JP2008217881A - Optical pickup and information processor - Google Patents

Optical pickup and information processor Download PDF

Info

Publication number
JP2008217881A
JP2008217881A JP2007052485A JP2007052485A JP2008217881A JP 2008217881 A JP2008217881 A JP 2008217881A JP 2007052485 A JP2007052485 A JP 2007052485A JP 2007052485 A JP2007052485 A JP 2007052485A JP 2008217881 A JP2008217881 A JP 2008217881A
Authority
JP
Japan
Prior art keywords
light beam
angle
transmission element
light
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007052485A
Other languages
Japanese (ja)
Other versions
JP4645605B2 (en
Inventor
Hiroaki Kojima
弘明 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007052485A priority Critical patent/JP4645605B2/en
Publication of JP2008217881A publication Critical patent/JP2008217881A/en
Application granted granted Critical
Publication of JP4645605B2 publication Critical patent/JP4645605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress harmful stray lights caused in an optical beam transmission adjusting means for adjusting the light power of a light beam without causing enlargement of mechanism. <P>SOLUTION: A holder holding a first transmitting element and a second transmitting element of an optical beam transmission adjusting means has constitution, where when an angle between a first reference plane and the first transmitting element is denoted as θ1 and an angle between the first reference plane and a second reference plane is denoted as θ2, θ1 and θ2 are calculated by using expression 1 and expression 2 from a second transmitting element angle θ3 at which harmful stray light is not produced by reflection of the second transmitting element when the light beam is, at a first position where the light beam is transmitted through the first transmitting element and from a first transmitting element angle θ4, at which effective luminous flux is not shielded by the first transmitting element, when the light beam is at a second position where the light beam transmits the second transmitting element. Expression 1 is θ1=(θ3+θ4)/2, and expression 2 is θ2=(180°+θ3-θ4)/2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光ピックアップおよび情報処理装置に関するもので、より具体的には本発明は、GaN系半導体を用いた青色発光の半導体レーザ等の短波長の半導体レーザを放射する光ピックアップおよび情報処理装置に関する。  The present invention relates to an optical pickup and an information processing apparatus. More specifically, the present invention relates to an optical pickup and an information processing apparatus that emit a short-wavelength semiconductor laser such as a blue-emitting semiconductor laser using a GaN-based semiconductor. About.

DVDは、デジタルデータをCDの約6倍の記録密度で記録することが可能であり、映画や音楽などの大容量のデジタルデータを書き込むことができる情報記録媒体(光ディスク)として知られている。近年は、記録対称となる情報の情報量が増大しているため、さらに容量の大きい情報記録媒体が求められている。 A DVD is known as an information recording medium (optical disc) capable of recording digital data at a recording density about six times that of a CD and capable of writing large-capacity digital data such as movies and music. In recent years, since the amount of information that is symmetric with respect to recording has increased, an information recording medium having a larger capacity has been demanded.

光ディスクの情報記録媒体の容量を大きくするためには、情報の記録密度を高くする必要がある。これは一般に、データの書き込み時および読み出し時に光ディスクに放射されるレーザ光のスポット径を小さくすることによって実現される。そして、光のスポット径を小さくするためには、レーザ光の波長をより短くし、かつ、対物レンズの開口数(NA)を大きくすればよい。さらに、例えば波長405nmの青色レーザ光と、NA0.85の対物レンズを使用することによって、現在のDVDのさらに5倍の記録密度で情報を記録することができる。  In order to increase the capacity of the information recording medium of the optical disc, it is necessary to increase the information recording density. This is generally realized by reducing the spot diameter of the laser beam emitted to the optical disc at the time of data writing and reading. In order to reduce the spot diameter of the light, the wavelength of the laser light can be shortened and the numerical aperture (NA) of the objective lens can be increased. Furthermore, for example, by using a blue laser beam having a wavelength of 405 nm and an objective lens having an NA of 0.85, information can be recorded at a recording density five times that of the current DVD.

青色レーザ等を用いてレーザ光の短波長化することに加え、さらに記録密度を高めるため、1枚の光ディスクに複数の記録層を設ける技術の開発も進んでいる。例えば、2層の記録層を有する光ディスクを得ることが可能になれば、上述のレーザ光の短波長化およびNAの大きな対物レンズの使用と併せて、記録密度は1層の記録層を有するDVDの約10倍になる。  In addition to shortening the wavelength of laser light using a blue laser or the like, development of a technique for providing a plurality of recording layers on one optical disk has been advanced in order to further increase the recording density. For example, if it becomes possible to obtain an optical disc having two recording layers, the recording density is a DVD having one recording layer in combination with the above-described shortening of the laser beam wavelength and the use of an objective lens having a large NA. About 10 times.

しかしながら、青色レーザを光源とする光ディスク装置では、青色レーザにおける再生用の光パワーのマージンは極めて小さいため、光源の量子ノイズが問題となる。
例えば特許文献1に示す従来の光ディスク装置は、レーザ光の経路に対して概ね垂直に出し入れ可能に光ビーム透過調整手段(強度フィルタ)を設けた光ピックアップが開示されている。この光ディスク装置は、再生時には強度フィルタをレーザ光の経路に挿入し、記録時には強度フィルタを出射光の経路から外すように移動させる。これにより、例えば半導体レーザの量子ノイズを低く保つことができ、良質の再生が可能となっている。
However, in an optical disk apparatus using a blue laser as a light source, the margin of optical power for reproduction in the blue laser is extremely small, so that quantum noise of the light source becomes a problem.
For example, the conventional optical disc apparatus shown in Patent Document 1 discloses an optical pickup provided with a light beam transmission adjusting means (intensity filter) so that it can be taken in and out substantially perpendicularly to a laser beam path. In this optical disk apparatus, an intensity filter is inserted into the laser beam path during reproduction, and the intensity filter is moved away from the path of emitted light during recording. Thereby, for example, the quantum noise of the semiconductor laser can be kept low, and high quality reproduction is possible.

しかし、この光ディスク装置はレーザ光の経路に対して垂直かつ直線的に出し入れ可能に強度フィルタを設けているため、強度フィルタが移動するための空間が必要になる、その結果、光ピックアップ装置が大型化してしまうという問題が生じていた。
このような問題を解決するために、光軸上に直線的に移動する強度フィルタに代えて回転によって光軸上に移動する強度フィルタを設けた他の光ピックアップ装置が考えられる。以下、図3から図5を参照しながら、この光ピックアップを説明する。
However, since this optical disk apparatus is provided with an intensity filter that can be taken in and out linearly with respect to the laser beam path, a space for moving the intensity filter is required. As a result, the optical pickup apparatus is large-sized. There has been a problem that it has become.
In order to solve such a problem, another optical pickup device provided with an intensity filter that moves on the optical axis by rotation instead of the intensity filter that moves linearly on the optical axis can be considered. Hereinafter, this optical pickup will be described with reference to FIGS.

図3は、従来の光ピックアップ装置の構成を示す。GaN系の青色発光する第1の半導体レーザ光源30が青色の第1の光ビーム44を放射すると、第1の光ビーム44は光ビーム透過調整手段31に入射する。光ビーム透過調整手段31は、光ディスク32からのデータの読み出し時か、光ディスク32へのデータの書き込み時かに応じて所定の位置に回動され、強度フィルタの位置が調整されている。光ビーム透過調整手段31を透過した第1の光ビーム44は、ビームスプリッタ33で反射され、コリメートレンズ34で平行光にされ、ミラー35で反射され、第1の対物レンズ36を透過して、光ディスク32上に集光される。  FIG. 3 shows a configuration of a conventional optical pickup device. When the GaN-based first semiconductor laser light source 30 emitting blue light emits a blue first light beam 44, the first light beam 44 enters the light beam transmission adjusting means 31. The light beam transmission adjusting means 31 is rotated to a predetermined position according to whether data is read from the optical disk 32 or data is written to the optical disk 32, and the position of the intensity filter is adjusted. The first light beam 44 transmitted through the light beam transmission adjusting unit 31 is reflected by the beam splitter 33, converted into parallel light by the collimating lens 34, reflected by the mirror 35, and transmitted through the first objective lens 36. It is condensed on the optical disk 32.

