JP2008216947A - Polymer chain/thin film growing method - Google Patents
Polymer chain/thin film growing method Download PDFInfo
- Publication number
- JP2008216947A JP2008216947A JP2007097820A JP2007097820A JP2008216947A JP 2008216947 A JP2008216947 A JP 2008216947A JP 2007097820 A JP2007097820 A JP 2007097820A JP 2007097820 A JP2007097820 A JP 2007097820A JP 2008216947 A JP2008216947 A JP 2008216947A
- Authority
- JP
- Japan
- Prior art keywords
- reactive
- substrate
- thin film
- polymer chain
- mld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
本発明は,複数の反応性分子を基体に供給する工程を含むポリマ鎖/薄膜成長法,および複数の反応性分子を順次基体に供給して分子配列制御する工程を含むポリマ鎖/薄膜成長法(MLD:Molecular Layer Deposition)に係り,特に,反応性分子をキャリアガスにより運び基体に供給するポリマ鎖/薄膜成長法,反応性分子を溶媒中に溶解させて運び基体に供給するポリマ鎖/薄膜成長法,基体に流路回路を配置し反応性分子,および/または反応性分子とキャリアガスの混合ガス,および/または反応性分子の溶液を流すことにより反応性分子を基体に供給するポリマ鎖/薄膜成長法,および,反応性分子の少なくとも1種類と反応する基を有する分子を基体の少なくとも一部に配置したポリマ鎖/薄膜成長法に関する。 The present invention relates to a polymer chain / thin film growth method including a step of supplying a plurality of reactive molecules to a substrate, and a polymer chain / thin film growth method including a step of sequentially supplying a plurality of reactive molecules to a substrate and controlling the molecular arrangement. (MLD: Molecular Layer Deposition), in particular, a polymer chain / thin film growth method in which reactive molecules are transported by a carrier gas and supplied to a substrate, and a polymer chain / thin film that is dissolved in a solvent and transported to the substrate. Polymer chain supplying a reactive molecule to a substrate by a growth method, a flow path circuit arranged on the substrate, and a reactive molecule and / or a mixed gas of a reactive molecule and a carrier gas and / or a solution of the reactive molecule flowing. / Thin film growth method, and polymer chain / thin film growth in which a molecule having a group that reacts with at least one kind of reactive molecule is arranged on at least a part of the substrate Regarding the law.
図1にMLDの原理を示す(非特許文献1,2,特許文献3)。以下では,成長基体として板状の基板を用いた場合について述べていく。この例では,4種類の分子(分子A1a,B1b,C1c,D1d)を用いている。各分子は2個以上(本例では2個)の反応基を持ち,同種類の分子は反応せず,異種分子は反応結合するように設定されている。複数種類の反応性分子を順次基板表面に供給することにより,分子配列したポリマ鎖が成長する。3個以上の反応基を持つ分子を導入すると分子ワイアの分岐が可能となる。MLDは,イオン性分子を用いることによっても可能である。この場合,電子供与性分子と電子受容性分子を交互に供給し,分子配列制御成長を行う。また,真空中に配置した基板上に,ガス化した複数の反応性分子を同時に導入してポリマ薄膜を成長させる蒸着重合(有機CVD)が知られている。従来,MLD・有機CVDを具体化する手法として,真空チャンバ中に基板を置き,その表面に,ガス化した反応性分子をセルから供給することが行われていた(非特許文献1,2)。反応性分子ガスをセルから蒸発させる場合,ポリマ成長の制御性を上げるために,ガスの供給レートを種々のモニタリングからのフィードバックにより精密にコントロールする必要があった。また,通常,反応にともない副生成物が基板付近に生成する。これがポリマ成長の制御性を阻害する場合があった。もう1つの手法として,反応性分子を溶媒に溶かし,溶液として基板表面に供給することが行われていた(特許文献4)。この場合には,反応性分子の利用効率や分子切り替え速度など,製造上の課題があった。 FIG. 1 shows the principle of MLD (
本発明の目的は,MLD・有機CVDにおいて,反応性分子ガスの供給レートの制御を容易にしポリマ鎖/薄膜成長の制御性を向上させること,反応にともなう副生成物を成長領域から排除しポリマ鎖/薄膜成長の制御性を向上させること,反応性分子の利用効率を向上させること,および分子切り替え速度を向上させることにある。 The object of the present invention is to facilitate the control of the reactive molecular gas supply rate and improve the controllability of polymer chain / thin film growth in MLD / organic CVD, and to eliminate the by-products accompanying the reaction from the growth region. It is to improve the controllability of chain / thin film growth, to improve the utilization efficiency of reactive molecules, and to improve the molecular switching speed.
