JP2008218542A - Connecting structure and its manufacturing method - Google Patents

Connecting structure and its manufacturing method Download PDF

Info

Publication number
JP2008218542A
JP2008218542A JP2007051020A JP2007051020A JP2008218542A JP 2008218542 A JP2008218542 A JP 2008218542A JP 2007051020 A JP2007051020 A JP 2007051020A JP 2007051020 A JP2007051020 A JP 2007051020A JP 2008218542 A JP2008218542 A JP 2008218542A
Authority
JP
Japan
Prior art keywords
terminals
transfer
substrate
connection structure
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007051020A
Other languages
Japanese (ja)
Inventor
Hidetaka Saito
秀隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007051020A priority Critical patent/JP2008218542A/en
Publication of JP2008218542A publication Critical patent/JP2008218542A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Wire Bonding (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connecting structure improving an adhesion between a transfer original board and a transfer-place board and being capable of reducing a connection resistance between the transfer-place board and a wiring board. <P>SOLUTION: The connecting structure (an electrooptic device) has a plurality of first terminals 19, projecting sections 17 formed among the adjacent first terminals 19, target transfer layers containing the first terminals 19 and the projecting sections 17, the transfer-place board 10 transferring the transferred layers and a plurality of second terminals 31 corresponding to a plurality of the first terminals 19 respectively. The connecting structure further has the wiring board 3 forming the second terminals 31 and an anisotropic conductive member 35 containing a plurality of conductive particles 35a electrically connecting the first terminals 19 and the second terminals 31. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被転写層が転写された基板と配線基板とを接続した接続構造体の製造技術に関するものである。   The present invention relates to a manufacturing technique of a connection structure in which a substrate on which a transfer layer is transferred and a wiring substrate are connected.

近年、薄型、軽量で自由に折り曲げることのできるフレキシブルデバイスの開発が進められている。例えば、電子ペーパーに代表されるフレキシブルディスプレイは、携帯時の軽さに加え、衝撃に対する吸収や、手に馴染む柔軟性など、ユビキタス社会の一役を担う電子機器となり得るものである。このような電子機器としては、可撓性を有するプラスチック基板上に転写技術を用いて低温ポリシリコン薄膜トランジスタ等の薄膜素子を転写したものが知られている。   In recent years, development of a flexible device that is thin, lightweight, and can be bent freely is underway. For example, a flexible display typified by electronic paper can be an electronic device that plays a role in the ubiquitous society in addition to lightness when carried, absorption of impact, and flexibility to adapt to the hand. As such an electronic device, a device in which a thin film element such as a low-temperature polysilicon thin film transistor is transferred onto a flexible plastic substrate using a transfer technique is known.

従来の転写工程では、まず転写元基板であるガラス基板上に剥離層を形成し、その上に通常の低温ポリシリコンプロセスを用いて被転写層である薄膜素子及び配線を形成する。そして、転写元基板と転写先基板であるプラスチック基板とを接着剤により接着し、光、熱等により剥離層と転写元基板との密着力を弱め、転写先基板へ被転写層を転写する。プラスチック基板への転写は2回以上の転写工程を用いて行われる場合もある。例えば特許文献1では、転写元基板から第1転写先基板であるガラス基板へ被転写層を転写し、その後、第2転写先基板であるプラスチック基板へ転写を行う。これにより、転写元基板上に積層したのと同じ積層関係で転写先基板上に転写を行うことができる。
特開2004−327836号公報
In a conventional transfer process, first, a release layer is formed on a glass substrate that is a transfer source substrate, and a thin film element and a wiring that is a transfer layer are formed thereon using a normal low-temperature polysilicon process. Then, the transfer source substrate and the plastic substrate that is the transfer destination substrate are bonded with an adhesive, and the adhesion between the release layer and the transfer source substrate is weakened by light, heat, or the like, and the transfer target layer is transferred to the transfer destination substrate. Transfer to the plastic substrate may be performed using two or more transfer processes. For example, in Patent Document 1, a transfer target layer is transferred from a transfer source substrate to a glass substrate that is a first transfer destination substrate, and then transferred to a plastic substrate that is a second transfer destination substrate. As a result, transfer can be performed on the transfer destination substrate in the same stacking relationship as that on the transfer source substrate.
JP 2004-327836 A

転写元基板から転写先基板に被転写層を転写する場合には、転写元基板と転写先基板との間で十分な接着力を確保することが必要である。接着力が不十分だと、被転写層が確実に転写されず、部分的に被転写層が転写元基板に残ってしまう場合があるからである。   When transferring the transfer layer from the transfer source substrate to the transfer destination substrate, it is necessary to secure a sufficient adhesive force between the transfer source substrate and the transfer destination substrate. This is because if the adhesive force is insufficient, the transferred layer is not reliably transferred, and the transferred layer may partially remain on the transfer source substrate.

一方、電子機器の性能は、転写先基板と配線基板との接続抵抗によっても影響を受ける。図10は従来の転写先基板と配線基板との接続部の断面図(同図(a))及び平面図(同図(b))である。同図に示すように、転写先基板10と配線基板3とを接続する場合には、接着剤35b導電粒子35aを分散させた異方性導電部材35が用いられるが、転写先基板10の第1端子19と配線基板3の第2端子31との間に十分な数の導電粒子35aが配置されない場合、端子19,31間の接続抵抗が増大し、接続不良が発生する。例えば、端子19,31間の導電粒子35aの密度は第1基板10と配線基板3との間の間隔の大きさによって変化するが、端子19,31が形成された部分は端子19,31の厚み分だけ他の部分よりも間隔が狭くなっており、そのため導電粒子35aは間隔の広い端子19,19間の領域に集まる傾向にある。その結果、端子19,31間の導電粒子35aの密度が小さくなり、十分な接続抵抗が得られない場合があった。   On the other hand, the performance of the electronic device is also affected by the connection resistance between the transfer destination substrate and the wiring substrate. 10A and 10B are a cross-sectional view (FIG. 10A) and a plan view (FIG. 10B) of a connection portion between a conventional transfer destination substrate and a wiring substrate. As shown in the figure, when the transfer destination substrate 10 and the wiring substrate 3 are connected, an anisotropic conductive member 35 in which conductive particles 35a are dispersed in an adhesive 35b is used. When a sufficient number of conductive particles 35a are not disposed between the one terminal 19 and the second terminal 31 of the wiring board 3, the connection resistance between the terminals 19 and 31 increases, resulting in poor connection. For example, the density of the conductive particles 35 a between the terminals 19 and 31 varies depending on the size of the gap between the first substrate 10 and the wiring substrate 3, but the portion where the terminals 19 and 31 are formed corresponds to the terminals 19 and 31. The interval is narrower than the other portions by the thickness, and therefore, the conductive particles 35a tend to gather in the region between the terminals 19, 19 having a large interval. As a result, the density of the conductive particles 35a between the terminals 19 and 31 may be reduced, and sufficient connection resistance may not be obtained.

本発明はこのような事情に鑑みてなされたものであって、転写元基板と転写先基板との接着力を向上し、さらに転写先基板と配線基板との接続抵抗を低減することのできる接続構造体及びその製造方法を提供することを目的とする。また、このような接続構造体を備えることにより、歩留まりが高く、接続信頼性に優れた電子機器を提供することを目的とする。   The present invention has been made in view of such circumstances, and can improve the adhesive force between the transfer source substrate and the transfer destination substrate, and further reduce the connection resistance between the transfer destination substrate and the wiring substrate. An object is to provide a structure and a method for manufacturing the structure. Another object of the present invention is to provide an electronic device having a high yield and excellent connection reliability by including such a connection structure.