データの読み出し時には、集光された第1の光ビーム44は光ディスク32の記録層で反射され、逆の経路でビームスプリッタ33に至り、ビームスプリッタ33を透過して、マルチレンズ37を経てフォトダイオード38に入射する。フォトダイオード38は、いわゆる光検出器であり、入射した光の位置および強度に基づいて電気信号を出力する。その電気信号に基づいて、データが再現される。  At the time of reading data, the condensed first light beam 44 is reflected by the recording layer of the optical disc 32, reaches the beam splitter 33 through the reverse path, passes through the beam splitter 33, passes through the multi lens 37, and is a photodiode. 38 is incident. The photodiode 38 is a so-called photodetector, and outputs an electrical signal based on the position and intensity of incident light. Data is reproduced based on the electrical signal.

一方、データの書き込み時には、集光された第1の光ビーム44によって情報層上に光スポットが形成される。その結果、光スポットが形成された部分の記録層の状態(例えば結晶状態)が書き込み対象のデータに応じて変化する。これにより光ディスク32には、記録層の状態の変化としてデータが書き込まれる。  On the other hand, when writing data, a light spot is formed on the information layer by the condensed first light beam 44. As a result, the state (for example, crystal state) of the recording layer in the portion where the light spot is formed changes according to the data to be written. As a result, data is written on the optical disc 32 as a change in the state of the recording layer.

また、緑色から紫外線の波長領域で発行する第2の半導体レーザ光源40から放射された第2の光ビーム45は詳細は省略するが第1の光ビームと同様な光学系41を経て第2の対物レンズ39を透過して光ディスク32上へ集光される。光ディスク32で反射された第2のビームの戻り光学系についても第1のビームと同様であるので省略する。  The second light beam 45 emitted from the second semiconductor laser light source 40 that is emitted in the wavelength region from green to ultraviolet rays is omitted in detail, but passes through an optical system 41 similar to that of the first light beam. The light passes through the objective lens 39 and is condensed on the optical disk 32. Since the return optical system of the second beam reflected by the optical disc 32 is the same as the first beam, a description thereof will be omitted.

図4および図5は従来の光ビーム透過調整手段の実施例である。
図4(a)は従来の光ビーム透過調整手段である回転駆動切替機構12の斜視図を、図4(b)は回転駆動切替機構12の組立分解図を示す。図5(a)は回転駆動切替機構12の第1の光ビームが第1の透過素子1を透過している第1の位置を示す正面図、図5(b)は第1の光ビームが第2の透過素子2を透過している第2の位置を示す正面図である。以下図4(a)、(b)と適宜図5(a)、(b)により回転駆動切替機構の構成を説明する。
4 and 5 show examples of conventional light beam transmission adjusting means.
4A is a perspective view of a rotation drive switching mechanism 12 that is a conventional light beam transmission adjusting means, and FIG. 4B is an exploded view of the rotation drive switching mechanism 12. 5A is a front view showing a first position where the first light beam of the rotation drive switching mechanism 12 is transmitted through the first transmission element 1, and FIG. 5B is a diagram showing the first light beam. FIG. 6 is a front view showing a second position that is transmitted through the second transmissive element 2. The configuration of the rotation drive switching mechanism will be described below with reference to FIGS. 4A and 4B and FIGS. 5A and 5B as appropriate.

図4(b)に示すように、回転駆動切替機構12はベース3と、コイル4、5と、鉄心6、7と、ホルダ8と、永久磁石9、10と、第1および第2の透過素子1、2とにより構成される。ベース3はコイル4、5を装着するためのコイル保持部14と、ホルダ8を回転保持する軸11と規制面16とを一体的に構成してある。コイル4とコイル5は直列に接続され、鉄心6はコイル4に、鉄心7はコイル5にそれぞれ挿入され、ベース3のコイル保持部14にコイル4および5の通電時の発生磁極の方向が等しくなるよう接着固定される。ベース3は光ピックアップ基台(図示しない)に対してコイル4、5が第1の光ビームの光軸と平行となる姿勢で接着固定される。規制面16はコイル4、5の端面と平行に形成され、光ピックアップ基台に固定された状態では第1の光ビームの光軸に対し垂直方向となる。  As shown in FIG. 4B, the rotation drive switching mechanism 12 includes a base 3, coils 4, 5, iron cores 6, 7, a holder 8, permanent magnets 9, 10, and first and second transmissions. It is comprised by the elements 1 and 2. The base 3 integrally includes a coil holding portion 14 for mounting the coils 4 and 5, a shaft 11 for rotating and holding the holder 8, and a regulating surface 16. The coil 4 and the coil 5 are connected in series, the iron core 6 is inserted into the coil 4, the iron core 7 is inserted into the coil 5, and the direction of the generated magnetic poles when the coils 4 and 5 are energized is equal to the coil holding portion 14 of the base 3. It is bonded and fixed so that The base 3 is bonded and fixed to an optical pickup base (not shown) so that the coils 4 and 5 are parallel to the optical axis of the first light beam. The restricting surface 16 is formed in parallel with the end surfaces of the coils 4 and 5 and is perpendicular to the optical axis of the first light beam when fixed to the optical pickup base.

ホルダ8には互いに直交する第1の装着面18と第2の装着面19が形成されており第1の装着面18には第1の透過素子1が、第2の装着面19にはと第2の透過素子2が、それぞれ接着固定される。
第1の透過素子1には透過率が50〜65%の光学フィルタ1aが塗布されており透過する第1の光ビームの光パワーを減衰させる。一方、第2の透過素子2には光学フィルタは塗布されておらず、第1の光ビームの光パワーを概ね維持した状態で光ビームを透過させる。また第1および第2の透過素子1および2は厚み0.2mm程度の平行平板ガラスでできている。後述するように厚みを薄くすることで切替時の透過素子の相対角度誤差による光軸ずれを最小に押えている。またホルダ8には先端が球面形状となっている2組のそれぞれ3個の小突起組20a、20b、20cおよび21a、21b、21cが形成されており、図5(a)あるいは(b)に示すように3個の小突起組20a、20b、20cの先端が形成する第1の基準面20は第1の装着面18と平行に、3個の小突起組21a、21b、21cの先端が形成する第2の基準面21は第2の装着面19と平行に、それぞれなるよう小突起組20a、20b、20cと21a、21b、21cは形成されている。
またホルダ8には2個の永久磁石9、10が、それぞれの磁化方向が永久磁石9は第1の基準面に、永久磁石10は第2の基準面にそれぞれ直交する姿勢で、かつ極性が第1の基準面側の永久磁石9のa部と第2の基準面側の永久磁石10のb部が逆極性となるよう接着固定されている。つまり、図5(a)に示すように永久磁石9のa部がN極とすると永久磁石10のb部はS極に配置される。
The holder 8 is formed with a first mounting surface 18 and a second mounting surface 19 that are orthogonal to each other. The first mounting surface 18 has the first transmission element 1, and the second mounting surface 19 has the second mounting surface 19. The second transmissive elements 2 are bonded and fixed to each other.
The first transmission element 1 is coated with an optical filter 1a having a transmittance of 50 to 65%, and attenuates the optical power of the transmitted first light beam. On the other hand, the second transmission element 2 is not coated with an optical filter, and transmits the light beam while maintaining the optical power of the first light beam substantially. The first and second transmission elements 1 and 2 are made of parallel flat glass having a thickness of about 0.2 mm. As will be described later, the optical axis shift due to the relative angle error of the transmissive element at the time of switching is minimized by reducing the thickness. The holder 8 is formed with two small projection sets 20a, 20b, 20c and 21a, 21b, 21c each having a spherical shape at the tip, as shown in FIG. 5 (a) or (b). As shown, the first reference surface 20 formed by the tips of the three small protrusion sets 20a, 20b, 20c is parallel to the first mounting surface 18, and the tips of the three small protrusion sets 21a, 21b, 21c are Small protrusion sets 20a, 20b, 20c and 21a, 21b, 21c are formed so that the second reference surface 21 to be formed is parallel to the second mounting surface 19, respectively.
The holder 8 has two permanent magnets 9 and 10, each of which has a magnetization direction orthogonal to the first reference plane, the permanent magnet 10 is orthogonal to the second reference plane, and has a polarity. The a part of the permanent magnet 9 on the first reference surface side and the b part of the permanent magnet 10 on the second reference surface side are bonded and fixed so as to have opposite polarities. That is, as shown to Fig.5 (a), if the a part of the permanent magnet 9 is set to N pole, the b part of the permanent magnet 10 will be arrange | positioned to S pole.