本発明の第1の態様に係るポリマ鎖/薄膜成長は,反応性分子をキャリアガスにより運び,基体に供給することを特徴とするものである。これにより,基体に反応性ガスを制御性良く,効率良くに導くことができる。また副生成物をキャリアガスによりポリマ鎖/薄膜成長領域から排除することができる。 The polymer chain / thin film growth according to the first aspect of the present invention is characterized in that reactive molecules are carried by a carrier gas and supplied to a substrate. Thereby, the reactive gas can be efficiently guided to the substrate with good controllability. Also, by-products can be excluded from the polymer chain / thin film growth region by the carrier gas.
本発明の第2の態様に係るポリマ鎖/薄膜成長は,反応性分子を溶媒中に溶解させて運び,基体に供給することを特徴とするものである。これにより,基体に効率良く反応性分子を導くことができ,反応性分子の利用効率を向上させることができるとともに,溶液中に触媒を添加することにより,反応速度をコントロールすることができる。 The polymer chain / thin film growth according to the second aspect of the present invention is characterized in that the reactive molecules are dissolved in a solvent and are supplied to the substrate. As a result, reactive molecules can be efficiently introduced to the substrate, the utilization efficiency of the reactive molecules can be improved, and the reaction rate can be controlled by adding a catalyst to the solution.
本発明の第3の態様に係るポリマ鎖/薄膜成長は,基体に流路回路を配置し,該流路回路に反応性分子,および/または反応性分子とキャリアガスの混合ガス,および/または反応性分子の溶液を流すことにより反応性分子を該基体に供給することを特徴とするものである。これにより,分子ガスおよび溶液の必要量が著しく低減できるため,反応性分子の利用効率と分子切り替え速度を向上させることができる。 In the polymer chain / thin film growth according to the third aspect of the present invention, a flow path circuit is arranged on a substrate, and a reactive molecule and / or a mixed gas of a reactive molecule and a carrier gas is provided in the flow path circuit, and / or The reactive molecule is supplied to the substrate by flowing a solution of the reactive molecule. As a result, the required amount of molecular gas and solution can be significantly reduced, so that the utilization efficiency of reactive molecules and the molecular switching speed can be improved.
本発明の第4の態様に係るポリマ鎖/薄膜成長は,反応性分子の少なくとも1種類と反応する置換基を有する分子を基体の少なくとも一部に配置したことを特徴とするものである。これにより,ポリマ鎖/薄膜を選択的に基体の必要箇所に成長させることができる。 The polymer chain / thin film growth according to the fourth aspect of the present invention is characterized in that a molecule having a substituent that reacts with at least one kind of reactive molecule is disposed on at least a part of the substrate. As a result, the polymer chain / thin film can be selectively grown on the necessary portion of the substrate.
以下に,本実施の形態を,図面を参照して説明する。各図において,同一の符号をふされたものは同様の要素を示しており,重複した説明は省略される。以下の記載は本発明が適用可能な実施形態を説明するものであって,本発明の範囲がこの記載に限定されるものではない。説明の明確化のため,以下の記載は,適宜,省略及び簡略化がなされている。また,当業者であれば,以下の実施形態の各要素を,本発明の範囲において容易に変更,追加,変換することが可能であろう。 The present embodiment will be described below with reference to the drawings. In each figure, the same reference numerals indicate the same elements, and duplicate descriptions are omitted. The following description explains an embodiment to which the present invention is applicable, and the scope of the present invention is not limited to this description. For clarity of explanation, the following description has been omitted and simplified as appropriate. Further, those skilled in the art will be able to easily change, add, and convert each element of the following embodiments within the scope of the present invention.
