JP2008218061A - Flex-resistant and twist-resistant cable and method of manufacturing the same - Google Patents

Flex-resistant and twist-resistant cable and method of manufacturing the same Download PDF

Info

Publication number
JP2008218061A
JP2008218061A JP2007050883A JP2007050883A JP2008218061A JP 2008218061 A JP2008218061 A JP 2008218061A JP 2007050883 A JP2007050883 A JP 2007050883A JP 2007050883 A JP2007050883 A JP 2007050883A JP 2008218061 A JP2008218061 A JP 2008218061A
Authority
JP
Japan
Prior art keywords
cable
insulator
molecular weight
silicone polymer
high molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007050883A
Other languages
Japanese (ja)
Other versions
JP5307981B2 (en
Inventor
Isao Izui
伊豆井功夫
Shigemi Hasegawa
長谷川茂巳
Yasunari Beppu
康成 別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Cable Co Ltd
Original Assignee
Oki Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Cable Co Ltd filed Critical Oki Electric Cable Co Ltd
Priority to JP2007050883A priority Critical patent/JP5307981B2/en
Publication of JP2008218061A publication Critical patent/JP2008218061A/en
Application granted granted Critical
Publication of JP5307981B2 publication Critical patent/JP5307981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems of using a fluororesin and an ultraviolet curing resin composition as an insulator to improve mutual lubricity of insulators of an insulated core wire that complex processes such as resin coating and curing are required in addition to high price. <P>SOLUTION: For a typical example, a multi-core cable is structured by intertwining the insulated core wires for which a thermoplastic resin is coated as an insulator around an outer circumference of a conductor. The thermoplastic resin is composed of polyester elastomer and the flex-resistant and twist-resistant cable contains 0.5 to 3.0 wt.% organic high-molecular weight silicone polymer. Thus, it is possible to provide a cable for a factory automation device such as an industrial robot and the like that is capable of being manufactured by extrusion molding using an normal inexpensive thermoplastic resin, inexpensive, excellent in flex-resistance, twist-resistance and flexibility and having better lubricity of an insulator surface than an expensive fluororesin. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、絶縁心線の絶縁体同士の滑り性を向上させることによって、安価で、耐屈曲性・耐捻れ性、可とう性に優れた産業用ロボット等のFA機器に使用されるケーブルに関するものである。   The present invention relates to a cable used in an FA device such as an industrial robot that is inexpensive and is excellent in bending resistance, torsion resistance, and flexibility by improving the slipping property between insulators of an insulating core wire. Is.

従来のロボット用ケーブル1″は、図4に示すように、導体2″を絶縁体3″で被覆し、それらを集合して更に外部のシース6″で被覆した構成からなる。
産業用ロボット等に使用されるケーブルは屈曲、捻回に強いことが要求されるため、導体においては「高耐久性」が要求される場合には、純銅に替わって、例えばSn入り銅合金などの銅合金が用いられている。しかし、銅合金は機械的強度が増すものの、導電率が低下する。そのため、ジュール熱の発生を抑制するため導体を太くせざるを得なくなり、これがケーブルの細径化、軽量化に逆行することになる。また、銅に対して銅合金は価格が高いため、ケーブル価格のアップに繋がる。
導体外周に被覆される絶縁体においては「低耐久性ケーブル」にはポリ塩化ビニルまたはポリプロピレンが、「高耐久性ケーブル」には、エチレンテトラフロロエチレン(ETFE)、四フッ化エチレン六フッ化プロピレン(FEP)などのフッ素樹脂が用いられている。フッ素樹脂はすべり摩擦抵抗が小さく、かつ、ある程度の硬さを有しているので、絶縁体相互の滑り性が向上することになり、導体の断線、損傷が防止され、耐屈曲性、耐捻れ性を増加させることを可能とするということで用いられてきた。しかし、フッ素樹脂は他の絶縁体材料に比べて価格が高いため、ケーブル価格のアップに繋がるという問題があった。
また、絶縁体相互の滑り性を向上させるために、下記に示す特開2000−357418号公報にはポリ塩化ビニル絶縁層の上にシリコーンを含有したウレタンアクリレート系の紫外線硬化型樹脂組成物を設けた絶縁電線が開示されている。しかしながら、紫外線硬化型樹脂組成物ということで、樹脂の塗布、硬化という複雑な工程が必要になるという課題があった。
As shown in FIG. 4, the conventional robot cable 1 ″ has a configuration in which conductors 2 ″ are covered with an insulator 3 ″, which are assembled and further covered with an external sheath 6 ″.
Cables used for industrial robots and the like are required to be strong in bending and twisting. Therefore, when “high durability” is required for conductors, for example, Sn-containing copper alloys are used instead of pure copper. The copper alloy is used. However, although the copper alloy increases the mechanical strength, the conductivity decreases. Therefore, the conductor must be made thicker in order to suppress the generation of Joule heat, which goes against the reduction in the diameter and weight of the cable. In addition, the price of copper alloys is higher than that of copper, leading to an increase in cable prices.
Insulators coated on the outer circumference of the conductor, polyvinyl chloride or polypropylene is used for the “low durability cable”, and ethylene tetrafluoroethylene (ETFE), tetrafluoroethylene hexafluoropropylene is used for the “high durability cable”. Fluororesin such as (FEP) is used. Fluororesin has low sliding friction resistance and has a certain degree of hardness, which improves the slipperiness between insulators, prevents conductor breakage and damage, and provides bending resistance and twist resistance. It has been used to make it possible to increase sex. However, since fluororesin is expensive compared to other insulating materials, there is a problem that it leads to an increase in cable price.
In order to improve the slipperiness between insulators, JP-A-2000-357418 shown below provides a urethane acrylate UV curable resin composition containing silicone on a polyvinyl chloride insulating layer. An insulated wire is disclosed. However, since it is an ultraviolet curable resin composition, there is a problem that a complicated process of applying and curing a resin is required.

