JP2008218787A - Image pick-up device - Google Patents

Image pick-up device Download PDF

Info

Publication number
JP2008218787A
JP2008218787A JP2007055388A JP2007055388A JP2008218787A JP 2008218787 A JP2008218787 A JP 2008218787A JP 2007055388 A JP2007055388 A JP 2007055388A JP 2007055388 A JP2007055388 A JP 2007055388A JP 2008218787 A JP2008218787 A JP 2008218787A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
substrate
light
imaging device
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055388A
Other languages
Japanese (ja)
Inventor
Kizai Ota
基在 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007055388A priority Critical patent/JP2008218787A/en
Publication of JP2008218787A publication Critical patent/JP2008218787A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image pick-up device having a photoelectrically converting part on a substrate and a photoelectrically converting part within a substrate, wherein it is possible to materialize a low cost, a low noise and a thin type, while being able to enhance a sensitivity of the photoelectrically converting part on the substrate. <P>SOLUTION: The image pick-up device has, on a coplanar face, a plurality of pixel parts which contain a photoelectrically converting part on a substrate 3 which contains a lower electrode 4 formed above a semiconductor substrate 1, an upper electrode 6 formed above the lower electrode 4, and a photoelectrically converting film 5 sandwiched between the lower electrode 4 and the upper electrode 6; and a photoelectrically converting part within a substrate 7 formed in the semiconductor substrate 1 below the photoelectrically converting part on the substrate 3. The lower electrode 4 has a reflection part for reflecting an incident light incident from above the upper electrode 6 (a portion except an opening part K) and a transmission part for transmitting the incident light (the opening part K). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体基板上方に形成された下部電極、前記下部電極上方に形成された上部電極、及び前記下部電極と前記上部電極とに挟まれる光電変換膜を含む基板上光電変換部と、前記基板上光電変換部下方の前記半導体基板内部に形成された基板内光電変換部とを含む画素部を同一平面上に複数有する撮像素子に関する。   The present invention provides an on-substrate photoelectric conversion unit including a lower electrode formed above a semiconductor substrate, an upper electrode formed above the lower electrode, and a photoelectric conversion film sandwiched between the lower electrode and the upper electrode, The present invention relates to an imaging device having a plurality of pixel portions on the same plane including an in-substrate photoelectric conversion portion formed inside the semiconductor substrate below the photoelectric conversion portion on the substrate.

特許文献1には、半導体基板上方に形成された下部電極、前記下部電極上方に形成された上部電極、及び前記下部電極と前記上部電極とに挟まれる光電変換膜を含む基板上光電変換部と、前記基板上光電変換部下方の前記半導体基板内部に形成された基板内光電変換部とを含む画素部を同一平面上に複数有する撮像素子において、基板上光電変換部と基板内光電変換部の間に、光電変換膜で吸収される波長域の光を反射し、基板内光電変換部で吸収される波長域の光を透過する光学薄膜を設けることで、基板上光電変換部で発生させる電荷量を多くして感度を向上させる技術が開示されている。   Patent Document 1 discloses a photoelectric conversion unit on a substrate including a lower electrode formed above a semiconductor substrate, an upper electrode formed above the lower electrode, and a photoelectric conversion film sandwiched between the lower electrode and the upper electrode. In the imaging device having a plurality of pixel units on the same plane including the in-substrate photoelectric conversion unit formed inside the semiconductor substrate below the on-substrate photoelectric conversion unit, the on-substrate photoelectric conversion unit and the in-substrate photoelectric conversion unit The charge generated in the photoelectric conversion unit on the substrate is provided with an optical thin film that reflects light in the wavelength range absorbed by the photoelectric conversion film and transmits light in the wavelength range absorbed by the photoelectric conversion unit in the substrate. A technique for improving the sensitivity by increasing the amount is disclosed.

特開2006−270021号公報JP 2006-270021 A

特許文献1に開示された撮像素子では、半導体基板内に、基板上光電変換部で発生した電荷を蓄積するための電荷蓄積部を設け、ここに蓄積された電荷を公知のCMOS回路等で信号量に変換して読み出す必要があるが、半導体基板と基板上光電変換部との間に光学薄膜が存在するため、これによって不要な浮遊容量が生じてしまう。その結果、出力信号のノイズが増加してしまう。又、半導体基板と基板上光電変換部との間に光学薄膜を形成する必要があるため、素子の製造プロセスが複雑になったり、素子の厚みが厚くなってしまったりしてしまう。   In the imaging device disclosed in Patent Document 1, a charge accumulation unit for accumulating charges generated in a photoelectric conversion unit on a substrate is provided in a semiconductor substrate, and the accumulated charges are signaled by a known CMOS circuit or the like. However, since an optical thin film exists between the semiconductor substrate and the photoelectric conversion portion on the substrate, unnecessary stray capacitance is generated. As a result, the noise of the output signal increases. In addition, since it is necessary to form an optical thin film between the semiconductor substrate and the photoelectric conversion portion on the substrate, the device manufacturing process becomes complicated, or the thickness of the device increases.

本発明は、上記事情に鑑みてなされたものであり、基板上光電変換部と基板内光電変換部とを有する撮像素子であって、低コスト、低ノイズ、及び薄型化を実現しながら、基板上光電変換部の感度を向上させることが可能な撮像素子を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is an image pickup device having an on-substrate photoelectric conversion unit and an in-substrate photoelectric conversion unit, and realizes low cost, low noise, and thinning while the substrate is realized. An object is to provide an imaging device capable of improving the sensitivity of the upper photoelectric conversion unit.

本発明の撮像素子は、半導体基板上方に形成された下部電極、前記下部電極上方に形成された上部電極、及び前記下部電極と前記上部電極とに挟まれる光電変換膜を含む基板上光電変換部と、前記基板上光電変換部下方の前記半導体基板内部に形成された基板内光電変換部とを含む画素部を同一平面上に複数有する撮像素子であって、前記上部電極が、前記上部電極上方から入射される入射光に対して透明な透明電極であり、前記下部電極が、前記入射光を反射する反射部と前記入射光を透過する透過部とを有する。   An image sensor according to the present invention includes a lower electrode formed above a semiconductor substrate, an upper electrode formed above the lower electrode, and a photoelectric conversion unit on a substrate including a photoelectric conversion film sandwiched between the lower electrode and the upper electrode. And a plurality of pixel portions on the same plane including the in-substrate photoelectric conversion portion formed inside the semiconductor substrate below the on-substrate photoelectric conversion portion, wherein the upper electrode is located above the upper electrode. The transparent electrode is transparent to the incident light incident on the lower electrode, and the lower electrode has a reflection part that reflects the incident light and a transmission part that transmits the incident light.

本発明の撮像素子は、前記下部電極が前記入射光を反射する導電性の反射材料膜で構成され、前記下部電極が前記反射材料膜に形成された開口部を有し、前記反射材料膜によって前記反射部が形成され、前記開口部によって前記透過部が形成される。   In the imaging device according to the aspect of the invention, the lower electrode includes a conductive reflective material film that reflects the incident light, and the lower electrode includes an opening formed in the reflective material film. The reflection part is formed, and the transmission part is formed by the opening.