[第1実施形態]
図2は本発明によるキャリアガスタイプMLD(CG−MLD),キャリアガスタイプ有機CVD(CG−OCVD)の模式図である。4種類の反応性分子A1a,B1b,C1c,D1dを使用してCG−MLDによりポリマ鎖を構築する場合の例について述べる。反応性分子をセルにロードし,それぞれを適切な温度に加熱(または冷却)し,部分的にガス化する。これらのセルにAr,N2,Heなとの不活性ガスをキャリアガスとして導入する。その結果,反応性分子ガスはキャリアガスにより,チャンバ6内の基板3表面に供給される。供給される反応性分子ガスの切り替えは,バルブA2a,B2b,C2c,D2dにより行う。また,供給されたガスは,ポンプによりガス流5となりチャンバ6外へ除去される。図示はしていないが,反応ガス切り替えの際,途中に不活性ガスによるパージや活性ガスによる表面改質プロセスを挿入することもできる。[First Embodiment]
FIG. 2 is a schematic diagram of carrier gas type MLD (CG-MLD) and carrier gas type organic CVD (CG-OCVD) according to the present invention. An example in which a polymer chain is constructed by CG-MLD using four types of reactive molecules A1a, B1b, C1c, and D1d will be described. Reactive molecules are loaded into the cell and each is heated (or cooled) to the appropriate temperature and partially gasified. An inert gas such as Ar, N 2 or He is introduced into these cells as a carrier gas. As a result, the reactive molecular gas is supplied to the surface of the substrate 3 in the chamber 6 by the carrier gas. The reactive molecular gas to be supplied is switched by valves A2a, B2b, C2c, and D2d. Further, the supplied gas becomes a gas flow 5 by a pump and is removed out of the chamber 6. Although not shown, a purge with an inert gas or a surface modification process with an active gas can be inserted in the middle of switching the reaction gas.
図3に,使用する反応分子と反応の例を示す。p−phenylenediamine(PPDA)とterephthalaldehyde(TPA)との反応により共役ポリマ鎖であるpoly−azomethine(AM)が成長する。副生成物はH2Oである。また,oxalicdihydrazide(OD)とoxalic acid(OA)との反応によりポリマ鎖が成長し,200−300℃の熱処理により共役ポリマであるpoly−oxadiazole(OXD)となる。図4に,MLDによる分子鎖成長の一例を示す。金の膜上にアミノアルカンチオール(11−Amino−1−undecanethiol)のself−assembled monolayer(SAM)を形成する。表面は−NH2基で覆われている。この上にTPAを供給すると,−CHO基がSAMの−NH2基と結合し表面は−CHO基で覆われる。この上にPPDAを供給すると,−NH2基がSAMの−CHO基と結合し表面は−NH2基で覆われる。さらに,PPDAの上に−CHO基を2つ持つ分子を供給すると−CHO基が−NH2基と結合し表面は−CHO基で覆われる。その上に−NH2基を2つ持つ分子を供給すると−NH2基が−CHOと結合し表面は−NH2基で覆われる。これを繰り返すことにより,分子配列したポリマ鎖が形成される。ここで,PPDAおよびTPAは50−150℃程度に加熱することによりガス化が促進され,分子導入が効率よく実行されようになる。CG−MLDでは,キャリアガスにより副生成物であるH2Oが成長表面から除去される。このため,反応分子はポリマ末端の反応基のみと反応するようになる。その結果,所望のポリマ鎖構造の成長が可能となる(H2Oが成長領域に存在すると,そこに反応分子が吸着し,それが核となって不用な成長が起こる)。CG−MLDにより成長させたpoly−AMの配向をFTIR−RASにより調べた。ベンゼン環面内振動の面外振動に対する強度比が,11−Amino−1−undecanethiolなしの場合に比べて大きくなることから,図4に示すようなポリマ鎖の成長が実現されていることがわかった。FIG. 3 shows examples of reaction molecules used and reactions. Poly-azomethine (AM), which is a conjugated polymer chain, grows by the reaction of p-phenylenediamine (PPDA) and terephthalaldehyde (TPA). A by-product is H 2 O. Further, a polymer chain grows by the reaction of oxalic dihydrazide (OD) and oxalic acid (OA), and becomes a conjugated polymer poly-oxadiazole (OXD) by heat treatment at 200-300 ° C. FIG. 4 shows an example of molecular chain growth by MLD. A self-assembled monolayer (SAM) of aminoalkanethiol (11-Amino-1-undecanethiol) is formed on the gold film. The surface is covered with —NH 2 groups. When TPA is supplied thereon, the —CHO group is bonded to the —NH 2 group of the SAM, and the surface is covered with the —CHO group. When PPDA is supplied thereon, the —NH 2 group