JP2008219879A - Leaky coaxial cable - Google Patents

Leaky coaxial cable Download PDF

Info

Publication number
JP2008219879A
JP2008219879A JP2008026856A JP2008026856A JP2008219879A JP 2008219879 A JP2008219879 A JP 2008219879A JP 2008026856 A JP2008026856 A JP 2008026856A JP 2008026856 A JP2008026856 A JP 2008026856A JP 2008219879 A JP2008219879 A JP 2008219879A
Authority
JP
Japan
Prior art keywords
coaxial cable
leaky coaxial
wire
coating layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008026856A
Other languages
Japanese (ja)
Other versions
JP4809852B2 (en
Inventor
Seiichiro Takahashi
誠一郎 高橋
Toyomitsu Asakura
豊充 朝倉
Masaomi Yamaguchi
正臣 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
East Japan Railway Co
Original Assignee
Furukawa Electric Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, East Japan Railway Co filed Critical Furukawa Electric Co Ltd
Priority to JP2008026856A priority Critical patent/JP4809852B2/en
Publication of JP2008219879A publication Critical patent/JP2008219879A/en
Application granted granted Critical
Publication of JP4809852B2 publication Critical patent/JP4809852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguides (AREA)
  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leaky coaxial cable which is highly reliably and can leak an electromagnetic field of stable strength over a length direction. <P>SOLUTION: A leaky coaxial cable is equipped with: an inner conductor; an insulator layer formed along an outer circumference of the inner conductor; an external conductor layer which is formed along an outer circumference of the insulator layer and includes slots disposed in a predetermined cycle in the length direction; an external coating layer formed along an outer circumference of the external conductor layer; and a non-metal rigid wire which is disposed within the external coating layer over the length direction and has a Young's modulus higher than that of the external coating layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、長手方向に所定の周期で配列したスロットを有する外部導体層を備えた漏洩同軸ケーブルに関するものである。   The present invention relates to a leaky coaxial cable provided with an outer conductor layer having slots arranged at a predetermined period in the longitudinal direction.

漏洩同軸ケーブルは、ケーブル内部を伝送する電気信号の一部を外部に漏洩させながら電気信号を伝送する同軸ケーブルであり、たとえば、列車や自動車などの移動体との無線通信などに使用される。漏洩同軸ケーブルには、外部導体に螺旋型のスリットを有するものや(特許文献1参照)、外部導体に長手方向にわたって所定の周期で配列したスロット(孔)を有するもの(特許文献2参照)などがある。特に、動作周波数帯をVHF帯やUHF帯とする場合には、設計の自由度が高く、漏洩させる電磁界の安定度を高くすることが可能なスロット型の漏洩同軸ケーブルが主に用いられる。   The leaky coaxial cable is a coaxial cable that transmits an electric signal while leaking a part of the electric signal transmitted inside the cable to the outside, and is used for, for example, wireless communication with a moving body such as a train or an automobile. The leaky coaxial cable has a spiral slit in the outer conductor (see Patent Document 1), and has a slot (hole) arranged in the outer conductor at a predetermined cycle in the longitudinal direction (see Patent Document 2). There is. In particular, when the operating frequency band is a VHF band or a UHF band, a slot-type leaky coaxial cable that has a high degree of design freedom and can increase the stability of the electromagnetic field to be leaked is mainly used.

また、屋外に布設する漏洩同軸ケーブルとしては、風などによって掛かる張力に耐えうるように、特許文献1に記載されるような、長手方向にわたって支持線を備えた自己支持型のものが主に用いられていた。一方、屋内などの比較的短距離間に布設するための漏洩同軸ケーブルとしては、上記の支持線を備えない、非自己支持型の漏洩同軸ケーブルなども用いられていた。   Moreover, as a leaky coaxial cable laid outside, a self-supporting type cable having a support line extending in the longitudinal direction as described in Patent Document 1 is mainly used so as to withstand the tension applied by wind or the like. It was done. On the other hand, as a leaky coaxial cable for laying in a relatively short distance such as indoors, a non-self-supporting leaky coaxial cable that does not include the above-described support wire has also been used.

特開2002−314328号公報JP 2002-314328 A 特開2003−273641号公報JP 2003-273461 A

しかしながら、従来の非自己支持型の漏洩同軸ケーブルは、支持線を備えないため、捻れが生じやすくなり、布設後に残留応力が生じやすくなる。その結果、漏洩同軸ケーブルの破断確率が高まって信頼性が低下するおそれがあった。   However, since the conventional non-self-supporting leaky coaxial cable does not include a support wire, it tends to be twisted and residual stress is likely to occur after laying. As a result, the probability of breakage of the leaky coaxial cable is increased and the reliability may be lowered.

この捻れを防止するために、漏洩同軸ケーブルの被覆層内に支持線を内蔵することも考えられるが、スロット型の漏洩同軸ケーブルの場合、金属体がスロット近傍もしくはスロット上にあると、漏洩する電磁界強度に乱れが生じる場合があるという問題があった。   In order to prevent this twisting, it is conceivable to incorporate a support line in the coating layer of the leaky coaxial cable. However, in the case of a slot-type leaky coaxial cable, if the metal body is near or on the slot, it leaks. There has been a problem that the electromagnetic field strength may be disturbed.

本発明は、上記に鑑みてなされたものであって、信頼性が高く、長手方向にわたって安定した強度の電磁界を漏洩できる漏洩同軸ケーブルを提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a leaky coaxial cable that is highly reliable and can leak an electromagnetic field having a stable strength in the longitudinal direction.