本発明の撮像素子は、前記開口部に前記入射光に対して透明な導電性材料が埋め込まれている。   In the imaging element of the present invention, a conductive material transparent to the incident light is embedded in the opening.

本発明の撮像素子は、前記透過部が前記基板内光電変換部の真上に形成されている。   In the imaging device of the present invention, the transmission part is formed immediately above the in-substrate photoelectric conversion part.

本発明の撮像素子は、前記画素部が、前記透過部を透過した光を前記基板内光電変換部に集光するための光学系を前記基板上光電変換部と前記半導体基板との間に備える。   In the imaging device according to the aspect of the invention, the pixel unit includes an optical system for condensing the light transmitted through the transmission unit on the photoelectric conversion unit in the substrate between the photoelectric conversion unit on the substrate and the semiconductor substrate. .

本発明の撮像素子は、前記画素部が、前記透過部に入射光を集光するためのマイクロレンズを前記基板上光電変換部上方に備える。   In the imaging device of the present invention, the pixel unit includes a microlens for concentrating incident light on the transmission unit above the photoelectric conversion unit on the substrate.

本発明の撮像素子は、任意の前記基板上光電変換部の前記光電変換膜と、その隣の前記基板上光電変換部の前記光電変換膜との間に、前記任意の基板上光電変換部の光電変換膜を透過した光が前記隣の基板上光電変換部の光電変換膜に入射してしまうのを防ぐ光入射防止部材を備える。   The image pickup device of the present invention includes an arbitrary photoelectric conversion unit on the substrate between the photoelectric conversion film of the optional photoelectric conversion unit on the substrate and the photoelectric conversion film of the adjacent photoelectric conversion unit on the substrate. A light incident preventing member is provided for preventing light transmitted through the photoelectric conversion film from entering the photoelectric conversion film of the photoelectric conversion unit on the adjacent substrate.

本発明の撮像素子は、前記光入射防止部材が前記入射光を反射する反射材料で構成される。   In the imaging device of the present invention, the light incident preventing member is made of a reflective material that reflects the incident light.

本発明によれば、基板上光電変換部と基板内光電変換部とを有する撮像素子であって、低コスト、低ノイズ、及び薄型化を実現しながら、基板上光電変換部の感度を向上させることが可能な撮像素子を提供することができる。   According to the present invention, an image sensor having a photoelectric conversion unit on a substrate and an in-substrate photoelectric conversion unit, which improves the sensitivity of the photoelectric conversion unit on the substrate while realizing low cost, low noise, and thinning. It is possible to provide an imaging device that can handle the above-described problem.

以下、本発明の実施形態について図面を参照して説明する。尚、以下の説明において、「〜光に対して透明」とは、〜光を50%以上透過することを意味する。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, “to be transparent to light” means to transmit 50% or more of light.

(第一実施形態)
図1は、本発明の第一実施形態である撮像素子の1画素部の概略構成を示す図であり、(a)は1画素部の断面模式図、(b)は(a)に示す下部電極の平面図である。本実施形態の撮像素子は、図1(a)に示したような構成の画素部を、同一平面上に複数配列したものである。
図1(a)に示す撮像素子の1画素部は、シリコン等の半導体基板1上方に入射光に対して透明な絶縁膜2を介して形成された基板上光電変換部3と、基板上光電変換部3下方の半導体基板1内に形成された基板内光電変換部7とを備える。
(First embodiment)
1A and 1B are diagrams illustrating a schematic configuration of one pixel portion of the image sensor according to the first embodiment of the present invention, in which FIG. 1A is a schematic cross-sectional view of one pixel portion, and FIG. 1B is a lower portion illustrated in FIG. It is a top view of an electrode. The image sensor according to the present embodiment is obtained by arranging a plurality of pixel portions having the configuration shown in FIG. 1A on the same plane.
1A includes a photoelectric conversion unit 3 on a substrate formed on a semiconductor substrate 1 such as silicon via an insulating film 2 that is transparent to incident light, and a photoelectric conversion on the substrate. And an in-substrate photoelectric conversion unit 7 formed in the semiconductor substrate 1 below the conversion unit 3.

基板上光電変換部3は、絶縁膜2上に形成された下部電極4と、下部電極4上方に形成された光電変換膜5と、光電変換膜5上方に形成された上部電極6とを含む構成となっている。   The on-substrate photoelectric conversion unit 3 includes a lower electrode 4 formed on the insulating film 2, a photoelectric conversion film 5 formed above the lower electrode 4, and an upper electrode 6 formed above the photoelectric conversion film 5. It has a configuration.

上部電極6には、その上方から入射光が入射される。上部電極6は、光電変換膜5に入射光を入射させる必要があるため、入射光に対して透明な導電性材料で構成される。上部電極6の材料としては、可視光及び赤外光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を好ましく用いることができる。Auなどの金属薄膜も用いることができるが、透過率を90%以上得ようとすると抵抗値が極端に増大するため、TCOの方が好ましい。TCOとして、特に、ITO、IZO、AZO、FTO、SnO、TiO、ZnO等を好ましく用いることができる。尚、上部電極6は、全画素部で共通の一枚構成であるが、画素部毎に分割してあっても良い。 Incident light enters the upper electrode 6 from above. The upper electrode 6 is made of a conductive material that is transparent to the incident light because incident light needs to be incident on the photoelectric conversion film 5. As the material of the upper electrode 6, a transparent conductive oxide (TCO) having a high transmittance for visible light and infrared light and a small resistance value can be preferably used. A metal thin film such as Au can also be used. However, if an attempt is made to obtain a transmittance of 90% or more, the resistance value increases drastically, so TCO is preferable. In particular, ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like can be preferably used as TCO. The upper electrode 6 has a single configuration common to all the pixel portions, but may be divided for each pixel portion.

光電変換膜5は、有機光電変換材料又は無機光電変換材料を含んで構成され、入射光のうちの特定波長域の光を吸収して、吸収した光に応じた電荷を発生する。光電変換膜5は、全画素部で共通の一枚構成であるが、画素部毎に分割してあっても良い。本実施形態では、光電変換膜5が、可視域〜赤外域の間での吸収スペクトルの吸収ピーク波長が赤外域(波長約700nm以上)にあるような光電変換材料を用いるものとする。このような材料としては、例えば錫フタロシアニンがある。   The photoelectric conversion film 5 includes an organic photoelectric conversion material or an inorganic photoelectric conversion material, absorbs light in a specific wavelength region of incident light, and generates a charge corresponding to the absorbed light. The photoelectric conversion film 5 has a single-layer configuration common to all the pixel portions, but may be divided for each pixel portion. In the present embodiment, the photoelectric conversion material 5 uses a photoelectric conversion material having an absorption peak wavelength of an absorption spectrum between the visible region and the infrared region in the infrared region (wavelength of about 700 nm or more). An example of such a material is tin phthalocyanine.