図4(b)に示すように、ホルダ8の中央には第1の装着面18および第2の装着面19のいずれもに対し平行な方向に穴24が形成されている。図5(a)に示すように、穴24のセンターから第1の基準面20と穴24のセンターから第2の基準面21との距離Lは等しく、かつベース3の規制面16と軸11との距離とも等しくなるよう形成されている。図4(b)に示すように、ベース3の軸11の先端には爪先が外向きの一対の樹脂バネ25が一体的に形成されており、ホルダ8挿入時は弾性変形して穴24を透過し挿入後は爪先が元の状態に開いてホルダ8が抜け落ちないよう保持する。挿入後、ホルダ8は軸11の軸方向に0.1mm程度のすきまを持つよう設定され、また保持軸11の直径はホルダ8の穴24の直径に比べ10%程度小さく形成されている。このように軸方向、穴半径方向ともにガタの大きい勘合状態に設定することによりホルダ8が軸11を回動するとき、ほとんど摺動抵抗を受けることなくスムーズに回動できる。  As shown in FIG. 4B, a hole 24 is formed in the center of the holder 8 in a direction parallel to both the first mounting surface 18 and the second mounting surface 19. As shown in FIG. 5A, the distance L from the center of the hole 24 to the first reference surface 20 and the center of the hole 24 to the second reference surface 21 is equal, and the restriction surface 16 of the base 3 and the shaft 11 It is formed so that it may become equal to the distance. As shown in FIG. 4B, a pair of resin springs 25 with the toes outward are integrally formed at the tip of the shaft 11 of the base 3, and when the holder 8 is inserted, the holes 24 are formed by elastic deformation. After insertion, the toes are opened to the original state and the holder 8 is held so as not to fall off. After the insertion, the holder 8 is set to have a clearance of about 0.1 mm in the axial direction of the shaft 11, and the diameter of the holding shaft 11 is formed to be about 10% smaller than the diameter of the hole 24 of the holder 8. In this way, by setting the fitting state with a large backlash in both the axial direction and the hole radial direction, when the holder 8 rotates the shaft 11, the holder 8 can rotate smoothly with almost no sliding resistance.

次に第1および第2の透過素子の切替動作について説明する。
ホルダ8をいずれかの方向に、たとえば反時計方向に回転させていくと永久磁石9と鉄心6との間に吸引力が生じ、小突起組20a、20b、20cがベース3の規制面16に当接する。図5(a)は小突起組20a、20b、20cが規制面16に当接した状態、すなわち第1の光ビームが第1の透過素子を透過する第1の位置を示す。
Next, the switching operation of the first and second transmissive elements will be described.
When the holder 8 is rotated in any direction, for example, counterclockwise, an attractive force is generated between the permanent magnet 9 and the iron core 6, and the small protrusion sets 20 a, 20 b, and 20 c are formed on the restriction surface 16 of the base 3. Abut. FIG. 5A shows a state where the small protrusion sets 20a, 20b, and 20c are in contact with the regulating surface 16, that is, a first position where the first light beam is transmitted through the first transmission element.

前述の通り規制面16から軸11までの距離とホルダ8の第1の基準面20と穴24までの距離とは等しく設定してあるため、この第1の位置では穴24と軸11とは光軸方向には隙間を持って、光軸と垂直方向には隙間分自由に動けるので、小突起組20a、20b、20cは無理なく3点とも永久磁石9と鉄心6との吸引力により規制面16に当接し、小突起組20a、20b、20cで形成する第1の基準面20は規制面16と同一平面となる。したがって、第1の基準面20と平行である第1の透過素子1も規制面16と平行、すなわち第1の光ビームの光軸に対し垂直となる。  As described above, since the distance from the regulating surface 16 to the shaft 11 and the distance from the first reference surface 20 of the holder 8 to the hole 24 are set to be equal to each other, the hole 24 and the shaft 11 are in this first position. Since there is a gap in the optical axis direction and the gap can move freely in the direction perpendicular to the optical axis, the small protrusion sets 20a, 20b and 20c can be controlled by the attractive force of the permanent magnet 9 and the iron core 6 at all three points. The first reference surface 20 that is in contact with the surface 16 and formed by the small protrusion sets 20 a, 20 b, and 20 c is flush with the regulation surface 16. Therefore, the first transmission element 1 parallel to the first reference surface 20 is also parallel to the regulation surface 16, that is, perpendicular to the optical axis of the first light beam.

次に第1の位置から第2の位置に回転させるメカニズムについて説明する。
今、図5(a)で示す第1の位置にあるとき、コイル4に永久磁石9のaの極性、ここではN極、と反発するようN極の磁界を発生させる方向にパルス電流を流す。このときの電流値を永久磁石9と鉄心6との吸引力を上回る反発力が発生するよう設定すると、パルス電流を印加した結果ホルダ8は時計方向の回転駆動力を与えられ回動を始める。パルス電流印加時間はホルダ8が回動を始め、第2の位置に移る時間より10msec程度長めに設定する。その結果ホルダが第1の位置と第2の位置との中間を超えると惰性による回転力に加え、今度は永久磁石10のb部の極性、ここではS極、とコイル5に発生するN極の磁界とが吸引するため、もう一方の小突起組21a、21b、21cが規制面16に当接するまでホルダ8は回転を続ける。
Next, a mechanism for rotating from the first position to the second position will be described.
Now, when in the first position shown in FIG. 5A, a pulse current is supplied to the coil 4 in a direction to generate a magnetic field of N pole so as to repel the polarity of a of the permanent magnet 9, here N pole. . When the current value at this time is set so that a repulsive force exceeding the attractive force between the permanent magnet 9 and the iron core 6 is generated, the holder 8 is given a clockwise rotational driving force as a result of applying the pulse current and starts rotating. The pulse current application time is set to be about 10 msec longer than the time when the holder 8 starts to rotate and moves to the second position. As a result, when the holder exceeds the middle between the first position and the second position, in addition to the rotational force due to inertia, this time the polarity of the b part of the permanent magnet 10, here the S pole, and the N pole generated in the coil 5 Therefore, the holder 8 continues to rotate until the other small protrusion set 21 a, 21 b, 21 c abuts against the regulation surface 16.

図5(b)に小突起組21a、21b、21cが規制面16に当接し第1の光ビームが第2の透過素子2を透過する第2の位置を示す。ホルダ8が回動して第2の位置で停止してから10msec程度経過してパルス電流が消滅するが、消滅後も永久磁石10と鉄心7が吸着することで第2の位置が保たれる。この状態では前述の図5(a)で示す第1の位置と同様に第2の基準面21が規制面16と同一平面にあるから第2の透過素子2は規制面16と平行となり、第1の光ビームの光軸に対し垂直となる。  FIG. 5B shows a second position where the small protrusion sets 21 a, 21 b, and 21 c are in contact with the regulating surface 16 and the first light beam is transmitted through the second transmissive element 2. The pulse current disappears about 10 msec after the holder 8 rotates and stops at the second position, but the second position is maintained by adsorbing the permanent magnet 10 and the iron core 7 even after the disappearance. . In this state, since the second reference surface 21 is in the same plane as the restriction surface 16 as in the first position shown in FIG. 5A, the second transmissive element 2 is parallel to the restriction surface 16, It becomes perpendicular to the optical axis of one light beam.