特開2000−357418号公報JP 2000-357418 A

従って、本発明の目的としては、上記の点に鑑みてなされたもので、導体に、高価な銅合金や絶縁体に高価なフッ素樹脂や紫外線硬化型樹脂組成物を用いなくても、絶縁心線の絶縁体表面の滑性が優れており、通常の低価格な熱可塑性樹脂による押出成型が可能になり、安価で、屈曲、捻れに強く、可とう性に優れたロボット用ケーブルを提供することにある。   Therefore, the object of the present invention is made in view of the above points, and it is possible to use an insulating core without using an expensive copper alloy or an expensive fluororesin or ultraviolet curable resin composition as a conductor. Providing robot cables that have excellent lubricity on the surface of the wire insulator, can be extruded with ordinary low-cost thermoplastic resin, are inexpensive, strong in bending and twisting, and have excellent flexibility. There is.

請求項1記載のロボット用ケーブルは、有機系高分子量シリコーンポリマーを0.5〜3.0wt%含有したポリエステルエラストマー絶縁体で導体外周を被覆したことを特徴とする。このように、有機系高分子量シリコーンポリマーを含有した絶縁体材料で被覆した絶縁心線を複数本撚り合わせ、シースを施した構成の多心ケーブルでは、シリコーンが他物質との親和力が小さく、表面同士が接着するのを防ぎ、離型性を付与するため、絶縁心線同士の表面滑り性が良好になり、ケーブルに屈曲、捻れ等のストレスを受けた場合には、撚り合わせられる絶縁心線相互がスムーズに動き易くなり、延いては、屈曲・捻れ寿命の向上に寄与する。また、絶縁心線相互の滑りを良くすることにより、ケーブル自体の可とう性も向上させることができる。
また、多心ケーブルにおいて絶縁心線を撚り合わせた集合体とシースとの間で不要な拘束力が作用すると、ケーブル屈曲・捻れの際に絶縁心線に大きな歪が発生し、屈曲、捻れなどの耐久性を低下させる遠因となることもあるが、本発明の絶縁心線を用いることによって、絶縁心線の集合体とシース間の摩擦抵抗を低減することができ、ケーブルとしての屈曲や捻れを受けた場合に、絶縁心線への影響が緩和される。
有機系高分子量シリコーンポリマーの含有量を0.5〜3.0%wtにした理由は、0.5wt%未満では、絶縁心線に十分な表面滑性を付与することができない。後に、実施例で記載したように0.7wt%以上が特に、好ましい結果を示した。また、3wt%を超える場合には、押出成型時に絶縁体材料がスクリューとシリンダーとの間でスリップして、成形性を悪化させて外観不良や機械的強度の低下を招く。
請求項2記載のロボット用ケーブルは、絶縁体材料がポリプロピレン、ポリ塩化ビニル、ポリエチレンのいずれかであることを特徴とする。従来、絶縁心線のすべり摩擦抵抗を小さくするためには、高価なフッ素樹脂を用いていたが、本発明を用いることにより、これらの低価格な絶縁体材料で絶縁心線のすべり摩擦抵抗を小さくすることができる。
請求項3は、絶縁体材料に反応性ポリオルガノシロキサンをグラフト重合することによって作られた有機系高分子量シリコーンポリマーを前記絶縁体材料に添加することを特徴とする。この方法によれば絶縁体材料とシリコーンが化学的に結合している構造においても、シリコーン換算量として同量添加すれば同じ効果が得られることができる。
請求項4は、有機系高分子量シリコーンポリマーを絶縁体材料に添加する際に、前記絶縁体材料に高濃度(30〜50wt%)に混練することによって作られたマスターバッチを用いて、有機系高分子量シリコーンポリマーを絶縁体材料に添加することを特徴とする製造方法である。マスターバッチはペレット状のため、計量時の取り扱いが容易になり、予め前記絶縁体材料と有機系高分子量シリコーンポリマーが高度に混練され、分散しているので、絶縁体材料に配合した時の分散が良好になる。
The robot cable according to claim 1 is characterized in that the outer periphery of the conductor is covered with a polyester elastomer insulator containing 0.5 to 3.0 wt% of an organic high molecular weight silicone polymer. In this way, in a multi-core cable with a configuration in which a plurality of insulated core wires covered with an insulator material containing an organic high molecular weight silicone polymer are twisted and sheathed, silicone has a low affinity for other substances, and the surface Insulating cores that are twisted together when the cables are subjected to stresses such as bending and twisting, because the surface slippage between the insulated cores is good, and the cables are prevented from adhering to each other and impart releasability. It becomes easy for each other to move smoothly, and it contributes to the improvement of the bending / twisting life. Further, the flexibility of the cable itself can be improved by improving the sliding between the insulated core wires.