上述した課題を解決し、目的を達成するために、本発明に係る漏洩同軸ケーブルは、内部導体と、前記内部導体の外周に形成された絶縁体層と、前記絶縁体層の外周に形成され、長手方向に所定の周期で配列したスロットを有する外部導体層と、前記外部導体層の外周に形成された外部被覆層と、前記外部被覆層内に長手方向にわたって配設された該外部被覆層よりも高いヤング率を有する非金属の剛性線材と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a leaky coaxial cable according to the present invention is formed with an inner conductor, an insulator layer formed on the outer periphery of the inner conductor, and an outer periphery of the insulator layer. An outer conductor layer having slots arranged in a predetermined cycle in the longitudinal direction, an outer coating layer formed on the outer periphery of the outer conductor layer, and the outer coating layer disposed in the outer coating layer in the longitudinal direction. And a non-metallic rigid wire having a higher Young's modulus.

また、本発明に係る漏洩同軸ケーブルは、上記の発明において、前記外部導体層が有するスロットは、該外部導体層の外周方向の180度以上の角度にわたって形成されることを特徴とする。   The leaky coaxial cable according to the present invention is characterized in that, in the above invention, the slot of the outer conductor layer is formed over an angle of 180 degrees or more in the outer peripheral direction of the outer conductor layer.

また、本発明に係る漏洩同軸ケーブルは、上記の発明において、前記剛性線材は、絶縁体からなることを特徴とする。   The leaky coaxial cable according to the present invention is characterized in that, in the above invention, the rigid wire is made of an insulator.

また、本発明に係る漏洩同軸ケーブルは、上記の発明において、前記剛性線材は、繊維強化樹脂からなることを特徴とする。   The leaky coaxial cable according to the present invention is characterized in that, in the above invention, the rigid wire is made of a fiber reinforced resin.

また、本発明に係る漏洩同軸ケーブルは、上記の発明において、前記剛性線材は、前記内部導体を挟んで対向する位置に2本配設されることを特徴とする。   Moreover, the leaky coaxial cable according to the present invention is characterized in that, in the above invention, two of the rigid wire rods are disposed at positions facing each other with the inner conductor interposed therebetween.

また、本発明に係る漏洩同軸ケーブルは、上記の発明において、支持線芯線と該支持線芯線の外周に形成された支持線被覆層とを有し前記外部被覆層の外側に長手方向にわたって配設された支持線と、前記支持線と前記外部被覆層とを接続する首部とをさらに備えることを特徴とする。   The leaky coaxial cable according to the present invention includes a support wire core wire and a support wire coating layer formed on an outer periphery of the support wire core wire in the above invention, and is disposed outside the outer coating layer in a longitudinal direction. And a neck portion connecting the support line and the outer covering layer.

本発明に係る漏洩同軸ケーブルは、外部被覆層内に長手方向にわたって配設された該外部被覆層よりも高いヤング率を有する非金属の剛性線材を備えるので、捻れと漏洩電磁界の乱れが同時に抑制されるため、信頼性が高く、長手方向にわたって安定した強度の電磁界を漏洩できるという効果を奏する。   The leaky coaxial cable according to the present invention includes a non-metallic rigid wire having a Young's modulus higher than that of the outer cover layer disposed in the longitudinal direction in the outer cover layer, so that twisting and disturbance of the leakage electromagnetic field are simultaneously caused. Since it is suppressed, there is an effect that the electromagnetic field with high reliability and stable strength over the longitudinal direction can be leaked.

以下に、図面を参照して本発明に係る漏洩同軸ケーブルの実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a leaky coaxial cable according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る漏洩同軸ケーブルを模式的に表した断面概略図である。また、図2は、図1に示す漏洩同軸ケーブルの側面概略図である。図1、2に示すように、本実施の形態1に係る漏洩同軸ケーブル10は、内部導体1と、内部導体1の外周に形成された絶縁体層2と、絶縁体層2の外周に形成された外部導体層3と、外部導体層3の外周に形成された外部被覆層4と、外部被覆層4内に長手方向にわたって配設された剛性線材5とを備え、さらに、外部被覆層4の表面に長手方向にわたって白色のストライプ6が形成されている。以下、具体的に説明する。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view schematically showing a leaky coaxial cable according to Embodiment 1 of the present invention. FIG. 2 is a schematic side view of the leaky coaxial cable shown in FIG. As shown in FIGS. 1 and 2, the leaky coaxial cable 10 according to the first embodiment is formed on the inner conductor 1, the insulator layer 2 formed on the outer periphery of the inner conductor 1, and the outer periphery of the insulator layer 2. The outer conductor layer 3, the outer coating layer 4 formed on the outer periphery of the outer conductor layer 3, and the rigid wire 5 disposed in the outer coating layer 4 in the longitudinal direction. A white stripe 6 is formed on the surface of the surface in the longitudinal direction. This will be specifically described below.

内部導体1は、導体抵抗が小さく、伝送損失特性が良好な銅からなる中空のパイプであり、外径は約8mmである。絶縁体層2は、絶縁性が良好な中空のポリエチレンパイプとこのポリエチレンパイプを内周側から支持するポリエチレン紐とで構成され、外径は約20mmである。   The inner conductor 1 is a hollow pipe made of copper having low conductor resistance and good transmission loss characteristics, and has an outer diameter of about 8 mm. The insulator layer 2 is composed of a hollow polyethylene pipe with good insulation and a polyethylene string that supports the polyethylene pipe from the inner peripheral side, and has an outer diameter of about 20 mm.