下部電極4は、画素部毎に分割された薄膜であり、入射光を反射する導電性の反射材料膜で構成されている。下部電極4の材料は、下方の半導体基板1の基板内光電変換部7以外の部分に光が入らないように遮光する遮光膜として機能させるために遮光性の高い材料を用いることが好ましく、又、光電変換膜5に入射した光をできるだけ多く反射させるために反射率の高い材料を用いることが好ましい。このような条件を満たす材料としてアルミニウムや銀等を好ましく用いることができる。   The lower electrode 4 is a thin film divided for each pixel portion, and is composed of a conductive reflective material film that reflects incident light. The material of the lower electrode 4 is preferably a highly light-shielding material so as to function as a light-shielding film that shields light from entering other parts of the semiconductor substrate 1 other than the in-substrate photoelectric conversion unit 7. In order to reflect as much light incident on the photoelectric conversion film 5 as possible, it is preferable to use a material having a high reflectance. Aluminum, silver, or the like can be preferably used as a material that satisfies such conditions.

下部電極4には、図1(b)にも示すように、基板内光電変換部7の真上の位置に開口部Kが形成されており、この開口部Kが入射光に対して透明な材料(例えばSiO)によって埋められている。 As shown in FIG. 1B, an opening K is formed in the lower electrode 4 at a position directly above the in-substrate photoelectric conversion unit 7, and the opening K is transparent to incident light. It is filled with a material (for example, SiO 2 ).

このように、下部電極4は、入射光のうち光電変換膜5を通過して下部電極4に到達する光の一部を光電変換膜5側に反射させることができ、残りを基板内光電変換部7に透過させることができるような構成となっている。尚、図1(b)に示した下部電極4の平面図において、開口部Kが入射光を透過する透過部となり、それ以外の部分が入射光を反射する反射部となるため、下部電極4は、反射部と透過部を有する構成であるということができる。   Thus, the lower electrode 4 can reflect a part of incident light that passes through the photoelectric conversion film 5 and reaches the lower electrode 4 to the photoelectric conversion film 5 side, and the rest is photoelectric conversion in the substrate. The configuration is such that it can be transmitted through the portion 7. In the plan view of the lower electrode 4 shown in FIG. 1B, the opening K is a transmission part that transmits incident light, and the other part is a reflection part that reflects incident light. Can be said to have a structure having a reflection part and a transmission part.

上部電極6と下部電極4の間に所定のバイアス電圧を印加することで、光電変換膜5で発生した電荷(正孔、電子)のうちの一方を上部電極6に移動させ、他方を下部電極4に移動させることができる。本実施形態では、上部電極6に配線が接続され、この配線を介してバイアス電圧が上部電極6に印加されるものとする。又、バイアス電圧は、光電変換膜5で発生した正孔が上部電極6に移動し、電子が下部電極4に移動するように極性が決められているものとする。   By applying a predetermined bias voltage between the upper electrode 6 and the lower electrode 4, one of the charges (holes, electrons) generated in the photoelectric conversion film 5 is moved to the upper electrode 6, and the other is moved to the lower electrode. 4 can be moved. In the present embodiment, a wiring is connected to the upper electrode 6, and a bias voltage is applied to the upper electrode 6 through this wiring. In addition, the polarity of the bias voltage is determined so that holes generated in the photoelectric conversion film 5 move to the upper electrode 6 and electrons move to the lower electrode 4.

下部電極4の反射部下方の半導体基板1内には光電変換膜5で発生した電荷を蓄積するための電荷蓄積部8が形成されている。電荷蓄積部8上には絶縁膜2内に埋設されたアルミニウム等の導電性材料からなるビアプラグ11が形成され、ビアプラグ11上に下部電極4が形成されており、このビアプラグ11によって下部電極4と電荷蓄積部8とが電気的に接続されている。   In the semiconductor substrate 1 below the reflecting portion of the lower electrode 4, a charge accumulating portion 8 for accumulating charges generated in the photoelectric conversion film 5 is formed. A via plug 11 made of a conductive material such as aluminum embedded in the insulating film 2 is formed on the charge storage portion 8, and a lower electrode 4 is formed on the via plug 11. The charge storage unit 8 is electrically connected.

基板内光電変換部7は、公知のpn接合フォトダイオードであり、下部電極4の開口部Kを透過して入射してきた光を吸収して、吸収した光に応じた電荷を発生し、この電荷を蓄積する。   The in-substrate photoelectric conversion unit 7 is a known pn junction photodiode, absorbs light incident through the opening K of the lower electrode 4 and generates charges corresponding to the absorbed light. Accumulate.

半導体基板1内及び半導体基板1表面には、基板内光電変換部7で発生して蓄積された電荷に応じた信号を読み出す信号読み出し部9と、電荷蓄積部8に蓄積された電荷に応じた信号を読み出す信号読み出し部10とが形成されている。信号読み出し部9,10は、それぞれ公知のCMOS回路で構成され、蓄積された電荷をその量に応じた信号に変換して出力する。信号読み出し部9,10は、それぞれCCDによって電荷をアンプまで転送し、このアンプで電荷量に応じた信号を出力するような構成であっても良い。   In the semiconductor substrate 1 and on the surface of the semiconductor substrate 1, a signal reading unit 9 for reading a signal corresponding to the electric charge generated and accumulated in the in-substrate photoelectric conversion unit 7, and a charge corresponding to the electric charge accumulated in the electric charge accumulating unit 8. A signal reading unit 10 for reading a signal is formed. The signal read-out units 9 and 10 are each composed of a known CMOS circuit, convert the accumulated charges into a signal corresponding to the amount, and output the signal. The signal reading units 9 and 10 may be configured such that charges are transferred to an amplifier by a CCD and a signal corresponding to the amount of charge is output by the amplifier.

基板内光電変換部7は、pn接合フォトダイオードであるが、pn接合フォトダイオードは、可視域(波長400〜680nm)の光に対してブロードな吸収スペクトル特性を持つため、信号読み出し部9から得られる信号によって、可視光に応じた画像(白黒画像)を生成することが可能となる。又、光電変換膜5は、赤外域の光を主に吸収する材料で構成しているため、信号読み出し部10から得られる信号によって赤外光に応じた画像(赤外画像)を生成することが可能となる。   The in-substrate photoelectric conversion unit 7 is a pn junction photodiode. However, since the pn junction photodiode has a broad absorption spectrum characteristic with respect to light in the visible region (wavelength 400 to 680 nm), it is obtained from the signal readout unit 9. The generated signal makes it possible to generate an image (monochrome image) corresponding to visible light. Further, since the photoelectric conversion film 5 is made of a material that mainly absorbs light in the infrared region, an image (infrared image) corresponding to the infrared light is generated by a signal obtained from the signal reading unit 10. Is possible.