is bonded to the —CHO group of SAM, and the surface is covered with the —NH 2 group. Further, when a molecule having two —CHO groups is supplied on PPDA, the —CHO group is bonded to the —NH 2 group, and the surface is covered with the —CHO group. Supplying molecular group -NH 2 with two thereon -NH 2 group is bound to the surface and -CHO are covered with -NH 2 group. By repeating this, a molecularly arranged polymer chain is formed. Here, PPDA and TPA are heated to about 50 to 150 ° C., whereby gasification is promoted, and molecular introduction is efficiently performed. In CG-MLD, H 2 O as a by-product is removed from the growth surface by the carrier gas. For this reason, the reactive molecule comes to react only with the reactive group at the end of the polymer. As a result, a desired polymer chain structure can be grown (when H 2 O is present in the growth region, reactive molecules are adsorbed there, which becomes a nucleus and unnecessary growth occurs). The orientation of poly-AM grown by CG-MLD was examined by FTIR-RAS. Since the intensity ratio of the in-plane vibration of the benzene ring to the out-of-plane vibration is larger than that without 11-Amino-1-undecanethiol, it is understood that the polymer chain growth as shown in FIG. It was.
TPAとPPDAを同時に供給する有機CVDでは,副生成物H2Oが表面に存在する。これが吸着サイトとなり,核となってpoly−AMが無秩序に成長する。このため膜質が悪くなる。一方,CG−OCVDでは,キャリアガスによりH2Oが成長表面から除去される。そのため,反応分子の吸着サイトはポリマ鎖末端の反応基のみとなる。その結果,良質なpoly−AMが形成できる。このことは,CG−OCVDで特異的に見られる膜成長の飽和現象からも確かめられる。すなわち,CG−CVDでは,分子セル温度50℃,流量4NL/minの条件でpoly−AMをSiO2上に製膜した場合,製膜時間20分以上で膜成長に飽和傾向が見られ,80nm程度で膜厚が頭打ちになった。これは,膜成長に伴い,反応部位であるポリマ鎖末端部分の反応基の密度が低下し,成長速度が低下するためと考えられる。このことは,製膜時間とともに膜表面の疎水性が強くなることからも確かめられた。通常の有機CVDでは,上記のような飽和現象はみられず,poly−AMの膜厚は成長時間とともに増加する。In organic CVD in which TPA and PPDA are supplied simultaneously, a by-product H 2 O exists on the surface. This becomes an adsorption site and becomes a nucleus, and poly-AM grows randomly. For this reason, film quality deteriorates. On the other hand, in CG-OCVD, H 2 O is removed from the growth surface by the carrier gas. For this reason, the reactive molecule adsorption site is only the reactive group at the end of the polymer chain. As a result, high-quality poly-AM can be formed. This can also be confirmed from the saturation phenomenon of film growth that is specifically observed in CG-OCVD. That is, in CG-CVD, when poly-AM is formed on SiO 2 under conditions of a molecular cell temperature of 50 ° C. and a flow rate of 4 NL / min, a saturation tendency is observed in the film growth after a film formation time of 20 minutes or more, and 80 nm. The film thickness reached a certain level. This is presumably because the density of the reactive group at the end of the polymer chain, which is the reactive site, decreases as the film grows, and the growth rate decreases. This was confirmed from the fact that the hydrophobicity of the membrane surface became stronger with the deposition time. In normal organic CVD, the saturation phenomenon as described above is not observed, and the film thickness of poly-AM increases with the growth time.