外部導体層3は、ラミネート加工したひだ付きのアルミニウムのテープを絶縁体層2の外円周に沿って縦巻きにしたものである。図3は、図1に示す漏洩同軸ケーブル10から外部被覆層4を除去し、外部導体層3を露出させた状態を示す断面斜視概略図である。図3に示すように、外部導体層3は、長手方向に所定の周期で配列した矩形のスロット3aを有する。すなわち、この漏洩同軸ケーブル10はスロット型の漏洩同軸ケーブルである。矩形のスロット3aの長さ、幅、周期および長手方向に対する傾斜角は、伝送信号のうちの漏洩させる搬送波周波数および漏洩させる電磁界強度などに応じて適宜設計されている。また、スロット3aは、外部導体層3の外周方向の180度以上、例えば、200度前後の角度θにわたって形成されているので、この漏洩同軸ケーブル10は、比較的に高い強度の電磁界を漏洩させることが可能である。   The outer conductor layer 3 is a laminated pleated aluminum tape which is wound vertically along the outer circumference of the insulator layer 2. FIG. 3 is a schematic cross-sectional perspective view showing a state in which the outer covering layer 4 is removed from the leaky coaxial cable 10 shown in FIG. 1 and the outer conductor layer 3 is exposed. As shown in FIG. 3, the outer conductor layer 3 has rectangular slots 3a arranged at a predetermined cycle in the longitudinal direction. That is, the leaky coaxial cable 10 is a slot-type leaky coaxial cable. The length, width, period and inclination angle of the rectangular slot 3a with respect to the longitudinal direction are appropriately designed according to the carrier frequency to be leaked and the electromagnetic field strength to be leaked in the transmission signal. Further, since the slot 3a is formed over an angle θ of 180 degrees or more in the outer circumferential direction of the outer conductor layer 3, for example, around 200 degrees, the leaky coaxial cable 10 leaks an electromagnetic field having a relatively high strength. It is possible to make it.

また、外部被覆層4は、カーボンを含有した黒色ポリエチレンからなり、屋外での使用に耐えうる耐水性と耐候性とを実現している。なお、外部被覆層4の外径は約30mmである。   The outer coating layer 4 is made of black polyethylene containing carbon and realizes water resistance and weather resistance that can withstand outdoor use. The outer diameter of the outer coating layer 4 is about 30 mm.

そして、剛性線材5は、外部被覆層4の厚さ方向の中央に、長手方向にわたって配設されている。この剛性線材5は、外部被覆層4よりも高いヤング率を有する非金属の材料からなるので、漏洩同軸ケーブル10の捻り剛性を高めて捻れが発生するのを抑制し、漏洩同軸ケーブル10の信頼性を高いものとする。特に、図1に示すように、剛性線材5は、内部導体1を挟んで対向する位置に2本配設されているので、捻り剛性を高めつつ、漏洩同軸ケーブル10を、2つの剛性線材5を含む面と直角の方向に曲げる際には、過度の力を掛けなくても容易に曲げることができる。   And the rigid wire 5 is arrange | positioned over the longitudinal direction in the center of the thickness direction of the outer coating layer 4. Since the rigid wire 5 is made of a non-metallic material having a Young's modulus higher than that of the outer coating layer 4, the torsional rigidity of the leaky coaxial cable 10 is increased to suppress the occurrence of torsion, and the reliability of the leaky coaxial cable 10 is improved. High quality. In particular, as shown in FIG. 1, two rigid wire rods 5 are arranged at positions facing each other with the inner conductor 1 interposed therebetween, so that the leaky coaxial cable 10 is connected to the two rigid wire rods 5 while increasing torsional rigidity. When bending in a direction perpendicular to the surface including the, it can be easily bent without applying excessive force.

また、この剛性線材5は、非金属の材料からなるので、金属の材料からなる場合に比較して極めて電気伝導度が低い。そのため、漏洩同軸ケーブルから漏洩される電磁界の強度を乱す恐れは極めて少ない。図4は、漏洩同軸ケーブル10を垂直方向から見た、スロット3aの周方向投影角度を示す断面概略図である。図4に示すように、漏洩同軸ケーブル10において、スロット3aの周方向投影角度は、180度以上である角度θにわたるので、外部被覆層4内であって内部導体1を挟んで対向する位置に剛性線材5を2本配設する場合、どの方向に配設してもスロット3aの表面上に位置する。このとき、剛性線材5が金属材料である場合には、スロット3aと剛性線材5とが相互作用を起こして漏洩同軸ケーブルから漏洩される電磁界の強度に乱れが生じる場合がある。しかし、剛性線材5は非金属の材料であり、金属材料に比較して電気伝導度が極めて低いので、スロット3aと剛性線材5とが相互作用を起こして漏洩同軸ケーブル10から漏洩される電磁界の強度に乱れが生じる恐れは極めて少ない。   Further, since the rigid wire 5 is made of a non-metallic material, the electric conductivity is extremely low as compared with the case of being made of a metal material. Therefore, there is very little risk of disturbing the strength of the electromagnetic field leaked from the leaky coaxial cable. FIG. 4 is a schematic cross-sectional view showing the circumferential projection angle of the slot 3a when the leaky coaxial cable 10 is viewed from the vertical direction. As shown in FIG. 4, in the leaky coaxial cable 10, the circumferential projection angle of the slot 3 a extends over an angle θ that is 180 degrees or more, so that it is in the outer coating layer 4 at a position facing the inner conductor 1. When two rigid wire rods 5 are disposed, the rigid wire rod 5 is positioned on the surface of the slot 3a in any direction. At this time, when the rigid wire 5 is a metal material, the slot 3a and the rigid wire 5 may interact with each other to disturb the strength of the electromagnetic field leaked from the leaky coaxial cable. However, since the rigid wire 5 is a non-metallic material and has an extremely low electric conductivity as compared with the metal material, the electromagnetic field leaked from the leaky coaxial cable 10 due to the interaction between the slot 3a and the rigid wire 5. There is very little risk of disturbance in the strength.