以上のような構成の撮像素子の動作を説明する。
露光期間が開始されると、入射光のうちの赤外光が光電変換膜5で吸収され、ここで赤外光量に応じた電荷が発生する。上部電極6と下部電極4間に印加されているバイアス電圧により、光電変換膜5で発生した電子は、下部電極4に移動し、ここからビアプラグ11を介して電荷蓄積部8に移動し、ここに蓄積される。赤外光のうちの光電変換膜5で吸収されずに下部電極4の反射部まで到達した光は、その反射部で反射し、再び光電変換膜5に入射する。そして、この反射光によって光電変換膜5で発生した電子も電荷蓄積部8に蓄積される。一方、入射光のうちの開口部Kを透過した光は、絶縁膜2を透過して基板内光電変換部7に入射し、ここで入射光量に応じた電子が発生し、蓄積される。
The operation of the image sensor having the above configuration will be described.
When the exposure period is started, infrared light of incident light is absorbed by the photoelectric conversion film 5, and charges corresponding to the amount of infrared light are generated here. Due to the bias voltage applied between the upper electrode 6 and the lower electrode 4, electrons generated in the photoelectric conversion film 5 move to the lower electrode 4, and then move to the charge storage unit 8 through the via plug 11. Accumulated in. Of the infrared light, the light that has not been absorbed by the photoelectric conversion film 5 and has reached the reflection part of the lower electrode 4 is reflected by the reflection part and is incident on the photoelectric conversion film 5 again. The electrons generated in the photoelectric conversion film 5 by the reflected light are also accumulated in the charge accumulation unit 8. On the other hand, light that has passed through the opening K of the incident light passes through the insulating film 2 and enters the in-substrate photoelectric conversion unit 7 where electrons corresponding to the amount of incident light are generated and accumulated.

露光期間終了後、電荷蓄積部8に蓄積された電子に応じた信号(赤外光に対応する信号であるため赤外信号という)と、基板内光電変換部7に蓄積された電子に応じた信号(可視光に対応する信号であるため可視信号という)とが撮像素子外部に出力され、この撮像素子を搭載する撮像装置の信号処理部によって、赤外信号に応じた赤外画像と、可視信号に応じた白黒画像とが得られる。   After the exposure period, a signal corresponding to the electrons accumulated in the charge accumulation unit 8 (referred to as an infrared signal because it is a signal corresponding to infrared light) and an electron accumulated in the in-substrate photoelectric conversion unit 7 A signal (referred to as a visible signal because it is a signal corresponding to visible light) is output to the outside of the image sensor, and an infrared image corresponding to the infrared signal and a visible signal are displayed by a signal processing unit of an image pickup apparatus equipped with the image sensor. A black and white image corresponding to the signal is obtained.

このように、本実施形態の撮像素子によれば、同一時刻の同一被写体について、赤外画像と白黒画像とを取得することができるため、例えば、内視鏡用の撮像素子として有用である。   Thus, according to the imaging device of the present embodiment, an infrared image and a black and white image can be acquired for the same subject at the same time, and thus, for example, it is useful as an imaging device for an endoscope.

又、本実施形態の撮像素子によれば、光電変換膜5で吸収しきれずに下部電極4に到達した光の一部が反射して光電変換膜5に再び入射するため、下部電極4が透明電極である従来に比べて、光電変換膜5で発生する電荷量を増やすことができ、感度を向上させることができる。   Further, according to the imaging device of the present embodiment, a part of the light that reaches the lower electrode 4 without being completely absorbed by the photoelectric conversion film 5 is reflected and reenters the photoelectric conversion film 5, so that the lower electrode 4 is transparent. Compared with the conventional electrode, the amount of charge generated in the photoelectric conversion film 5 can be increased, and the sensitivity can be improved.

又、本実施形態の撮像素子によれば、下部電極4自体に反射機能を持たせているため、従来のように、半導体基板1と基板上光電変換部3との間に光学薄膜を設ける必要がなく、従来に比べて、出力ノイズを少なくすることができる、半導体基板1から下部電極4までの厚みを薄くすることができる、製造プロセスを容易にすることができるといった効果が得られる。   Further, according to the imaging device of the present embodiment, since the lower electrode 4 itself has a reflection function, it is necessary to provide an optical thin film between the semiconductor substrate 1 and the photoelectric conversion unit 3 on the substrate as in the past. As compared with the prior art, the output noise can be reduced, the thickness from the semiconductor substrate 1 to the lower electrode 4 can be reduced, and the manufacturing process can be facilitated.

又、本実施形態の撮像素子によれば、下部電極4を電荷蓄積部8や信号読み出し部9,10を遮光するための遮光膜として機能させることができるため、半導体基板1上方に新たに遮光膜を設ける必要がなくなり、半導体基板1から下部電極4までの厚みを従来よりも更に薄くすることができる。この厚みを薄くできることで、開口部Kを透過した光の基板内光電変換部7への入射効率を上げることができ、基板内光電変換部7での感度向上も期待することができる。   Further, according to the imaging device of the present embodiment, the lower electrode 4 can function as a light shielding film for shielding the charge storage unit 8 and the signal readout units 9 and 10, so that a new light shielding is provided above the semiconductor substrate 1. There is no need to provide a film, and the thickness from the semiconductor substrate 1 to the lower electrode 4 can be made thinner than before. By making this thickness thin, the incidence efficiency of the light transmitted through the opening K to the in-substrate photoelectric conversion unit 7 can be increased, and an improvement in sensitivity at the in-substrate photoelectric conversion unit 7 can also be expected.

又、本実施形態の撮像素子の下部電極4の開口部Kは、下部電極4を画素部毎に分割するためのパターニング工程時に同時に形成することができ、撮像素子の製造が容易となる。   Further, the opening K of the lower electrode 4 of the image pickup device of the present embodiment can be formed at the same time as the patterning process for dividing the lower electrode 4 for each pixel portion, and the manufacture of the image pickup device is facilitated.

又、本実施形態の撮像素子によれば、光電変換膜5が赤外カットフィルタの役割を果たすため、撮像素子を搭載する撮像装置に赤外カットフィルタが不要となり、撮像装置の小型化も可能となる。   Further, according to the image sensor of this embodiment, since the photoelectric conversion film 5 serves as an infrared cut filter, the image sensor equipped with the image sensor does not require an infrared cut filter, and the image sensor can be downsized. It becomes.

尚、基板内光電変換部7は、特表2002−513145号公報に記載のように、赤色の波長域の光(R光)を吸収する深さ、緑色の波長域の光(G光)を吸収する深さ、青色の波長域の光(B光)を吸収する深さにそれぞれpn接合面を形成して、3つの色成分の電荷を蓄積できるような構成としても良い。このようにすることで、赤外画像とカラー画像を同時に撮影可能な撮像素子を実現することができる。   In addition, the photoelectric conversion part 7 in a board | substrate is the depth which absorbs the light (R light) of a red wavelength range, and the light (G light) of a green wavelength range as described in Japanese translations of PCT publication No. 2002-513145 gazette. A pn junction surface may be formed at a depth that absorbs light and a depth that absorbs light in the blue wavelength range (B light), so that charges of three color components can be accumulated. By doing so, it is possible to realize an imaging device capable of simultaneously capturing an infrared image and a color image.