[第2実施形態]
図2に示したCG−MLD,CG−OCVDにおいて,ガス化用セルの代わりに,反応性分子A,B,C,Dの溶液を注入したセルを用いて成長を行うことができる。CG−MLDの場合,これらのうちの1種類の溶液を,基板を配置したリアクタに導入する。その結果,基板表面に反応性分子が供給され結合する。上記溶液を排出した後,バルブを切り替え他の種類の溶液をリアクタに導入する。その結果,分子が結合し,分子鎖が成長する。同様に,反応性分子を切り替えることによりMLDを実行する。溶液切り替えの際,途中に洗浄用溶剤によるパージや活性液体による表面改質プロセスを挿入することもできる。また,複数種類の溶液を同時にリアクタに導入することもできる。これはCG−OCVDに対応するものである。[Second Embodiment]
In CG-MLD and CG-OCVD shown in FIG. 2, growth can be performed using a cell into which a solution of reactive molecules A, B, C, and D is injected instead of the gasification cell. In the case of CG-MLD, one of these solutions is introduced into a reactor in which a substrate is arranged. As a result, reactive molecules are supplied and bonded to the substrate surface. After draining the solution, the valve is switched to introduce another type of solution into the reactor. As a result, molecules are bonded and molecular chains grow. Similarly, MLD is performed by switching reactive molecules. When the solution is switched, it is possible to insert a purge with a cleaning solvent or a surface modification process with an active liquid in the middle. It is also possible to introduce a plurality of types of solutions into the reactor at the same time. This corresponds to CG-OCVD.
[第3実施形態]
図5は本発明による流路回路型MLD(FC−MLD),流路回路型OCVD(FC−OCVD)の模式図である。4種類の反応性分子A1a,B1b,C1c,D1dを溶媒にとかして溶液を作製する。これをセルにロードする。FC−MLDの場合,これらの溶液を,例えばツインポンプ,電気泳動などを利用し,1種類ずつ流路回路11からなるリアクタに導入する。その結果,リアクタの一部を構成している基板8表面に反応性分子が供給される。反応性分子の切り替えは,バルブA7a,B7b,C7c,D7dにより行う。また,供給された溶液は,液体流10となり流路回路11外へ除去される。溶液切り替えの際,途中に洗浄用溶剤によるパージや活性液体による表面改質プロセスを挿入することもできる。FC−OCVDの場合は,複数種類の溶液を同時導入する。流路形成は,例えば,SU8などの光硬化性樹脂を用いた流路パターン形成,型成型・インプリントによる流路パターン形成,エッチングによる流路パターン形成などをほどこした流路回路用基板10を,基板表面に圧着,または接着することなどにより可能となる。流路の深さは1μm−1mm程度の範囲が標準的である。[Third Embodiment]
FIG. 5 is a schematic diagram of a channel circuit type MLD (FC-MLD) and a channel circuit type OCVD (FC-OCVD) according to the present invention. A solution is prepared by dissolving four types of reactive molecules A1a, B1b, C1c, and D1d in a solvent. Load this into the cell. In the case of FC-MLD, these solutions are introduced into a reactor composed of the flow path circuit 11 one by one using, for example, a twin pump or electrophoresis. As a result, reactive molecules are supplied to the surface of the substrate 8 constituting a part of the reactor. Switching of reactive molecules is performed by valves A7a, B7b, C7c, and D7d. Further, the supplied solution becomes a liquid flow 10 and is removed out of the flow path circuit 11. When the solution is switched, it is possible to insert a purge with a cleaning solvent or a surface modification process with an active liquid in the middle. In the case of FC-OCVD, multiple types of solutions are introduced simultaneously. The flow path is formed by, for example, forming a flow path pattern substrate using a photocurable resin such as SU8, forming a flow path pattern by molding or imprinting, forming a flow path pattern by etching, or the like. This can be achieved by pressure bonding or bonding to the substrate surface. The depth of the flow path is typically in the range of about 1 μm-1 mm.
また,流路回路に,溶液の代わりに,反応性分子ガス,あるいは反応性分子ガスとキャリアガスの混合ガスを導入することもできる。この場合,ガスが固化して析出しないように,流路回路の温調をする必要がある。 Further, instead of a solution, a reactive molecular gas or a mixed gas of a reactive molecular gas and a carrier gas can be introduced into the flow path circuit. In this case, it is necessary to adjust the temperature of the flow path circuit so that the gas does not solidify and precipitate.
