, and by changing the shape of the internal space of the case, the vicinity of the permeate outlet became thicker and narrowed away from the permeate outlet, thereby allowing permeation. The inventors have conceived that the flow resistance of water can be reduced and have arrived at the present invention.

一方、逆洗の場合について、本発明の効果を考察すると、図7に太い矢印で示したように、透過水出口110から供給された逆洗液は、一部を中空糸膜の内部に透過させながら、残部は膜モジュールの奥に向かって流れていく。このため、透過水出口110に近い部分では逆洗液の流量は大きく、透過水出口110から遠ざかるにつれて、累積的に逆洗液の流量は小さくなる。流量の大小と流路断面積の大小が対応しているため、中空糸膜に付与される逆洗流体の圧力は平準化され、中空糸膜全体が均一に洗浄される効果がある。従来の膜モジュールでは、図5に示したように、透過水出口110からの距離に関わらず中空糸膜束400の外周とケース100の内周の距離が均等であるので、透過水出口110に付近で大きな圧力損失が発生し、モジュール内の流動に無駄なエネルギーが消費されていた。   On the other hand, considering the effect of the present invention in the case of backwashing, as shown by the thick arrows in FIG. 7, the backwashing liquid supplied from the permeate outlet 110 partially permeates into the hollow fiber membrane. The remaining part flows toward the back of the membrane module. For this reason, the flow rate of the backwash liquid is large at a portion close to the permeate outlet 110, and the flow rate of the backwash liquid is cumulatively decreased as the distance from the permeate outlet 110 is increased. Since the magnitude of the flow rate corresponds to the magnitude of the cross-sectional area of the flow path, the pressure of the backwash fluid applied to the hollow fiber membrane is leveled, and the entire hollow fiber membrane is effectively washed. In the conventional membrane module, as shown in FIG. 5, the distance between the outer periphery of the hollow fiber membrane bundle 400 and the inner periphery of the case 100 is equal regardless of the distance from the permeate outlet 110. A large pressure loss occurred in the vicinity, and wasteful energy was consumed for the flow in the module.

本発明においては、円錐台の向きに関わらず、底面のうち径の小さい方の底面を上底面、径の大きい方の底面を下底面と呼ぶこととする。また、円錐台には、同心円錐台のみならず、偏心円錐台も含み、単に円錐台と記した場合には同心円錐台と偏心円錐台の両者をさすものとする。   In the present invention, regardless of the direction of the truncated cone, the bottom surface having the smaller diameter among the bottom surfaces is referred to as the upper bottom surface, and the bottom surface having the larger diameter is referred to as the lower bottom surface. Further, the truncated cone includes not only a concentric truncated cone but also an eccentric truncated cone, and when simply referred to as a truncated cone, it refers to both the concentric truncated cone and the eccentric truncated cone.

本発明におけるケース100は筒状であり、その内面の形状が、円錐台、底面を共有する複数の円錐台の結合体、または、底面を共有する少なくとも一つの円錐台と少なくとも一つの円柱との結合体、のいずれかである。円錐と円錐台の結合部が面取りされ、あるいは滑らかな曲面で連結されていれば、透過水および逆洗水の流動圧損を低減する効果があり、さらに好ましい。   The case 100 in the present invention has a cylindrical shape, and the shape of the inner surface thereof is a truncated cone, a combination of a plurality of truncated cones sharing a bottom surface, or at least one truncated cone and at least one cylinder sharing a bottom surface. One of the conjugates. It is more preferable that the connecting portion between the cone and the truncated cone be chamfered or connected with a smooth curved surface, since there is an effect of reducing the flow pressure loss of the permeated water and the backwash water.

本発明において、透過水出口110は、透過水出口110付近の透過液室の流路幅を広くし流動圧損を低下させるために、ケースの内部空間が円錐台の下底面近傍である部分、またはその底面を円錐台の下底面と共有する円柱である部分に形成される。透過水出口110のケース長さ方向に関する位置は、図1、図8、図9に例示したようにケース端部付近であっても良く、図10、図11に例示したように中央部付近であっても良い。   In the present invention, the permeate outlet 110 is a portion where the internal space of the case is near the lower bottom surface of the truncated cone in order to widen the flow path width of the permeate chamber near the permeate outlet 110 and reduce the flow pressure loss, or The bottom surface is formed in a portion that is a cylinder sharing the bottom surface of the truncated cone. The position of the permeate outlet 110 in the case length direction may be in the vicinity of the case end as illustrated in FIGS. 1, 8, and 9, and in the vicinity of the center as illustrated in FIGS. 10 and 11. There may be.

また、前記透過水出口110とは別に、透過液室800の下端付近にドレン用、上端付近にエア抜き用の開口が設けられていても良い。例えば、図1、図8、図9において透過液室800の内部空間の、円錐台の上底面と底面を共有している円柱部と連結するように開口を設け、ドレン口130(図1では非図示)とすることができる。また、図10、図11において、透過液室800の内部空間の、円錐台の上底面と底面を共有している円柱のうちの上側の円柱部と連結するように開口を設け、エア抜き口120とすることができる。さらに、図10、図11において、透過液室800の内部空間の、円錐台の上底面と底面を共有している円柱のうちの下側の円柱部に連結するように開口を設け、ドレン口130とすることができる。   In addition to the permeate outlet 110, an opening for draining may be provided near the lower end of the permeate chamber 800, and an air vent may be provided near the upper end. For example, in FIGS. 1, 8, and 9, an opening is provided so as to connect to the cylindrical portion of the internal space of the permeate chamber 800 that shares the top and bottom surfaces of the truncated cone, and the drain port 130 (in FIG. 1). (Not shown). 10 and 11, an opening is provided so as to connect to the upper cylindrical portion of the cylindrical space sharing the upper and bottom surfaces of the truncated cone in the inner space of the permeate chamber 800, and the air vent port. 120. Further, in FIGS. 10 and 11, an opening is provided so as to be connected to the lower cylindrical portion of the inner space of the permeate chamber 800 sharing the upper and bottom surfaces of the truncated cone, and the drain port. 130.