又、基板内光電変換部7を、R光を吸収する深さ、B光を吸収する深さにそれぞれpn接合面を形成して、2つの色成分の電荷を蓄積できるような構成とし、光電変換膜5を主としてG光を吸収する光電変換材料で構成したものとしても良い。このようにすることで、カラー画像を撮影可能な撮像素子を実現することができる。   Further, the in-substrate photoelectric conversion unit 7 is configured such that a pn junction surface is formed at a depth that absorbs R light and a depth that absorbs B light so that charges of two color components can be accumulated. The conversion film 5 may be composed of a photoelectric conversion material that mainly absorbs G light. By doing so, it is possible to realize an image sensor that can capture a color image.

又、下部電極4に設ける開口部Kの数は複数あっても良い。開口部Kの数や面積を調整することで、光電変換膜5及び基板内光電変換部7に入射させる光の量を調整することができるため、基板上光電変換部3と基板内光電変換部7の感度を調整することができる。基板内光電変換部7と基板上光電変換部3との感度を、信号処理によってではなく構造的に一致させたい場合には、開口部Kを複数設けたり、面積を大きくしたりすることが有効となる。   Further, there may be a plurality of openings K provided in the lower electrode 4. Since the amount of light incident on the photoelectric conversion film 5 and the in-substrate photoelectric conversion unit 7 can be adjusted by adjusting the number and area of the openings K, the on-substrate photoelectric conversion unit 3 and the in-substrate photoelectric conversion unit. 7 sensitivity can be adjusted. When it is desired to make the sensitivity of the in-substrate photoelectric conversion unit 7 and the on-substrate photoelectric conversion unit 3 structurally not by signal processing, it is effective to provide a plurality of openings K or to increase the area. It becomes.

(第二実施形態)
図1に示した撮像素子では、下部電極4の開口部Kに導電性材料が存在していないため、上部電極6と下部電極4の間にバイアス電圧を印加した場合に、この開口部K上方にある光電変換膜5にバイアス電圧が印加されにくい状態となる。この結果、開口部K上方の光電変換膜5で発生した電荷が下部電極4に到達しにくくなり、光電変換膜5から取得できる電荷量が減少してしまう。そこで、本実施形態では、このような電荷量の減少を防ぐ対策を施している。
(Second embodiment)
In the image pickup device shown in FIG. 1, since no conductive material is present in the opening K of the lower electrode 4, when a bias voltage is applied between the upper electrode 6 and the lower electrode 4, Thus, it becomes difficult to apply a bias voltage to the photoelectric conversion film 5. As a result, the charge generated in the photoelectric conversion film 5 above the opening K does not easily reach the lower electrode 4, and the amount of charge that can be acquired from the photoelectric conversion film 5 decreases. Therefore, in the present embodiment, measures are taken to prevent such a decrease in charge amount.

図2は、本発明の第二実施形態である撮像素子の1画素部の概略構成を示す図であり、(a)は1画素部の断面模式図、(b)は(a)に示す下部電極の平面図である。本実施形態の撮像素子は、図2(a)に示したような構成の画素部を、同一平面上に複数配列したものである。尚、図2において図1と同様の構成には同一符号を付してある。   2A and 2B are diagrams showing a schematic configuration of one pixel portion of an image pickup device according to the second embodiment of the present invention. FIG. 2A is a schematic sectional view of the one pixel portion, and FIG. 2B is a lower portion shown in FIG. It is a top view of an electrode. The image sensor according to the present embodiment is obtained by arranging a plurality of pixel portions having the configuration shown in FIG. 2A on the same plane. In FIG. 2, the same components as those in FIG.

図2に示す撮像素子の画素部は、図1に示した撮像素子の下部電極4の開口部Kを、入射光に対して透明な導電性材料12で埋めた構成となっている。導電性材料12は、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を好ましく用いることができる。Auなどの金属薄膜も用いることができるが、透過率を90%以上得ようとすると抵抗値が極端に増大するため、TCOの方が好ましい。TCOとして、特に、ITO、IZO、AZO、FTO、SnO、TiO、ZnO等を好ましく用いることができる。 The pixel portion of the image sensor shown in FIG. 2 has a configuration in which the opening K of the lower electrode 4 of the image sensor shown in FIG. 1 is filled with a conductive material 12 that is transparent to incident light. As the conductive material 12, a transparent conductive oxide (TCO) having a high transmittance for visible light and a small resistance value can be preferably used. A metal thin film such as Au can also be used. However, if an attempt is made to obtain a transmittance of 90% or more, the resistance value increases drastically, so TCO is preferable. In particular, ITO, IZO, AZO, FTO, SnO 2 , TiO 2 , ZnO 2 and the like can be preferably used as TCO.

図2に示すような構成にすることで、光電変換膜5全体に均一にバイアス電圧を印加することが可能となり、図1に示した構成に比べて、光電変換膜5から取得できる電荷量を増やすことができる。尚、開口部Kに導電性材料12を埋め込むには、図3に示すように、開口部Kを形成した下部電極4上に導電性材料12を成膜した後、CMP等によって下部電極4が露出するまで導電性材料膜12を削って平坦化する必要がある。しかし、導電性材料12は入射光に対して透明なものを用いるため、図3に示した状態のまま、導電性材料膜12上に光電変換膜5と上部電極6を形成して撮像素子を完成させても良い。   The configuration as shown in FIG. 2 makes it possible to apply a bias voltage uniformly to the entire photoelectric conversion film 5, and the amount of charge that can be acquired from the photoelectric conversion film 5 compared to the configuration shown in FIG. 1. Can be increased. In order to embed the conductive material 12 in the opening K, as shown in FIG. 3, after forming the conductive material 12 on the lower electrode 4 in which the opening K is formed, the lower electrode 4 is formed by CMP or the like. It is necessary to planarize the conductive material film 12 until it is exposed. However, since the conductive material 12 is transparent to incident light, the photoelectric conversion film 5 and the upper electrode 6 are formed on the conductive material film 12 in the state shown in FIG. It may be completed.

(第三実施形態)
図1、図2に示した撮像素子では、下部電極4の開口部Kに入射してくる光が、その入射角度によっては基板内光電変換部7に入射されなくなってしまい、基板内光電変換部7から取得できる電荷量が減ったり、入射されなかった光が電荷蓄積部8や信号読み出し部9,10に入射してノイズとなったりする可能性がある。このノイズを防ぐために遮光膜を別途設けても良いが、この場合、素子の薄型化が妨げられてしまう。そこで、本実施形態の撮像素子は、上記ノイズを無くし、且つ、基板内光電変換部7から取得できる電荷量を増やすために、図1,2に示す撮像素子において、開口部Kを透過した光を基板内光電変換部7に集光するための光学系を基板上光電変換部3と半導体基板1との間に設けた構成としている。
(Third embodiment)
In the imaging device shown in FIGS. 1 and 2, the light incident on the opening K of the lower electrode 4 is not incident on the in-substrate photoelectric conversion unit 7 depending on the incident angle, and thus the in-substrate photoelectric conversion unit. There is a possibility that the amount of charge that can be acquired from the light source 7 will be reduced, or light that has not been incident may be incident on the charge storage unit 8 or the signal readout units 9 and 10 and become noise. In order to prevent this noise, a light-shielding film may be provided separately. However, in this case, thinning of the element is hindered. Therefore, the image pickup device of the present embodiment eliminates the noise and increases the amount of charge that can be acquired from the in-substrate photoelectric conversion unit 7. In the image pickup device shown in FIGS. Is configured to be provided between the on-substrate photoelectric conversion unit 3 and the semiconductor substrate 1.