なお、この剛性線材5は、絶縁体からなるものであれば、漏洩される電磁界の強度の乱れが確実に防止されるので好ましく、繊維強化樹脂(FRP)からなるものであれば、絶縁性が十分であり、ヤング率も十分に高いので好ましく、繊維強化熱可塑性樹脂(FRTP)であれば、さらに成型が容易であるので好ましい。FRPまたはFRTPとしては、たとえば、強化繊維としてガラス繊維、炭素繊維、ポリエステル繊維、アラミド繊維、ポリアミド繊維などを適宜用い、マトリックスとしてエポキシ樹脂、不飽和ポリエステル樹脂、ポリアミド樹脂、フェノール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂などを適宜用いたものが使用される。   In addition, if this rigid wire 5 consists of an insulator, since disturbance of the intensity | strength of the electromagnetic field to leak is reliably prevented, it is preferable if it consists of fiber reinforced resin (FRP). Is sufficient because the Young's modulus is sufficiently high, and a fiber-reinforced thermoplastic resin (FRTP) is preferable because it is easier to mold. As FRP or FRTP, for example, glass fiber, carbon fiber, polyester fiber, aramid fiber, polyamide fiber, etc. are appropriately used as reinforcing fiber, and epoxy resin, unsaturated polyester resin, polyamide resin, phenol resin, polyethylene resin, polypropylene as matrix A resin, polyethylene terephthalate resin or the like appropriately used is used.

なお、図1、2に示すように、ストライプ6は、2つの剛性線材5を含む面と直角の方向、すなわち漏洩同軸ケーブル10を曲げやすい方向に形成されている。その結果、作業者は、漏洩同軸ケーブル10を曲げたりドラムに巻きつけたりする際の曲げ方向を、外部から目視によって容易に確認できるので、作業性が向上する。   As shown in FIGS. 1 and 2, the stripe 6 is formed in a direction perpendicular to the surface including the two rigid wires 5, that is, in a direction in which the leaky coaxial cable 10 can be easily bent. As a result, the operator can easily confirm the bending direction when the leaky coaxial cable 10 is bent or wound around the drum from the outside, so that workability is improved.

以上説明したように、本実施の形態1に係る漏洩同軸ケーブル10は、外部被覆層4内に長手方向にわたって配設された、外部被覆層4よりも高いヤング率を有する非金属の剛性線材5を備えるので、捻れと漏洩電磁界の強度の乱れが同時に抑制されるため、信頼性が高く、長手方向にわたって安定した強度の電磁界を漏洩できる。また、この漏洩同軸ケーブル10は、外径が約30mmと細径であるとともに、重量は約1kg/mと軽量であり、取り回しが容易で布設しやすいものである。   As described above, the leaky coaxial cable 10 according to the first embodiment has the nonmetallic rigid wire 5 having a higher Young's modulus than the outer covering layer 4 disposed in the outer covering layer 4 in the longitudinal direction. Since the twisting and the disturbance of the strength of the leakage electromagnetic field are suppressed at the same time, the electromagnetic field with high reliability and stable strength can be leaked in the longitudinal direction. Further, the leaky coaxial cable 10 has an outer diameter as small as about 30 mm and a weight as light as about 1 kg / m, and is easy to handle and easy to lay.

以下、本発明の実施例と比較例によって本発明をさらに詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples and comparative examples. Note that the present invention is not limited to the embodiments.

本発明の実施例1として、図1〜3に示す構造を有し、FRPからなる直径2mmの断面円形の剛性線材を備える漏洩同軸ケーブルを作製した。なお、この剛性線材は、ガラス繊維と不飽和ポリエステル樹脂とを含み、ヤング率は25N/mm2であった。一方、比較例として、図1〜3に示す構造を有し、亜鉛メッキ鋼線からなる直径2mm断面円形の線材を備える漏洩同軸ケーブルを作製した。さらに、参考例として、剛性線材を備えないが、その他については図1〜3に示すものと同様の構造を有する漏洩同軸ケーブルを作製した。そして、実施例1、比較例、参考例の漏洩同軸ケーブルをコンクリート上に展延し、周波数が400MHzのCW信号波を伝送しながら、各漏洩同軸ケーブルの直上1.5mの位置に設置した半波長ダイポールアンテナによって、各漏洩同軸ケーブルから漏洩される電磁界強度の受信レベルを測定した。 As Example 1 of the present invention, a leaky coaxial cable having the structure shown in FIGS. 1 to 3 and including a rigid wire having a circular cross section with a diameter of 2 mm made of FRP was produced. The rigid wire material contained glass fibers and unsaturated polyester resin, and the Young's modulus was 25 N / mm 2 . On the other hand, as a comparative example, a leaky coaxial cable having a structure shown in FIGS. 1 to 3 and including a wire rod having a circular shape with a diameter of 2 mm made of a galvanized steel wire was produced. Furthermore, as a reference example, a leaky coaxial cable having a structure similar to that shown in FIGS. And the leaky coaxial cable of Example 1, the comparative example, and the reference example was spread on concrete, and the CW signal wave having a frequency of 400 MHz was transmitted, and the half was installed at a position 1.5 m directly above each leaky coaxial cable. The reception level of the electromagnetic field intensity leaked from each leaky coaxial cable was measured by the wavelength dipole antenna.