すでに説明した図1に示した実施態様では、ケース100の内面の形状が、1個の同心円錐台と、左記同心円錐台の下底面と底面を共有する1個の円柱と、左記同心円錐台の上底面と底面を共有する1個の円柱とによって規定され、左記同心円錐台の下底面と底面を共有する円柱部に連結するように透過水出口110が形成されている例である。これに対し、図8の実施態様は、図1の実施態様において、前記同心円錐台を偏心円錐台に置き換えたものである。すなわち、ケース100の内部空間である透過液室800となる部分が、1個の偏心円錐台と、左記偏心円錐台の下底面と底面を共有する1個の円柱と、左記偏心円錐台の上底面と底面を共有する1個の円柱とによって規定され、左記偏心円錐台の下底面と底面を共有する円柱部に連結するように透過水出口110が形成されている。この場合、中空糸膜束の中心軸は、上底面側の円柱部の中心軸とは一致しているが、下底面側の円柱部の中心軸とは不一致であり偏心している。また、図9の実施態様は、図1の実施態様において、中空糸膜束400の位置を透過液出口110から遠ざける方向にずらしたものである。この場合、中空糸膜束の中心軸は、上底面側の円柱部の中心軸、下底面側の円柱部の中心軸の両者と不一致であり、偏心している。これら図8、図9の実施態様においても、図1の実施態様の場合と同様に、透過水出口110から近い部分では流路断面積が大きく、遠い部分では流路断面積が小さくなっており、透過時には透過水の流動抵抗が低く、逆洗時には逆洗水の流動抵抗が低い上、逆洗流体の圧力は中空糸膜全体で平準化され、中空糸膜全体が均一に洗浄される。   In the embodiment shown in FIG. 1 described above, the shape of the inner surface of the case 100 is one concentric truncated cone, one cylinder sharing the lower and bottom surfaces of the left concentric truncated cone, and the left concentric truncated cone. This is an example in which the permeated water outlet 110 is formed so as to be connected to a cylindrical portion that is defined by the upper bottom surface and one cylinder sharing the bottom surface and shares the lower bottom surface and the bottom surface of the concentric truncated cone. On the other hand, the embodiment of FIG. 8 is obtained by replacing the concentric truncated cone with an eccentric truncated cone in the embodiment of FIG. That is, the portion that becomes the permeate chamber 800, which is the internal space of the case 100, includes one eccentric truncated cone, one cylinder that shares the bottom and bottom surfaces of the left eccentric truncated cone, and the upper eccentric truncated cone. A permeated water outlet 110 is formed so as to be connected to a cylindrical portion that is defined by a bottom surface and a single cylinder that shares the bottom surface and shares the bottom and bottom surfaces of the eccentric truncated cone. In this case, the central axis of the hollow fiber membrane bundle coincides with the central axis of the cylindrical portion on the upper bottom surface side, but does not coincide with the central axis of the cylindrical portion on the lower bottom surface side and is eccentric. 9 is obtained by shifting the position of the hollow fiber membrane bundle 400 in the direction away from the permeate outlet 110 in the embodiment of FIG. In this case, the central axis of the hollow fiber membrane bundle is not coincident with both the central axis of the cylindrical portion on the upper bottom surface side and the central axis of the cylindrical portion on the lower bottom surface side, and is eccentric. 8 and 9, as in the embodiment of FIG. 1, the cross-sectional area of the channel is large at the portion near the permeate outlet 110, and the cross-sectional area of the channel is small at the distant portion. The flow resistance of permeated water is low during permeation, the flow resistance of backwash water is low during backwashing, and the pressure of the backwashing fluid is leveled across the entire hollow fiber membrane, so that the entire hollow fiber membrane is washed uniformly.

図10の実施態様は、ケース100の内面の形状が、2個の同心円錐台と、左記2個の同心円錐台の下底面に挟まれるかたちで底面を共有する1つの円柱と、左記同心円錐台の上底面と各々の底面を共有する2個の円柱とによって規定される場合の一例である。透過水出口110は、左記2個の同心円錐台の下底面と底面を共有する円柱部に連結するように形成されている。また、図11の実施態様は、図10の実施態様において、前記2個の同心円錐台を2個の偏心円錐台に置き換えたものである。すなわち、ケース100の内部空間である透過液室800となる部分が、2個の偏心円錐台と、左記2個の偏心円錐台の下底面に挟まれるかたちで底面を共有する1つの円柱と、左記偏心円錐台の上底面と各々の底面を共有する2個の円柱とによって規定される場合の一例である。透過水出口110は、左記2個の偏心円錐台の下底面と底面を共有する円柱部に連結するように形成されている。
図10および図11の実施態様においても、図1の実施態様の場合と同様に、透過水出口から近い部分では流路断面積が大きく、遠い部分では流路断面積が小さくなっており、透過時には透過水の流動抵抗が低く、逆洗時には逆洗水の流動抵抗が低い上、逆洗流体の圧力は中空糸膜全体で平準化され、中空糸膜全体が均一に洗浄される。
In the embodiment of FIG. 10, the shape of the inner surface of the case 100 has two concentric truncated cones, one cylinder sharing the bottom surface sandwiched between the lower bottom surfaces of the two concentric truncated cones, and the left concentric cone. It is an example in the case where it is prescribed | regulated by the upper bottom face of a stand, and two cylinders which share each bottom face. The permeated water outlet 110 is formed so as to be connected to a cylindrical portion that shares the bottom and bottom surfaces of the two concentric truncated cones. Further, the embodiment of FIG. 11 is obtained by replacing the two concentric truncated cones with two eccentric truncated cones in the embodiment of FIG. That is, the portion that becomes the permeate chamber 800, which is the internal space of the case 100, has two eccentric truncated cones, and a single cylinder that shares the bottom surface sandwiched between the lower bottom surfaces of the two eccentric truncated cones, It is an example in the case of being prescribed | regulated by the two bottom cylinders which share each bottom face and the upper bottom face of the left-handed eccentric truncated cone. The permeated water outlet 110 is formed so as to be connected to a cylindrical portion that shares the bottom and bottom surfaces of the two eccentric truncated cones.
Also in the embodiment of FIGS. 10 and 11, as in the case of the embodiment of FIG. 1, the cross-sectional area of the channel is large at the portion near the permeate outlet and the cross-sectional area of the channel is small at the portion far from the permeated water outlet. Sometimes the flow resistance of the permeated water is low, the flow resistance of the backwash water is low at the time of backwashing, and the pressure of the backwash fluid is leveled throughout the hollow fiber membrane, so that the entire hollow fiber membrane is washed uniformly.