第2の位置から再び第1の位置への切替は第1の位置から第2の位置に切り替えるときに流したパルス電流と逆方向のパルス電流をコイル4、5に印加すると、規制面16側のコイル5の端面には先ほどと逆の磁界が発生し永久磁石10と反発して今度は逆にホルダが反時計方向に回動して第1の位置へ切り替わる。このコイルへの印加電圧とパルス電流の印加時間は一例としてコイル内径(=鉄心径)がφ1.3mm、コイル外径がφ2.3mm、コイル長が3.2mm、コイル線形がφ0.08mmの場合、コイル抵抗は7.2Ωであり印加電圧が5Vでパルス電流が700mA、印加時間は40msec程度である。  When switching from the second position to the first position again is applied to the coils 4 and 5 in the direction opposite to the pulse current that flows when switching from the first position to the second position, the regulation surface 16 side A magnetic field opposite to the previous one is generated on the end face of the coil 5 and repels the permanent magnet 10, and this time the holder rotates counterclockwise and switches to the first position. As an example, the applied voltage and pulse current are applied to the coil when the inner diameter of the coil (= iron core diameter) is 1.3 mm, the outer diameter of the coil is 2.3 mm, the coil length is 3.2 mm, and the coil alignment is φ0.08 mm. The coil resistance is 7.2Ω, the applied voltage is 5 V, the pulse current is 700 mA, and the application time is about 40 msec.

次に第1の透過素子と第2の透過素子の切替角度誤差による影響を図6により説明する。
図6(a)は第1の位置、図6(b)は第2の位置での透過素子と光軸の関係を示してある。図6(a)に示すように第1の透過素子1が光軸に対し垂直であれば光ビームが透過素子1を透過しても光軸は変化しないが、図6(b)に示すように、第2の位置に切替えたとき第2の透過素子2が角度誤差nを持った場合、光ビームが第2の透過素子2を透過するとスネルの法則により屈折を生じ光軸にdのずれが生じる。光軸にずれが生じると光ディスク上で集光、反射して光検出器に戻ったスポットの位置にずれが生じる。スポット位置のずれが大きいと光検出器よりはみ出してしまうため信号劣化が生じる。なお、この角度誤差による光軸ずれが生じるのは透過素子を透過する光ビームが本構成例のように発散光である場合であり、平行光が透過する場合は光軸ずれは生じない。光軸ずれdは角度誤差nが大きいほど、また透過素子の厚みtが大きいほど大きくなる。このため透過素子
厚みtを0.2mm程度に薄くしてあるが、一例として透過素子厚みtが0.2mmの場合許容できる角度誤差nは±1°程度となる。また光検出器のは第1あるいは第2のいずれかの位置で最適となるよう調整組立されるため、許容角度誤差は光軸に対する絶対角度ではなく、第1の透過素子1と第2の透過素子2の相対角度誤差で決定される。
Next, the influence of the switching angle error between the first transmissive element and the second transmissive element will be described with reference to FIG.
6A shows the relationship between the transmissive element and the optical axis at the first position, and FIG. 6B shows the relationship between the transmissive element and the optical axis at the second position. If the first transmission element 1 is perpendicular to the optical axis as shown in FIG. 6 (a), the optical axis does not change even if the light beam passes through the transmission element 1, but as shown in FIG. 6 (b). In addition, when the second transmissive element 2 has an angle error n when switched to the second position, if the light beam is transmitted through the second transmissive element 2, refraction occurs due to Snell's law and the optical axis shifts d. Occurs. When a deviation occurs in the optical axis, a deviation occurs in the position of the spot collected and reflected on the optical disk and returned to the photodetector. If the spot position shift is large, it will protrude from the photodetector, resulting in signal degradation. The optical axis deviation due to the angle error occurs when the light beam transmitted through the transmission element is divergent light as in this configuration example, and when parallel light is transmitted there is no optical axis deviation. The optical axis deviation d increases as the angle error n increases and the thickness t of the transmissive element increases. For this reason, the transmissive element thickness t is reduced to about 0.2 mm. As an example, when the transmissive element thickness t is 0.2 mm, the allowable angle error n is about ± 1 °. Further, since the photodetector is adjusted and assembled so as to be optimal at either the first or second position, the allowable angle error is not an absolute angle with respect to the optical axis, but the first transmission element 1 and the second transmission. It is determined by the relative angle error of element 2.

従来例の回転駆動切替機構12での切替角度誤差は、以上の説明よりベース3の規制面16の平面度と、第1の基準面20と第1の装着面18の平行度、および第2の基準面21と第2の装着面19の平行度、によってのみ決定されるが、樹脂製形部品であるベース3およびホルダ8で切替角度誤差±1°を達成することは成型精度上問題になることはない。
特開2000−195086号公報
The switching angle error in the rotation drive switching mechanism 12 of the conventional example is based on the above description, the flatness of the restriction surface 16 of the base 3, the parallelism of the first reference surface 20 and the first mounting surface 18, and the second This is determined only by the parallelism between the reference surface 21 and the second mounting surface 19, but achieving a switching angle error of ± 1 ° with the base 3 and the holder 8, which are resin molded parts, is a problem in terms of molding accuracy. Never become.
JP 2000-195086 A

しかしながら、従来のような回転駆動切替機構としたことにより簡易な構成で切替動作による角度ずれを小さく抑え、装置の小型化の実現を可能とした一方、図5(a)に示す第1の位置の状態において発散光である青色波長領域の光ビームの一部が第2の透過素子2により反射し迷光26となって、図示しないが第2の対物レンズ39に入射し、第2の対物レンズ39が樹脂製である場合、樹脂材料が青色波長領域の光ビームに対する対候性が低いため材質が劣化しレンズの光学性能が低下するという問題が発生した。  However, the conventional rotational drive switching mechanism can reduce the angular deviation due to the switching operation with a simple configuration and realize downsizing of the apparatus, while the first position shown in FIG. In this state, a part of the light beam in the blue wavelength region, which is divergent light, is reflected by the second transmission element 2 to become stray light 26, which is incident on the second objective lens 39 (not shown), and the second objective lens. When 39 is made of resin, since the resin material has low weather resistance with respect to the light beam in the blue wavelength region, the material deteriorates and the optical performance of the lens deteriorates.

この第2の透過素子2で反射して生じる樹脂レンズに対し有害な迷光の発生を防ぐための第1の方法として、第1の位置において第2透過素子2の光ビームの光軸に対する角度を、第2の対物レンズ39に入射しないよう傾けることが考えられる。一例として傾ける角度は時計方向に約15度必要である。図7に第1の方法を示す。図7に示すように、第1の装着面18と第1の基準面20および第2の装着面19と第2の基準面21がそれぞれ平行に構成すると第1の基準面20と第2の装着面19との角度θ2’を約105°とする必要がある。ところがθ2’を大きくしようとすると設計上の制限によりホルダ8が大きくなる。図7に二点鎖線で比較として元の形状を示す。図示のようにホルダが大きくなることで元の形状に比較して重量が増加し慣性モーメントは約70%増加する。重量および慣性モーメントが増加すると最低駆動電圧が増加し低電圧駆動が困難になるという問題が生じる。また、ホルダを大きくすることを回避するため、第2の迷光防止の方法として、第1の基準面と第2の基準面の角度θ2は90°のままとし、第1の装着面と第1の基準面および第2の装着面と第2の基準面とをそれぞれ角度θ1(=15°)を設ける方法も考えられる。図8(a)に第2の方法の第1の位置を図8(b)に第2の方法の第2の位置をそれぞれ示す。図8(a)に示すように第1の位置においては第2の透過素子2は光軸に対し角度θ1傾き迷光を防ぐ。この時第1の透過素子1も光軸に垂直から角度θ1傾いているので光軸ずれが発生し記録媒体で反射して受光素子上に戻ってきたスポット位置がずれるが、このずれ量は受光素子上で数十ミクロンの量であり受光素子組立時の調整で十分吸収できるため問題はない。  As a first method for preventing generation of harmful stray light with respect to the resin lens that is reflected by the second transmissive element 2, the angle of the light beam of the second transmissive element 2 with respect to the optical axis at the first position is set. It is conceivable to tilt the second objective lens 39 so that it does not enter the second objective lens 39. As an example, the tilt angle needs to be about 15 degrees clockwise. FIG. 7 shows the first method. As shown in FIG. 7, when the first mounting surface 18 and the first reference surface 20 and the second mounting surface 19 and the second reference surface 21 are configured in parallel, the first reference surface 20 and the second reference surface 20 are formed. The angle θ2 ′ with the mounting surface 19 needs to be about 105 °. However, if θ2 ′ is to be increased, the holder 8 becomes larger due to design limitations. FIG. 7 shows the original shape as a comparison with a two-dot chain line. As shown in the figure, as the holder becomes larger, the weight increases compared to the original shape, and the moment of inertia increases by about 70%. When the weight and the moment of inertia increase, the minimum driving voltage increases, which causes a problem that low voltage driving becomes difficult. In order to avoid enlarging the holder, as a second method of preventing stray light, the angle θ2 between the first reference surface and the second reference surface remains 90 °, and the first mounting surface and the first mounting surface A method of providing an angle θ1 (= 15 °) between the reference surface and the second mounting surface and the second reference surface is also conceivable. FIG. 8A shows the first position of the second method, and FIG. 8B shows the second position of the second method. As shown in FIG. 8A, in the first position, the second transmission element 2 prevents stray light with an angle θ1 inclined with respect to the optical axis. At this time, since the first transmission element 1 is also inclined by the angle θ1 from the perpendicular to the optical axis, the optical axis is shifted, and the spot position reflected on the recording medium and returned to the light receiving element is shifted. There is no problem because the quantity on the element is several tens of microns and can be absorbed sufficiently by adjustment during assembly of the light receiving element.