上記の課題を解決するため、本発明の接続構造体は、複数の第1端子と前記複数の第1端子の各々の間に設けられた突起部とを備えた被転写層と、前記被転写層が転写された転写先基板と、前記複数の第1端子にそれぞれ対応する複数の第2端子を備えた配線基板と、前記複数の第1端子と前記複数の第2端子とをそれぞれ電気的に接続する異方性導電部材とを備えたことを特徴とする。この構成によれば、隣接する第1端子間の領域に突起部が設けられているため、転写元基板を他の基板と接着する際に、突起部の表面積の分だけ接着面積を大きくすることができる。このため、転写元基板と当該他の基板との間で十分な接着力を確保することができ、歩留まりの高い接続構造体を提供できる。また、突起部によって転写先基板と配線基板との間隔を小さくすることができるため、転写先基板と配線基板とを異方性導電部材で接続する際に、異方性導電部材中の導電粒子が端子間の領域に移動しにくくなり、多くの導電粒子を第1端子と第2端子との電気的接続に寄与させることができる。また、隣接する端子間の領域に導電粒子が移動しにくくなるため、端子間の短絡が生じにくくなり、信頼性に優れた接続構造体が提供できる。   In order to solve the above problems, the connection structure of the present invention includes a transfer layer including a plurality of first terminals and a protrusion provided between each of the plurality of first terminals, and the transfer target. The transfer destination substrate to which the layer is transferred, the wiring substrate having a plurality of second terminals respectively corresponding to the plurality of first terminals, and the plurality of first terminals and the plurality of second terminals are electrically connected to each other. And an anisotropic conductive member connected to. According to this configuration, since the protruding portion is provided in the region between the adjacent first terminals, when the transfer source substrate is bonded to another substrate, the bonding area is increased by the surface area of the protruding portion. Can do. For this reason, sufficient adhesive force can be secured between the transfer source substrate and the other substrate, and a connection structure with a high yield can be provided. Further, since the distance between the transfer destination substrate and the wiring substrate can be reduced by the protrusion, the conductive particles in the anisotropic conductive member are connected when the transfer destination substrate and the wiring substrate are connected by the anisotropic conductive member. Is difficult to move to the region between the terminals, and many conductive particles can contribute to the electrical connection between the first terminal and the second terminal. Moreover, since it becomes difficult for a conductive particle to move to the area | region between adjacent terminals, it becomes difficult to produce a short circuit between terminals and can provide the connection structure excellent in reliability.

本発明においては、前記突起部は複数の突起によって構成されていることが望ましい。例えば、前記複数の突起は前記複数の第1端子の配列軸に沿って設けられていることが望ましい。また、前記複数の突起は前記複数の第1端子の延在方向に沿って設けられていることが望ましい。この構成によれば、突起部の表面積が大きくなるため、さらに転写元基板と前記他の基板との接着力が向上する。なお、第1端子間に複数の突起を設ける場合、当該複数の突起は全ての第1端子間に設ける必要はなく、少なくともいずれかの第1端子間に設ければ良い。   In the present invention, it is desirable that the protrusion is composed of a plurality of protrusions. For example, it is desirable that the plurality of protrusions be provided along an array axis of the plurality of first terminals. Further, it is desirable that the plurality of protrusions be provided along the extending direction of the plurality of first terminals. According to this configuration, since the surface area of the protruding portion is increased, the adhesive force between the transfer source substrate and the other substrate is further improved. When a plurality of protrusions are provided between the first terminals, the plurality of protrusions need not be provided between all the first terminals, and may be provided between at least one of the first terminals.

本発明においては、前記突起部は、前記複数の第1端子の配列軸に沿って切断した断面が矩形又は台形の形状をなしていることが望ましい。この構成によれば、突起部の断面が曲面形状を有している場合に比べて、転写元基板と前記他の基板との接着力を大きくすることができる。また、突起部の断面形状を突起部間の溝の幅が転写先基板の表面から離れるに従って狭くなるような順テーパ状の台形形状とした場合、異方性導電部材中の接着剤が突起部間の領域に充填され易くなり、接着力が更に向上する。   In the present invention, it is desirable that the protrusion has a rectangular or trapezoidal cross section cut along the arrangement axis of the plurality of first terminals. According to this configuration, the adhesive force between the transfer source substrate and the other substrate can be increased as compared with the case where the cross section of the protrusion has a curved shape. In addition, when the cross-sectional shape of the protrusions is a forward tapered trapezoidal shape in which the width of the groove between the protrusions becomes narrower as the distance from the surface of the transfer destination substrate increases, the adhesive in the anisotropic conductive member causes protrusions It becomes easy to fill the area between them, and the adhesive force is further improved.

本発明においては、前記被転写層は、前記複数の第1端子とそれぞれ電気的に接続された複数の配線と、前記複数の配線を覆う絶縁膜とを含み、前記突起部は、前記絶縁膜と同一部材によって形成されていることが望ましい。この構成によれば、絶縁膜をパターニングする際に同時に突起部を形成できるため、製造工程が簡略化できる。   In the present invention, the transfer layer includes a plurality of wirings electrically connected to the plurality of first terminals, and an insulating film covering the plurality of wirings, and the protrusion includes the insulating film. It is desirable to be formed by the same member. According to this configuration, since the protrusion can be formed at the same time when the insulating film is patterned, the manufacturing process can be simplified.

本発明においては、前記突起部の厚みは、第1端子の厚み、前記異方性導電部材に含まれる導電粒子の厚み及び第2端子の厚みの総和以下であることが望ましい。この構成によれば、第1端子と第2端子とを接続する際に突起部が邪魔になることがない。また、突起部の厚みを、第1端子、第2端子及び導電粒子のそれぞれの厚みの総和と略同じ厚みとした場合、突起部と配線基板との間に導電粒子が殆ど配置されなくなるため、多くの導電粒子を第1端子と第2端子との電気的接続に寄与させることができる。   In the present invention, it is desirable that the thickness of the protrusion is not more than the sum of the thickness of the first terminal, the thickness of the conductive particles contained in the anisotropic conductive member, and the thickness of the second terminal. According to this configuration, the protrusion does not get in the way when connecting the first terminal and the second terminal. In addition, when the thickness of the protruding portion is substantially the same as the total thickness of the first terminal, the second terminal, and the conductive particles, the conductive particles are hardly disposed between the protruding portion and the wiring board. Many conductive particles can contribute to the electrical connection between the first terminal and the second terminal.

本発明においては、前記複数の第1端子と前記複数の第2端子とが対向する対向領域の前記導電粒子の密度は、前記複数の第1端子の各々の間の領域及び複数の第2端子の各々の間の領域の前記導電粒子の密度よりも大きいことが望ましい。この構成によれば、第1端子と第2端子との電気的接続に寄与しない無駄の導電粒子の数を減らすことができる。また、隣接する端子間に配置される導電粒子の数が少なくなることで、端子間の短絡も防止することができる。   In the present invention, the density of the conductive particles in the facing region where the plurality of first terminals and the plurality of second terminals are opposed to each other is the region between each of the plurality of first terminals and the plurality of second terminals. It is desirable that the density of the conductive particles in the region between each of the above is larger. According to this configuration, it is possible to reduce the number of wasted conductive particles that do not contribute to the electrical connection between the first terminal and the second terminal. Further, since the number of conductive particles arranged between adjacent terminals is reduced, a short circuit between the terminals can be prevented.