本発明において、透過液室800には、透過水および逆洗水の流動抵抗を大きく増やさない範囲において、その一部または全体に透水性の充填体が充填されていてもよい。左記充填体としては、網状シートの積層体や、空孔率が高く空孔径も大きい立体網目状体を好適な例として挙げることができる。例えば、厚さ0.5〜10mm程度の網状シートを積層したものや、線径0.5〜10mm程度の多数の屈曲した糸状体がその接触部で相互に結合した構造からなる立体網目状体が挙げられる。また、左記充填体に剛性の高いものを用いると、膜モジュールを大流量で運転する際、中空糸膜束の変形を抑制する効果があり、好ましい。   In the present invention, the permeate chamber 800 may be partially or entirely filled with a water-permeable filler as long as the flow resistance of the permeate and the backwash water is not greatly increased. Preferred examples of the left-hand filler include a laminate of mesh sheets and a three-dimensional mesh body having a high porosity and a large pore diameter. For example, a three-dimensional network having a structure in which a mesh sheet having a thickness of about 0.5 to 10 mm is laminated, or a large number of bent filaments having a wire diameter of about 0.5 to 10 mm are bonded to each other at the contact portion. Is mentioned. In addition, it is preferable to use a high-stiffness filler for the left-hand filler because it has an effect of suppressing deformation of the hollow fiber membrane bundle when the membrane module is operated at a large flow rate.

本発明における中空糸膜束400外周の断面外形は、略円形である。中空糸膜束400外周の断面外径が略円形であれば、ケース内に無駄な空間が生じず、中空糸膜の充填効率を高くとることができ、コンパクト性に優れた膜モジュールとすることができる。中空糸膜束400外周の断面外形の好ましい実施態様の一部を図12に示した。本発明における略円形には、円形、楕円形、辺の数が6以上の正多角形、前記正多角形の角を丸めたものを含む。また、本発明における略円形は、半円形と長軸長が左記半円形の直径と等しい半楕円形を結合した形状、あるいは長軸長が等しい2つの半楕円を結合した形状であってもよく、この場合は短軸側を透過水出口110側に向けて配置することが好ましい。あるいは、これらの断面形状の透過水出口110対向部を切り落とした形状であっても良い。さらには、あらかじめこれらの断面外形のいずれかの形状で中空糸膜束を形成しておき、中空糸膜束400とケース100の間隙にスペーサーを挿入する等の手段によって透過水出口110側の流路が広くなるように中空糸膜束の一部または全体を変形させた状態で端部接着を行うと、中空糸膜束外形を歪ませた形状が固定される。このようにして得られた中空糸膜束外形も、本発明における略円形に含める。中空糸膜束400の外周断面形状を円形、楕円形およびこれらの一部を変形させた形状とすることは、中空糸膜束の製造工程を簡略且つ再現性の高いものとし製造コストを低減させる観点から、特に好ましい。   The cross-sectional outer shape of the outer periphery of the hollow fiber membrane bundle 400 in the present invention is substantially circular. If the outer diameter of the cross section of the outer periphery of the hollow fiber membrane bundle 400 is substantially circular, a useless space does not occur in the case, the filling efficiency of the hollow fiber membrane can be increased, and the membrane module has excellent compactness. Can do. FIG. 12 shows a part of a preferred embodiment of the cross-sectional outer shape of the outer periphery of the hollow fiber membrane bundle 400. The substantially circular shape in the present invention includes a circular shape, an elliptical shape, a regular polygon having 6 or more sides, and rounded corners of the regular polygon. In addition, the substantially circular shape in the present invention may be a shape obtained by combining a semicircle and a semi-elliptical shape whose major axis length is equal to the diameter of the semicircular shape on the left, or a shape obtained by combining two semi-ellipses having the same major axis length. In this case, it is preferable to arrange the short axis side toward the permeate outlet 110 side. Or the shape which cut off the permeate outlet 110 opposing part of these cross-sectional shapes may be sufficient. Furthermore, a hollow fiber membrane bundle having a shape of any one of these cross-sectional shapes is formed in advance, and a flow on the permeate outlet 110 side is inserted by means such as inserting a spacer into the gap between the hollow fiber membrane bundle 400 and the case 100. If end bonding is performed in a state where a part or the whole of the hollow fiber membrane bundle is deformed so as to widen the path, a shape in which the outer shape of the hollow fiber membrane bundle is distorted is fixed. The outer shape of the hollow fiber membrane bundle thus obtained is also included in the substantially circular shape in the present invention. Making the cross-sectional shape of the outer periphery of the hollow fiber membrane bundle 400 circular, elliptical, or a shape obtained by deforming a part thereof makes the production process of the hollow fiber membrane bundle simple and highly reproducible, thereby reducing the production cost. From the viewpoint, it is particularly preferable.