図5〜7は、それぞれ参考例、実施例1、および比較例の漏洩同軸ケーブルから漏洩された電磁界強度の受信レベルを示す図であり、横軸は半波長ダイポールアンテナの漏洩同軸ケーブルの長手方向に対する位置をそれぞれ示し、縦軸はその位置での受信レベルをそれぞれ示す。なお、半波長ダイポールアンテナの受信偏波の方向は、漏洩同軸ケーブルの周方向電界偏波成分の受信とした。   FIGS. 5-7 is a figure which shows the receiving level of the electromagnetic field intensity | strength leaked from the leaky coaxial cable of a reference example, Example 1, and a comparative example, respectively, and a horizontal axis is the length of the leaky coaxial cable of a half-wavelength dipole antenna. The position with respect to the direction is shown, and the vertical axis shows the reception level at that position. The direction of the received polarization of the half-wave dipole antenna is the reception of the circumferential electric field polarization component of the leaky coaxial cable.

図5に示すように、参考例の漏洩同軸ケーブルは、線材が何ら配設されていないので、長手方向にわたって安定した受信レベルが得られた。一方、図6に示すように、実施例1の漏洩同軸ケーブルは、FRPからなる剛性線材を備えるので、参考例と同様に、長手方向にわたって安定した受信レベルが得られた。しかしながら、図7に示すように、比較例の漏洩同軸ケーブルは、亜鉛メッキ鋼線からなる剛性線材を備えるので、得られた受信レベルは長手方向において変動するものとなった。   As shown in FIG. 5, in the leaky coaxial cable of the reference example, since no wire material is disposed, a stable reception level is obtained in the longitudinal direction. On the other hand, as shown in FIG. 6, the leaky coaxial cable of Example 1 includes a rigid wire made of FRP, and thus a stable reception level in the longitudinal direction was obtained as in the reference example. However, as shown in FIG. 7, the leaky coaxial cable of the comparative example includes a rigid wire made of a galvanized steel wire, and thus the obtained reception level fluctuates in the longitudinal direction.

(実施の形態2)
つぎに、本発明の実施の形態2について説明する。本実施の形態2に係る漏洩同軸ケーブルは、長手方向にわたって支持線を備えた自己支持型構造を有する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. The leaky coaxial cable according to the second embodiment has a self-supporting structure having a support line in the longitudinal direction.

図8は、本発明の実施の形態2に係る漏洩同軸ケーブルを模式的に表した断面概略図である。図8において、図1と同一又は対応する構成要素については、図1と同じ符号を付している。図8に示すように、本実施の形態2に係る漏洩同軸ケーブル20は、漏洩同軸ケーブル10と同様の内部導体1と、絶縁体層2と、スロット3aを有する外部導体層3と、外部被覆層4と、剛性線材5とを備えている。なお、図8では、説明上、図4と同様にスロット3aの周方向投影角度を示している。スロット3aの周方向投影角度は、180度以上である角度θである。   FIG. 8 is a schematic cross-sectional view schematically showing a leaky coaxial cable according to Embodiment 2 of the present invention. 8, the same or corresponding components as those in FIG. 1 are denoted by the same reference numerals as those in FIG. As shown in FIG. 8, the leaky coaxial cable 20 according to the second embodiment includes an inner conductor 1, an insulator layer 2, an outer conductor layer 3 having a slot 3 a, and an outer sheath, similar to the leaky coaxial cable 10. A layer 4 and a rigid wire 5 are provided. 8, for the sake of explanation, the circumferential projection angle of the slot 3a is shown as in FIG. The circumferential projection angle of the slot 3a is an angle θ that is 180 degrees or more.

漏洩同軸ケーブル20は、さらに、外部被覆層4の外側近傍に長手方向にわたって配設された支持線7と、支持線7と外部被覆層4とを接続する首部8とを備えている。支持線7は、支持線芯線7aと、支持線芯線7aの外周に形成された支持線被覆層7bとを有する。また、図9は、漏洩同軸ケーブル20の斜視概略図である。図9に示すように、首部8は、漏洩同軸ケーブル20の長手方向にわたって離隔して複数個設けられている。したがって、漏洩同軸ケーブル20は、いわゆるSSW型の自己支持型構造を有している。なお、首部8間の隙間は窓部と呼ばれる。   The leaky coaxial cable 20 further includes a support wire 7 disposed in the longitudinal direction in the vicinity of the outside of the outer covering layer 4 and a neck portion 8 connecting the support wire 7 and the outer covering layer 4. The support wire 7 includes a support wire core wire 7a and a support wire covering layer 7b formed on the outer periphery of the support wire core wire 7a. FIG. 9 is a schematic perspective view of the leaky coaxial cable 20. As shown in FIG. 9, a plurality of neck portions 8 are provided apart from each other in the longitudinal direction of the leaky coaxial cable 20. Therefore, the leaky coaxial cable 20 has a so-called SSW type self-supporting structure. The gap between the neck portions 8 is called a window portion.