図6は,FC−MLD,FC−OCVDにおいて,各反応分子供給にチャネル型流路11a,11b,11c,11dを割り当て,これらを製膜用流路11eに合流させることにより必要な溶液量をさらに低減した例である。チャネルごとに洗浄溶剤用流路(またはパージガス用流路)9’が設けられている。 FIG. 6 shows that in FC-MLD and FC-OCVD, channel-type flow paths 11a, 11b, 11c, and 11d are assigned to each reactive molecule supply, and these are merged into the film-forming flow path 11e to obtain a necessary amount of solution. This is a further reduced example. A cleaning solvent channel (or purge gas channel) 9 'is provided for each channel.
[第4実施形態]
図7に,本発明のポリマ鎖/薄膜成長法による3次元的選択配向成長の例を示す。金の表面および/または壁面にSAM24を形成しシードコア22を作製する。金上でSAMを形成したくない場所は,例えば,SiO223などでカバーする。シードコア表面からは上方に,また壁面からは横方向にポリマワイア25が成長する。シードコアをあらかじめ設計されたパターンで分布させることにより,所望のポリマワイアネットワーク26が構築される。[Fourth Embodiment]
FIG. 7 shows an example of three-dimensional selective orientation growth by the polymer chain / thin film growth method of the present invention. A
図8に,本発明によるポリマ鎖/薄膜成長法を用いて構築されうる光変調器・光スイッチの例を示した。Waveguide Prism Reflector(WPD)型光スイッチでは,電気光学(EO)スラブ導波路31上にプリズム型電極30を形成し,電圧印加による導波路プリズムの誘起により導波光を偏向させる。全反射(TIR)型光スイッチでは,EO導波路32を交差させ,その上の電極31で光路切り替えを行う。High−Index−Contrast(HIC)導波路リング共振器では,EO導波路のうち,リング導波路部分に電極を設け,共振状態の変化を誘起することによりスイッチングを行う。フォトニッククリスタルでは,EO材料上に電極を配置し,スイッチング現象を発生させる。EO導波路,EO材料の内部では,好ましくは,MLDによる分子配列により共役ポリマ34が選択配向成長している。 FIG. 8 shows an example of an optical modulator / optical switch that can be constructed using the polymer chain / thin film growth method according to the present invention. In a Waveguide Prism Reflector (WPD) type optical switch, a prism type electrode 30 is formed on an electro-optic (EO)
分子A 1a,分子B 1b,分子C 1c,分子D 1d,バルブA 2a,バルブB 2b,バルブC 2c,バルブD 2d,基板 3,キャリアガス 4,ガス流 5,チャンバ 6,バルブA 7a,バルブB 7b,バルブC 7c,バルブD 7d,基板 8,洗浄用溶剤 9,洗浄用溶剤マイクロ流路 9’,液体流 10,流路回路 11,分子A用流路 11a,分子B用流路 11b,分子C用流路 11c,分子D用流路 11d,製膜用流路 11e,流路回路用基板 12,シードコア 22,SiO2 23,SAM 24,ポリマワイア 25,ポリマワイアネットワーク 26,電極 30,EOスラブ導波路 31,EO導波路 32,EO材料 33,共役ポリマワイア 34,導波光 35Molecule A 1a, molecule B 1b, molecule C 1c, molecule D 1d, valve A 2a,
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007097820A JP2008216947A (en) | 2007-03-06 | 2007-03-06 | Polymer chain/thin film growing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007097820A JP2008216947A (en) | 2007-03-06 | 2007-03-06 | Polymer chain/thin film growing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008216947A true JP2008216947A (en) | 2008-09-18 |
Family
ID=39837005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007097820A Pending JP2008216947A (en) | 2007-03-06 | 2007-03-06 | Polymer chain/thin film growing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008216947A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360487A (en) * | 1989-07-26 | 1991-03-15 | Fujitsu Ltd | Solution deposition method |
JPH04296729A (en) * | 1991-03-26 | 1992-10-21 | Fujitsu Ltd | Production of organic nonlinear optical material and organic film |
JPH0580370A (en) * | 1991-09-19 | 1993-04-02 | Fujitsu Ltd | Organic functional thin film and its production |
JP2000504298A (en) * | 1995-05-19 | 2000-04-11 | ザ トラスティーズ オブ プリンストン ユニバーシティ | Organic vapor phase reaction method and apparatus for growing organic thin film having excellent nonlinear optical properties |
-
2007
- 2007-03-06 JP JP2007097820A patent/JP2008216947A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0360487A (en) * | 1989-07-26 | 1991-03-15 | Fujitsu Ltd | Solution deposition method |
JPH04296729A (en) * | 1991-03-26 | 1992-10-21 | Fujitsu Ltd | Production of organic nonlinear optical material and organic film |