なお、前記中空糸膜束400は、複数の中空糸型分離膜の小束から構成されていても差し支えない。前記小束の断面外形は、円形、楕円形、多角形、扇形等、いかなる形状であっても差し支えない。また、前記小束の相互間に隙間(以下、小束間隙間と呼ぶ)が形成されていても差し支えない。前記小束間隙間が形成されている場合には、前記小束間隙間も、中空糸膜束外周とケース内面の間隙と共同して、透過水および逆洗水の流路として機能し、中空糸膜束内の流動圧損を低減する効果がある。前記小束間隙間を設けることは前記中空糸膜束の外径が大きい場合に効果的であり、特に前記中空糸膜束の外径が100mm以上の場合に特に効果的が高い。前記小束間隙間には透水性の充填体が充填されていてもよく、そのような実施態様は、透過水および逆洗水の高流速での流動があっても小束の変形による前記小束間隙間の閉塞が起こらず、流動圧損効果が確実に発揮されるので好ましい。   The hollow fiber membrane bundle 400 may be composed of a plurality of small bundles of hollow fiber type separation membranes. The cross-sectional outer shape of the small bundle may be any shape such as a circle, an ellipse, a polygon, and a fan. Further, a gap (hereinafter referred to as a gap between the small bundles) may be formed between the small bundles. When the gap between the small bundles is formed, the gap between the small bundles also functions as a flow path for the permeated water and the backwash water in cooperation with the gap between the outer periphery of the hollow fiber membrane bundle and the inner surface of the case. There is an effect of reducing flow pressure loss in the yarn membrane bundle. Providing the gaps between the small bundles is effective when the outer diameter of the hollow fiber membrane bundle is large, and particularly effective when the outer diameter of the hollow fiber membrane bundle is 100 mm or more. Between the small bundle gaps may be filled with a water permeable filler, and such an embodiment is suitable for the small bundle due to deformation of the small bundle even when there is a flow of permeated water and backwash water at a high flow rate. It is preferable because the clogging between the bundle gaps does not occur and the flow pressure loss effect is surely exhibited.

前記小束間隙間に透水性充填体を充填する場合、必ずしも小束間隙間全体に充填する必要はない。一部充填であっても良く、特に透過液出口から遠い部分等、透過液および逆洗液の流量の小さい部分では充填体が充填されていなくてもよい。左記透水性の充填体は、ケース軸方向最大長さが中空糸膜有効長の60%以上かつケース長さ以下であり、かつ透過液室と連通することが好ましい。左記充填体としては、網状シートの積層体や、空孔率が高く空孔径も大きい立体網目状体を好適な例として挙げることができる。例えば、厚さ0.5〜5mm程度の網状シートを積層したものや、線径0.5〜5mm程度の多数の屈曲した糸状体がその接触部で相互に結合した構造からなる立体網目状体が挙げられる。   When filling the water-permeable filler between the small bundle gaps, it is not always necessary to fill the entire gap between the small bundles. It may be partially filled, and the filler may not be filled particularly in a portion where the flow rate of the permeated liquid and the backwash liquid is small, such as a part far from the permeate outlet. The left permeable filling body preferably has a maximum length in the case axial direction of 60% or more of the effective length of the hollow fiber membrane and not more than the case length, and communicates with the permeate chamber. Preferred examples of the left-hand filler include a laminate of mesh sheets and a three-dimensional mesh body having a high porosity and a large pore diameter. For example, a three-dimensional network having a structure in which a net-like sheet having a thickness of about 0.5 to 5 mm is laminated or a large number of bent filaments having a wire diameter of about 0.5 to 5 mm are bonded to each other at the contact portion. Is mentioned.

本発明におけるケース100は、その内部に流体分離膜が充填される略円筒状の容器であり、その外周面には少なくとも一つの透過水出口110を有する。左記透過水出口110は流体の出入口として機能する。流体分離膜の使用状態において、ケースの両端は、キャップと結合され、あるいはケースと一体の底部が形成される。左記キャップまたはケースと一体の底には、開口が形成されていてもよい。ケースおよびキャップの材質は特に限定されないが、塩化ビニル樹脂、ポリスルホン樹脂等のエンジニアリングプラスチック、ガラス繊維強化樹脂等の各種強化樹脂、ステンレス鋼等の耐蝕性金属材料が好適である。ガラス繊維強化樹脂は、軽量かつ耐蝕性に優れ、液体分離膜封止樹脂との接着性も良好であり、ケースの材質として特に好ましい。ステンレス鋼は強度と耐食性に優れ、外部配管との接続が容易なことからキャップの材質として特に好ましい。ケースおよびキャップには機能上あるいは意匠上の要求により、凹凸や彩色が施されていても差し支えない。   The case 100 in the present invention is a substantially cylindrical container filled with a fluid separation membrane, and has at least one permeate outlet 110 on the outer peripheral surface thereof. The permeated water outlet 110 on the left functions as a fluid inlet / outlet port. In the use state of the fluid separation membrane, both ends of the case are coupled to the cap, or a bottom part integral with the case is formed. An opening may be formed in the bottom integral with the left cap or case. The material of the case and cap is not particularly limited, but engineering plastics such as vinyl chloride resin and polysulfone resin, various reinforced resins such as glass fiber reinforced resin, and corrosion-resistant metal materials such as stainless steel are suitable. The glass fiber reinforced resin is particularly lightweight as a case material because it is lightweight and excellent in corrosion resistance and has good adhesion to the liquid separation membrane sealing resin. Stainless steel is particularly preferable as a cap material because it is excellent in strength and corrosion resistance and can be easily connected to external piping. The case and cap may be uneven or colored according to functional or design requirements.

また、本発明におけるキャップ200、300は、鏡板を構成要素として備えることが好ましい。鏡板には、皿型、正半楕円体型、近似半楕円型、半球型、平鏡型等、種々の種類があるが、いずれの形であってもよい。鏡板を構成要素として備えることにより、単純な底つき円筒型とする場合に比べて肉厚を薄くすることができ、軽量化およびコストダウンが可能である。   Moreover, it is preferable that the caps 200 and 300 in the present invention include an end plate as a constituent element. There are various types of end plates, such as a dish shape, a regular semi-ellipsoidal shape, an approximate semi-elliptical shape, a hemispherical shape, and a flat mirror shape, and any shape may be used. By providing the end plate as a constituent element, the thickness can be reduced compared with a simple bottomed cylindrical type, and the weight can be reduced and the cost can be reduced.