図4は、本発明の第三実施形態である撮像素子の1画素部の概略構成を示す図であり、(a)は第1の構成例を示し、(b)は第2の構成例を示し、(c)は第3の構成例を示し、(d)は第4の構成例を示している。尚、図4において図2と同じ構成には同一符号を付してある。又、図4では、開口部Kに導電性材料12を埋め込んだ構成に光学系を追加しているが、もちろん、開口部Kに透明な絶縁膜を埋め込んだ構成であっても良い。   4A and 4B are diagrams illustrating a schematic configuration of one pixel portion of an image sensor that is the third embodiment of the present invention, in which FIG. 4A illustrates a first configuration example, and FIG. 4B illustrates a second configuration example. (C) shows a third configuration example, and (d) shows a fourth configuration example. In FIG. 4, the same components as those in FIG. In FIG. 4, the optical system is added to the configuration in which the conductive material 12 is embedded in the opening K, but, of course, a configuration in which a transparent insulating film is embedded in the opening K may be used.

図4(a)に示した撮像素子は、図2(a)に示した撮像素子の構成に光学系として光導波路13を追加した構成となっている。光導波路13は、絶縁膜2内に埋設されており、入射光に対して透明で且つ絶縁膜2よりも高屈折率の絶縁材料で構成されている。光導波路13は、一端が開口部K全面と接続され、他端が基板内光電変換部7全面と接続されている。光導波路13は、公知の単板型イメージセンサに用いられている構造を採用することができる。この構成により、開口部Kに斜めに入射した光は、光導波路13と絶縁膜2との界面で全反射を繰り返しながら基板内光電変換部7へと導かれる。このため、開口部Kに入射する光のほとんどを基板内光電変換部7に導くことができる。   The imaging device shown in FIG. 4A has a configuration in which an optical waveguide 13 is added as an optical system to the configuration of the imaging device shown in FIG. The optical waveguide 13 is embedded in the insulating film 2 and is made of an insulating material that is transparent to incident light and has a higher refractive index than the insulating film 2. The optical waveguide 13 has one end connected to the entire surface of the opening K and the other end connected to the entire surface of the in-substrate photoelectric conversion unit 7. The optical waveguide 13 can employ a structure used in a known single-plate image sensor. With this configuration, light obliquely incident on the opening K is guided to the in-substrate photoelectric conversion unit 7 while repeating total reflection at the interface between the optical waveguide 13 and the insulating film 2. For this reason, most of the light incident on the opening K can be guided to the in-substrate photoelectric conversion unit 7.

図4(b)に示した撮像素子は、図4(a)に示した撮像素子の構成にマイクロレンズ14を追加した構成となっている。マイクロレンズ14は、入射光を開口部Kに集光するものであり、各画素部の上部電極6上に形成されている。このマイクロレンズ14により、画素部で受光可能な入射光のほとんどを開口部Kに集光することができる。このため、光導波路13と組み合わせることで、入射光のうち光電変換膜5で吸収されなかった光のほとんどを基板内光電変換部7に入射させることができる。尚、図4(b)において光導波路13を設けない構成であっても良い。このような構成でも、図1,2に示した構成に比べて、多くの光を基板内光電変換部7に入射させることができる。   The imaging device shown in FIG. 4B has a configuration in which a microlens 14 is added to the configuration of the imaging device shown in FIG. The microlens 14 condenses incident light on the opening K, and is formed on the upper electrode 6 of each pixel portion. With the microlens 14, most of the incident light that can be received by the pixel portion can be condensed at the opening K. For this reason, by combining with the optical waveguide 13, most of the incident light that has not been absorbed by the photoelectric conversion film 5 can be incident on the in-substrate photoelectric conversion unit 7. In addition, the structure which does not provide the optical waveguide 13 in FIG.4 (b) may be sufficient. Even in such a configuration, a larger amount of light can be incident on the in-substrate photoelectric conversion unit 7 than in the configuration shown in FIGS.

図4(c)に示した撮像素子は、図2(a)に示した撮像素子の構成に光学系としてインナーレンズ15を追加した構成となっている。インナーレンズ15は、開口部Kを透過した光を基板内光電変換部7に集光するために絶縁膜2内に埋設されたレンズである。インナーレンズ15は、公知の単板型イメージセンサに用いられている構造を採用することができる。この構成により、開口部Kに斜めに入射した光は、インナーレンズ15によって基板内光電変換部7へと集光されるため、開口部Kに入射する光のほとんどを基板内光電変換部7に入射させることができる。   The image pickup device shown in FIG. 4C has a configuration in which an inner lens 15 is added as an optical system to the configuration of the image pickup device shown in FIG. The inner lens 15 is a lens embedded in the insulating film 2 in order to collect the light transmitted through the opening K on the in-substrate photoelectric conversion unit 7. The inner lens 15 can employ a structure used in a known single-plate image sensor. With this configuration, light obliquely incident on the opening K is condensed by the inner lens 15 onto the in-substrate photoelectric conversion unit 7, so that most of the light incident on the opening K enters the in-substrate photoelectric conversion unit 7. It can be made incident.

図4(d)に示した撮像素子は、図4(c)に示した撮像素子の構成にマイクロレンズ14を追加した構成となっている。マイクロレンズ14は、入射光を開口部Kに集光するものであり、各画素部の上部電極6上に形成されている。このマイクロレンズ14により、画素部で受光可能な入射光のほとんどを開口部Kに集光することができる。このため、インナーレンズ15と組み合わせることで、入射光のうち光電変換膜5で吸収されなかった光のほとんどを基板内光電変換部7に入射させることができる。   The imaging device shown in FIG. 4D has a configuration in which a microlens 14 is added to the configuration of the imaging device shown in FIG. The microlens 14 condenses incident light on the opening K, and is formed on the upper electrode 6 of each pixel portion. With the microlens 14, most of the incident light that can be received by the pixel portion can be condensed at the opening K. For this reason, by combining with the inner lens 15, most of the incident light that has not been absorbed by the photoelectric conversion film 5 can be incident on the in-substrate photoelectric conversion unit 7.