本発明の接続構造体の製造方法は、転写元基板上に複数の第1端子と前記複数の第1端子の各々の間に配置された突起部とを含む被転写層を形成する工程と、前記転写元基板の前記被転写層側の面に第1転写先基板を接着する工程と、前記転写元基板から前記被転写層を剥離して前記第1転写先基板上に前記被転写層を転写する工程と、前記第1転写先基板の前記被転写層側の面に第2転写先基板を接着する工程と、前記第1転写先基板から前記被転写層を剥離して前記第2転写先基板上に前記被転写層を転写する工程と、前記第2転写先基板の前記被転写層側の面に前記複数の第1端子にそれぞれ対応する複数の第2端子を含む配線基板を異方性導電部材を介して接続する工程と、を備えたことを特徴とする。この方法によれば、隣接する第1端子間の領域に突起部が設けられているため、転写元基板を第1転写先基板と接着する際に、突起部の表面積の分だけ接着面積を大きくすることができる。このため、転写元基板と第1転写先基板との間で十分な接着力を確保することができ、歩留まりの高い接続構造体を提供できる。また、突起部によって第2転写先基板と配線基板との間隔を小さくすることができるため、第2転写先基板と配線基板とを異方性導電部材で接続する際に、異方性導電部材中の導電粒子が端子間の領域に移動しにくくなり、多くの導電粒子を第1端子と第2端子との電気的接続に寄与させることができる。また、隣接する端子間の領域に導電粒子が移動しにくくなるため、端子間の短絡が生じにくくなり、信頼性に優れた接続構造体が提供できる。   The method for manufacturing a connection structure according to the present invention includes a step of forming a transfer layer including a plurality of first terminals and a protrusion disposed between each of the plurality of first terminals on a transfer source substrate; Adhering the first transfer destination substrate to the surface of the transfer source substrate on the transfer layer side, peeling the transfer layer from the transfer source substrate, and placing the transfer layer on the first transfer destination substrate A step of transferring, a step of adhering a second transfer destination substrate to a surface of the first transfer destination substrate on the side of the transfer target layer, and peeling off the transfer target layer from the first transfer destination substrate to form the second transfer A step of transferring the transferred layer onto the destination substrate; and a wiring substrate including a plurality of second terminals respectively corresponding to the plurality of first terminals on a surface of the second transfer destination substrate on the transferred layer side. And a step of connecting via the isotropic conductive member. According to this method, since the protrusion is provided in the region between the adjacent first terminals, the bonding area is increased by the surface area of the protrusion when the transfer source substrate is bonded to the first transfer destination substrate. can do. For this reason, sufficient adhesive force can be ensured between the transfer source substrate and the first transfer destination substrate, and a connection structure with a high yield can be provided. In addition, since the gap between the second transfer destination substrate and the wiring substrate can be reduced by the protrusion, the anisotropic conductive member is used when connecting the second transfer destination substrate and the wiring substrate with the anisotropic conductive member. The inside conductive particles are difficult to move to the region between the terminals, and many conductive particles can contribute to the electrical connection between the first terminal and the second terminal. Moreover, since it becomes difficult for a conductive particle to move to the area | region between adjacent terminals, it becomes difficult to produce a short circuit between terminals and can provide the connection structure excellent in reliability.

以下、図面を参照して本発明の実施の形態について説明する。かかる実施の形態は本発明の一態様を示すものであり、この発明を限定するものではない。下記の実施形態において、各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。   Embodiments of the present invention will be described below with reference to the drawings. Such an embodiment shows one aspect of the present invention and does not limit the present invention. In the following embodiments, various shapes, combinations, and the like of the constituent members are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, an actual structure and a scale, a number, and the like in each structure are different.

以下の説明においては、XYZ直交座標系を設定し、該XYZ直交座標系を参照しつつ各部材の位置関係について説明する。この際、水平面内における所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれに直交する方向(すなわち鉛直方向)をZ軸方向とする。本実施形態の場合、X軸方向を走査線の延在方向、Y軸方向をデータ線の延在方向、Z軸方向を観察者による電気光学パネルの観察方向としている。   In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to the XYZ orthogonal coordinate system. At this time, the predetermined direction in the horizontal plane is the X-axis direction, the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction, and the direction orthogonal to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction. And In this embodiment, the X-axis direction is the scanning line extending direction, the Y-axis direction is the data line extending direction, and the Z-axis direction is the observation direction of the electro-optic panel by the observer.

[第1の実施の形態]
図1は本発明の接続構造体の一実施形態である電気光学装置1の分解斜視図である。電気光学装置1は電気光学パネル2と配線基板3とを備えている。なお、電気光学装置1には、フレームその他の付帯機器が必要に応じて付設されるが、図1ではそれらの図示は省略している。
[First Embodiment]
FIG. 1 is an exploded perspective view of an electro-optical device 1 which is an embodiment of a connection structure according to the present invention. The electro-optical device 1 includes an electro-optical panel 2 and a wiring board 3. The electro-optical device 1 is provided with a frame and other auxiliary devices as needed, but these are not shown in FIG.

電気光学パネル2は、互いに対向する第1基板10及び第2基板20を備えている。第1基板10と第2基板20との間には電気泳動層が挟持されている。電気泳動層は、分散媒中に1種又は2種以上の電気泳動粒子を分散させた電気泳動分散液を主体として構成されている。電気泳動粒子はTiO等の無機酸化物又は無機水酸化物からなる直径0.01μm〜10μm程度の微粒子であり、分散媒の水素イオン指数PHによってその表面電荷密度(帯電量)が制御されている。電気泳動粒子は第1基板10のと第2基板20との間の電界によって泳動し、一方の基板の表面に付着することで表示を行う。なお、電気泳動分散液はマイクロカプセルの内部に封入しても良い。 The electro-optical panel 2 includes a first substrate 10 and a second substrate 20 that face each other. An electrophoretic layer is sandwiched between the first substrate 10 and the second substrate 20. The electrophoretic layer is mainly composed of an electrophoretic dispersion liquid in which one or more electrophoretic particles are dispersed in a dispersion medium. Electrophoretic particles are fine particles having a diameter of about 0.01 μm to 10 μm made of inorganic oxide or inorganic hydroxide such as TiO 2 , and the surface charge density (charge amount) is controlled by the hydrogen ion index PH of the dispersion medium. Yes. The electrophoretic particles migrate by an electric field between the first substrate 10 and the second substrate 20, and display by attaching to the surface of one substrate. The electrophoretic dispersion liquid may be enclosed in the microcapsule.

第1基板10及び第2基板20が対向する対向領域の中央部には表示領域Adが設けられている。表示領域Adには、X軸方向に延びる複数の走査線12とY軸方向に延びる複数のデータ線11とが平面視格子状に設けられている。走査線12とデータ線11との交差部には、赤色、緑色又は青色のいずれかの色に対応したサブ画素が設けられている。第1基板10上には、このようなサブ画素がマトリクス状に配置されており、これら複数のサブ画素によって全体としての表示領域Adが形成されている。それぞれのサブ画素にはTFT(Thin Film Transistor)等の画素スイッチング素子が設けられているが、図1ではそれらの図示は省略している。   A display area Ad is provided at the center of the facing area where the first substrate 10 and the second substrate 20 face each other. In the display area Ad, a plurality of scanning lines 12 extending in the X-axis direction and a plurality of data lines 11 extending in the Y-axis direction are provided in a lattice shape in plan view. Sub-pixels corresponding to any one of red, green, and blue are provided at the intersections between the scanning lines 12 and the data lines 11. Such sub-pixels are arranged in a matrix on the first substrate 10, and a display area Ad as a whole is formed by the plurality of sub-pixels. Each sub-pixel is provided with a pixel switching element such as a TFT (Thin Film Transistor), which is not shown in FIG.

第1基板10には、第2基板20の外側へ張り出す張出し部10cが設けられている。張出し部10cには、走査線12及びデータ線11と電気的に接続された複数の第1端子19が設けられている。張出し部10cには異方性導電フィルム(Anisotropic Conductive Film;ACF)等の異方性導電部材35を介して配線基板3が電気的に接続されている。配線基板3は第1基板10の複数の第1端子19にそれぞれ対応する複数の第2端子31を備えている。第1端子19と第2端子31とは、異方性導電部材35中の導電粒子(図示略)を介して電気的に接続されている。   The first substrate 10 is provided with an overhang portion 10 c that protrudes to the outside of the second substrate 20. A plurality of first terminals 19 that are electrically connected to the scanning lines 12 and the data lines 11 are provided in the overhanging portion 10 c. The wiring board 3 is electrically connected to the projecting portion 10c via an anisotropic conductive member 35 such as an anisotropic conductive film (ACF). The wiring board 3 includes a plurality of second terminals 31 that respectively correspond to the plurality of first terminals 19 of the first substrate 10. The first terminal 19 and the second terminal 31 are electrically connected via conductive particles (not shown) in the anisotropic conductive member 35.