しかしこの第2の方法の場合、図8(b)に示すように第2の位置においては第1の透過素子1の光軸に対する角度θ4が角度θ1と等しくなるが、一例としてこの傾きが10°を超えると第2の透過素子2を透過した光ビームの有効光束42の一部43(斜線部)を第1の透過素子1が遮蔽してしまう。迷光防止に必要な角度よりは遮蔽が始まる角度のほうが小さいため第2の方法では迷光防止と有効光束遮蔽回避が両立しない問題があった。  However, in the case of this second method, as shown in FIG. 8B, the angle θ4 with respect to the optical axis of the first transmissive element 1 is equal to the angle θ1 at the second position. If the angle exceeds 60 °, the first transmission element 1 shields a part 43 (shaded portion) of the effective luminous flux 42 of the light beam transmitted through the second transmission element 2. Since the angle at which shielding starts is smaller than the angle necessary for preventing stray light, the second method has a problem in that stray light prevention and effective light beam shielding avoidance are not compatible.

本発明による光ピックアップは、所定の光パワーを有する第1の光ビームを発する第1の光源と、前記第1の光ビームの透過量を調整する光ビーム透過調整手段と、前記光ビーム透過調整手段を透過した前記第1の光ビームを情報記録媒体に集光する第1の集光手段と、所定の光パワーを有する第2の光ビームを発する第2の光源と、前記第2の光ビームを情報記録媒体に集光する第2の集光手段と、を有している。  An optical pickup according to the present invention includes a first light source that emits a first light beam having a predetermined optical power, a light beam transmission adjusting unit that adjusts a transmission amount of the first light beam, and the light beam transmission adjustment. A first condensing means for condensing the first light beam transmitted through the means onto an information recording medium, a second light source for emitting a second light beam having a predetermined optical power, and the second light. And a second condensing unit that condenses the beam on the information recording medium.

そして前記光ビーム透過調整手段は第1の透過率を有する第1透過素子と、前記第1の透過率よりも高い第2の透過率を有する第2透過素子とを、前記第1透過素子および前記第2透過素子に平行な回転軸回りに前記第1の光ビームが前記第1透過素子を透過する第1の位置と前記第2透過素子を透過する第2の位置とを切り替える回転駆動切替機構であって、前記回転駆動切替機構は、前記第1透過素子および前記第2透過素子を保持し、前記第1透過素子および前記第2透過素子に平行な回転穴を設けた保持体と、前記保持体に装着される前記第1の位置および前記第2の位置を保つための吸着力を発生する永久磁石と、前記保持体の回転穴と勘合しその軸心が前記第1の光ビームの中心線上にある軸を一体的に形成した前記第1の位置および第2位置で前記保持体を保持する基台と、前記基台にそれぞれ装着される前記永久磁石の一方の磁極を吸着するための第1鉄心と前記第1鉄心と同心にあって前記永久磁石の前記一方の磁極に反発力を与える第1コイルと前記永久磁石のもう一方の磁極を吸着するための第2鉄心と、前記第2鉄心と同心にあって前記永久磁石の前記もう一方の磁極に反発力を与える第2コイルとで構成したものであって、前記保持体には前記第1透過素子とθ1の角度をなす前記第1の位置で前記基台と当接する第1基準面と、前記第2透過素子と同じくθ1の角度をなす前記第2の位置で前記基台と当接する第2基準面とを前記第1基準面と前記第2基準面が略90度の角度θ2をなすよう形成し、前記基台には前記保持体の前記第1基準面と前記第2基準面とが当接する規制面が形成されている。  The light beam transmission adjusting means includes a first transmissive element having a first transmittance and a second transmissive element having a second transmittance higher than the first transmittance. Rotation drive switching for switching between a first position where the first light beam is transmitted through the first transmission element and a second position where the first light beam is transmitted through the second transmission element around a rotation axis parallel to the second transmission element. The rotation drive switching mechanism is configured to hold the first transmission element and the second transmission element, and to provide a holding body provided with a rotation hole parallel to the first transmission element and the second transmission element; A permanent magnet that generates an attracting force for maintaining the first position and the second position to be mounted on the holding body, and a rotation hole of the holding body are fitted into the first light beam. The first position in which the shaft on the center line is integrally formed And a base for holding the holding body in the second position, a first iron core for adsorbing one magnetic pole of the permanent magnet respectively mounted on the base, and the first iron core are concentric with the permanent magnet. A first coil for applying a repulsive force to the one magnetic pole of the magnet, a second iron core for adsorbing the other magnetic pole of the permanent magnet, and the other coil of the permanent magnet concentric with the second iron core. A first reference surface that is in contact with the base at the first position that forms an angle of θ1 with the first transmission element on the holding body. And the second reference surface that contacts the base at the second position that forms an angle θ1 as in the second transmission element, and the angle θ2 between the first reference surface and the second reference surface is approximately 90 degrees. And the base includes the first reference surface of the holding body and the first base. The reference surface is regulating surface abutting is formed.

そして前記回転駆動切替機構が前記第1の位置にあるとき、前記第2透過素子の透過面の前記第1の光ビームの光軸に対する時計方向角度θ3が、前記第1透過素子を透過した前記第1の光ビームの一部が前記第2透過素子で反射して迷光となり前記第2の集光手段に入射しないような角度に設定してある。  When the rotational drive switching mechanism is in the first position, the clockwise angle θ3 of the transmission surface of the second transmission element with respect to the optical axis of the first light beam is transmitted through the first transmission element. An angle is set such that a part of the first light beam is reflected by the second transmission element and becomes stray light and does not enter the second light collecting means.

また前記回転駆動切替機構が前記第2の位置にあるとき、前記第1透過素子の透過面の前記第1の光ビームの光軸に対する時計方向角度θ4が、前記第2透過素子を透過した前記第1の光ビームの有効光束が前記第1透過素子によって遮蔽されないような角度に設定してある。  When the rotation drive switching mechanism is in the second position, the clockwise angle θ4 with respect to the optical axis of the first light beam of the transmission surface of the first transmission element is transmitted through the second transmission element. The angle is set such that the effective light beam of the first light beam is not shielded by the first transmission element.

また前記保持体の前記角度θ1は、前記角度θ3および前記角度θ4より、前記数式1で算出される値に設定してある。  Further, the angle θ1 of the holding body is set to a value calculated by the mathematical formula 1 from the angle θ3 and the angle θ4.

また前記保持体の前記角度θ2は、前記角度θ3および前記角度θ4より、前記数式2で算出される値に設定してある。
前記第1の光源は、青色の波長領域において発光する半導体レーザであってもよい。
前記第2の光源は、緑色から紫外線の波長領域において発光する半導体レーザであってもよい。
Further, the angle θ2 of the holding body is set to a value calculated by the mathematical formula 2 from the angle θ3 and the angle θ4.
The first light source may be a semiconductor laser that emits light in a blue wavelength region.
The second light source may be a semiconductor laser that emits light in a wavelength region from green to ultraviolet.