支持線芯線7aは、7/1.4の鋼撚り線からなり、その外径は4.2mmである。なお、支持線芯線7aとして、たとえばFRP、FRTPなどの非金属材や、鋼線、鋼撚り線などの金属材からなるものを用いてもよい。また、支持線被覆層7bおよび首部8は、外部被覆層4と同様に、カーボンを含有した黒色ポリエチレンからなり、耐水性と耐候性とを有する。なお、支持線7の外径は約9mmである。また、首部8の幅は約3mm、高さは約3mmである。   The supporting wire core wire 7a consists of a 7 / 1.4 stranded steel wire, and its outer diameter is 4.2 mm. In addition, as the support wire core wire 7a, for example, a non-metallic material such as FRP or FRTP, or a metal material such as a steel wire or a steel stranded wire may be used. Further, like the outer coating layer 4, the support wire coating layer 7 b and the neck portion 8 are made of black polyethylene containing carbon and have water resistance and weather resistance. In addition, the outer diameter of the support wire 7 is about 9 mm. The neck 8 has a width of about 3 mm and a height of about 3 mm.

この漏洩同軸ケーブル20は、漏洩同軸ケーブル10と同様に、剛性線材5を備えるので、捻れと漏洩電磁界の乱れが同時に抑制されるため、信頼性が高く、長手方向にわたって安定した強度の電磁界を漏洩できる。さらに、この漏洩同軸ケーブル20は、支持線7を備えるので、架空布設する際に別途吊架線を用いる必要がなく布設が容易であるとともに、捻れが一層抑制される。なお、支持線7は、首部8によってスロット3aから離隔しているため、支持線芯線7aが金属材であっても、漏洩する電磁界を乱すおそれもない。さらに、漏洩同軸ケーブル20においては、スロット3aの形成方向が、支持線7の配置方向と重ならないようになっているため、漏洩する電磁界の乱れは一層確実に抑制される。   Like the leaky coaxial cable 10, the leaky coaxial cable 20 includes the rigid wire 5. Therefore, since the twist and the disturbance of the leak electromagnetic field are suppressed at the same time, the electromagnetic field is highly reliable and has a stable strength in the longitudinal direction. Can be leaked. Further, since the leaky coaxial cable 20 includes the support wire 7, it is not necessary to use a separate suspension wire when laying aerial, and the laying is easy and twisting is further suppressed. Since the support wire 7 is separated from the slot 3a by the neck portion 8, there is no possibility of disturbing the leaked electromagnetic field even if the support wire core wire 7a is a metal material. Furthermore, in the leaky coaxial cable 20, since the formation direction of the slot 3a does not overlap the arrangement direction of the support wire 7, the disturbance of the leaking electromagnetic field is more reliably suppressed.

また、漏洩同軸ケーブル20は、剛性線材5が、内部導体1と支持線芯線7aとを結んだ線上に配置されているので、ドラムに巻き取りやすくなっている。また、漏洩同軸ケーブル20は、剛性線材5を2本備えているため、布設時に漏洩同軸ケーブル20の端末で首部8を切り裂いて支持線7を切り離した場合でも、捻れが抑制されるため、高い信頼性を維持できる。   Further, the leaky coaxial cable 20 is easily wound around the drum because the rigid wire 5 is disposed on the line connecting the inner conductor 1 and the support wire core wire 7a. In addition, since the leaky coaxial cable 20 includes the two rigid wire rods 5, even when the neck portion 8 is cut off at the end of the leaky coaxial cable 20 at the time of laying and the support wire 7 is cut off, the twist is suppressed, so that it is high. Reliability can be maintained.

なお、本実施の形態2に係る漏洩同軸ケーブル20は、首部8が長手方向にわたって離隔して複数個設けられているSSW型の自己支持型構造を有しているが、本発明にはこれに限られず、漏洩同軸ケーブルを、長手方向にわたって連続する首部を設けた、窓部のないSSD型としてもよい。   The leaky coaxial cable 20 according to the second embodiment has an SSW type self-supporting structure in which a plurality of neck portions 8 are provided apart in the longitudinal direction. However, the present invention is not limited to this, and the leaky coaxial cable may be an SSD type without a window portion provided with a neck portion continuous in the longitudinal direction.

つぎに、本発明の実施例2として、図8に示す構造を有し、実施例1と同様のFRPからなる直径2mmの断面円形の剛性線材を備える漏洩同軸ケーブルを作製した。そして、この実施例2の漏洩同軸ケーブルをコンクリート上に展延し、実施例1の場合と同様の方法で、漏洩同軸ケーブルから漏洩される電磁界強度の受信レベルを測定した。   Next, as Example 2 of the present invention, a leaky coaxial cable having the structure shown in FIG. 8 and comprising a rigid wire with a circular cross section of 2 mm in diameter and made of the same FRP as in Example 1 was produced. Then, the leaky coaxial cable of Example 2 was spread on concrete, and the reception level of the electromagnetic field strength leaked from the leaky coaxial cable was measured by the same method as in Example 1.

図10は、実施例2の漏洩同軸ケーブルから漏洩された電磁界強度の受信レベルを示す図であり、横軸は半波長ダイポールアンテナの漏洩同軸ケーブルの長手方向に対する位置をそれぞれ示し、縦軸はその位置での受信レベルをそれぞれ示す。図10に示すように、実施例2の漏洩同軸ケーブルは、実施例1と同様に、長手方向にわたって安定した受信レベルが得られた。   FIG. 10 is a diagram illustrating the reception level of the electromagnetic field intensity leaked from the leaky coaxial cable of the second embodiment, where the horizontal axis indicates the position of the half-wave dipole antenna in the longitudinal direction of the leaky coaxial cable, and the vertical axis indicates The reception level at that position is shown. As shown in FIG. 10, the leaky coaxial cable of Example 2 obtained a stable reception level in the longitudinal direction as in Example 1.

なお、上記実施の形態においては、外部導体層が有するスロットは、該外部導体層の外周方向の180度以上の角度にわたって形成されるものであった。しかし、スロットが180度未満の角度にわたって形成される漏洩同軸ケーブルであっても、本発明に係る剛性線材を備えるものであれば、剛性線材がたとえばスロットの近傍に配設されても、漏洩される電磁界強度の乱れは確実に防止される。また、スロットの位置にかかわらず剛性線材を任意の位置に配設できるので、剛性線材の位置や数などを自由に設計できる。また、実施の形態2のような自己支持型構造の漏洩同軸ケーブルとする場合において、剛性線材を1本だけ配設する場合は、内部導体を挟んで支持線と反対側の位置に配設することが捻れ防止上好ましい。   In the above embodiment, the slot of the outer conductor layer is formed over an angle of 180 degrees or more in the outer peripheral direction of the outer conductor layer. However, even a leaky coaxial cable in which the slot is formed over an angle of less than 180 degrees is provided with the rigid wire according to the present invention, even if the rigid wire is disposed in the vicinity of the slot. The disturbance of the electromagnetic field strength is surely prevented. Further, since the rigid wire can be disposed at any position regardless of the position of the slot, the position and number of the rigid wires can be freely designed. Further, in the case where a leaky coaxial cable having a self-supporting structure as in the second embodiment is provided, when only one rigid wire is provided, it is provided at a position opposite to the support wire with the internal conductor interposed therebetween. This is preferable for preventing twisting.

本発明の実施の形態1に係る漏洩同軸ケーブルを模式的に表した断面概略図である。It is the cross-sectional schematic which represented typically the leaky coaxial cable which concerns on Embodiment 1 of this invention. 図1に示す漏洩同軸ケーブルの側面概略図である。FIG. 2 is a schematic side view of the leaky coaxial cable shown in FIG. 1. 図1に示す漏洩同軸ケーブルから外部被覆層を除去し、外部導体層を露出させた状態を示す断面斜視概略図である。It is a cross-sectional perspective schematic diagram which shows the state which removed the outer coating layer from the leaky coaxial cable shown in FIG. 1, and exposed the outer conductor layer. 図1に示す漏洩同軸ケーブルを垂直方向から見た、スロットの周方向投影角度を示す断面概略図である。It is the cross-sectional schematic which shows the circumferential direction projection angle of the slot which looked at the leaky coaxial cable shown in FIG. 1 from the orthogonal | vertical direction. 本発明の参考例の漏洩同軸ケーブルから漏洩された電磁界強度の受信レベルを示す図である。It is a figure which shows the reception level of the electromagnetic field intensity leaked from the leaky coaxial cable of the reference example of this invention. 本発明の実施例1の漏洩同軸ケーブルから漏洩された電磁界強度の受信レベルを示す図である。It is a figure which shows the reception level of the electromagnetic field intensity leaked from the leaky coaxial cable of Example 1 of this invention. 本発明の比較例の漏洩同軸ケーブルから漏洩された電磁界強度の受信レベルを示す図である。It is a figure which shows the reception level of the electromagnetic field intensity leaked from the leaky coaxial cable of the comparative example of this invention. 本発明の実施の形態2に係る漏洩同軸ケーブルを模式的に表した断面概略図である。It is the cross-sectional schematic which represented typically the leaky coaxial cable which concerns on Embodiment 2 of this invention. 図8に示す漏洩同軸ケーブルの斜視概略図である。FIG. 9 is a schematic perspective view of the leaky coaxial cable shown in FIG. 8. 本発明の実施例2の漏洩同軸ケーブルから漏洩された電磁界強度の受信レベルを示す図である。It is a figure which shows the reception level of the electromagnetic field intensity leaked from the leaky coaxial cable of Example 2 of this invention.

符号の説明Explanation of symbols

1 内部導体
2 絶縁体層
3 外部導体層
3a スロット
4 外部被覆層
5 剛性線材
6 ストライプ
7 支持線
7a 支持線芯線
7b 支持線被覆層
8 首部
10、20 漏洩同軸ケーブル
DESCRIPTION OF SYMBOLS 1 Inner conductor 2 Insulator layer 3 Outer conductor layer 3a Slot 4 Outer coating layer 5 Rigid wire 6 Stripe 7 Support wire 7a Support wire core wire 7b Support wire coating layer 8 Neck part 10, 20 Leaky coaxial cable

Claims (6)