図2は張出し部10cの拡大図である。第1基板10上には接着剤層14を介して被転写層15が転写されている。被転写層15は、複数の画素スイッチング素子を含む画素回路と、該画素回路の周囲に設けられたデータ線駆動回路及び走査線駆動回路等の周辺駆動回路とを含む一組の薄膜素子及び配線を備えている。図2において、第1端子19、配線13、層間絶縁膜16及び突起部17は被転写層15に含まれている。本実施形態の場合、画素スイッチング素子と周辺駆動回路は低温ポリシリコン半導体層を含む薄膜トランジスタを備えており、これらが同一基板上に一体に形成されることにより、周辺駆動回路内蔵型の電気光学パネルが形成されている。   FIG. 2 is an enlarged view of the overhang portion 10c. A transferred layer 15 is transferred onto the first substrate 10 via an adhesive layer 14. The transferred layer 15 includes a set of thin film elements and wiring including a pixel circuit including a plurality of pixel switching elements and peripheral driving circuits such as a data line driving circuit and a scanning line driving circuit provided around the pixel circuit. It has. In FIG. 2, the first terminal 19, the wiring 13, the interlayer insulating film 16 and the protrusion 17 are included in the transferred layer 15. In the case of this embodiment, the pixel switching element and the peripheral drive circuit include a thin film transistor including a low-temperature polysilicon semiconductor layer, and these are integrally formed on the same substrate, so that an electro-optical panel with a built-in peripheral drive circuit is provided. Is formed.

図2において符号13は走査線12及びデータ線11を張出し部10cに引き出すための配線である。配線13には第1端子19が電気的に接続されている。第1基板10上には配線13を覆って層間絶縁膜16が設けられている。層間絶縁膜16上には各サブ画素に対応して図示略の複数の画素電極が設けられている。   In FIG. 2, reference numeral 13 denotes a wiring for drawing out the scanning line 12 and the data line 11 to the overhanging portion 10c. A first terminal 19 is electrically connected to the wiring 13. An interlayer insulating film 16 is provided on the first substrate 10 so as to cover the wiring 13. A plurality of pixel electrodes (not shown) are provided on the interlayer insulating film 16 corresponding to each subpixel.

隣接する第1端子19間には突起部17が設けられている。突起部17は層間絶縁膜16と同一材料によって形成されている。層間絶縁膜16の第1端子19と重なる部分には、第1端子19を露出するための溝Hが設けられている。溝Hは第1端子19の延在方向(Y軸方法)にストライプ状に設けられている。溝Hは第1端子19毎に分離して設けられており、溝Hが形成されない部分が突起部17となっている。   A protrusion 17 is provided between the adjacent first terminals 19. The protrusion 17 is made of the same material as the interlayer insulating film 16. A groove H for exposing the first terminal 19 is provided in a portion overlapping the first terminal 19 of the interlayer insulating film 16. The grooves H are provided in stripes in the extending direction of the first terminal 19 (Y-axis method). The groove H is provided separately for each first terminal 19, and the portion where the groove H is not formed is a protrusion 17.

図3は第1端子19と第2端子31との接続部の概略構成図である。同図において(a)は接続部を第1端子19の配列軸(X軸)に沿って切断した断面図であり、(b)は接続部をZ軸方向から見た平面図である。図3(a)に示すように、隣接する第1端子19間には、配線基板3側に突出する突起部17が設けられている。突起部17は矩形又は台形の断面形状を有している。本実施形態の場合、突起部17の断面形状は、突起部17間の溝Hの幅が第1基板10の表面から離れるに従って狭くなるような順テーパ状の台形形状を有している。突起部17の厚みは、第1基板10と配線基板3との接続部の厚みに応じて設計されている。具体的には、第1端子19の厚み、第2端子31の厚み及び異方性導電部材35中の導電粒子35aの粒径の総和よりも小さい厚みに設計され、好ましくは、この総和の厚みと略同じ厚みに設計されている。   FIG. 3 is a schematic configuration diagram of a connection portion between the first terminal 19 and the second terminal 31. In the same figure, (a) is a cross-sectional view of the connecting portion cut along the arrangement axis (X axis) of the first terminals 19, and (b) is a plan view of the connecting portion viewed from the Z-axis direction. As shown in FIG. 3A, a protrusion 17 that protrudes toward the wiring board 3 is provided between adjacent first terminals 19. The protrusion 17 has a rectangular or trapezoidal cross-sectional shape. In the case of this embodiment, the cross-sectional shape of the protrusion 17 has a forward tapered trapezoidal shape such that the width of the groove H between the protrusions 17 becomes narrower as the distance from the surface of the first substrate 10 increases. The thickness of the protruding portion 17 is designed according to the thickness of the connecting portion between the first substrate 10 and the wiring substrate 3. Specifically, the thickness is designed to be smaller than the sum of the thickness of the first terminal 19, the thickness of the second terminal 31, and the particle size of the conductive particles 35 a in the anisotropic conductive member 35, and preferably the total thickness Designed to approximately the same thickness.

第1基板10と配線基板3のベース基材30との間隔は、突起部17によって小さくなっている。そのため、突起部17が設けられた部分には導電粒子35aが配置されにくくなっている。突起部17とベース基材30との間に配置される導電粒子35aの数及び密度は、突起部17の厚みによって制御することができる。突起部17の厚みが、第1端子19の厚み、第2端子31の厚み及び導電粒子35aの粒径の総和と略同じである場合には、突起部17とベース基材30との間には導電粒子35aは殆ど配置されなくなる。一方、突起部17の厚みが薄い場合には、配線基板3と第1基板10とを接続する際に導電粒子35aが突起部17とベース基材30との間の空間に移動し、第1端子19と第2端子31との間に導電粒子35aが殆ど配置されなくなる。   The distance between the first substrate 10 and the base substrate 30 of the wiring substrate 3 is reduced by the protrusion 17. Therefore, it is difficult for the conductive particles 35a to be disposed in the portion where the protrusion 17 is provided. The number and density of the conductive particles 35 a disposed between the protrusions 17 and the base substrate 30 can be controlled by the thickness of the protrusions 17. When the thickness of the protrusion 17 is substantially the same as the sum of the thickness of the first terminal 19, the thickness of the second terminal 31, and the particle size of the conductive particles 35 a, the protrusion 17 is interposed between the protrusion 17 and the base substrate 30. The conductive particles 35a are hardly arranged. On the other hand, when the thickness of the protruding portion 17 is small, the conductive particles 35a move to the space between the protruding portion 17 and the base substrate 30 when connecting the wiring substrate 3 and the first substrate 10, and the first The conductive particles 35 a are hardly disposed between the terminal 19 and the second terminal 31.

他方、突起部17の厚みを、第1端子19の厚み、第2端子31の厚み及び導電粒子35aの粒径の総和と略同じ厚みとした場合には、突起部17とベース基材30との間に接着剤35bが殆ど配置されなくなり、接着力が弱くなる。このため、本実施形態では、突起部17の厚みを、第1端子19の厚み、第2端子31の厚み及び導電粒子35aの粒径の総和よりも若干小さい厚みとし、突起部17とベース基材30との間に一定量の接着剤35bが配置されるようにしている。こうすることで、図3(b)に示すように、第1端子19と第2端子31との間に配置される導電粒子35aの密度を、それ以外の領域に配置される導電粒子35aの密度よりも大きくすることができ、端子間の短絡を確実に防止することができる。   On the other hand, when the thickness of the protrusion 17 is substantially the same as the sum of the thickness of the first terminal 19, the thickness of the second terminal 31, and the particle diameter of the conductive particles 35a, the protrusion 17 and the base substrate 30 The adhesive 35b is hardly disposed between the two and the adhesive force is weakened. For this reason, in this embodiment, the thickness of the protrusion 17 is set to be slightly smaller than the sum of the thickness of the first terminal 19, the thickness of the second terminal 31, and the particle diameter of the conductive particles 35a. A certain amount of adhesive 35 b is arranged between the material 30. By doing so, as shown in FIG. 3B, the density of the conductive particles 35a disposed between the first terminal 19 and the second terminal 31 is set to be equal to that of the conductive particles 35a disposed in other regions. The density can be made larger than the density, and a short circuit between the terminals can be surely prevented.

次に、図4〜図7を用いて電気光学装置1の製造方法を説明する。図4〜図7では電気光学パネル2の製造工程を中心に説明し、他の工程の説明は省略する。   Next, a method for manufacturing the electro-optical device 1 will be described with reference to FIGS. 4 to 7, the manufacturing process of the electro-optical panel 2 will be mainly described, and description of other processes will be omitted.

まず、図4に示すように、転写元基板40上に剥離層41及び被転写層15を形成する。転写元基板40には、ガラス、石英、プラスチック等の透光性を備えた基板が用いられる。転写元基板40は、被転写層15を転写前後で変わらず維持できるものであれば良く、可撓性を有するフィルムのように剛性を有しないものでも良い。ただし、被転写層15のプロセス温度に耐え得るような耐熱性を備えていることが必要である。例えば、被転写層15を形成する際の最高温度をTmaxとしたとき、歪点(ガラス転移温度Tg又は軟化点)がTmax以上のものを用いることが望ましい。低温ポリシリコン半導体層を備えた被転写層15を形成する場合には、歪点が350℃以上であることが好ましく、500℃以上であることがより好ましい。   First, as shown in FIG. 4, the peeling layer 41 and the transferred layer 15 are formed on the transfer source substrate 40. As the transfer source substrate 40, a substrate having translucency such as glass, quartz, plastic or the like is used. The transfer source substrate 40 may be any substrate as long as it can maintain the transferred layer 15 before and after transfer, and may not have rigidity such as a flexible film. However, it is necessary to have heat resistance that can withstand the process temperature of the transferred layer 15. For example, it is desirable to use a material having a strain point (glass transition temperature Tg or softening point) equal to or higher than Tmax, where Tmax is the maximum temperature for forming the transferred layer 15. When forming the transferred layer 15 having a low-temperature polysilicon semiconductor layer, the strain point is preferably 350 ° C. or higher, more preferably 500 ° C. or higher.

剥離層41はエネルギーの付与によって層内又は界面において剥離(以下、「層内剥離」又は「界面剥離」という)を生じるような性質を有するものであり、好ましくは、光の照射により剥離層41を構成する物質の原子間又は分子間の結合力が消失又は減少すること、すなわち、アブレーションが生じて層内剥離又は界面剥離に至るものが良い。光の照射により剥離層41から気体が放出され、分離効果が発現される場合もある。すなわち、剥離層41に含有されていた成分が気体となって放出される場合と、剥離層41が光を吸収して一瞬気体となり、その蒸気が放出され、分離に寄与する場合とがある。剥離層41としては、アモルファスシリコン、水素含有アモルファスシリコン、窒素含有アモルファスシリコン、水素含有合金、窒素含有合金、多層膜、セラミックス、金属、有機高分子材料等、公知の材料を用いることができる。   The peeling layer 41 has such a property that peeling occurs in the layer or at the interface (hereinafter referred to as “in-layer peeling” or “interfacial peeling”) by application of energy. Preferably, the peeling layer 41 is irradiated by light irradiation. It is preferable that the bonding force between atoms or molecules of the substance constituting the material disappears or decreases, that is, ablation occurs to cause delamination or interfacial delamination. In some cases, gas is released from the release layer 41 by light irradiation, and a separation effect is exhibited. That is, there are a case where the component contained in the release layer 41 is released as a gas, and a case where the release layer 41 absorbs light and becomes a gas for a moment, and its vapor is released, contributing to separation. As the peeling layer 41, a known material such as amorphous silicon, hydrogen-containing amorphous silicon, nitrogen-containing amorphous silicon, hydrogen-containing alloy, nitrogen-containing alloy, multilayer film, ceramics, metal, organic polymer material, or the like can be used.

次に、図5に示すように、転写元基板40上に接着剤を介して第1転写先基板50を接着する。第1転写先基板50は、被転写層15が形成される転写元基板40に比べて耐熱性や耐食性に劣るものでも良い。転写元基板40と異なり、第1転写先基板50に要求される特性、特に耐熱性は、被転写層形成の際の温度条件に依存しないからである。したがって、被転写層15を形成する際の最高温度をTmaxとしたとき、歪点(ガラス転移温度Tg又は軟化点)がTmax以下のものを用いることができる。   Next, as shown in FIG. 5, the first transfer destination substrate 50 is bonded onto the transfer source substrate 40 via an adhesive. The first transfer destination substrate 50 may be inferior in heat resistance and corrosion resistance as compared to the transfer source substrate 40 on which the transfer target layer 15 is formed. This is because, unlike the transfer source substrate 40, the characteristics required for the first transfer destination substrate 50, particularly heat resistance, does not depend on the temperature conditions in forming the transfer layer. Accordingly, a material having a strain point (glass transition temperature Tg or softening point) equal to or lower than Tmax when the maximum temperature when forming the transferred layer 15 is Tmax can be used.

接着剤の種類としては、反応性硬化型接着剤、熱硬化型接着剤、光硬化型接着剤(紫外線硬化型接着剤等)、嫌気硬化型接着剤、その他の各種硬化型接着剤を用いることができる。具体的には、アクリル系接着剤、エポキシ系接着剤、シリコーン系接着剤、天然ゴム系接着剤、ポリウレタン系接着剤、フェノール系接着剤、酢酸ビニル系接着剤、シアノアクリレート系接着剤、ポリビニルアルコール系接着剤、ポリイミド系接着剤、ポリアミド系接着剤等を用いることができ、これらを目的に合わせて変性する等しても良い。   As the types of adhesives, reactive curable adhesives, thermosetting adhesives, photocurable adhesives (such as UV curable adhesives), anaerobic curable adhesives, and other various curable adhesives should be used. Can do. Specifically, acrylic adhesives, epoxy adhesives, silicone adhesives, natural rubber adhesives, polyurethane adhesives, phenolic adhesives, vinyl acetate adhesives, cyanoacrylate adhesives, polyvinyl alcohol A system adhesive, a polyimide system adhesive, a polyamide system adhesive, etc. can be used, and these may be modified according to the purpose.

接着剤は突起部17を覆って配置される。このため、第1転写先基板50と転写元基板40との接着面積は、突起部17によって形成され凹凸の表面積の分だけ大きくなり、接着力も向上する。したがって、後述の剥離工程で接着剤層51(図6参照)が不用意に剥がれることがなく、歩留まりの高い電気光学装置が提供できる。   The adhesive is disposed so as to cover the protrusion 17. For this reason, the adhesion area between the first transfer destination substrate 50 and the transfer source substrate 40 is increased by the surface area of the projections and depressions formed by the protrusions 17, and the adhesion force is also improved. Therefore, the adhesive layer 51 (see FIG. 6) is not inadvertently peeled off in the peeling step described later, and an electro-optical device with a high yield can be provided.

次に、図6に示すように、転写元基板40側から剥離層41(図5参照)に対して光Lを照射し、剥離層41の密着力を弱める。剥離層41は光Lが照射されると剥離(層内剥離又は界面剥離)を生じる。層内剥離又は界面剥離が生じる原理は、剥離層41の構成材料にアブレーションが生じること、また剥離層11に含まれるガスの放出、さらには照射直後に生じる溶融、蒸散等の相変化によるものである。   Next, as shown in FIG. 6, light L is applied to the release layer 41 (see FIG. 5) from the transfer source substrate 40 side to weaken the adhesion of the release layer 41. When the light L is irradiated with the peeling layer 41, peeling (in-layer peeling or interface peeling) occurs. The principle of delamination or interfacial delamination is due to the occurrence of ablation in the constituent material of the delamination layer 41, the release of gas contained in the delamination layer 11, and the phase change such as melting and transpiration that occurs immediately after irradiation. is there.