本発明におけるケース100とキャップ200、300の締結方法は、特定の方式に限定されない。螺合であってもよく、あるいはケースとキャップに設けたフランジをボルトとナットあるいはスイングボルトとナットによって締結してもよい。また各種管継手によって接続することも可能であり、Vバンドカップリング、ヴィクトリックジョイント、ストラブカップリング(登録商標)等は好適な締結方法の例である。   The fastening method of case 100 and caps 200 and 300 in the present invention is not limited to a specific method. It may be screwed, or a flange provided on the case and the cap may be fastened by a bolt and nut or a swing bolt and nut. Moreover, it is also possible to connect by various pipe joints, and V band coupling, a victic joint, Straub coupling (trademark), etc. are examples of a suitable fastening method.

本発明における中空糸型分離膜の材質は特に限定されない。膜の材質の好適な例としては、ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリアミド、酢酸セルロース等の有機高分子化合物およびこれらを含む共重合体、混合物、変成物を挙げることができ、また、セラミック膜であっても良い。また、中空糸型分離膜の分離モードは、特に限定されない。逆浸透膜、ナノ濾過膜、限外ろ過膜、精密ろ過膜等、どのような分離モードであっても良い。   The material of the hollow fiber type separation membrane in the present invention is not particularly limited. Preferable examples of the material of the membrane include organic polymer compounds such as polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile, polyamide, cellulose acetate, and copolymers, mixtures and modified products containing these. Also, a ceramic film may be used. Further, the separation mode of the hollow fiber type separation membrane is not particularly limited. Any separation mode such as reverse osmosis membrane, nanofiltration membrane, ultrafiltration membrane, microfiltration membrane, etc. may be used.

以上、本発明の実施形態の例について説明を加えたが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。   As mentioned above, although the example of embodiment of this invention was added, this invention is not limited to these, A various change is possible unless it deviates from the meaning.

また、液体分離膜モジュールが内圧式中空糸膜からなる浄水膜モジュールであり、クロスフローろ過方式で運転する場合を例に説明を行ったが、全量ろ過方式で運転する場合についても、本発明は同様に適用でき効果を発揮する。また、その用途についても浄水処理に限定されるものではなく、廃水処理や海水淡水化逆浸透膜の前処理等、用途の異なる液体分離膜についても、同様に適用できる。   In addition, the liquid separation membrane module is a water purification membrane module made of an internal pressure type hollow fiber membrane, and the case where it is operated by a cross flow filtration method has been described as an example. It can be applied in the same way and demonstrates its effect. Further, the use is not limited to the water purification treatment, and it can be similarly applied to liquid separation membranes having different uses such as wastewater treatment and pretreatment of seawater desalination reverse osmosis membrane.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.

(中空糸膜の製造方法および透水性能の測定方法)
ポリエーテルスルホン(住友化学工業製、スミカエクセル(登録商標)4800G)とポリビニルピロリドン(日本触媒製、K−30)をジメチルアセトアミドとトリエチレングリコールの混合液に加温・溶解し、紡糸原液とした。二重管ノズルの外側スリットから左記紡糸原液を、同時に二重管ノズルの内管からジメチルアセとアミドとトリエチレングリコールの水溶液を吐出させ、空中走行部を経た後、ジメチルアセトアミドとトリエチレングリコールの水溶液からなる凝固浴に導いて固化させた。水洗と熱水洗浄を行い、熱風乾燥機で乾燥し、内径0.8mm、外径1.4mmの中空糸膜を得た。水温25℃における水透過流束の膜間差圧0外挿値は、30m/m/d/100kPaであった。
(Method for producing hollow fiber membrane and method for measuring water permeability)
Polyethersulfone (manufactured by Sumitomo Chemical Co., Ltd., Sumika Excel (registered trademark) 4800G) and polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., K-30) were heated and dissolved in a mixed solution of dimethylacetamide and triethylene glycol to obtain a spinning dope. . Discharge the spinning stock solution from the outer slit of the double tube nozzle, and simultaneously discharge the aqueous solution of dimethyl ace, amide and triethylene glycol from the inner tube of the double tube nozzle, and after passing through the air, the aqueous solution of dimethylacetamide and triethylene glycol It was led to a coagulation bath consisting of and solidified. Washing with water and hot water washing were carried out, followed by drying with a hot air drier to obtain a hollow fiber membrane having an inner diameter of 0.8 mm and an outer diameter of 1.4 mm. The transmembrane pressure difference 0 extrapolation value of the water permeation flux at a water temperature of 25 ° C. was 30 m 3 / m 2 / d / 100 kPa.

(膜モジュールの透水性能の測定方法)
膜モジュールの透水性能の測定に使用した装置の概略フロー図を図13に示した。水温25±1℃に調整し、流量調整バルブ2101,2102,2103の調整により流量および圧力を調整し、全量濾過運転を行った。その際、供給水温、透過水流量および運転圧力を測定した。供給水には水道水を逆浸透膜に透過させた水を用いた。膜間差圧Pは、圧力計2201,2202,2203の圧力P1,P2,P3に対し、P=(P1+P2)/2−P3とした。
(Measurement method of water permeability of membrane module)
A schematic flow diagram of the apparatus used for measuring the water permeability of the membrane module is shown in FIG. The water temperature was adjusted to 25 ± 1 ° C., and the flow rate and pressure were adjusted by adjusting the flow rate adjusting valves 2101, 2102, 2103, and the total amount filtration operation was performed. At that time, the feed water temperature, the permeate flow rate and the operating pressure were measured. As the supply water, water in which tap water was permeated through a reverse osmosis membrane was used. The transmembrane pressure difference P was set to P = (P1 + P2) / 2−P3 with respect to the pressures P1, P2, P3 of the pressure gauges 2201, 2202, 2203.