In addition, if an unnecessary restraining force acts between the assembly of the insulated core wires twisted together and the sheath in a multi-core cable, a large distortion occurs in the insulated core wires when the cable is bent or twisted, and bending, twisting, etc. However, by using the insulated core wire of the present invention, it is possible to reduce the frictional resistance between the assembly of the insulated core wires and the sheath, and to bend and twist the cable. When it receives, the influence on the insulation core wire is mitigated.
The reason why the content of the organic high molecular weight silicone polymer is set to 0.5 to 3.0% wt is less than 0.5 wt%, and sufficient surface lubricity cannot be imparted to the insulating core wire. Later, as described in Examples, 0.7 wt% or more showed particularly preferable results. On the other hand, if it exceeds 3 wt%, the insulator material slips between the screw and the cylinder at the time of extrusion molding, and the formability is deteriorated, resulting in poor appearance and reduced mechanical strength.
The robot cable according to claim 2 is characterized in that the insulator material is any one of polypropylene, polyvinyl chloride, and polyethylene. Conventionally, expensive fluororesin has been used to reduce the sliding frictional resistance of the insulation core, but by using the present invention, the sliding frictional resistance of the insulation core can be reduced with these low-cost insulator materials. Can be small.
According to a third aspect of the present invention, an organic high molecular weight silicone polymer made by graft polymerization of a reactive polyorganosiloxane to an insulator material is added to the insulator material. According to this method, even in a structure in which the insulator material and the silicone are chemically bonded, the same effect can be obtained by adding the same amount as the silicone equivalent amount.
In the fourth aspect, when an organic high molecular weight silicone polymer is added to an insulator material, an organic system is prepared using a master batch made by kneading the insulator material at a high concentration (30 to 50 wt%). A production method comprising adding a high molecular weight silicone polymer to an insulator material. Since the master batch is in the form of pellets, handling during measurement is easy, and the insulator material and organic high molecular weight silicone polymer are highly kneaded and dispersed in advance, so dispersion when blended into the insulator material Will be better.

以上説明したように、本発明は絶縁体同士の滑り性を向上させることによって、耐屈曲、耐ねじれ性、可とう性を大幅に向上させたロボット用ケーブルを低コストで提供することができるため、その工業的価値は大きい。   As described above, the present invention can provide a robot cable with greatly improved bending resistance, torsion resistance, and flexibility at low cost by improving the slipping property between insulators. , Its industrial value is great.

以下、本発明の耐屈曲・耐捻回ケーブルおよびその製造方法について、代表例をあげて添付図面を参照して詳細に説明する。 Hereinafter, the bending-resistant and twist-resistant cable and the manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings, taking typical examples.