ここで、アブレーションとは、照射光を吸収した剥離層41の構成材料が光化学的又は熱的に励起され、その表面や内部の原子又は分子の結合が切断されて放出することをいい、主に剥離層41の構成材料の全部又は一部が溶融、蒸散(気化)等の相変化を生じる現象として現れる。また、前記相変化によって微小な発泡状態となり、結合力が低下することもある。剥離層41が層内剥離を生じるか界面剥離を生じるか又はその両方であるかは、剥離層41の組成やその他種々の要因に左右され、その要因の1つとして、照射される光の種類、波長、強度、到達深さ等の条件が挙げられる。   Here, the ablation means that the constituent material of the release layer 41 that has absorbed the irradiation light is photochemically or thermally excited, and the surface or internal atomic or molecular bonds are cut and released. All or part of the constituent material of the release layer 41 appears as a phenomenon that causes a phase change such as melting and transpiration (vaporization). In addition, the phase change may result in a fine foamed state, resulting in a decrease in bonding strength. Whether the peeling layer 41 causes in-layer peeling, interfacial peeling, or both depends on the composition of the peeling layer 41 and various other factors, and one of the factors is the type of light to be irradiated. , Conditions such as wavelength, intensity, and reaching depth.

照射する光Lとしては、剥離層41に層内剥離又は界面剥離を起こさせるものであればいかなるものでも良く、例えば、X線、紫外線、可視光、赤外線(熱線)、レーザ光、ミリ波、マイクロ波、電子線、放射線(α波、β波、γ波)等が挙げられる。中でも剥離層41の剥離(アブレーション)を生じさせ易く、且つ高精度の局部照射が可能である点でレーザ光が好ましい。レーザ光はコヒーレント光であり、転写下基板40を介して剥離層41に高出力パルス光を照射して高精度で所望部分に剥離を生じさせるのに好適である。したがって、レーザ光の使用によって容易に且つ確実に被転写層15を剥離させることができる。   The light L to be irradiated may be any as long as it causes the peeling layer 41 to undergo in-layer peeling or interfacial peeling. For example, X-rays, ultraviolet rays, visible light, infrared rays (heat rays), laser light, millimeter waves, Microwave, electron beam, radiation (α wave, β wave, γ wave) and the like can be mentioned. Among these, laser light is preferable in that peeling (ablation) of the peeling layer 41 is likely to occur and local irradiation with high accuracy is possible. The laser light is coherent light, and is suitable for irradiating the peeling layer 41 through the lower transfer substrate 40 with high output pulsed light to cause peeling at a desired portion with high accuracy. Therefore, the transferred layer 15 can be easily and reliably peeled off by using laser light.

剥離層41の結合力を弱めたら、転写元基板40と第1転写先基板50とを引き離す力を加え、転写元基板40を第1転写先基板50から剥離する。剥離後、転写された被転写層15の底面又は転写した第1転写先基板50の表面に剥離層41の残渣が付着している場合がある。この残渣を完全に取り除く方法としては、例えば洗浄、エッチング、アッシング、研磨等の方法又はこれらを組み合わせた方法の中から適宜選択して採用することができる。   When the bonding force of the peeling layer 41 is weakened, a force for separating the transfer source substrate 40 and the first transfer destination substrate 50 is applied, and the transfer source substrate 40 is peeled from the first transfer destination substrate 50. After peeling, the residue of the peeling layer 41 may adhere to the bottom surface of the transferred transfer target layer 15 or the transferred first transfer destination substrate 50 surface. As a method for completely removing the residue, for example, a method such as cleaning, etching, ashing, polishing, or a combination of these methods may be selected as appropriate.

第1転写先基板50に被転写層15を転写したら、図7に示すように、第2転写先基板10と第1転写先基板50とを対向させ、接着剤を介して2枚の基板50,10を貼り合わせる。第2転写先基板10には、ガラス、石英、プラスチック、ステンレス等の基板が用いられる。第2転写先基板10は、転写後に形態を保持することができ、被転写層15を転写前後で変わらず維持できるものであれば良く、可撓性を有するフィルムのように剛性を有しないものでも良い。第2転写先基板10には、接着剤層との接着力を向上させるために、接着剤層との界面に微細な凹凸を形成するための表面処理を行うことが望ましい。かかる表面処理としては、プラズマ処理、コロナ処理等が挙げられる。   When the transferred layer 15 is transferred to the first transfer destination substrate 50, as shown in FIG. 7, the second transfer destination substrate 10 and the first transfer destination substrate 50 are opposed to each other, and two substrates 50 are interposed via an adhesive. , 10 are pasted together. As the second transfer destination substrate 10, a substrate made of glass, quartz, plastic, stainless steel or the like is used. The second transfer destination substrate 10 may be any substrate that can maintain the form after transfer and can maintain the transferred layer 15 without change before and after transfer, and does not have rigidity like a flexible film. But it ’s okay. The second transfer destination substrate 10 is desirably subjected to a surface treatment for forming fine irregularities at the interface with the adhesive layer in order to improve the adhesive force with the adhesive layer. Examples of such surface treatment include plasma treatment and corona treatment.

第2転写先基板30は、被転写層12が形成される転写元基板10に比べて耐熱性や耐食性に劣るものでも良い。転写元基板10と異なり、第2転写先基板30に要求される特性、特に耐熱性は、被転写層形成の際の温度条件に依存しないからである。したがって、被転写層12を形成する際の最高温度をTmaxとしたとき、歪点(ガラス転移温度Tg又は軟化点)がTmax以下のものを用いることができる。   The second transfer destination substrate 30 may be inferior in heat resistance and corrosion resistance compared to the transfer source substrate 10 on which the transfer target layer 12 is formed. This is because, unlike the transfer source substrate 10, the characteristics required for the second transfer destination substrate 30, particularly heat resistance, does not depend on the temperature conditions when forming the transfer layer. Accordingly, a material having a strain point (glass transition temperature Tg or softening point) equal to or lower than Tmax when the maximum temperature when forming the transferred layer 12 is Tmax can be used.

接着剤層32の種類としては、反応性硬化型接着剤、熱硬化型接着剤、光硬化型接着剤(紫外線硬化型接着剤等)、嫌気硬化型接着剤、その他の各種硬化型接着剤を用いることができる。具体的には、アクリル系接着剤、エポキシ系接着剤、シリコーン系接着剤、天然ゴム系接着剤、ポリウレタン系接着剤、フェノール系接着剤、酢酸ビニル系接着剤、シアノアクリレート系接着剤、ポリビニルアルコール系接着剤、ポリイミド系接着剤、ポリアミド系接着剤等を用いることができ、これらを目的に合わせて変性する等しても良い。   Examples of the adhesive layer 32 include reactive curable adhesives, thermosetting adhesives, photocurable adhesives (such as ultraviolet curable adhesives), anaerobic curable adhesives, and other various curable adhesives. Can be used. Specifically, acrylic adhesives, epoxy adhesives, silicone adhesives, natural rubber adhesives, polyurethane adhesives, phenolic adhesives, vinyl acetate adhesives, cyanoacrylate adhesives, polyvinyl alcohol A system adhesive, a polyimide system adhesive, a polyamide system adhesive, etc. can be used, and these may be modified according to the purpose.