本発明による情報処理装置は、前記情報記録媒体からの反射光を検出する光検出器をさらに有する光ピックアップ、および、検出された前記反射光に基づいて、再生信号およびサーボ信号のすくなくとも一方を生成する信号処理回路を備えていてもよい。  An information processing apparatus according to the present invention generates an at least one of a reproduction signal and a servo signal based on an optical pickup that further includes a photodetector that detects reflected light from the information recording medium, and the detected reflected light A signal processing circuit may be provided.

前記情報処理装置は、記録層の数が異なる複数種類の情報記録媒体を装填することが可能であり、装填された情報記録媒体に対して前記記録層の数に応じた光パワーの大きさを有する光ビームを放射して、データを読み出しおよび/または書き込む。  The information processing apparatus can be loaded with a plurality of types of information recording media having different numbers of recording layers, and the amount of optical power corresponding to the number of recording layers can be set on the loaded information recording medium. A light beam is emitted to read and / or write data.

前記情報処理装置は、記録層の数が1層の情報記録媒体が装填されたときは、前記回転駆動切替機構によって前記第1の位置に切り替えて前記記録層に対して第1の光パワーを有する光ビームを放射し、記録層の数が複数の情報記録媒体が装填されたときは、前記回転駆動切替機構によって前記第2位置に切り替えて、前記記録層の1つに対して第2の光パワーを有する光ビームを放射してもよい。  When the information recording medium having one recording layer is loaded, the information processing apparatus switches to the first position by the rotational drive switching mechanism and applies a first optical power to the recording layer. When an information recording medium having a plurality of recording layers is loaded, the rotational drive switching mechanism switches to the second position, and a second is applied to one of the recording layers. A light beam having optical power may be emitted.

本発明に依れば、透過率の異なる2個の透過素子を回転駆動させて光ビームの光パワーを切り替える光ビーム透過調整手段が、機構容積の増大をきたすことなく、一方の切替位置において光ビームを透過させていない方の透過素子の反射による有害な迷光を発生を防ぎ、かつもう一方の切替位置においては光ビームを透過させていない方の透過素子が光ビームの有効光束を遮蔽することを防ぐ構成を実現することが可能であるため、消費電力の低い小型の光ピックアップを供給することが実現できる。  According to the present invention, the light beam transmission adjusting means for switching the light power of the light beam by rotationally driving two transmission elements having different transmittances does not increase the mechanism volume, and the light is transmitted at one switching position. Preventing generation of harmful stray light due to reflection of the transmissive element that does not transmit the beam, and the transmissive element that does not transmit the light beam at the other switching position shields the effective light beam of the light beam. Therefore, it is possible to provide a small optical pickup with low power consumption.

以下、添付の図面を参照しながら、本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は本発明による光ビーム透過調整手段である回転駆動切替機構12の斜視図を示す。本発明はホルダの第1および第2透過素子と第1および第2基準面の角度構成に関するものであるので回転駆動切替機構の構成自体は従来とまったく同一であるので説明を省略する。  FIG. 1 is a perspective view of a rotary drive switching mechanism 12 which is a light beam transmission adjusting means according to the present invention. Since the present invention relates to the angular configuration of the first and second transmission elements of the holder and the first and second reference planes, the configuration itself of the rotational drive switching mechanism is exactly the same as the conventional one, and the description thereof is omitted.

図2(a)、(b)はホルダ8の前記角度構成を示す図である。図2(a)は第1の光ビームが第1の透過素子1を透過する第1の位置を、図2(b)は第1の光ビームが第2の透過素子2を透過する第2の位置をそれぞれ示す。  2A and 2B are diagrams showing the angular configuration of the holder 8. FIG. 2A shows a first position where the first light beam passes through the first transmission element 1, and FIG. 2B shows a second position where the first light beam passes through the second transmission element 2. Each position is shown.

図2(a)に示すように第1の位置における第2の透過素子2が第1の光ビームの光軸となす角度θ3は、第1の光ビームが第2の透過素子2で反射して迷光となって第2の対物レンズ39(図示しない)に入射しない必要最小の角度、一例として15度、となるように、ホルダ8の小突起組20a、20b、20cの先端で形成する第1の基準面20に対する第2の装着面18の角度θ2’が105度になるよう形成されている。
また図2(b)に示すように第2の位置における第1の透過素子1が第1の光ビームの光軸となす角度θ4は、第2の透過素子2を透過した第1の光ビームの有効光束42を遮蔽しない必要最大の角度、一例として5度、となるように、すなわちホルダ8の小突起組21a、21b、21cの先端で形成する第2の基準面21に対する第1の装着面18角度θ5が85度の角度になるよう形成されている。
As shown in FIG. 2A, the angle θ3 formed by the second transmissive element 2 at the first position and the optical axis of the first light beam is such that the first light beam is reflected by the second transmissive element 2. And formed at the tips of the small protrusion sets 20a, 20b, and 20c of the holder 8 so that the minimum necessary angle at which the light does not enter the second objective lens 39 (not shown), for example, 15 degrees, is formed. The angle θ2 ′ of the second mounting surface 18 with respect to one reference surface 20 is formed to be 105 degrees.
Further, as shown in FIG. 2B, the angle θ4 formed by the first transmission element 1 at the second position with the optical axis of the first light beam is the first light beam transmitted through the second transmission element 2. The first mounting on the second reference surface 21 formed at the tip of the small protrusion sets 21a, 21b, 21c of the holder 8 so as to be the maximum necessary angle that does not block the effective light beam 42, for example, 5 degrees as an example. The surface 18 angle θ5 is formed to be an angle of 85 degrees.

ここで角度θ3を必要最小、また角度θ4を必要最大の値とした理由は、角度θ3が大きくなるほど、また角度θ4が小さくなるほどホルダ8が大型となり、最低駆動電圧も上昇するからであり、回転駆動切替機構12の小型化を図るためには角度θ3はできるだけ小さく、角度θ4はできるだけ大きくする必要がある。  Here, the reason why the angle θ3 is set to the necessary minimum value and the angle θ4 is set to the necessary maximum value is that the larger the angle θ3 is, and the smaller the angle θ4 is, the larger the holder 8 is and the minimum driving voltage is increased. In order to reduce the size of the drive switching mechanism 12, it is necessary to make the angle θ3 as small as possible and the angle θ4 as large as possible.

また図2(a)に示す第1の位置において第1の基準面20に対する第1の透過素子1の角度θ1は、図2(b)に示す第2の位置における第2の基準面21に対する第2の透過素子2の角度θ1’と等しくなければならない、なぜなら前述の図6による説明の通り第1の光ビームの光軸に対する第1の透過素子1の角度と第2の透過素子2の角度にずれがあると切替えた時に透過素子を透過した第1の光ビームの光軸ずれが発生し、記憶媒体で反射して受光素子上に戻ってくるスポット位置がずれるからである。  Further, the angle θ1 of the first transmission element 1 with respect to the first reference plane 20 at the first position shown in FIG. 2A is relative to the second reference plane 21 at the second position shown in FIG. The angle θ1 ′ of the second transmission element 2 must be equal to the angle of the first transmission element 1 with respect to the optical axis of the first light beam and the second transmission element 2 as described with reference to FIG. This is because if the angle is shifted, the optical axis shift of the first light beam transmitted through the transmission element occurs when switching, and the spot position reflected on the storage medium and returning to the light receiving element is shifted.

また第1の基準面20と第2の基準面21が当接するベース3の規制面16は同一平面であることが望ましい。なぜなら規制面を分割して第1の基準面20が当接する面と第2の基準面21が当接する面に角度を持たせるとコイル4および5も平行ではなくこれと同じ角度を持って配置しないといけないためベースの大型化をきたす。またベース成型金型構造上からも二面の角度精度を出すよりは一平面の平面精度を出すほうが精度上有利だからである。  Further, it is desirable that the restriction surface 16 of the base 3 on which the first reference surface 20 and the second reference surface 21 abut is the same plane. This is because, if the restriction surface is divided and an angle is formed between the surface on which the first reference surface 20 abuts and the surface on which the second reference surface 21 abuts, the coils 4 and 5 are not parallel but are arranged at the same angle. This will increase the size of the base. Moreover, it is because it is more advantageous in terms of accuracy to obtain one plane accuracy than to obtain angle accuracy of two surfaces from the base molding die structure.