ここで、ケーブルの耐久性とは、当該ケーブルの導体が断線するまでの繰り返し屈曲のサイクル数とする。通常ロボット用ケーブルの耐久性評価試験には、左右屈曲試験と捻回試験が行われる。図3(イ)に左右屈曲試験、図3(ロ)に捻回試験の概略と試験条件を示す。また、本発明の第1〜4実施例の耐屈曲・耐捻回ケーブル1の構成表と左右屈曲試験と捻回試験による耐久性評価試験結果を表1に、比較例1〜3のケーブルの構成表と左右屈曲試験と捻回試験による耐久性評価試験結果を表2に示す。   Here, the durability of a cable is the number of cycles of repeated bending until the conductor of the cable is disconnected. Usually, the left and right bending test and the twisting test are performed in the durability evaluation test of the robot cable. FIG. 3 (a) shows the left / right bending test, and FIG. 3 (b) shows the outline of the twist test and the test conditions. In addition, the configuration table of the bending / twisting-resistant cable 1 of the first to fourth embodiments of the present invention, the durability evaluation test result by the left / right bending test and the twisting test are shown in Table 1, and the cables of Comparative Examples 1-3 are shown. Table 2 shows the results of the durability evaluation test by the composition table, the left / right bending test and the twisting test.

Figure 2008218061
Figure 2008218061

Figure 2008218061
Figure 2008218061

本発明の第1実施例の構造を図1(イ)に示す。この実施例のケーブル構成は、図1(イ)からも明らかなように導体2の外周に絶縁体を被覆し、この絶縁心線4Aを複数本撚り合わせ、その外周上に和紙テープ5、シース6を順次施し、外径11.8mmにしたものである。ここで、絶縁体3Aはポリエステルエラストマーに有機系高分子量シリコーンポリマーを0.7wt%添加したものである。このケーブルを図3(イ)、(ロ)の屈曲試験に装着して、断線が生じる往復回数を求めた。前記表1に耐久性評価試験結果を示す。
本発明の第2実施例の構造を図1(ロ)に示す。この実施例の絶縁体3Bは、ポリエステルエラストマーに有機系高分子量シリコーンポリマーを1.5wt%添加したものであり、それ以外は第1実施例と同じ構成である。このケーブルを図3(イ)、(ロ)の屈曲試験に装着して、断線が生じる往復回数を求めた。前記表1に耐久性評価試験結果を示す。
本発明の第3実施例の構造を図1(ハ)に示す。この実施例の絶縁体3Cは、ポリエステルエラストマーにグラフトタイプ有機系高分子量シリコーンポリマーをシリコーン換算量で0.7wt%添加したものであり、それ以外は第1実施例と同じ構成である。このケーブルを図3(イ)、(ロ)の屈曲試験に装着して、断線が生じる往復回数を求めた。前記表1に耐久性評価試験結果を示すが、第1実施例と第3実施例を比較してみると明らかなように、グラフトタイプ有機系高分子量シリコーンでもシリコーン換算量で同量を添加すれば、実施例1の有機系高分子量シリコーンと同じ効果があることがわかる。
本発明の第4実施例の構造を図1(ニ)に示す。この実施例の絶縁体3Dは、ポリプロピレンに有機系高分子量シリコーンポリマーを0.7wt%添加したものであり、それ以外は第1実施例と同じ構成である。このケーブルを図3(イ)、(ロ)の屈曲試験に装着して、断線が生じる往復回数を求めた。前記表1に耐久性評価試験結果を示す。
The structure of the first embodiment of the present invention is shown in FIG. In the cable configuration of this embodiment, as is clear from FIG. 1 (a), the outer periphery of the conductor 2 is covered with an insulator, a plurality of the insulated core wires 4A are twisted, and the Japanese paper tape 5 and sheath are formed on the outer periphery. 6 was applied in order to obtain an outer diameter of 11.8 mm. Here, the insulator 3A is obtained by adding 0.7 wt% of an organic high molecular weight silicone polymer to a polyester elastomer. This cable was attached to the bending test shown in FIGS. 3 (a) and 3 (b), and the number of reciprocations at which disconnection occurred was determined. Table 1 shows the results of the durability evaluation test.
The structure of the second embodiment of the present invention is shown in FIG. The insulator 3B of this example is obtained by adding 1.5 wt% of an organic high molecular weight silicone polymer to a polyester elastomer, and the other configuration is the same as that of the first example. This cable was attached to the bending test shown in FIGS. 3 (a) and 3 (b), and the number of reciprocations at which disconnection occurred was determined. Table 1 shows the results of the durability evaluation test.
The structure of the third embodiment of the present invention is shown in FIG. The insulator 3C of this example is obtained by adding 0.7 wt% of a graft type organic high molecular weight silicone polymer in terms of silicone to a polyester elastomer, and the other configuration is the same as that of the first example. This cable was attached to the bending test shown in FIGS. 3 (a) and 3 (b), and the number of reciprocations at which disconnection occurred was determined. Table 1 shows the results of the durability evaluation test. As is clear when comparing the first and third examples, the same amount of graft type organic high molecular weight silicone can be added in terms of silicone. For example, it can be seen that the same effect as the organic high molecular weight silicone of Example 1 is obtained.
The structure of the fourth embodiment of the present invention is shown in FIG. The insulator 3D of this example is obtained by adding 0.7 wt% of an organic high molecular weight silicone polymer to polypropylene, and the other configuration is the same as that of the first example. This cable was attached to the bending test shown in FIGS. 3 (a) and 3 (b), and the number of reciprocations at which disconnection occurred was determined. Table 1 shows the results of the durability evaluation test.

次に、本発明の効果を従来技術と対比するために、従来技術による比較例1〜3のケーブルを作成した。
比較例1の構造を図2(イ)に示す。有機系高分子量シリコーンポリマーの添加量による効果を第1、第2実施例と比較例1で屈曲特性の比較を行った。比較例1は有機系高分子量シリコーンポリマーの添加量は0で、その他は、実施例1(および実施例2)と同様に作成し、全く同様の条件のもとで屈曲試験を実施した。評価試験結果を前記表2に示す。添加量0の比較例1のケーブルは左右屈曲試験において45万回で断線、捻回試験において2万回で断線するが、添加量0.7wt%の実施例1のケーブルは左右屈曲試験において65万回で断線、捻回試験においては200万回でも断線しない。添加量1.5wt%の実施例2のケーブルは左右屈曲試験において85万回で断線せず、捻回試験においては200万回でも断線しない。これらの結果から本発明は従来品と比較して耐屈曲性が向上することわかる。
比較例2の構造を図2(ロ)に示す。有機系高分子量シリコーンポリマーの添加量による効果を第4実施例と比較例2で絶縁体がポリプロピレンの場合で屈曲特性の比較を行った。比較例2は、有機系高分子量シリコーンポリマーの添加量は0で、その他は、実施例4と同様に作成し、全く同様の条件のもとで屈曲試験を実施した。評価試験結果を前記表2に示す。添加量0の比較例2のケーブルは左右屈曲試験において10万回で断線、捻回試験においては0.5万回で断線するが、添加量0.7%の実施例4のケーブルは左右屈曲試験において40万回で断線、捻回試験においては200万回でも断線しない。これらの結果から比較例1と同様に本発明は従来品と比較して耐屈曲性が向上することわかる。
比較例3の構造を図2(ハ)に示す。有機系高分子量シリコーンポリマーの添加量による効果を第1、第2実施例と比較例3で屈曲特性の比較を行った。絶縁体材料にフッ素樹脂であるETFEを用い、その他は、実施例1(および実施例2)と同様に作成し、全く同様の条件のもとで屈曲試験を実施した。評価試験結果を前記表2に示す。比較例3のケーブルは左右屈曲試験において46万回で断線、捻回試験においては200万回で断線する。ポリエステルエラストマーに有機系高分子量シリコーンポリマーを0.7wt%添加した実施例1のケーブルは左右屈曲試験において65万回で断線、捻回試験においては200万回でも断線しない。添加量1.5wt%の実施例2のケーブルは左右屈曲試験において85万回で断線せず、捻回試験においては200万回でも断線しない。これらの結果から本発明は、従来技術である「絶縁体同士の表面滑り性を良くし、ケーブルに屈曲等のストレスを受けた場合に、絶縁心線相互がスムーズに動き易くなり、屈曲寿命が向上する」という目的で使用されているフッ素樹脂よりも、その効果が優れていることがわかる。
Next, in order to compare the effect of the present invention with the prior art, cables of Comparative Examples 1 to 3 according to the prior art were prepared.
The structure of Comparative Example 1 is shown in FIG. The effect of the addition amount of the organic high molecular weight silicone polymer was compared in the bending characteristics between the first and second examples and the comparative example 1. In Comparative Example 1, the amount of the organic high molecular weight silicone polymer added was 0, and the others were prepared in the same manner as in Example 1 (and Example 2), and the bending test was performed under exactly the same conditions. The evaluation test results are shown in Table 2. The cable of Comparative Example 1 with an addition amount of 0 was disconnected at 450,000 times in the left / right bending test, and was disconnected at 20,000 times in the twisting test. Disconnection at 10,000 times and no disconnection at 2 million times in the twist test. The cable of Example 2 with an addition amount of 1.5 wt% does not break at 850,000 times in the left / right bending test, and does not break at 2 million times in the twist test. From these results, it can be seen that the bending resistance of the present invention is improved as compared with the conventional product.
The structure of Comparative Example 2 is shown in FIG. The effect of the addition amount of the organic high molecular weight silicone polymer was compared between the fourth example and the comparative example 2 in the case where the insulator was polypropylene and the bending characteristics were compared. In Comparative Example 2, the amount of the organic high molecular weight silicone polymer added was 0, and the others were prepared in the same manner as in Example 4, and the bending test was performed under exactly the same conditions. The evaluation test results are shown in Table 2. The cable of Comparative Example 2 with an addition amount of 0 was disconnected at 100,000 times in the left / right bending test and disconnected at 50,000 times in the twisting test, but the cable of Example 4 with an addition amount of 0.7% was bent left / right. Disconnection after 400,000 times in the test, and no disconnection even after 2 million times in the twist test. From these results, it can be seen that, similarly to Comparative Example 1, the present invention has improved bending resistance compared to the conventional product.
The structure of Comparative Example 3 is shown in FIG. The bending characteristics of the effects of the addition amount of the organic high molecular weight silicone polymer were compared between the first and second examples and the comparative example 3. ETFE, which is a fluororesin, was used as the insulator material, and the others were prepared in the same manner as in Example 1 (and Example 2), and the bending test was performed under exactly the same conditions. The evaluation test results are shown in Table 2. The cable of Comparative Example 3 is disconnected at 460,000 times in the left / right bending test, and is disconnected at 2 million times in the twisting test. The cable of Example 1 in which 0.7 wt% of organic high molecular weight silicone polymer was added to the polyester elastomer was disconnected at 650,000 times in the left / right bending test, and was not disconnected even at 2 million times in the twisting test. The cable of Example 2 with an addition amount of 1.5 wt% does not break at 850,000 times in the left / right bending test, and does not break at 2 million times in the twist test. From these results, the present invention is a prior art that improves the surface slipperiness between insulators, and when the cables are subjected to stress such as bending, the insulated core wires can move smoothly and have a flex life. It can be seen that the effect is superior to the fluororesin used for the purpose of “improving”.