JPH0580370A (en) * | 1991-09-19 | 1993-04-02 | Fujitsu Ltd | Organic functional thin film and its production |
JP2000504298A (en) * | 1995-05-19 | 2000-04-11 | ザ トラスティーズ オブ プリンストン ユニバーシティ | Organic vapor phase reaction method and apparatus for growing organic thin film having excellent nonlinear optical properties |
Non-Patent Citations (3)
Title |
---|
JPN7012001041; Tetsuzo Yoshimura, Shinji Ito, Tomohiro Nakayama, and Kotaro Matsumoto: 'Orientation-controlled molecule-by-molecule polymer wire growth by the carrier-gas-type organic chem' APPLIED PHYSICS LETTERS Vol. 91, No. 3, 20070716, pp. 033103-1 - 033103-3 * |
JPN7012001785; Tetsuzo Yoshimura, Satoshi Tatsuura, and Wataru Sotoyama: 'Polymer films formed with monolayer growth steps by molecular layer deposition' Applied Physics Letters Vol. 59, No. 4, 19910722, pp. 482 - 484 * |
JPN7012001786; Tetsuzo Yoshimura, Satoshi Tatsuura, Wataru Sotoyama, Azuma Matsuura, and Tomoaki Hayano: 'Quantum wire and dot formation by chemical vapor deposition and molecular layer deposition of onedim' Applied Physics Letters Vol. 60, No. 3, 19920120, pp. 268 - 270 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yan et al. | Recent advances in organic one‐dimensional composite materials: design, construction, and photonic elements for information processing | |
KR101180980B1 (en) | Apparatus and method for producing multi-shell quantum dot | |
EP0506368B1 (en) | Organic functional thin film, fabrication and use thereof | |
TW202138607A (en) | Method of forming a nitrogen-containing carbon film and system for performing the method | |
TWI261310B (en) | Alkyl push flow for vertical flow rotating disk reactor | |
KR101237868B1 (en) | Methods for in-situ generation of reactive etch and growth specie in film formation processes | |
TWI750441B (en) | A method of making a graphene transistor and devices | |
WO2007145407A1 (en) | Method of manufacturing silicon nanowires using silicon nanodot thin film | |
KR20110134389A (en) | Plasma deposition | |
GB2570126A (en) | Graphene based contact layers for electronic devices | |
JP2008216947A (en) | Polymer chain/thin film growing method | |
JP5143689B2 (en) | Vapor phase growth apparatus and semiconductor device manufacturing method | |
KR20030092060A (en) | Process and device for the deposition of an at least partially crystalline silicium layer on a substrate | |
JPH0230119A (en) | Vapor growth device | |
JPH09186403A (en) | Semiconductor light emitting element and manufacture thereof | |
Yoshimura et al. | Monomolecular-step polymer wire growth from seed core molecules by the carrier-gas-type molecular layer deposition | |
JP3757698B2 (en) | Semiconductor manufacturing apparatus and semiconductor manufacturing system | |
JP2007035784A5 (en) | ||
RU2499324C2 (en) | HETEROSTRUCTURES SiC/Si AND Diamond/SiC/Si, AND ALSO METHODS OF THEIR SYNTHESIS | |
JP2010229541A (en) | Molecular control film forming method and application to solar battery, el and optical switch | |
Yoshimura | Molecular layer deposition (MLD) for lightwave control and extended applications | |
KR101732490B1 (en) | Polymer structure cleavable by external stimuli manufactured by molecular layer deposition and method of manufacturing the same | |
JP2998244B2 (en) | Region-selective crystal growth method | |
Choi et al. | Photoluminescence variations in organic fluorescent crystals by changing the surface energy of the substrate | |
JPH10242062A (en) | Method of growing semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120925 |