(実施例1)
前記した中空糸膜22560本を用いて、長さ1.2mの中空糸膜の束を作り、束の外周部をポリエチレン製網状体(厚さ2mm)で覆い、中空糸膜束の直径(網状体を除く)を290mmとした。図1において、透過液室800を規定する同心円錐台の下底面の直径が314mm、上底面の直径が300mmであり、前記同心円錐台の下底面と連結する円柱部分であるケース端部から130mmの位置に中心を有する内径90mmの透過水出口を備える、長さ1066mm、内径300mmのガラス繊維強化樹脂からなる略円筒状のケース100に、左記網状体で覆われた中空糸膜束を、中空糸膜束の中心軸が前記同心円錐台の下底面と連結する円柱部分の中心軸と一致するように挿入した。両端部をウレタン樹脂接着剤で接着して中空糸膜相互間およびケースと中空糸膜の間隙を封止し、次いで、ケース端部からはみ出した部分を切り落として中空糸膜を開口させた。中空糸膜の有効長(封止部に埋もれていない部分の長さ)は890mmであった。ケースの両端部にステンレス鋼製のキャップを、透過水出口にステンレス鋼製の分散板を装着し、膜モジュールとした。透過水流量18m/hrを得るのに必要な膜間差圧は32kPaであった。
(実施例2)
実施例1において、中空糸膜束の中心軸を透過液室出口と反対方向に3mmずらして設置したほかは同様にして膜モジュールを作成した。透過水流量18m/hrを得るのに必要な膜間差圧は31kPaであった。
(Example 1)
A bundle of hollow fiber membranes having a length of 1.2 m is made using 22560 hollow fiber membranes as described above, and the outer peripheral portion of the bundle is covered with a polyethylene mesh (thickness 2 mm). 290 mm). In FIG. 1, the diameter of the lower bottom surface of the concentric truncated cone defining the permeate chamber 800 is 314 mm, the diameter of the upper bottom surface is 300 mm, and 130 mm from the end of the case which is a cylindrical portion connected to the lower bottom surface of the concentric truncated cone. The hollow fiber membrane bundle covered with the left mesh is hollowed in a substantially cylindrical case 100 made of a glass fiber reinforced resin having a length of 1066 mm and an inner diameter of 300 mm, which has a permeate outlet having an inner diameter of 90 mm centered at the position of The thread membrane bundle was inserted so that the central axis thereof coincided with the central axis of the cylindrical portion connected to the lower bottom surface of the concentric truncated cone. Both ends were bonded with a urethane resin adhesive to seal between the hollow fiber membranes and the gap between the case and the hollow fiber membrane, and then the portion protruding from the case end was cut off to open the hollow fiber membrane. The effective length of the hollow fiber membrane (the length of the portion not buried in the sealing portion) was 890 mm. A stainless steel cap was attached to both ends of the case, and a stainless steel dispersion plate was attached to the permeate outlet to form a membrane module. The transmembrane pressure difference required to obtain a permeate flow rate of 18 m 3 / hr was 32 kPa.
(Example 2)
A membrane module was prepared in the same manner as in Example 1 except that the center axis of the hollow fiber membrane bundle was shifted by 3 mm in the direction opposite to the permeate chamber outlet. The transmembrane pressure difference required to obtain a permeate flow rate of 18 m 3 / hr was 31 kPa.

(比較例1)
透過液室800が内径300mmの円筒形であるほかは実施例1と同様にして膜モジュールを作成した。透過水流量18m/hrを得るのに必要な膜間差圧は81kPaであった。
(Comparative Example 1)
A membrane module was prepared in the same manner as in Example 1 except that the permeate chamber 800 had a cylindrical shape with an inner diameter of 300 mm. The transmembrane pressure difference required to obtain a permeate flow rate of 18 m 3 / hr was 81 kPa.

本発明に係る流体分離膜モジュールによれば、運転圧力の低減が可能となり、運転コストの低減およびエネルギー効率の向上が可能である。また、逆洗に際して洗浄液が膜モジュール全体を均一に洗浄できるので、薬洗頻度の低減および膜寿命の延長効果がある。これらの効果により、流体分離膜装置のユーザーにとって有益である。   According to the fluid separation membrane module of the present invention, the operating pressure can be reduced, and the operating cost can be reduced and the energy efficiency can be improved. In addition, since the cleaning liquid can uniformly clean the entire membrane module during backwashing, there are effects of reducing the frequency of chemical washing and extending the membrane life. These effects are beneficial for users of fluid separation membrane devices.