なお、本発明は、代表的なロボット用ケーブル構造を例示しているが、この構造に限定することなく、心数を変更したものやケーブルにシールド材を使用したものでも構わず、設計上、本発明の範囲内で、各種の変形を含むものであることはいうまでもない。   Although the present invention exemplifies a typical robot cable structure, the present invention is not limited to this structure, and the number of cores may be changed or a shield material may be used for the cable. It goes without saying that various modifications are included within the scope of the present invention.

本発明の耐屈曲・耐捻回ケーブルは、ロボット等へ使用できるが、工作機械等への幅広い応用展開が可能である。   The bending and twisting resistant cable of the present invention can be used for robots and the like, but can be widely applied to machine tools and the like.

(イ)は、本発明の第1実施例の耐屈曲・耐捻回ケーブル1Aの断面図で、(ロ)は、本発明の第2実施例の耐屈曲・耐捻回ケーブル1Bの断面図で、(ハ)は、本発明の第3実施例の耐屈曲・耐捻回ケーブル1Cの断面図で、(ニ)は、本発明の第4実施例の耐屈曲・耐捻回ケーブル1Dの断面図である。(A) is a cross-sectional view of the bending / twisting-resistant cable 1A of the first embodiment of the present invention, and (B) is a cross-sectional view of the bending / twisting-resistant cable 1B of the second embodiment of the present invention. (C) is a cross-sectional view of the bending / twisting resistant cable 1C of the third embodiment of the present invention, and (d) is a sectional view of the bending / twisting resistant cable 1D of the fourth embodiment of the present invention. It is sectional drawing. 比較例1のケーブルA′の断面図で、(ロ)は、比較例2のケーブルB′の断面図で、(ハ)は、比較例3′のケーブルC′の断面図である。FIG. 6B is a cross-sectional view of the cable A ′ of Comparative Example 1, FIG. 5B is a cross-sectional view of the cable B ′ of Comparative Example 2, and FIG. (イ)は、本発明の実施例と比較例についての耐久性に関する屈曲試験方法で、(ロ)は、本発明の実施例と比較例についての耐久性に関する捻回試験方法である。(A) is a bending test method related to durability for the examples and comparative examples of the present invention, and (B) is a twist test method related to durability for the examples and comparative examples of the present invention. 従来のロボット用ケーブル1″の断面図である。It is sectional drawing of the conventional cable 1 "for robots.