以上説明したように、本実施形態の電気光学装置1によれば、隣接する第1端子19間の領域に突起部17が設けられているため、転写元基板40を第1転写先基板50と接着する際に、突起部17の表面積の分だけ接着面積を大きくすることができる。このため、転写元基板40と第1転写先基板50との間で十分な接着力を確保することができ、歩留まりの高い電気光学装置を提供できる。また、突起部17によって第2転写先基板10と配線基板3(ベース基材30)との間隔を小さくすることができるため、第2転写先基板10と配線基板3とを異方性導電部材35で接続する際に、異方性導電部材35中の導電粒子35aが端子19,19間の領域に移動しにくくなり、多くの導電粒子35aを第1端子19と第2端子31との電気的接続に寄与させることができる。また、隣接する端子19,19間の領域に導電粒子35aが移動しにくくなるため、端子間の短絡が生じにくくなり、信頼性に優れた電気光学装置が提供できる。   As described above, according to the electro-optical device 1 of the present embodiment, since the protrusions 17 are provided in the region between the adjacent first terminals 19, the transfer source substrate 40 is connected to the first transfer destination substrate 50. When bonding, the bonding area can be increased by the surface area of the protrusion 17. For this reason, sufficient adhesive force can be secured between the transfer source substrate 40 and the first transfer destination substrate 50, and an electro-optical device with a high yield can be provided. Moreover, since the space | interval of the 2nd transcription | transfer destination board | substrate 10 and the wiring board 3 (base base material 30) can be made small by the projection part 17, the 2nd transcription | transfer destination board | substrate 10 and the wiring board 3 are made into an anisotropic conductive member. When the connection is made at 35, the conductive particles 35 a in the anisotropic conductive member 35 are less likely to move to the region between the terminals 19, 19, and many of the conductive particles 35 a are electrically connected to the first terminal 19 and the second terminal 31. It is possible to contribute to the general connection. In addition, since the conductive particles 35a are less likely to move to the region between the adjacent terminals 19 and 19, a short circuit between the terminals is less likely to occur, and an electro-optical device with excellent reliability can be provided.

なお、本実施形態では、突起部17を隣接する第1端子19間に1本ずつ設けたが、突起部17の数はこのようなものに限定されない。例えば、図8は、突起部17を第1端子19の配列軸に沿って設けた複数本(図8では2本)の突起17Aによって構成した例を示している。また、図9は、突起部17を第1端子19の延在方向(Y軸方向)に沿って設けた複数(図9では4つ)の突起17Bによって構成した例を示している。これらの構成では、上記実施形態のものに比べて突起部17の表面積が大きくなるため、第1転写先基板との接着力を更に向上することができる。なお、第1端子19間に複数の突起を設ける場合、当該複数の突起は全ての第1端子間に設ける必要はなく、少なくともいずれかの第1端子間に設ければ良い。   In the present embodiment, one protrusion 17 is provided between adjacent first terminals 19, but the number of protrusions 17 is not limited to this. For example, FIG. 8 shows an example in which the protrusion 17 is constituted by a plurality (two in FIG. 8) of protrusions 17A provided along the arrangement axis of the first terminals 19. FIG. 9 shows an example in which the protrusion 17 is constituted by a plurality (four in FIG. 9) of protrusions 17B provided along the extending direction (Y-axis direction) of the first terminal 19. In these configurations, since the surface area of the protrusion 17 is larger than that of the above-described embodiment, the adhesive force with the first transfer destination substrate can be further improved. When a plurality of protrusions are provided between the first terminals 19, the plurality of protrusions do not need to be provided between all the first terminals, and may be provided between at least one of the first terminals.

また、本実施形態では、接続構造体の一実施形態として、電気泳動粒子を用いた電気光学装置(電気泳動装置)を説明したが、本発明は電気泳動装置に限らず、任意の電気光学装置に適用することができる。ここで、「電気光学装置」とは、電界により物質の屈折率が変化して光の透過率を変化させる電気光学効果を有するものの他、電気エネルギーを光学エネルギーに変換するもの等も含んで総称するものとする。すなわち、本発明は電気光学物質として液晶や電気泳動分散液を用いる非発光型の電気光学装置のほか、有機EL(Electro-Luminescence)を用いる有機EL装置、無機ELを用いる無機EL装置、電気光学物質としてプラズマ用ガスを用いるプラズマディスプレイ装置等の発光型の電気光学装置、さらにはフィールドエミッションディスプレイ装置(電界放出表示装置:Field Emission Display:FED)等に適用することが可能である。   In this embodiment, an electro-optical device (electrophoresis device) using electrophoretic particles has been described as an embodiment of the connection structure. However, the present invention is not limited to the electrophoretic device, and any electro-optical device. Can be applied to. Here, “electro-optical device” is a generic term that includes an electro-optical effect that changes the light transmittance by changing the refractive index of a substance by an electric field, and also includes devices that convert electric energy into optical energy. It shall be. That is, the present invention is not only a non-light-emitting electro-optical device using a liquid crystal or an electrophoretic dispersion as an electro-optical material, but also an organic EL device using an organic EL (Electro-Luminescence), an inorganic EL device using an inorganic EL, and an electro-optical device. The present invention can be applied to a light-emitting electro-optical device such as a plasma display device using a plasma gas as a substance, and a field emission display device (Field Emission Display: FED).

また、本実施形態では、接続構造体の一実施形態としてディスプレイデバイスを説明したが、本発明はディスプレイデバイス以外の接続構造体にも適用することができる。かかる接続構造体としては、被転写層を備えた転写先基板と、配線基板とを備えたものであればどのようなものでも良く、ディスプレイ用途以外で用いる半導体装置一般に本発明を適用することができる。   In the present embodiment, the display device has been described as an embodiment of the connection structure, but the present invention can also be applied to a connection structure other than the display device. As such a connection structure, any connection structure provided with a transfer destination substrate having a layer to be transferred and a wiring substrate may be used, and the present invention is generally applicable to semiconductor devices used for purposes other than display applications. it can.

接続構造体の一実施形態である電気光学装置の概略構成図である。It is a schematic block diagram of the electro-optical device which is one Embodiment of a connection structure. 同電気光学装置の張出し部の拡大図である。It is an enlarged view of the overhang | projection part of the same electro-optical apparatus. 同電気光学装置の第1端子と第2端子との接続部の概略構成図である。FIG. 3 is a schematic configuration diagram of a connection portion between a first terminal and a second terminal of the electro-optical device. 同電気光学装置の製造方法の説明図である。FIG. 10 is an explanatory diagram of the manufacturing method of the same electro-optical device. 同電気光学装置の製造方法の説明図である。FIG. 10 is an explanatory diagram of the manufacturing method of the same electro-optical device. 同電気光学装置の製造方法の説明図である。FIG. 10 is an explanatory diagram of the manufacturing method of the same electro-optical device. 同電気光学装置の製造方法の説明図である。FIG. 10 is an explanatory diagram of the manufacturing method of the same electro-optical device. 同電気光学装置の他の構成例の説明図である。It is explanatory drawing of the other structural example of the same electro-optical apparatus. 同電気光学装置の他の構成例の説明図である。It is explanatory drawing of the other structural example of the same electro-optical apparatus. 従来の接続構造体の第1端子と第2端子との接続部の概略構成図である。It is a schematic block diagram of the connection part of the 1st terminal of a conventional connection structure, and a 2nd terminal.

符号の説明Explanation of symbols

1…電気光学装置(接続構造体)、2…電気光学パネル、3…配線基板、10…第1基板(第2転写先基板)、15…被転写層、16…層間絶縁膜、17…突起部、17A,17B…突起、19…第1端子、31…第2端子、35…異方性導電部材、35a…導電粒子、40…転写元基板、50…第1転写先基板 DESCRIPTION OF SYMBOLS 1 ... Electro-optical apparatus (connection structure), 2 ... Electro-optical panel, 3 ... Wiring board, 10 ... 1st board | substrate (2nd transfer destination board | substrate), 15 ... Transfer target layer, 16 ... Interlayer insulation film, 17 ... Protrusion 17A, 17B ... projection, 19 ... first terminal, 31 ... second terminal, 35 ... anisotropic conductive member, 35a ... conductive particle, 40 ... transfer source substrate, 50 ... first transfer destination substrate

Claims (9)