本発明の実施態様の一例の内圧式中空糸型浄水膜モジュールの模式図である。図1(a)は膜モジュール全体の縦断面の模式図、図1(b)は図1(a)のB−B断面における横断面の模式図、図1(c)は図1(a)のC−C断面における横断面の模式図である。It is a mimetic diagram of an internal pressure type hollow fiber type water purification membrane module of an example of an embodiment of the present invention. 1A is a schematic diagram of a longitudinal section of the entire membrane module, FIG. 1B is a schematic diagram of a transverse section in the BB section of FIG. 1A, and FIG. 1C is FIG. It is a schematic diagram of the cross section in CC section. 従来の内圧式中空糸型浄水膜モジュールの一例の模式図である。図2(a)は膜モジュール全体の縦断面の模式図、図2(b)は図2(a)のB−B断面における横断面の模式図である。It is a schematic diagram of an example of the conventional internal pressure type hollow fiber type water purification membrane module. FIG. 2A is a schematic diagram of a longitudinal section of the whole membrane module, and FIG. 2B is a schematic diagram of a transverse section in the BB section of FIG. 2A. 図1で用いた分散板600の斜視模式図である。FIG. 2 is a schematic perspective view of a dispersion plate 600 used in FIG. 1. 従来の内圧式中空糸型浄水膜モジュールの一例のろ過時の水の流れを示す模式図である。図4(a)は縦断面、図4(b)は図4(a)のB−B断面における横断面の状態を模式的に示した。It is a schematic diagram which shows the flow of the water at the time of filtration of an example of the conventional internal pressure type hollow fiber type water purification membrane module. FIG. 4A schematically shows a vertical cross section, and FIG. 4B schematically shows a cross sectional state of the BB cross section of FIG. 4A. 従来の内圧式中空糸型浄水膜モジュールの一例の逆洗時の水の流れを示す模式図である。図5(a)は縦断面、図5(b)は図5(a)のB−B断面における横断面の状態を模式的に示した。It is a schematic diagram which shows the flow of the water at the time of backwashing of an example of the conventional internal pressure type hollow fiber type water purification membrane module. FIG. 5A schematically shows a vertical cross-section, and FIG. 5B schematically shows a cross-sectional state of the BB cross-section of FIG. 5A. 本発明の実施態様の一例の内圧式中空糸型浄水膜モジュールのろ過時の水の流れを示す模式図である。図6(a)は縦断面、図6(b)はB−B断面における横断面、図6(c)は図6(a)のC−C断面における横断面の状態を模式的に示した。It is a schematic diagram which shows the flow of the water at the time of filtration of the internal pressure type | formula hollow fiber type water purification membrane module of an example of the embodiment of this invention. 6A is a vertical cross-section, FIG. 6B is a cross-sectional view taken along the line BB, and FIG. 6C is a schematic cross-sectional view taken along the line CC in FIG. 6A. . 本発明の実施態様の一例の内圧式中空糸型浄水膜モジュールの逆洗時の水の流れを示す模式図である。図7(a)は縦断面、図7(b)はB−B断面における横断面、図7(c)は図7(a)のC−C断面における横断面の状態を模式的に示した。It is a schematic diagram which shows the flow of the water at the time of backwashing of the internal pressure type | formula hollow fiber type water purification membrane module of an example of the embodiment of this invention. 7A is a vertical cross-section, FIG. 7B is a cross-sectional view taken along the line BB, and FIG. 7C is a schematic cross-sectional view taken along the line CC in FIG. 7A. . 本発明における他の実施態様の例を示す模式図である。図8(a)は膜モジュール全体の模式図、図8(b)は図8(a)のB−B断面における模式図、図8(c)は図8(a)のC−C断面における模式図である。It is a schematic diagram which shows the example of the other embodiment in this invention. FIG. 8A is a schematic diagram of the entire membrane module, FIG. 8B is a schematic diagram in the BB cross section of FIG. 8A, and FIG. 8C is a CC cross section in FIG. It is a schematic diagram. 本発明における他の実施態様の例を示す模式図である。図9(a)は膜モジュール全体の縦断面の模式図、図9(b)は図9(a)のB−B断面における横断面の模式図、図9(c)は図9(a)のC−C断面における横断面の模式図である。It is a schematic diagram which shows the example of the other embodiment in this invention. 9A is a schematic diagram of a longitudinal section of the whole membrane module, FIG. 9B is a schematic diagram of a transverse section in the BB section of FIG. 9A, and FIG. 9C is FIG. 9A. It is a schematic diagram of the cross section in CC section. 本発明における他の実施態様の例を示す模式図である。図10(a)は膜モジュール全体の縦断面の模式図、図9(b)は図10(a)のB−B断面における横断面の模式図、図10(c)は図10(a)のC−C断面における横断面の模式図である。It is a schematic diagram which shows the example of the other embodiment in this invention. 10A is a schematic diagram of a longitudinal section of the entire membrane module, FIG. 9B is a schematic diagram of a transverse section in the BB section of FIG. 10A, and FIG. 10C is FIG. 10A. It is a schematic diagram of the cross section in CC section. 本発明における他の実施態様の例を示す模式図である。図11(a)は膜モジュール全体の縦断面の模式図、図11(b)は図11(a)のB−B断面における横断面の模式図、図11(c)は図11(a)のC−C断面における横断面の模式図である。It is a schematic diagram which shows the example of the other embodiment in this invention. 11A is a schematic diagram of a longitudinal section of the entire membrane module, FIG. 11B is a schematic diagram of a transverse section in the BB section of FIG. 11A, and FIG. 11C is FIG. 11A. It is a schematic diagram of the cross section in CC section. 本発明における、図1(a)におけるB−B断面に相当する横断面の他の実施態様の例を示す模式図である。It is a schematic diagram which shows the example of the other embodiment of the cross section equivalent to the BB cross section in Fig.1 (a) in this invention. 本発明の実施例および比較例にて膜モジュールの透水性能測定を行った装置の概略フロー図である。It is a schematic flowchart of the apparatus which performed the water-permeable performance measurement of the membrane module in the Example and comparative example of this invention.

符号の説明Explanation of symbols

100:ケース
110:透過水出口
120:エア抜き口
130:ドレン口
200:下側キャップ
210:下側キャップ本体
220:下側キャップ開口
300:上側キャップ
310:上側キャップ本体
320:上側キャップ開口
400:中空糸膜束
410:中空糸膜
420:中空糸膜保護筒
500:封止樹脂
600:分散板
610:分散板遮蔽部
620:分散板固定部
630:分散板支持部
700:締結手段
800:透過液室
1001:補助線
2001:供給水タンク
2002:温度調節装置
2003:撹拌機
2004:供給ポンプ
2005:膜モジュール
2101,2102,2103:流量調節バルブ
2201,2202,2203:圧力計
2301:流量計
100: Case 110: Permeated water outlet 120: Air vent 130: Drain port 200: Lower cap 210: Lower cap body 220: Lower cap opening 300: Upper cap 310: Upper cap body 320: Upper cap opening 400: Hollow fiber membrane bundle 410: hollow fiber membrane 420: hollow fiber membrane protective cylinder 500: sealing resin 600: dispersion plate
610: Dispersion plate shielding portion 620: Dispersion plate fixing portion 630: Dispersion plate support portion 700: Fastening means 800: Permeate chamber 1001: Auxiliary line 2001: Supply water tank 2002: Temperature adjusting device 2003: Stirrer 2004: Supply pump 2005 : Membrane modules 2101, 2102, 2103: Flow control valves 2201, 2202, 2203: Pressure gauge 2301: Flowmeter

Claims (5)