以上のように、図4に示した構成によれば、開口部Kに入射する光のほとんどを基板内光電変換部7に入射させることができるため、基板内光電変換部7から取得できる電荷量を図1,2に示した構成よりも増やすことができ、感度向上を実現することができる。又、開口部Kを透過した光が基板内光電変換部7以外に到達するのを防ぐことができるため、図1,2に示した構成よりもノイズを低減することができる。又、遮光膜を設けることなくノイズ低減が可能なため、撮像素子の薄型化が可能となる。   As described above, according to the configuration illustrated in FIG. 4, most of the light incident on the opening K can be incident on the in-substrate photoelectric conversion unit 7, so that the amount of charge that can be acquired from the in-substrate photoelectric conversion unit 7. 1 can be increased as compared with the configuration shown in FIGS. 1 and 2, and an improvement in sensitivity can be realized. Further, since it is possible to prevent the light transmitted through the opening K from reaching other than the in-substrate photoelectric conversion unit 7, noise can be reduced as compared with the configuration shown in FIGS. Further, since noise can be reduced without providing a light shielding film, the imaging element can be made thinner.

(第四実施形態)
図5は、本発明の第四実施形態である撮像素子の1画素部の概略構成を示す図である。尚、図5において図4(d)と同じ構成には同一符号を付してある。
図5に示す撮像素子は、図4(d)に示す撮像素子に光入射防止部材16を追加した構成となっている。光入射防止部材16は、この画素部の光電変換膜5に入射した光が、隣接する画素部の光電変換膜5に入射するのを防ぐためのものである。光入射防止部材16は、任意の画素部の光電変換膜5と、その画素部に隣接する画素部の光電変換膜5との間に設けられる。光入射防止部材16は、入射光を吸収する吸収材料(例えば、タングステン)や入射光を反射する反射材料(例えば、アルミニウムや銀)を用いることができる。このような構成により、画素部に入射した光が隣の画素部に入射してしまうのを防ぐことができるため、解像度を向上させることができる。
(Fourth embodiment)
FIG. 5 is a diagram showing a schematic configuration of one pixel portion of an image sensor that is the fourth embodiment of the present invention. In FIG. 5, the same components as those in FIG.
The imaging element shown in FIG. 5 has a configuration in which a light incident preventing member 16 is added to the imaging element shown in FIG. The light incident preventing member 16 is for preventing light incident on the photoelectric conversion film 5 of the pixel portion from entering the photoelectric conversion film 5 of the adjacent pixel portion. The light incident preventing member 16 is provided between the photoelectric conversion film 5 of an arbitrary pixel portion and the photoelectric conversion film 5 of the pixel portion adjacent to the pixel portion. The light incident preventing member 16 can use an absorbing material that absorbs incident light (for example, tungsten) or a reflective material that reflects incident light (for example, aluminum or silver). With such a structure, light incident on the pixel portion can be prevented from entering the adjacent pixel portion, so that the resolution can be improved.

尚、ここでは図4(d)に示した構成に光入射防止部材16を追加する例を示したが、図1、図2、図4(a)〜(c)のそれぞれに示した構成に光入射防止部材16を追加した構成も可能である。又、光入射防止部材16の材料は反射材料を用いることが好ましい。これは、反射材料を用いることで、光入射防止部材16に入射した光が反射されて光電変換膜5に再入射し、この結果、光電変換膜5から得られる電荷量を増やすことが可能なためである。又、光入射防止部材16は、マイクロレンズ14を設けない構成において特に有効となる。マイクロレンズ14を設けた場合は、もともと、入射光が隣の画素部に行く確率は低いが、マイクロレンズ14を設けない場合は、この確率が非常に大きくなるためである。   In addition, although the example which adds the light-incident prevention member 16 to the structure shown in FIG.4 (d) was shown here, the structure shown in each of FIG.1, FIG.2, FIG.4 (a)-(c) is shown. A configuration in which the light incident preventing member 16 is added is also possible. Further, it is preferable to use a reflective material as the material of the light incident preventing member 16. This is because by using a reflective material, the light incident on the light incident preventing member 16 is reflected and re-enters the photoelectric conversion film 5, and as a result, the amount of charge obtained from the photoelectric conversion film 5 can be increased. Because. In addition, the light incident preventing member 16 is particularly effective in a configuration in which the microlens 14 is not provided. This is because when the microlens 14 is provided, the probability that incident light goes to the adjacent pixel portion is low, but when the microlens 14 is not provided, this probability is very high.

本発明の第一実施形態である撮像素子の1画素部の概略構成を示す図The figure which shows schematic structure of 1 pixel part of the image pick-up element which is 1st embodiment of this invention. 本発明の第二実施形態である撮像素子の1画素部の概略構成を示す図The figure which shows schematic structure of 1 pixel part of the image pick-up element which is 2nd embodiment of this invention. 第二実施形態の撮像素子の下部電極の変形例を示す図The figure which shows the modification of the lower electrode of the image pick-up element of 2nd embodiment. 本発明の第三実施形態である撮像素子の1画素部の概略構成を示す図The figure which shows schematic structure of 1 pixel part of the image pick-up element which is 3rd embodiment of this invention. 本発明の第四実施形態である撮像素子の1画素部の概略構成を示す図The figure which shows schematic structure of 1 pixel part of the image pick-up element which is 4th embodiment of this invention.

符号の説明Explanation of symbols

1 半導体基板
3 基板上光電変換部
4 下部電極
5 光電変換膜
6 上部電極
7 基板内光電変換部
K 開口部
12 導電性材料
13 光導波路
14 マイクロレンズ
15 インナーレンズ
16 光入射防止部材
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 3 Photoelectric conversion part 4 on substrate Substrate electrode 5 Photoelectric conversion film 6 Upper electrode 7 Photoelectric conversion part K in board | substrate Opening part 12 Conductive material 13 Optical waveguide 14 Microlens 15 Inner lens 16 Light incidence prevention member

Claims (8)