複数の第1端子と前記複数の第1端子の各々の間に設けられた突起部とを備えた被転写層と、
前記被転写層が転写された転写先基板と、
前記複数の第1端子にそれぞれ対応する複数の第2端子を備えた配線基板と、
前記複数の第1端子と前記複数の第2端子とをそれぞれ電気的に接続する異方性導電部材とを備えたことを特徴とする接続構造体。
A transfer layer comprising a plurality of first terminals and a protrusion provided between each of the plurality of first terminals;
A transfer destination substrate onto which the transfer layer is transferred;
A wiring board provided with a plurality of second terminals respectively corresponding to the plurality of first terminals;
A connection structure comprising an anisotropic conductive member that electrically connects the plurality of first terminals and the plurality of second terminals, respectively.
前記突起部は複数の突起によって構成されていることを特徴とする請求項1に記載の接続構造体。   The connection structure according to claim 1, wherein the protrusion includes a plurality of protrusions. 前記複数の突起は前記複数の第1端子の配列軸に沿って設けられていることを特徴とする請求項2に記載の接続構造体。   The connection structure according to claim 2, wherein the plurality of protrusions are provided along an arrangement axis of the plurality of first terminals. 前記複数の突起は前記複数の第1端子の延在方向に沿って設けられていることを特徴とする請求項2に記載の接続構造体。   The connection structure according to claim 2, wherein the plurality of protrusions are provided along an extending direction of the plurality of first terminals. 前記突起部は、前記複数の第1端子の配列軸に沿って切断した断面が矩形又は台形の形状をなしていることを特徴とする請求項1〜4のいずれかの項に記載の接続構造体。   5. The connection structure according to claim 1, wherein the protrusion has a rectangular or trapezoidal cross section cut along an arrangement axis of the plurality of first terminals. 6. body. 前記被転写層は、前記複数の第1端子とそれぞれ電気的に接続された複数の配線と、前記複数の配線を覆う絶縁膜とを含み、
前記突起部は、前記絶縁膜と同一部材によって形成されていることを特徴とする請求項1〜5のいずれかの項に記載の接続構造体。
The transferred layer includes a plurality of wirings electrically connected to the plurality of first terminals, and an insulating film covering the plurality of wirings,
The connection structure according to claim 1, wherein the protrusion is formed of the same member as the insulating film.
前記突起部の厚みは、第1端子の厚み、前記異方性導電部材に含まれる導電粒子の厚み及び第2端子の厚みの総和以下であることを特徴とする請求項1〜6のいずれかの項に記載の接続構造体。   The thickness of the protruding portion is equal to or less than the sum of the thickness of the first terminal, the thickness of the conductive particles contained in the anisotropic conductive member, and the thickness of the second terminal. The connection structure according to the section. 前記複数の第1端子と前記複数の第2端子とが対向する対向領域の前記導電粒子の密度は、前記複数の第1端子の各々の間の領域及び複数の第2端子の各々の間の領域の前記導電粒子の密度よりも大きいことを特徴とする請求項7に記載の接続構造体。   The density of the conductive particles in the facing region where the plurality of first terminals and the plurality of second terminals face each other is between the region between each of the plurality of first terminals and each of the plurality of second terminals. The connection structure according to claim 7, wherein the connection structure has a density greater than that of the conductive particles in the region. 転写元基板上に複数の第1端子と前記複数の第1端子の各々の間に配置された突起部とを含む被転写層を形成する工程と、
前記転写元基板の前記被転写層側の面に第1転写先基板を接着する工程と、
前記転写元基板から前記被転写層を剥離して前記第1転写先基板上に前記被転写層を転写する工程と、
前記第1転写先基板の前記被転写層側の面に第2転写先基板を接着する工程と、
前記第1転写先基板から前記被転写層を剥離して前記第2転写先基板上に前記被転写層を転写する工程と、
前記第2転写先基板の前記被転写層側の面に前記複数の第1端子にそれぞれ対応する複数の第2端子を含む配線基板を異方性導電部材を介して接続する工程と、を備えたことを特徴とする接続構造体の製造方法。
Forming a transfer layer including a plurality of first terminals and a protrusion disposed between each of the plurality of first terminals on the transfer source substrate;
Bonding the first transfer destination substrate to the surface of the transfer source substrate on the transfer layer side;
Peeling the transferred layer from the transfer source substrate and transferring the transferred layer onto the first transfer destination substrate;
Bonding a second transfer destination substrate to the surface of the first transfer destination substrate on the transfer layer side;
Peeling the transfer layer from the first transfer destination substrate and transferring the transfer layer onto the second transfer destination substrate;
Connecting a wiring board including a plurality of second terminals respectively corresponding to the plurality of first terminals to the surface on the transfer layer side of the second transfer destination substrate via an anisotropic conductive member. A method for manufacturing a connection structure, characterized by comprising:
JP2007051020A 2007-03-01 2007-03-01 Connecting structure and its manufacturing method Withdrawn JP2008218542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051020A JP2008218542A (en) 2007-03-01 2007-03-01 Connecting structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051020A JP2008218542A (en) 2007-03-01 2007-03-01 Connecting structure and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008218542A true JP2008218542A (en) 2008-09-18

Family

ID=39838270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051020A Withdrawn JP2008218542A (en) 2007-03-01 2007-03-01 Connecting structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008218542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138090A (en) * 2010-01-04 2011-07-14 Seiko Epson Corp Substrate for electronic device, electronic device, method for manufacturing the same, and electronic apparatus
JP2011211245A (en) * 2011-07-27 2011-10-20 Sony Chemical & Information Device Corp Method of manufacturing connection structure, connection structure, and connection method
CN111443539A (en) * 2020-04-10 2020-07-24 京东方科技集团股份有限公司 Display substrate and display device
KR102138667B1 (en) * 2019-05-14 2020-07-28 (주)비티비엘 Smart card with improved battery terminal-soldering sites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138090A (en) * 2010-01-04 2011-07-14 Seiko Epson Corp Substrate for electronic device, electronic device, method for manufacturing the same, and electronic apparatus
US8362508B2 (en) 2010-01-04 2013-01-29 Seiko Epson Corporation Electronic device substrate, electronic device, method of manufacturing electronic device substrate, method of manufacturing electronic device, and electronic apparatus
JP2011211245A (en) * 2011-07-27 2011-10-20 Sony Chemical & Information Device Corp Method of manufacturing connection structure, connection structure, and connection method
KR102138667B1 (en) * 2019-05-14 2020-07-28 (주)비티비엘 Smart card with improved battery terminal-soldering sites
CN111443539A (en) * 2020-04-10 2020-07-24 京东方科技集团股份有限公司 Display substrate and display device

Similar Documents

Publication Publication Date Title
JP6525420B2 (en) Light emitting device
JP3875130B2 (en) Display device and manufacturing method thereof
US9666832B2 (en) Display device and method of manufacturing the same
JP5258436B2 (en) Display device and manufacturing method thereof
US8012288B2 (en) Method of fabricating flexible display device
US9854668B2 (en) Display device
TW200300281A (en) Semiconductor device and method of manufacturing the same
JP2011066130A (en) Method of manufacturing semiconductor circuit device, semiconductor circuit device, and electronic apparatus
US20140353638A1 (en) Display device and method of manufacturing the same
JP2010224426A (en) Display device
JP6113633B2 (en) Organic EL display device and manufacturing method thereof
TW202028012A (en) Method of peeling mother protective film, method of manufacturing organic light-emitting display apparatus, and organic light emitting display apparatus manufactured using the same
US10268092B2 (en) Display device
US10126581B2 (en) Display device
JP2011040269A (en) Electro-optic apparatus and manufacturing method therefor, and electronic device
JPWO2010079640A1 (en) Organic electroluminescent display device and manufacturing method thereof
JP4082400B2 (en) Electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP2008218542A (en) Connecting structure and its manufacturing method
JP4141927B2 (en) Flexible matrix substrate and flexible display device
JP3840443B2 (en) Display element and manufacturing method thereof
JP2011107432A (en) Method of manufacturing electrooptical device
JP5407648B2 (en) Electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP2008192875A (en) Semiconductor device, manufacturing method thereof, and electronic equipment
JP2005017567A (en) Liquid crystal display device and its manufacturing method, and electro luminescence display device and its manufacturing method
JP5076925B2 (en) Active matrix substrate, manufacturing method thereof, electro-optical device, and electronic apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511