外周面に一つまたは複数の透過水出口を備える筒状ケースを備え、
前記筒状ケース内に中空糸膜束を備え、
前記中空糸膜束は、その両端部において中空糸型分離膜相互間および中空糸型分離膜と前記筒状ケースの間隙が封止され、前記筒状ケースの両端部で中空糸型分離膜内腔部が開口されており、
前記中空糸膜束と前記筒状ケースとの間隙である断面略環状の空間からなり、前記透過水出口と連通する透過液室を備え、
前記筒状ケースの内面の形状が、円錐台、底面を共有する複数の円錐台の結合体、または、底面を共有する少なくとも一つの円錐台と少なくとも一つの円柱の結合体、のいずれかの側面形状によって規定されている
ことを特徴とする内圧式中空糸型液体分離膜モジュール
A cylindrical case having one or more permeate outlets on the outer peripheral surface,
A hollow fiber membrane bundle is provided in the cylindrical case,
The hollow fiber membrane bundle is sealed between the hollow fiber type separation membranes and between the hollow fiber type separation membranes and the cylindrical case at both ends, and the hollow fiber membrane bundles are sealed in the hollow fiber type separation membranes at both ends of the cylindrical case. The cavity is open,
It comprises a substantially annular space in cross section that is a gap between the hollow fiber membrane bundle and the cylindrical case, and includes a permeate chamber that communicates with the permeate outlet,
The shape of the inner surface of the cylindrical case is any one of a truncated cone, a combination of a plurality of truncated cones sharing a bottom surface, or a combination of at least one truncated cone and at least one cylinder sharing a bottom surface. Internal pressure hollow fiber type liquid separation membrane module characterized by shape
前記筒状ケースの内面の形状が、1個の円錐台と、左記円錐台の下底面と底面を共有する1個の円柱と、左記円錐台の上底面と底面を共有する1個の円柱との結合体の側面形状によって規定されていることを特徴とする請求項1に記載の内圧式中空糸型液体分離膜モジュール。   The shape of the inner surface of the cylindrical case is one truncated cone, one column sharing the lower bottom surface and bottom surface of the left truncated cone, and one column sharing the upper bottom surface and bottom surface of the left truncated cone. 2. The internal pressure hollow fiber type liquid separation membrane module according to claim 1, which is defined by a side shape of the combined body. 前記透過水出口が、前記円錐台の下底面と底面を共有する円柱によって規定されている部分に連結する形で形成されていることを特徴とする請求項2に記載の内圧式中空糸型液体分離膜モジュール。   3. The internal pressure hollow fiber type liquid according to claim 2, wherein the permeate outlet is connected to a portion defined by a cylinder sharing a bottom surface and a bottom surface of the truncated cone. Separation membrane module. 前記筒状ケースの内面の形状が、2個の円錐台と、左記2個の円錐台の下底面に挟まれるかたちで底面を共有する1つの円柱と、左記円錐台の上底面と各々の底面を共有する2個の円柱との結合体の側面形状によって規定されていることを特徴とする請求項1に記載の内圧式中空糸型液体分離膜モジュール。   The shape of the inner surface of the cylindrical case is two truncated cones, one cylinder sharing a bottom surface sandwiched between the lower bottom surfaces of the two truncated cones on the left, the upper bottom surface of each of the left truncated cones, and each bottom surface 2. The internal pressure hollow fiber type liquid separation membrane module according to claim 1, wherein the internal pressure hollow fiber type liquid separation membrane module is defined by a side shape of a combined body with two cylinders sharing the same. 前記透過水出口が、前記2個の円錐台の下底面と底面を共有する円柱によって規定されている部分に連結する形で形成されていることを特徴とする請求項4に記載の内圧式中空糸型液体分離膜モジュール。
5. The internal pressure hollow according to claim 4, wherein the permeate outlet is formed so as to be connected to a portion defined by a cylinder sharing a bottom surface and a bottom surface of the two truncated cones. Thread type liquid separation membrane module.
JP2007061932A 2007-03-12 2007-03-12 Liquid separation membrane module Pending JP2008221109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061932A JP2008221109A (en) 2007-03-12 2007-03-12 Liquid separation membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061932A JP2008221109A (en) 2007-03-12 2007-03-12 Liquid separation membrane module

Publications (1)

Publication Number Publication Date
JP2008221109A true JP2008221109A (en) 2008-09-25

Family

ID=39840316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061932A Pending JP2008221109A (en) 2007-03-12 2007-03-12 Liquid separation membrane module

Country Status (1)

Country Link
JP (1) JP2008221109A (en)

Similar Documents

Publication Publication Date Title
KR100523778B1 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration apparatus which use the cartridge
KR101122323B1 (en) Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
JP2001269546A (en) Rack-type filter
JP6191790B1 (en) Hollow fiber membrane module and operating method thereof
JP5821838B2 (en) Hollow fiber membrane filtration device and method for cleaning hollow fiber membrane module
KR20070074653A (en) Spiral separation membrane element
US20190010067A1 (en) Bioreactor assembly
JP4498373B2 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration device using the same
US20150217214A1 (en) Filtering apparatus
KR20160080010A (en) Pressurized-type Hollow Fiber Membrane Module
JP5076569B2 (en) Liquid separation membrane module
JP2008221108A (en) Liquid separation membrane module
JP2008221109A (en) Liquid separation membrane module
JP2013212456A (en) Hollow fiber membrane module
KR101557544B1 (en) Hollow fiber membrane module
CN221027848U (en) Tandem reverse osmosis membrane water treatment device
JP2013128892A (en) Hollow fiber membrane module and washing method of the same
CN212039888U (en) Hollow fiber membrane reverse osmosis filter element assembly
Cai et al. Hollow Fibers for Reverse Osmosis and Nanofiltration
JP2019025419A (en) Separation membrane element and vessel
JP2000070683A (en) Hollow fiber membrane type permeation membrane module
JP2005329393A (en) Filtration operation method using membrane module composite body
JP2000117062A (en) Hollow fiber membrane module and its utilization
KR20190088727A (en) A pressurized membrane module with superior flow distribution of feed water and backwashing water
WO2003086592A1 (en) Hollow fiber membrane module