半導体基板上方に形成された下部電極、前記下部電極上方に形成された上部電極、及び前記下部電極と前記上部電極とに挟まれる光電変換膜を含む基板上光電変換部と、前記基板上光電変換部下方の前記半導体基板内部に形成された基板内光電変換部とを含む画素部を同一平面上に複数有する撮像素子であって、
前記上部電極が、前記上部電極上方から入射される入射光に対して透明な透明電極であり、
前記下部電極が、前記入射光を反射する反射部と前記入射光を透過する透過部とを有する撮像素子。
A photoelectric conversion part on a substrate including a lower electrode formed above a semiconductor substrate, an upper electrode formed above the lower electrode, and a photoelectric conversion film sandwiched between the lower electrode and the upper electrode, and the photoelectric conversion on the substrate An imaging device having a plurality of pixel portions on the same plane including an in-substrate photoelectric conversion portion formed inside the semiconductor substrate below the portion,
The upper electrode is a transparent electrode transparent to incident light incident from above the upper electrode,
The imaging device in which the lower electrode includes a reflection part that reflects the incident light and a transmission part that transmits the incident light.
請求項1記載の撮像素子であって、
前記下部電極が前記入射光を反射する導電性の反射材料膜で構成され、
前記下部電極が前記反射材料膜に形成された開口部を有し、
前記反射材料膜によって前記反射部が形成され、前記開口部によって前記透過部が形成される撮像素子。
The imaging device according to claim 1,
The lower electrode is composed of a conductive reflective material film that reflects the incident light,
The lower electrode has an opening formed in the reflective material film;
An imaging device in which the reflective portion is formed by the reflective material film and the transmissive portion is formed by the opening.
請求項2記載の撮像素子であって、
前記開口部に前記入射光に対して透明な導電性材料が埋め込まれている撮像素子。
The imaging device according to claim 2,
An imaging device in which a conductive material transparent to the incident light is embedded in the opening.
請求項1〜3のいずれか1項記載の撮像素子であって、
前記透過部が前記基板内光電変換部の真上に形成されている撮像素子。
The imaging device according to any one of claims 1 to 3,
An imaging device in which the transmissive part is formed immediately above the in-substrate photoelectric conversion part.
請求項1〜4のいずれか1項記載の撮像素子であって、
前記画素部が、前記透過部を透過した光を前記基板内光電変換部に集光するための光学系を前記基板上光電変換部と前記半導体基板との間に備える撮像素子。
The image sensor according to any one of claims 1 to 4,
An image sensor in which the pixel unit includes an optical system for condensing light transmitted through the transmission unit on the in-substrate photoelectric conversion unit between the on-substrate photoelectric conversion unit and the semiconductor substrate.
請求項1〜5のいずれか1項記載の撮像素子であって、
前記画素部が、前記透過部に入射光を集光するためのマイクロレンズを前記基板上光電変換部上方に備える撮像素子。
The imaging device according to any one of claims 1 to 5,
The imaging device, wherein the pixel unit includes a microlens for concentrating incident light on the transmission unit above the photoelectric conversion unit on the substrate.
請求項1〜6のいずれか1項記載の撮像素子であって、
任意の前記基板上光電変換部の前記光電変換膜と、その隣の前記基板上光電変換部の前記光電変換膜との間に、前記任意の基板上光電変換部の光電変換膜を透過した光が前記隣の基板上光電変換部の光電変換膜に入射してしまうのを防ぐ光入射防止部材を備える撮像素子。
The imaging device according to any one of claims 1 to 6,
Light transmitted through the photoelectric conversion film of the arbitrary photoelectric conversion unit on the substrate between the photoelectric conversion film of the arbitrary photoelectric conversion unit on the substrate and the photoelectric conversion film of the adjacent photoelectric conversion unit on the substrate An image pickup device comprising a light incident preventing member that prevents the light from entering the photoelectric conversion film of the photoelectric conversion unit on the adjacent substrate.
請求項7記載の撮像素子であって、
前記光入射防止部材が前記入射光を反射する反射材料で構成される撮像素子。
The imaging device according to claim 7,
An image sensor in which the light incident preventing member is made of a reflective material that reflects the incident light.
JP2007055388A 2007-03-06 2007-03-06 Image pick-up device Pending JP2008218787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055388A JP2008218787A (en) 2007-03-06 2007-03-06 Image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055388A JP2008218787A (en) 2007-03-06 2007-03-06 Image pick-up device

Publications (1)

Publication Number Publication Date
JP2008218787A true JP2008218787A (en) 2008-09-18

Family

ID=39838459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055388A Pending JP2008218787A (en) 2007-03-06 2007-03-06 Image pick-up device

Country Status (1)

Country Link
JP (1) JP2008218787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162562A (en) * 2014-02-27 2015-09-07 株式会社ニコン Imaging apparatus and digital camera
KR20170000547A (en) * 2015-06-24 2017-01-03 삼성전자주식회사 Image sensor and electronic device including the same
WO2019069752A1 (en) * 2017-10-04 2019-04-11 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging element and electronic device
US11563057B2 (en) 2018-11-19 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Imaging device and imaging system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162562A (en) * 2014-02-27 2015-09-07 株式会社ニコン Imaging apparatus and digital camera
KR102410028B1 (en) * 2015-06-24 2022-06-15 삼성전자주식회사 Image sensor and electronic device including the same
CN106298823A (en) * 2015-06-24 2017-01-04 三星电子株式会社 Imageing sensor and the electronic installation including this imageing sensor
JP2017011273A (en) * 2015-06-24 2017-01-12 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor and electronic apparatus having the same
JP7063531B2 (en) 2015-06-24 2022-05-09 三星電子株式会社 Image sensor and electronic device equipped with it
KR20170000547A (en) * 2015-06-24 2017-01-03 삼성전자주식회사 Image sensor and electronic device including the same
CN106298823B (en) * 2015-06-24 2022-07-08 三星电子株式会社 Image sensor and electronic device including the same
WO2019069752A1 (en) * 2017-10-04 2019-04-11 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging element and electronic device
CN111201603A (en) * 2017-10-04 2020-05-26 索尼半导体解决方案公司 Solid-state image pickup element and electronic apparatus
JPWO2019069752A1 (en) * 2017-10-04 2020-11-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor and electronic device
US11350051B2 (en) 2017-10-04 2022-05-31 Sony Semiconductor Solutions Corporation Solid-state imaging element and electronic device
CN111201603B (en) * 2017-10-04 2023-10-24 索尼半导体解决方案公司 Solid-state image pickup element and electronic apparatus
US11563057B2 (en) 2018-11-19 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Imaging device and imaging system
US11723225B2 (en) 2018-11-19 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Imaging device and imaging system

Similar Documents

Publication Publication Date Title
US11211410B2 (en) Solid-state image-capturing device and production method thereof, and electronic appliance
JP4826111B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JP6274567B2 (en) Solid-state imaging device and imaging system
US7545423B2 (en) Image sensor having a passivation layer exposing at least a main pixel array region and methods of fabricating the same
JP4637196B2 (en) Solid-state image sensor
JP6060851B2 (en) Method for manufacturing solid-state imaging device
CN112868101A (en) Pixel unit and operation method of pixel unit
JP2012169530A (en) Solid state image sensor, manufacturing method therefor, and electronic apparatus
JP2011258728A (en) Solid state image sensor and electronic information apparatus
CN109564928B (en) Solid-state image pickup element, pupil correction method for solid-state image pickup element, image pickup apparatus, and information processing apparatus
WO2021100298A1 (en) Imaging element and imaging device
JP5287923B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JP2014027178A (en) Solid state image sensor and electronic information equipment
JP2005158940A5 (en)
JP5429208B2 (en) Solid-state image sensor, camera module, and electronic device module
JP4779304B2 (en) Solid-state image sensor, camera module, and electronic device module
US10784300B1 (en) Solid-state imaging devices
JP2008218787A (en) Image pick-up device
JP2000164839A (en) Solid camera device
JP2020017791A (en) Solid state imaging device
JP2006140413A (en) Solid-state image sensing element
JP5282797B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and image photographing apparatus
JPH06163863A (en) Solid-state image pickup device
JPH0653451A (en) Solid state image sensor
US10804303B2 (en) Image sensors comprising an organic photo-detector, a photo-detector array and dual floating diffusion nodes and electronic devices including the same