内部導体と、
前記内部導体の外周に形成された絶縁体層と、
前記絶縁体層の外周に形成され、長手方向に所定の周期で配列したスロットを有する外部導体層と、
前記外部導体層の外周に形成された外部被覆層と、
前記外部被覆層内に長手方向にわたって配設された該外部被覆層よりも高いヤング率を有する非金属の剛性線材と、
を備えることを特徴とする漏洩同軸ケーブル。
An inner conductor,
An insulator layer formed on the outer periphery of the inner conductor;
An outer conductor layer formed on the outer periphery of the insulator layer and having slots arranged at a predetermined period in the longitudinal direction;
An outer covering layer formed on the outer periphery of the outer conductor layer;
A non-metallic rigid wire having a higher Young's modulus than the outer coating layer disposed in the longitudinal direction in the outer coating layer;
A leaky coaxial cable comprising:
前記外部導体層が有するスロットは、該外部導体層の外周方向の180度以上の角度にわたって形成されることを特徴とする請求項1に記載の漏洩同軸ケーブル。   2. The leaky coaxial cable according to claim 1, wherein the slot of the outer conductor layer is formed over an angle of 180 degrees or more in an outer peripheral direction of the outer conductor layer. 前記剛性線材は、絶縁体からなることを特徴とする請求項1または2に記載の漏洩同軸ケーブル。   The leaky coaxial cable according to claim 1, wherein the rigid wire is made of an insulator. 前記剛性線材は、繊維強化樹脂からなることを特徴とする請求項1〜3のいずれか1つに記載の漏洩同軸ケーブル。   The leaky coaxial cable according to claim 1, wherein the rigid wire is made of a fiber reinforced resin. 前記剛性線材は、前記内部導体を挟んで対向する位置に2本配設されることを特徴とする請求項1〜4のいずれか1つに記載の漏洩同軸ケーブル。   5. The leaky coaxial cable according to claim 1, wherein two of the rigid wire rods are disposed at positions facing each other with the inner conductor interposed therebetween. 支持線芯線と該支持線芯線の外周に形成された支持線被覆層とを有し前記外部被覆層の外側に長手方向にわたって配設された支持線と、前記支持線と前記外部被覆層とを接続する首部とをさらに備えることを特徴とする請求項1〜5のいずれか1つに記載の漏洩同軸ケーブル。   A support wire having a support wire core wire and a support wire coating layer formed on the outer periphery of the support wire core wire, and being disposed over the outer coating layer in the longitudinal direction, and the support wire and the outer coating layer. The leaky coaxial cable according to claim 1, further comprising a neck portion to be connected.
JP2008026856A 2007-02-06 2008-02-06 Leaky coaxial cable Active JP4809852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026856A JP4809852B2 (en) 2007-02-06 2008-02-06 Leaky coaxial cable

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007027283 2007-02-06
JP2007027283 2007-02-06
JP2008026856A JP4809852B2 (en) 2007-02-06 2008-02-06 Leaky coaxial cable

Publications (2)

Publication Number Publication Date
JP2008219879A true JP2008219879A (en) 2008-09-18
JP4809852B2 JP4809852B2 (en) 2011-11-09

Family

ID=39839296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026856A Active JP4809852B2 (en) 2007-02-06 2008-02-06 Leaky coaxial cable

Country Status (1)

Country Link
JP (1) JP4809852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489304A (en) * 2014-10-13 2016-04-13 武陟县电业总公司 High-conductivity power cable

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104848A (en) * 1976-02-28 1977-09-02 Showa Electric Wire & Cable Co Leakage coaxial cable
JPH02145809U (en) * 1989-05-12 1990-12-11
JPH09139123A (en) * 1995-11-13 1997-05-27 Haseko Corp Coaxial cable and structure of branch part
JP2002314328A (en) * 2001-02-07 2002-10-25 Showa Electric Wire & Cable Co Ltd Spiral leakage coaxial cable
JP2004163501A (en) * 2002-11-11 2004-06-10 Ube Nitto Kasei Co Ltd Drop optical fiber cable
JP2007273247A (en) * 2006-03-31 2007-10-18 Swcc Showa Cable Systems Co Ltd Communication cable, and laying method of communication cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104848A (en) * 1976-02-28 1977-09-02 Showa Electric Wire & Cable Co Leakage coaxial cable
JPH02145809U (en) * 1989-05-12 1990-12-11
JPH09139123A (en) * 1995-11-13 1997-05-27 Haseko Corp Coaxial cable and structure of branch part
JP2002314328A (en) * 2001-02-07 2002-10-25 Showa Electric Wire & Cable Co Ltd Spiral leakage coaxial cable
JP2004163501A (en) * 2002-11-11 2004-06-10 Ube Nitto Kasei Co Ltd Drop optical fiber cable
JP2007273247A (en) * 2006-03-31 2007-10-18 Swcc Showa Cable Systems Co Ltd Communication cable, and laying method of communication cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489304A (en) * 2014-10-13 2016-04-13 武陟县电业总公司 High-conductivity power cable

Also Published As

Publication number Publication date
JP4809852B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US9892820B2 (en) Differential signal transmission cable having a metal foil shield conductor
US10079418B2 (en) Flexible terahertz waveguide comprising a dielectric waveguide core which is supported within a segmented tube by dielectric threads
BR102013016388A2 (en) Antenna Mounting
EP2629363A1 (en) Antenna integrated harness
JP2008269799A (en) Parallel flexible cable, and earphone antenna
AU2013101266A4 (en) Cable
US20230042562A1 (en) Optical fiber cable and method of manufacturing optical fiber cable
US10435152B1 (en) Airfoil cables for use with drones
EP1351083A2 (en) Optical fiber cable assembly with interstitial support members
US20130264112A1 (en) Cable for use in concentrated solar power installation
KR100217717B1 (en) Optical cable
JP2011249022A (en) Photoelectricity composite cable
JP4809852B2 (en) Leaky coaxial cable
JP2015129837A (en) Optical cable and manufacturing method thereof
KR20220140381A (en) Optical cable
JP2015099750A (en) Conductive cable using carbon fibers
CN211857010U (en) Large-span aerial optical fiber ribbon optical cable
KR100994264B1 (en) Leaky coaxial cable capable for adjusting resonace frequency and manufacturing thereof
CN103531881A (en) Novel whip antenna and manufacturing method thereof
CN212011212U (en) Coaxial cable with good mechanical property
CN208045147U (en) A kind of high temperature resistant radioresistance naval vessel fireproof cable
JP6246032B2 (en) Method for manufacturing antenna array
JP2008220161A (en) Cable laying method and structure of leakage coaxial cable
JP4268084B2 (en) Leaky coaxial cable
KR20200112242A (en) Optical fiber and power line composite cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4809852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250