これらの条件を考慮した結果、第1基準面に対する第1の装着面18の角度θ1および第2基準面に対する第2の装着面18の角度θ1’=θ1は前記数式1で求められる値に設定すればよい。
上述の数値例の場合、θ1(=θ1’)は10度となる。
As a result of taking these conditions into consideration, the angle θ1 of the first mounting surface 18 with respect to the first reference surface and the angle θ1 ′ = θ1 of the second mounting surface 18 with respect to the second reference surface are set to the values obtained by the above Equation 1. do it.
In the above numerical example, θ1 (= θ1 ′) is 10 degrees.

また図2(a)に示す第1基準面と第2基準面との角度θ2は前記数式2で求められる値に設定すればよい。
上述の数値例の場合、θ2は95°となる。
In addition, the angle θ2 between the first reference surface and the second reference surface shown in FIG.
In the above numerical example, θ2 is 95 °.

本実施形態では光学フィルタが塗布された透過素子と光学フィルタが塗布されていない透過素子とを切り替えることで光ビームの光パワーを切り替えたが、光透過率の異なる2個の透過素子を切り替えることで光ビームの光パワーを切り替えてもよい。  In this embodiment, the light power of the light beam is switched by switching between a transmissive element coated with an optical filter and a transmissive element coated with no optical filter. However, switching between two transmissive elements having different light transmittances is performed. The optical power of the light beam may be switched with.

本実施形態では光ビーム透過調整手段はデータの読み出し時と書き込み時とで第1の光ビームの光パワーを切り替えた。しかし、情報記録媒体が1層の記録層を有する場合と2層の記録層を有する場合とで第1の光ビームの光パワーを切り替えてもよい。  In the present embodiment, the light beam transmission adjusting means switches the light power of the first light beam between data reading and writing. However, the optical power of the first light beam may be switched between when the information recording medium has one recording layer and when the information recording medium has two recording layers.

本発明に依れば、有害な迷光発生のないかつ小型で消費電力の小さい光ビーム透過調整手段を提供できるので、消費電力の小さい小型の光ピックアップ、およびそのような光ピックアップを有する情報処理装置を得ることができる。  According to the present invention, it is possible to provide a light beam transmission adjusting unit that is small in size and low in power consumption without generating harmful stray light. Therefore, a small optical pickup with low power consumption, and an information processing apparatus having such an optical pickup. Can be obtained.

本発明による光ビーム透過調整手段である回転駆動切替機構12の斜視図The perspective view of the rotational drive switching mechanism 12 which is a light beam transmission adjustment means by this invention. (a)はホルダ8が第1の光ビームが第1の透過素子1を透過している第1の位置にある状態を示す図、(b)はホルダ8が第1の光ビームが第2の透過素子2を透過している第2の位置にある状態を示す図(A) is a figure which shows the state in which the holder 8 exists in the 1st position which the 1st light beam permeate | transmits the 1st permeation | transmission element 1, FIG. The figure which shows the state in the 2nd position which has permeate | transmitted the transmissive element 2 of 従来の光ピックアップ装置の構成を示す図The figure which shows the structure of the conventional optical pick-up apparatus. (a)は従来の回転駆動切替機構12の斜視図、(b)は従来の回転駆動切替機構12の組立分解図(A) is a perspective view of the conventional rotational drive switching mechanism 12, and (b) is an exploded view of the conventional rotational drive switching mechanism 12. (a)は従来の回転駆動切替機構12の第1の光ビームが第1の透過素子1を透過している第1の位置を示す正面図、(b)は第1の光ビームが第2の透過素子2を透過している第2の位置を示す正面図(A) is a front view which shows the 1st position which the 1st light beam of the conventional rotational drive switching mechanism 12 has permeate | transmitted the 1st permeation | transmission element 1, (b) is a 2nd 1st light beam is 2nd. The front view which shows the 2nd position which has permeate | transmitted the transmissive element 2 (a)は第1の位置での透過素子と光軸の関係を示す図、(b)は第2の位置で切替角度誤差が生じた場合の透過素子と光軸の関係を示す図(A) is a diagram showing the relationship between the transmissive element and the optical axis at the first position, (b) is a diagram showing the relationship between the transmissive element and the optical axis when a switching angle error occurs at the second position. 有害な迷光発生を防ぐための第1の方法を示す図The figure which shows the 1st method for preventing generation of harmful stray light (a)は有害な迷光発生を防ぐ第2の方法の第1の位置を示す図、(b)はその第2の位置を示す図(A) is a figure which shows the 1st position of the 2nd method which prevents generation | occurrence | production of harmful stray light, (b) is a figure which shows the 2nd position.

符号の説明Explanation of symbols

1 第1の透過素子
2 第2の透過素子
3 ベース
4、5 コイル
6、7 鉄心
8 ホルダ
9、10 永久磁石
11 ベースのホルダ保持軸
12 回転駆動切替機構
14 ベースのコイル保持部
16 ベースのホルダ規制面
18 ホルダの第1の面
19 ホルダの第2の面
20a、20b、20c ホルダの小突起
20 ホルダの第1の基準面
21a、21b、21c ホルダの小突起
21 ホルダの第2の基準面
24 ホルダの穴
30 第1の半導体レーザ光源
31 光ビーム透過調整手段
32 光ディスク
33 ビームスプリッタ
34 コリメートレンズ
35 ミラー
36 第1の対物レンズ
37 マルチレンズ
38 フォトダイオード
39 第2の対物レンズ
40 第2の半導体レーザ光源
41 光学系
42 有効光束
43 遮蔽された有効光束の一部
44 第1の光ビーム
45 第2の光ビーム
DESCRIPTION OF SYMBOLS 1 1st permeation | transmission element 2 2nd permeation | transmission element 3 Base 4, 5 Coil 6, 7 Iron core 8 Holder 9, 10 Permanent magnet 11 Base holder holding shaft 12 Rotation drive switching mechanism 14 Base coil holding part 16 Base holder Restriction surface 18 First surface of holder 19 Second surface of holder 20a, 20b, 20c Small projection of holder 20 First reference surface of holder 21a, 21b, 21c Small projection of holder 21 Second reference surface of holder 24 holder hole 30 first semiconductor laser light source 31 light beam transmission adjusting means 32 optical disk 33 beam splitter 34 collimating lens 35 mirror 36 first objective lens 37 multilens 38 photodiode 39 second objective lens 40 second semiconductor Laser light source 41 Optical system 42 Effective light beam 43 Part of shielded effective light beam 44 1 of the light beam 45 a second light beam

Claims (8)