符号の説明Explanation of symbols

1A 本発明の第1実施例の耐屈曲・耐捻回ケーブル
1B 本発明の第2実施例の耐屈曲・耐捻回ケーブル
1C 本発明の第3実施例の耐屈曲・耐捻回ケーブル
1D 本発明の第4実施例の耐屈曲・耐捻回ケーブル
2 導体
3A 有機系高分子量シリコーンポリマー0.7wt%含有ポリエステルエラストマー絶縁体
3B 有機系高分子量シリコーンポリマー1.5wt%含有ポリエステルエラストマー絶縁体
3C グラフトタイプ有機系高分子量シリコーンポリマー0.7wt%(シリコーン換算量)含有ポリエステルエラストマー絶縁体
3D 有機系高分子量シリコーンポリマー0.7wt%含有ポリプロピレン絶縁体
4A 絶縁心線
4B 絶縁心線
4C 絶縁心線
4D 絶縁心線
5 和紙テープ
6 シース
A′ 比較例1のケーブル
2′ 導体
3A′ポリエステルエラストマー単体の絶縁体
B′ 比較例2のケーブル
3B′ポリプロピレン単体の絶縁体
C′ 比較例3のケーブル
3C′ETFE(エチレンテトラフロロエチレン)絶縁体
4A′絶縁心線
4B′絶縁心線
4C′ 絶縁心線
6′ シース
1″ 従来のロボット用ケーブル
2″ 導体
3″ 絶縁体
5″ 和紙テープ
6″ シース
1A Bending and twisting resistant cable of the first embodiment of the present invention 1B Bending and twisting resistant cable of the second embodiment of the present invention 1C Bending and twisting resistant cable of the third embodiment of the present invention 1D Bend-resistant and twist-resistant cable of 4th Example of invention 2 Conductor 3A Polyester elastomer insulator containing 0.7 wt% of organic high molecular weight silicone polymer 3B Polyester elastomer insulator containing 3 wt% of organic high molecular weight silicone polymer 3C Graft Type Organic high molecular weight silicone polymer 0.7wt% (silicone equivalent) containing polyester elastomer insulator 3D Organic high molecular weight silicone polymer 0.7wt% containing polypropylene insulator 4A Insulated core 4B Insulated core 4C Insulated core 4D Insulated Core 5 Washi tape 6 Sheath A 'Cable of Comparative Example 1 2' Conductor 3A ' Reester Elastomer Insulator B 'Cable of Comparative Example 2 3B' Polypropylene Insulator C 'Cable of Comparative Example 3 3C'ETFE (Ethylene Tetrafluoroethylene) Insulator 4A' Insulated Core 4B 'Insulated Core 4C' Insulated core 6 'Sheath 1 "Conventional robot cable 2" Conductor 3 "Insulator 5" Washi tape 6 "Sheath

Claims (4)

導体外周に絶縁体として熱可塑性樹脂が被覆されてなる絶縁心線を撚り合せて構成される多心ケーブルにおいて、前記熱可塑性樹脂がポリエステルエラストマーから成り、有機系高分子量シリコーンポリマーを0.5〜3.0wt%含有することを特徴とする耐屈曲・耐捻回ケーブル。 In a multi-core cable formed by twisting an insulation core wire coated with a thermoplastic resin as an insulator on the outer periphery of the conductor, the thermoplastic resin is made of a polyester elastomer, and an organic high molecular weight silicone polymer is 0.5 to A bending and twisting resistant cable characterized by containing 3.0 wt%. 前記熱可塑性樹脂が、ポリプロピレン、ポリ塩化ビニル、ポリエチレンのいずれかであることを特徴とする請求項1に記載のケーブル。 The cable according to claim 1, wherein the thermoplastic resin is any one of polypropylene, polyvinyl chloride, and polyethylene. 前記有機系高分子量シリコーンポリマーが、各種絶縁体材料に反応性ポリオルガノシロキサンをグラフト重合することによって作られ、絶縁体として熱可塑性樹脂への添加量がシリコーン換算量で0.5%〜3.0wt%であることを特徴とする請求項1〜2の内いずれかに記載のケーブル。 The organic high molecular weight silicone polymer is produced by graft polymerization of reactive polyorganosiloxane to various insulator materials, and the amount added to the thermoplastic resin as an insulator is 0.5% to 3. The cable according to claim 1, wherein the cable is 0 wt%. 前記有機系高分子量シリコーンポリマーをベースである絶縁体材料に高濃度(30〜50wt%)に混練することによって作られたマスターバッチを用いて、有機系高分子量シリコーンポリマーを前記絶縁体材料に添加することを特徴とした請求項1〜3の内いずれかに記載のケーブルの製造方法。 Add organic high molecular weight silicone polymer to the insulator material using a masterbatch made by kneading the organic high molecular weight silicone polymer to the base insulator material at high concentration (30-50wt%) The method for manufacturing a cable according to any one of claims 1 to 3, wherein:
JP2007050883A 2007-03-01 2007-03-01 Bend-resistant and twist-resistant cable and manufacturing method thereof. Active JP5307981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050883A JP5307981B2 (en) 2007-03-01 2007-03-01 Bend-resistant and twist-resistant cable and manufacturing method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050883A JP5307981B2 (en) 2007-03-01 2007-03-01 Bend-resistant and twist-resistant cable and manufacturing method thereof.

Publications (2)

Publication Number Publication Date
JP2008218061A true JP2008218061A (en) 2008-09-18
JP5307981B2 JP5307981B2 (en) 2013-10-02

Family

ID=39837879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050883A Active JP5307981B2 (en) 2007-03-01 2007-03-01 Bend-resistant and twist-resistant cable and manufacturing method thereof.

Country Status (1)

Country Link
JP (1) JP5307981B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049998A (en) * 2013-08-30 2015-03-16 日星電気株式会社 Cable for electric power source
CN107383558A (en) * 2017-08-31 2017-11-24 安徽华海特种电缆集团有限公司 A kind of resistance to torsion antiultraviolet fire-resisting cable material used for wind power generation
JP2021048122A (en) * 2019-09-17 2021-03-25 日立金属株式会社 Multicore cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272613A (en) * 1991-02-26 1992-09-29 Furukawa Electric Co Ltd:The Fiexible multicore cable
JPH10101761A (en) * 1996-09-27 1998-04-21 Dainippon Ink & Chem Inc Polyester elastomer resin composition
JPH10223053A (en) * 1997-02-06 1998-08-21 Taiyo Densen Kk Rubber cab tire cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272613A (en) * 1991-02-26 1992-09-29 Furukawa Electric Co Ltd:The Fiexible multicore cable
JPH10101761A (en) * 1996-09-27 1998-04-21 Dainippon Ink & Chem Inc Polyester elastomer resin composition
JPH10223053A (en) * 1997-02-06 1998-08-21 Taiyo Densen Kk Rubber cab tire cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049998A (en) * 2013-08-30 2015-03-16 日星電気株式会社 Cable for electric power source
CN107383558A (en) * 2017-08-31 2017-11-24 安徽华海特种电缆集团有限公司 A kind of resistance to torsion antiultraviolet fire-resisting cable material used for wind power generation
JP2021048122A (en) * 2019-09-17 2021-03-25 日立金属株式会社 Multicore cable

Also Published As

Publication number Publication date
JP5307981B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP6207252B2 (en) High bending wire
JP5322755B2 (en) cable
JP2013258104A (en) Cable with oil resistant and flex resistant sheath, cable harness using the same, and manufacturing method of the same
CN103794269B (en) Flat cable
JP5307981B2 (en) Bend-resistant and twist-resistant cable and manufacturing method thereof.
JP2012119231A (en) Coaxial cable
WO2012111831A1 (en) High-flexion insulated wire
JP7265324B2 (en) insulated wire, cable
JP2018078007A (en) Aluminum twisted-wire and wire harness
CN211294695U (en) Novel cable
JP6724096B2 (en) Insulated wire and multi-core cable
JP2014116086A (en) Cable for industrial robot
JP2000030535A (en) Wire and cable covered with fluorine containing elastomer and manufacture thereof
JP2017010717A (en) Flat cable for movable portion wiring
JP7195037B2 (en) Mixed insulating materials and moldings
JP7389624B2 (en) cable
JP2017182950A (en) Curl cord
JP2014053196A (en) Insulation electric wire
JP7477484B2 (en) Ultra-thin low-voltage wire for automobiles and wire harnesses including the same
CN211294707U (en) Anti-torsion and anti-tensile special cable for robot
JP5202853B2 (en) Conductor or optical fiber coating, insulated wire or cable, and optical fiber cord or optical cable
JP2022158408A (en) cable
JP6708055B2 (en) Cable manufacturing method
WO2019021563A1 (en) Small-diameter insulated electric wire
JP2022113276A (en) multicore cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5307981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350