所定の光パワーを有する第1の光ビームを発する第1の光源と、前記第1の光ビームの透過量を調整する光ビーム透過調整手段と、前記光ビーム透過調整手段を透過した前記光ビームを情報記録媒体に集光する第1の集光手段と、所定の光パワーを有する第2の光ビームを発する第2の光源と、前記第2の光ビームを情報記録媒体に集光する第2の集光手段と、を有する光ピックアップであって、前記光ビーム透過調整手段は第1の透過率を有する第1透過素子と、前記第1の透過率よりも高い第2の透過率を有する第2透過素子とを、前記第1透過素子および前記第2透過素子に平行な回転軸回りに前記光ビームが前記第1透過素子を透過する第1の位置と前記第2透過素子を透過する第2の位置とを切り替える回転駆動切替機構であって、前記回転駆動切替機構は、前記第1透過素子および前記第2透過素子を保持し、前記第1透過素子および前記第2透過素子に平行な回転穴を設けた保持体と、前記保持体に装着される前記第1の位置および前記第2の位置を保つための吸着力を発生する第1および第2の永久磁石と、前記保持体の回転穴と勘合しその軸心が前記光ビームの略光軸上にある軸を一体的に形成した前記第1の位置および前記第2の位置で前記保持体を保持する基台と、前記基台にそれぞれ装着される前記第1の永久磁石を吸着するための第1鉄心と、前記第1鉄心と同心にあって前記第1の永久磁石に反発力を与える第1コイルと、前記第2の永久磁石を吸着するための第2鉄心と、前記第2鉄心と同心にあって前記第2の永久磁石に反発力を与える第2コイルとで構成したものであって、前記保持体には前記第1透過素子とθ1の角度をなす前記第1の位置で前記基台と当接する第1基準面と前記第2透過素子と同じくθ1の角度をなす前記第2位置で前記基台と当接する第2基準面とを前記第1基準面と前記第2基準面が略90度の角度θ2をなすよう形成し、前記基台には前記保持体の前記第1基準面と前記第2基準面とが当接する規制面が形成されていることを特徴とする光ピックアップ。  A first light source that emits a first light beam having a predetermined light power; a light beam transmission adjusting unit that adjusts a transmission amount of the first light beam; and the light beam transmitted through the light beam transmission adjusting unit. A first light collecting means for condensing the light beam on the information recording medium, a second light source for emitting a second light beam having a predetermined optical power, and a second light source for condensing the second light beam on the information recording medium. The light beam transmission adjusting means has a first transmission element having a first transmittance and a second transmittance higher than the first transmittance. A first position where the light beam passes through the first transmission element and a second transmission element around a rotation axis parallel to the first transmission element and the second transmission element. A rotary drive switching mechanism for switching between a second position and The rotation drive switching mechanism holds the first transmission element and the second transmission element, and has a holding body provided with a rotation hole parallel to the first transmission element and the second transmission element, and is attached to the holding body The first and second permanent magnets that generate an attracting force for maintaining the first position and the second position are engaged with the rotation hole of the holding body, and its axis is substantially the same as that of the light beam. A base for holding the holding body at the first position and the second position, which are integrally formed with an axis on the optical axis, and the first permanent magnet mounted on the base are attracted to each other. A first iron core that is concentric with the first iron core and that gives a repulsive force to the first permanent magnet, a second iron core for adsorbing the second permanent magnet, A second carp that is concentric with the second iron core and gives a repulsive force to the second permanent magnet The holding body includes a first reference surface that contacts the base at the first position that forms an angle θ1 with the first transmission element, and θ1 as with the second transmission element. A second reference surface that is in contact with the base at the second position that forms an angle such that the first reference surface and the second reference surface form an angle θ2 of approximately 90 degrees, and the base includes An optical pickup comprising a restriction surface on which the first reference surface and the second reference surface of the holder are in contact with each other. 前記回転駆動切替機構が前記第1の位置にあるとき、前記第2透過素子の透過面の前記第1の光ビームの光軸に対する時計方向角度θ3が、前記第1透過素子を透過した前記第1の光ビームの一部が前記第2透過素子で反射して迷光となり前記第2の集光手段に入射しないような角度に設定してあることを特徴とする光ピックアップ。  When the rotational drive switching mechanism is in the first position, a clockwise angle θ3 of the transmission surface of the second transmission element with respect to the optical axis of the first light beam is transmitted through the first transmission element. An optical pickup characterized in that an angle is set such that a part of one light beam is reflected by the second transmission element and becomes stray light and does not enter the second light collecting means. 前記回転駆動切替機構が前記第2位置にあるとき、前記第1透過素子の透過面の前記第1の光ビームの光軸に対する時計方向角度θ4が、前記第2透過素子を透過した前記第1の光ビームの有効光束が前記第1透過素子によって遮蔽されないような角度に設定してあることを特徴とする光ピックアップ。  When the rotational drive switching mechanism is in the second position, a clockwise angle θ4 of the transmission surface of the first transmission element with respect to the optical axis of the first light beam is transmitted through the second transmission element. An optical pickup characterized by being set at an angle such that an effective light beam of the light beam is not shielded by the first transmission element. 前記保持体の前記角度θ1は、前記角度θ3および前記角度θ4より、下記数式1で算出される値に設定してあることを特徴とする光ピックアップ。
(数1)
θ1=(θ3+θ4)/2
The optical pickup according to claim 1, wherein the angle θ1 of the holding body is set to a value calculated by the following formula 1 from the angle θ3 and the angle θ4.
(Equation 1)
θ1 = (θ3 + θ4) / 2
前記保持体の前記角度θ2は、前記角度θ3および前記角度θ4より、下記数式2で算出される値に設定してあることを特徴とする光ピックアップ。
(数2)
θ2=(180°+θ3−θ4)/2
The optical pickup is characterized in that the angle θ2 of the holding body is set to a value calculated by the following mathematical formula 2 from the angle θ3 and the angle θ4.
(Equation 2)
θ2 = (180 ° + θ3-θ4) / 2
前記第1の光源は、青色の波長領域において発光する半導体レーザである、請求項1から5のいずれか1項に記載の光ピックアップ。  The optical pickup according to claim 1, wherein the first light source is a semiconductor laser that emits light in a blue wavelength region. 前記第2の光源は、緑色から紫外線の波長領域において発光する半導体レーザである、請求項1から6のいずれか1項に記載の光ピックアップ。  The optical pickup according to claim 1, wherein the second light source is a semiconductor laser that emits light in a wavelength region from green to ultraviolet. 前記情報記録媒体からの反射光を検出する光検出器をさらに有する請求項1から7のいずれか1項に記載の光ピックアップ、および、検出された前記反射光に基づいて、再生信号およびサーボ信号のすくなくとも一方を生成する信号処理回路を備えた情報処理装置。  The optical pickup according to any one of claims 1 to 7, further comprising a photodetector that detects reflected light from the information recording medium, and a reproduction signal and a servo signal based on the detected reflected light. An information processing apparatus comprising a signal processing circuit that generates at least one of the two.
JP2007052485A 2007-03-02 2007-03-02 Optical pickup Expired - Fee Related JP4645605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052485A JP4645605B2 (en) 2007-03-02 2007-03-02 Optical pickup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052485A JP4645605B2 (en) 2007-03-02 2007-03-02 Optical pickup

Publications (2)

Publication Number Publication Date
JP2008217881A true JP2008217881A (en) 2008-09-18
JP4645605B2 JP4645605B2 (en) 2011-03-09

Family

ID=39837750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052485A Expired - Fee Related JP4645605B2 (en) 2007-03-02 2007-03-02 Optical pickup

Country Status (1)

Country Link
JP (1) JP4645605B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040432A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Optical pickup device and information processor provided with such optical pickup device
JP2007200462A (en) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd Optical pickup and information-processing device
WO2007097239A1 (en) * 2006-02-22 2007-08-30 Matsushita Electric Industrial Co., Ltd. Optical pickup device and information processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040432A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Optical pickup device and information processor provided with such optical pickup device
JP2007200462A (en) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd Optical pickup and information-processing device
WO2007097239A1 (en) * 2006-02-22 2007-08-30 Matsushita Electric Industrial Co., Ltd. Optical pickup device and information processor

Also Published As

Publication number Publication date
JP4645605B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
TWI342017B (en) Optical pickup device and objective lens for the optical pickup device
US7187506B2 (en) Actuator device, optical disk device, and information playback device
US20060136951A1 (en) Optical head capable of recording and reproducing information on any one of a plurality of kinds of optical information recording medium and optical information recording and reproducing apparatus using the same
JP4980359B2 (en) Optical disc recording / reproducing apparatus and optical head
JP4881943B2 (en) Optical pickup device and information processing device
JP4645605B2 (en) Optical pickup
JP2007200462A (en) Optical pickup and information-processing device
JP2009104740A (en) Optical pickup
JP2009026381A (en) Optical pickup apparatus
US7697398B2 (en) Optical pickup device having an electromechanical conversion element for recording and/ or reproducing information
JP2008278609A (en) Electromagnetic actuator
JP4302581B2 (en) Optical head
JP4448165B2 (en) Optical pickup device and information recording / reproducing device
JP2006107615A (en) Optical head
JP4563334B2 (en) Optical pickup device and optical disk device
JP2007328861A (en) Light volume correction device, optical pick up and information recording/reproducing apparatus
JP2006040432A (en) Optical pickup device and information processor provided with such optical pickup device
JP2005149543A (en) Optical pickup and disk drive
JP2009230824A (en) Actuator
JP2006244592A (en) Objective lens drive mechanism, optical pickup device, and optical disk drive
JP2006331552A (en) Uniaxial actuator
JP2009110629A (en) Objective lens drive and optical pickup apparatus
WO2011013205A1 (en) Objective lens drive device, optical pickup, and optical recording and playback device
JP2008010085A (en) Optical pickup device and optical disk unit using the same
JP2010129139A (en) Optical disk device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090306

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees