JP2008216419A - Manufacturing method for optical element - Google Patents

Manufacturing method for optical element Download PDF

Info

Publication number
JP2008216419A
JP2008216419A JP2007051200A JP2007051200A JP2008216419A JP 2008216419 A JP2008216419 A JP 2008216419A JP 2007051200 A JP2007051200 A JP 2007051200A JP 2007051200 A JP2007051200 A JP 2007051200A JP 2008216419 A JP2008216419 A JP 2008216419A
Authority
JP
Japan
Prior art keywords
glass molded
optical element
cutting
manufacturing
fixing jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007051200A
Other languages
Japanese (ja)
Other versions
JP4935428B2 (en
Inventor
Kazuyuki Ogura
和幸 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007051200A priority Critical patent/JP4935428B2/en
Publication of JP2008216419A publication Critical patent/JP2008216419A/en
Application granted granted Critical
Publication of JP4935428B2 publication Critical patent/JP4935428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for highly precisely manufacturing an optical element such as a beam forming element at high productivity while shortening a period of time required for an alignment operation in a cutting process. <P>SOLUTION: Glass molded bodies, each having at least one optical face and sides, are cut while kept fixed to a fixing tool, and thus the optical elements are obtained. At least one of the sides has a molded transfer face. The fixing tool has arrangement reference faces for bringing the molded transfer faces of the plurality of glass molded body into contact with them. While the molded transfer faces of the glass molded bodies are kept in contact with the arrangement reference faces of the fixing tool and the plurality of glass molded bodies are arranged and fixed on straight lines, the glass molded bodies are cut. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体レーザから出力される楕円形状の出力ビームを円形に整形するためのビーム整形素子等の光学素子の製造方法に関する。   The present invention relates to a method of manufacturing an optical element such as a beam shaping element for shaping an elliptical output beam output from a semiconductor laser into a circle.

DVD等の光情報記録媒体に情報を記録・再生するためのピックアップ装置には、一般に、光源として半導体レーザが用いられている。半導体レーザからの出力ビームは薄い活性層の端面から出射されるため、楕円形の断面を有するビームとなる。このような楕円形のビームを、ビーム整形素子を用いて円形のビームに整形した上で利用することにより、ビームの利用効率を高め、記録や再生の正確度を向上させることが可能となる。特に、青色半導体レーザは出力ビームの強度が不足しがちであることから、青色半導体レーザを光源として用いるピックアップ装置においてはかかるビーム整形素子の重要性が特に高く、注目されている。   Generally, a semiconductor laser is used as a light source in a pickup device for recording / reproducing information on / from an optical information recording medium such as a DVD. Since the output beam from the semiconductor laser is emitted from the end face of the thin active layer, the beam has an elliptical cross section. By using such an elliptical beam after shaping it into a circular beam by using a beam shaping element, it becomes possible to increase the efficiency of use of the beam and improve the accuracy of recording and reproduction. In particular, since the intensity of an output beam tends to be insufficient for a blue semiconductor laser, such a beam shaping element is particularly important in a pickup device using a blue semiconductor laser as a light source, and has attracted attention.

楕円形のビームを円形のビームに整形するための光学素子であるビーム整形素子として、例えば、ビーム断面の短軸方向に対応する方向のみに曲率を有するシリンドリカル面を備えたビーム整形素子(レンズ)が知られている(例えば、特許文献1を参照)。また、このようなビーム整形素子の製造方法としては、成形金型によってガラス素材を加圧成形するプレス成形法による製造方法が提案されている(例えば、特許文献2、3を参照)。   As a beam shaping element that is an optical element for shaping an elliptical beam into a circular beam, for example, a beam shaping element (lens) having a cylindrical surface having a curvature only in a direction corresponding to the minor axis direction of the beam cross section. Is known (see, for example, Patent Document 1). In addition, as a method for manufacturing such a beam shaping element, a manufacturing method using a press molding method in which a glass material is pressure-molded with a molding die has been proposed (see, for example, Patent Documents 2 and 3).

一般にこのようなビーム整形素子は、組み込みの際、光源等に対する高い位置決め精度が要求される。そのため、特許文献2では、ガラス成形体の側面を成形による転写によって形成し、その成形転写面を組み込みの際の位置決め基準面として用いる方法が提案されている。また、特許文献3では、生産性向上の観点から、複数個のビーム整形素子が並んだ成形品を作製し、該成形品を個々のビーム整形素子に切断する方法が提案されている。
特開2002−208159号公報 特開2006−301249号公報 特開2006−298692号公報
In general, such a beam shaping element is required to have high positioning accuracy with respect to a light source or the like when incorporated. For this reason, Patent Document 2 proposes a method in which a side surface of a glass molded body is formed by transfer by molding, and the molded transfer surface is used as a positioning reference surface for incorporation. Patent Document 3 proposes a method of producing a molded product in which a plurality of beam shaping elements are arranged and cutting the molded product into individual beam shaping elements from the viewpoint of improving productivity.
JP 2002-208159 A JP 2006-301249 A JP 2006-298692 A

しかしながら、ビーム整形素子の小型化・軽量化の要求が高まり、製造上の制約から、特許文献2で提案されているガラス成形体の成形転写面を組み込みの際の位置決め基準面とする方法を用いることが困難な場合がある。このような場合には、ガラス成形体を所定寸法に切断して小型化した上で、得られた切断面を組み込みの際の位置決め基準面として用いることが行われている。   However, there is an increasing demand for downsizing and weight reduction of the beam shaping element, and due to manufacturing restrictions, a method of using the molding transfer surface of the glass molded body proposed in Patent Document 2 as a positioning reference surface for incorporation is used. It can be difficult. In such a case, the glass molded body is cut to a predetermined size to be miniaturized, and the obtained cut surface is used as a positioning reference surface for incorporation.

ガラス成形体の切断は、ダイシングブレードを回転させて切断する方式の切断装置(ダイサー)を用いて行うのが一般的である。ダイサーは直線的な切断加工を高精度に行うのに適しているが、切断位置と角度を調節するためのアライメント作業が必要である。アライメント作業は、ガラス成形体の拡大画像を観察しながら作業者が直接行う場合と、画像処理装置等を用いて自動化されている場合とがある。しかし、ビーム整形素子は非常に高い位置決め精度が要求されることから、何れの場合であってもこのアライメント作業には多くの時間が必要であり、多数のビーム整形素子を製造する際の生産性を阻害する大きな要因となっていた。   In general, the glass molded body is cut by using a cutting device (dicer) of a type in which a dicing blade is rotated for cutting. The dicer is suitable for performing a linear cutting process with high accuracy, but requires an alignment operation for adjusting the cutting position and angle. The alignment work may be performed directly by an operator while observing an enlarged image of the glass molded body, or may be automated using an image processing apparatus or the like. However, since the beam shaping element is required to have very high positioning accuracy, it takes a lot of time for this alignment work in any case, and productivity when manufacturing a large number of beam shaping elements. It was a major factor that hindered

このことは、特許文献3で提案されている複数個のビーム整形素子が並んだ成形品を個々のビーム整形素子に切断する場合についても同様であり、切断のためのアライメント作業に必要な時間をいかに短縮するかが大きな課題となっていた。   This also applies to the case where a molded product in which a plurality of beam shaping elements proposed in Patent Document 3 are arranged into individual beam shaping elements, and the time required for alignment work for cutting is reduced. How to shorten it was a big issue.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、切断加工の際のアライメント作業に必要な時間を短縮し、ビーム整形素子等の光学素子を高精度且つ高い生産性で製造するための製造方法を提供することである。   The present invention has been made in view of the technical problems as described above, and an object of the present invention is to shorten the time required for the alignment work in the cutting process, and to make an optical element such as a beam shaping element highly accurate. And it is providing the manufacturing method for manufacturing with high productivity.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 少なくとも1つの光学面と側面とを有するガラス成形体を固定治具に固定した状態で切断して光学素子を得るための光学素子の製造方法において、前記側面の少なくとも1つは成形転写面を有し、前記固定治具は複数の前記ガラス成形体の前記成形転写面を当接するための配列基準面を有し、前記成形転写面を前記配列基準面に当接し、複数の前記ガラス成形体を直線上に配列して固定した状態で切断する切断工程を有することを特徴とする光学素子の製造方法。   1. In a method of manufacturing an optical element for obtaining an optical element by cutting a glass molded body having at least one optical surface and a side face while being fixed to a fixing jig, at least one of the side faces has a molding transfer surface. The fixing jig has an array reference surface for contacting the molding transfer surfaces of the plurality of glass molded bodies, the molding transfer surface is in contact with the array reference surfaces, and the plurality of glass molded bodies are A method of manufacturing an optical element, comprising a cutting step of cutting in a state of being arranged and fixed on a straight line.

2. 前記固定治具は複数の前記配列基準面を有し、前記切断工程は、複数の前記ガラス成形体を互いに平行な複数列の直線上に配列して固定した状態で、互いに平行な複数の切断ライン上を切断する工程であることを特徴とする前記1に記載の光学素子の製造方法。   2. The fixing jig has a plurality of the alignment reference surfaces, and the cutting step includes a plurality of cuttings parallel to each other in a state where the plurality of glass molded bodies are arranged and fixed on a plurality of parallel lines. 2. The method of manufacturing an optical element according to 1 above, wherein the method is a step of cutting a line.

3. 前記固定治具は、対向する2つの配列基準面を有する配列部材を備えていることを特徴とする前記2に記載の光学素子の製造方法。   3. 3. The method of manufacturing an optical element according to 2, wherein the fixing jig includes an array member having two array reference surfaces facing each other.

4. 対応する前記配列基準面の間隔がそれぞれ略同一である複数の前記固定治具を用いて、前記切断工程における切断ラインの間隔を、複数の前記固定治具の何れを用いる場合であっても同一の設定として切断することを特徴とする前記2又は3に記載の光学素子の製造方法。   4). Using a plurality of the fixing jigs that have substantially the same interval between the corresponding array reference planes, the cutting line intervals in the cutting step are the same regardless of which of the plurality of fixing jigs is used. The method of manufacturing an optical element according to 2 or 3, characterized in that the optical element is cut as the above-mentioned setting.

5. 前記光学面の少なくとも1つはシリンドリカル面であることを特徴とする前記1乃至4の何れか1項に記載の光学素子の製造方法。   5. 5. The method of manufacturing an optical element according to any one of 1 to 4, wherein at least one of the optical surfaces is a cylindrical surface.

6. 前記光学素子は、半導体レーザから出力される楕円形状の出力ビームを円形に整形するためのビーム整形素子であることを特徴とする前記1乃至5の何れか1項に記載の光学素子の製造方法。   6). 6. The method of manufacturing an optical element according to any one of 1 to 5, wherein the optical element is a beam shaping element for shaping an elliptical output beam output from a semiconductor laser into a circular shape. .

本発明によれば、1回のアライメント作業で多数のガラス成形体の切断加工を行うことができる。その結果、光学素子1個当たりに必要なアライメント作業時間が短縮され、ビーム整形素子等の光学素子を高精度且つ高い生産性で製造することができる。   According to the present invention, a large number of glass molded bodies can be cut by a single alignment operation. As a result, the alignment work time required for each optical element is shortened, and an optical element such as a beam shaping element can be manufactured with high accuracy and high productivity.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(ガラス成形体と光学素子)
本発明は、半導体レーザから出力される楕円形状の出力ビームを円形に整形するためのビーム整形素子の製造に特に好適に用いられる。しかし、本発明が対象とする光学素子はこれに限定されるものではなく、各種のレンズ、ミラー等、少なくとも1つの光学面を有する光学素子の製造に適用することができる。
(Glass compacts and optical elements)
The present invention is particularly preferably used for manufacturing a beam shaping element for shaping an elliptical output beam output from a semiconductor laser into a circle. However, the optical element targeted by the present invention is not limited to this, and can be applied to the production of an optical element having at least one optical surface such as various lenses and mirrors.

図5は本発明で用いるガラス成形体10を、図6はガラス成形体10を切断して製造したビーム整形素子20を示している。   FIG. 5 shows a glass molded body 10 used in the present invention, and FIG. 6 shows a beam shaping element 20 manufactured by cutting the glass molded body 10.

ガラス成形体10は、光学面11c(面CDEedc)を含む成形面11、光学面12c(面JKLlkj)を含む成形面12、及び側面13、14、15、16を有している。光学面11cはシリンドリカル面であり、光軸(図5のz方向)に垂直な面内において、所定方向(図5のy方向。以下、母線方向ともいう。)には曲率を有さず、それに垂直な方向(図5のx方向。以下、子線方向ともいう。)のみに曲率を有している。光学面12cも同様のシリンドリカル面である。光学面11cと光学面12cの母線方向は互いに平行となっている。   The glass molded body 10 includes a molding surface 11 including an optical surface 11c (surface CDEedc), a molding surface 12 including an optical surface 12c (surface JKLlkj), and side surfaces 13, 14, 15, and 16. The optical surface 11c is a cylindrical surface, and has no curvature in a predetermined direction (y direction in FIG. 5; hereinafter also referred to as generatrix direction) in a plane perpendicular to the optical axis (z direction in FIG. 5). It has a curvature only in the direction perpendicular to it (the x direction in FIG. 5; hereinafter also referred to as the sub-wire direction). The optical surface 12c is a similar cylindrical surface. The generatrix directions of the optical surface 11c and the optical surface 12c are parallel to each other.

ここでは、対向する2つの光学面11c、12cがいずれもシリンドリカル面である場合を例にとって説明するが、本発明が対象とするガラス成形体(ビーム整形素子)はこれに限られるものではない。例えば、一方の光学面がシリンドリカル面で他方の面が平面又は球面のガラス成形体や、一方の光学面がシリンドリカル面で他方の面が母線方向にも曲率を有し母線方向と子線方向の曲率が異なるトロイダル面を有するガラス成形体等にも適用することができる。シリンドリカル面は、母線方向に垂直な面と交わる線(CDE、JKL等)が円弧状でも良いし、非球面成分を有するものであっても良い。   Here, a case where both of the two optical surfaces 11c and 12c facing each other are cylindrical surfaces will be described as an example, but the glass molded body (beam shaping element) targeted by the present invention is not limited to this. For example, a glass molded body in which one optical surface is a cylindrical surface and the other surface is flat or spherical, or one optical surface is a cylindrical surface and the other surface has a curvature in the generatrix direction. The present invention can also be applied to glass molded bodies having toroidal surfaces with different curvatures. In the cylindrical surface, a line (CDE, JKL, etc.) intersecting with a surface perpendicular to the generatrix direction may have an arc shape or an aspherical component.

ガラス成形体10の大きさに特に制限はなく、用途に応じて種々の大きさのものを用いることができる。一般的には、シリンドリカル面の母線方向の長さが1mm〜20mm、子線方向の長さが1mm〜20mm、光軸方向の厚みが0.5mm〜10mm程度の大きさのものが用いられる場合が多い。   There is no restriction | limiting in particular in the magnitude | size of the glass molded object 10, The thing of various magnitude | sizes can be used according to a use. In general, when the cylindrical surface has a length in the generatrix direction of 1 mm to 20 mm, a length in the subwire direction of 1 mm to 20 mm, and a thickness in the optical axis direction of about 0.5 mm to 10 mm. There are many.

ビーム整形素子20は、ガラス成形体10を面BbmMと面FfiIとで切断して両端部を除去することによって製造される。このとき、切断面17(面BbmM)と18(面FfiI)の少なくとも一方は、光学面11c、12cの子線方向に垂直で光学面11c、12cから所定の距離に形成する。従って、切断面17、18の少なくとも一方を組み込みの際の位置決め基準面として用いることができる。位置決め基準面として用いる切断面は、光学面からの距離のバラツキが小さい方が好ましく、通常は、50μm以下であることが好ましい。   The beam shaping element 20 is manufactured by cutting the glass molded body 10 with a surface BbmM and a surface FfiI and removing both ends. At this time, at least one of the cut surfaces 17 (surface BbmM) and 18 (surface FfiI) is formed at a predetermined distance from the optical surfaces 11c and 12c perpendicular to the direction of the sub-line of the optical surfaces 11c and 12c. Therefore, at least one of the cut surfaces 17 and 18 can be used as a positioning reference surface for incorporation. The cut surface used as the positioning reference surface preferably has a smaller variation in the distance from the optical surface, and is usually preferably 50 μm or less.

ガラス成形体10の、切断面17、18に平行な2つの側面15、16は成形転写面である。成形転写面は成形金型面の転写によって形成されるため、光学面からの距離のバラツキが非常に少ない。本発明においては、この成形転写面を後述する固定治具の配列基準面に当接し複数のガラス成形体を直線上に配列して切断を行うため、1回の切断作業で多数のガラス成形体を高精度に切断することができる。   Two side surfaces 15 and 16 parallel to the cut surfaces 17 and 18 of the glass molded body 10 are molding transfer surfaces. Since the molding transfer surface is formed by transferring the molding die surface, there is very little variation in the distance from the optical surface. In the present invention, since this molding transfer surface is brought into contact with an array reference surface of a fixing jig, which will be described later, and a plurality of glass molded bodies are arranged in a straight line for cutting, a large number of glass molded bodies can be obtained by a single cutting operation. Can be cut with high accuracy.

図7は本発明で用いるガラス成形体の別の例を示す図であり、シリンドリカル面の母線方向に垂直な断面を示している。図7(a)に示すガラス成形体10aと図7(b)に示すガラス成形体10bは、いずれも図5に示したガラス成形体10と同様に対向する2つのシリンドリカル面を有しているが、成形転写面の範囲が異なっている。ガラス成形体10aの側面16aは、厚み方向の中央部のみに成形転写面17aが存在し、両端部には成形金型と接触せずに形成された部分18aを有している。また、ガラス成形体10bの側面16bは、成形転写面17bの他、成形金型と接触せずに外側にはみ出た部分18bを有している。このように、本発明で用いるガラス成形体は、側面の少なくとも一部に成形転写面を有していれば良く、側面に成形金型と接触せずに形成された部分が含まれていても良い。また、ガラス成形体の全ての側面が成形転写面を有している必要はなく、少なくとも1つの側面が成形転写面を有していればよい。   FIG. 7 is a view showing another example of the glass molded body used in the present invention, and shows a cross section perpendicular to the generatrix direction of the cylindrical surface. Both the glass molded body 10a shown in FIG. 7 (a) and the glass molded body 10b shown in FIG. 7 (b) have two cylindrical surfaces facing each other in the same manner as the glass molded body 10 shown in FIG. However, the range of the molding transfer surface is different. The side surface 16a of the glass molded body 10a has a molding transfer surface 17a only at the central portion in the thickness direction, and has portions 18a formed at both ends without being in contact with the molding die. In addition to the molding transfer surface 17b, the side surface 16b of the glass molded body 10b has a portion 18b protruding outside without contacting the molding die. As described above, the glass molded body used in the present invention only needs to have a molding transfer surface on at least a part of the side surface, and even if the side surface includes a portion formed without contacting the molding die. good. Further, it is not necessary that all side surfaces of the glass molded body have a molding transfer surface, and it is sufficient that at least one side surface has a molding transfer surface.

ガラス成形体は、成形金型によってガラス素材を加圧成形するプレス成形法によって作製する。プレス成形の方法や成形条件に特に制限はなく、ガラス製光学素子のプレス成形法として公知の方法を用いることができる。例えば、(1)予め所定質量及び形状を有する成形用ガラス素材を作製し、該成形用ガラス素材を上下の成形型とともにガラスが変形可能な温度まで加熱した後、成形用ガラス素材を上下の成形型にて加圧成形して光学面の転写されたガラス成形体を得る方法や、(2)予め上下の成形型を所定温度に加熱しておき、下型の表面に溶融ガラスを供給して、供給されたガラス素材が未だ変形可能な温度にある間に上下の成形型にて加圧成形して光学面の転写されたガラス成形体を得る方法等を用いることができる。   The glass molded body is produced by a press molding method in which a glass material is pressure-molded with a molding die. There is no restriction | limiting in particular in the method and molding conditions of a press molding, A well-known method can be used as a press molding method of a glass-made optical element. For example, (1) A glass material for molding having a predetermined mass and shape is prepared in advance, the glass material for molding is heated to a temperature at which the glass can be deformed together with upper and lower molds, and then the glass material for molding is formed into upper and lower parts. A method of obtaining a glass molded body having an optical surface transferred by pressure molding with a mold, or (2) heating the upper and lower molding molds to a predetermined temperature in advance and supplying molten glass to the surface of the lower mold For example, a method of obtaining a glass molded body having an optical surface transferred by pressure molding with upper and lower molds while the supplied glass material is still at a deformable temperature can be used.

図8はガラス成形体10を成形するための成形金型の一例を示す断面図である。図8に示す成形金型30は、ガラス成形体10の成形面12を形成するための成形面34を有する上型31と、ガラス成形体10の成形面11を形成するための成形面35を有する下型32と、ガラス成形体の側面15、16を形成するための成形面36を有する側面部材33とを備えている。   FIG. 8 is a sectional view showing an example of a molding die for molding the glass molded body 10. The molding die 30 shown in FIG. 8 includes an upper mold 31 having a molding surface 34 for forming the molding surface 12 of the glass molded body 10 and a molding surface 35 for forming the molding surface 11 of the glass molded body 10. And a side member 33 having a molding surface 36 for forming the side surfaces 15 and 16 of the glass molded body.

供給されたガラス素材を成形金型30でプレス成形することで、光学面11cを含む成形面11、光学面12cを含む成形面12、及び側面15、16が転写によって形成されたガラス成形体10を得ることができる。この際、上型31及び下型32と、側面部材33との嵌め合い部の寸法を適宜設定することで、ガラス成形体10の側面15、16に形成される成形転写面を光学面から所定の距離とすることができる。この距離は、多数のガラス成形体を作製する際におけるバラツキも非常に小さく抑えることができるため、この成形転写面を直線上に配列した状態で固定し、複数のガラス成形体をまとめて切断することで、1回の切断作業で多数のガラス成形体を高精度に切断することができる。   By pressing the supplied glass material with the molding die 30, the molded surface 11 including the optical surface 11c, the molded surface 12 including the optical surface 12c, and the side surfaces 15 and 16 are formed by transfer. Can be obtained. At this time, by appropriately setting the size of the fitting portion between the upper mold 31 and the lower mold 32 and the side member 33, the molding transfer surfaces formed on the side surfaces 15 and 16 of the glass molded body 10 are predetermined from the optical surface. Distance. Since this distance can also minimize variations in the production of a large number of glass molded bodies, the molding transfer surface is fixed in a state of being arranged in a straight line, and a plurality of glass molded bodies are cut together. Thereby, many glass molded objects can be cut | disconnected with high precision by one cutting operation.

使用できるガラスの種類に特に制限はなく、ガラス製光学素子に用いられる公知のガラスを適宜選択して用いることができる。例えば、リン酸系ガラス、ランタン系ガラスなどが挙げられる。   There is no restriction | limiting in particular in the kind of glass which can be used, The well-known glass used for a glass-made optical element can be selected suitably, and can be used. Examples thereof include phosphate glass and lanthanum glass.

(切断工程)
次に、本発明における切断工程について説明する。本発明における切断工程は、ガラス成形体の成形転写面を固定治具の配列基準面に当接し、複数のガラス成形体を直線上に配列して固定した状態で切断する工程である
(固定治具)
図1、図2は、本発明で用いる固定治具の一例を示す図である。図1は複数のガラス成形体10が固定された固定治具40をガラス成形体10の成形面11側から見た図であり、図2はそのA−A’断面図である。固定治具40は本体44に形成された配列基準面41を有している。バネ43により付勢された押圧板42でガラス成形体10を配列基準面41に押し付け、成形転写面である側面16を配列基準面41に当接してガラス成形体10を直線上に配列させた状態で、ガラス成形体10の成形面12を固定治具40の本体41に固定する。
(Cutting process)
Next, the cutting process in the present invention will be described. The cutting step in the present invention is a step in which the molding transfer surface of the glass molded body is brought into contact with the arrangement reference surface of the fixing jig, and a plurality of glass molded bodies are arranged in a straight line and fixed and cut. Ingredients)
1 and 2 are views showing an example of a fixing jig used in the present invention. FIG. 1 is a view of a fixing jig 40 to which a plurality of glass molded bodies 10 are fixed as viewed from the molding surface 11 side of the glass molded body 10, and FIG. 2 is a cross-sectional view taken along line AA ′. The fixing jig 40 has an array reference surface 41 formed on the main body 44. The glass molded body 10 is pressed against the arrangement reference surface 41 by the pressing plate 42 urged by the spring 43, and the glass molding 10 is arranged in a straight line by contacting the side surface 16 which is a molding transfer surface with the arrangement reference surface 41. In this state, the molding surface 12 of the glass molded body 10 is fixed to the main body 41 of the fixing jig 40.

固定治具40にガラス成形体10を固定するための方法に特に制限はなく、公知の方法を適宜用いることができる。例えば、ホットメルト型接着剤等の各種接着剤や粘着剤を用いて固定する方法や、ダイシングテープ等の粘着テープを用いて固定する方法が挙げられる。   There is no restriction | limiting in particular in the method for fixing the glass forming body 10 to the fixing jig 40, A well-known method can be used suitably. For example, the method of fixing using various adhesives and adhesives, such as a hot-melt-type adhesive agent, and the method of fixing using adhesive tapes, such as a dicing tape, are mentioned.

図2に示した固定治具40の配列基準面41は平面であるが、本発明において配列基準面41の形状はこれに限定されるものではなく、成形転写面を当接してガラス成形体10を直線上に配列させることができる形状であれば良い。例えば、テーパーや曲面を有する形状であっても良い。また、固定治具の材質や大きさに特に制限はない。   Although the arrangement reference surface 41 of the fixing jig 40 shown in FIG. 2 is a flat surface, the shape of the arrangement reference surface 41 is not limited to this in the present invention, and the glass molded body 10 is brought into contact with the molding transfer surface. Any shape that can be arranged on a straight line is acceptable. For example, a shape having a taper or a curved surface may be used. Moreover, there is no restriction | limiting in particular in the material and magnitude | size of a fixing jig.

固定されたガラス成形体10は、アライメント作業後に切断ライン46に沿って直線的に切断される。固定治具40の本体44には、切断ライン46に沿った逃げ溝45が設けられている。逃げ溝45は、切断の際にダイシングブレードが本体44に接触しないような深さ及び幅に形成しておく。このような逃げ溝45を設けておくことで、切断時にダイシングブレードに余計な負荷がかかることを防止でき、ガラス成形体10を更に高精度に切断することが可能となる。   The fixed glass molded body 10 is linearly cut along the cutting line 46 after the alignment operation. The main body 44 of the fixing jig 40 is provided with a relief groove 45 along the cutting line 46. The escape groove 45 is formed with a depth and a width so that the dicing blade does not contact the main body 44 during cutting. By providing such a relief groove 45, it is possible to prevent an excessive load from being applied to the dicing blade during cutting, and it is possible to cut the glass molded body 10 with higher accuracy.

(アライメント)
固定治具40にガラス成形体10を固定した後、切断ラインの位置及び角度を調節するアライメント作業を行う。
(alignment)
After fixing the glass molded body 10 to the fixing jig 40, an alignment operation for adjusting the position and angle of the cutting line is performed.

先ず、ガラス成形体10が固定された固定治具40を、移動、回転が可能な切断ステージに固定する。固定方法は、真空吸着による方法、粘着テープや接着剤を用いる方法、ピエゾ素子等を用いた冷凍固定による方法など、公知の方法を適宜用いればよい。その後、切断装置の切断ラインがガラス成形体の切断ライン46とほぼ一致するように切断ステージを移動、回転させて固定治具40の位置及び角度を調節する。本発明においては、複数のガラス成形体が直線上に配列しているため、ガラス成形体1つずつについてアライメントを行う必要がなく、一度のアライメントでまとめて切断を行うことができる。   First, the fixing jig 40 to which the glass molded body 10 is fixed is fixed to a cutting stage that can move and rotate. The fixing method may be appropriately selected from known methods such as a method using vacuum adsorption, a method using an adhesive tape or an adhesive, and a method using freezing and fixing using a piezoelectric element. Thereafter, the position and angle of the fixing jig 40 are adjusted by moving and rotating the cutting stage so that the cutting line of the cutting device substantially coincides with the cutting line 46 of the glass molded body. In the present invention, since a plurality of glass molded bodies are arranged on a straight line, it is not necessary to perform alignment for each glass molded body, and cutting can be performed collectively by one alignment.

固定治具40の位置及び角度の調節は、拡大撮影された画像を基に行う。作業者が画像を見ながら切断ステージを操作する手動式の調節でも良いし、撮影画像の処理と切断ステージ制御をコンピュータによって行う自動調節方式であっても良い。   Adjustment of the position and angle of the fixing jig 40 is performed based on an enlarged image. Manual adjustment in which the operator operates the cutting stage while viewing the image may be used, or an automatic adjustment method in which processing of the captured image and cutting stage control are performed by a computer may be used.

(切断)
切断装置の種類に制限はないが、直線的な切断加工を高精度に行うことが容易なダイシングブレードを用いた切断装置(ダイサー)を用いることが好ましい。ダイシングブレードの種類にも特に制限はなく、GC砥石、ダイヤモンドブレード、メタルソーなど公知のダイシングブレードを適宜選択して用いればよい。
(Cut)
Although there is no restriction | limiting in the kind of cutting device, It is preferable to use the cutting device (dicer) using the dicing blade which can perform a linear cutting process with high precision easily. The type of the dicing blade is not particularly limited, and a known dicing blade such as a GC grindstone, a diamond blade, or a metal saw may be appropriately selected and used.

図3、図4は、本発明で用いる固定治具の別の例を示す図である。図3は複数のガラス成形体10bが固定された固定治具50をガラス成形体10bの成形面11側から見た図であり、図4はそのB−B’断面図である。固定治具50は本体54、押圧板52、バネ53を有し、本体54には逃げ溝55が設けられている。また、固定治具50は、対向する2つの配列基準面51を有する配列部材58を有している。   3 and 4 are diagrams showing another example of the fixing jig used in the present invention. FIG. 3 is a view of the fixing jig 50 to which a plurality of glass molded bodies 10b are fixed as viewed from the molding surface 11 side of the glass molded body 10b, and FIG. 4 is a B-B ′ sectional view thereof. The fixing jig 50 includes a main body 54, a pressing plate 52, and a spring 53, and the main body 54 is provided with a relief groove 55. Further, the fixing jig 50 has an array member 58 having two array reference surfaces 51 facing each other.

固定治具50の2つの配列基準面51にガラス成形体10bの成形転写面17bを当接してガラス成形体を互いに平行な2本の直線上に配列した状態で固定する。ガラス成形体10bの1列につき2本ずつの切断ライン56があり、2列のガラス成形体10bで合計4本の切断ライン56がある。このうち、同じ列のガラス成形体10bの2本の切断ラインの間隔L1は作製しようとするビーム整形素子の寸法であるため既知である。また、予め2つの配列基準面51の間隔L3を測定しておけば、異なる列のガラス成形体の切断ラインの間隔L2を求めることができる。従って、アライメント工程においていずれか1つの切断ラインを基準にして固定治具の位置及び角度を調節し、所定の間隔(L1、L2)で互いに平行に切断を行うことで、各列毎にアライメントを行うことなく、複数列に配列された多数のガラス成形体10bを高精度に切断することができる。   The molding transfer surface 17b of the glass molded body 10b is brought into contact with the two arrangement reference surfaces 51 of the fixing jig 50, and the glass molded body is fixed in a state of being arranged on two parallel straight lines. There are two cutting lines 56 per row of the glass molded body 10b, and there are a total of four cutting lines 56 in the two rows of glass molded body 10b. Among these, the distance L1 between the two cutting lines of the glass moldings 10b in the same row is known because it is the dimension of the beam shaping element to be produced. Moreover, if the distance L3 between the two arrangement reference planes 51 is measured in advance, the distance L2 between the cutting lines of the glass molded bodies in different rows can be obtained. Accordingly, in the alignment process, the position and angle of the fixing jig are adjusted with reference to any one cutting line, and the alignment is performed for each column by cutting in parallel at predetermined intervals (L1, L2). Without performing, it is possible to cut a large number of glass molded bodies 10b arranged in a plurality of rows with high accuracy.

ここで、固定治具50の2つの配列基準面51は、配列部材58の対向する2つの面である。このように、対向する2つの配列基準面51を有する配列部材58を用いることで、配列されたガラス成形体10bの成形転写面17bが互いに平行になるような複数の配列基準面51を有する固定治具50を容易に作製することができる。   Here, the two arrangement reference surfaces 51 of the fixing jig 50 are two opposite faces of the arrangement member 58. In this way, by using the array member 58 having the two array reference surfaces 51 facing each other, the fixing having the plurality of array reference surfaces 51 so that the molding transfer surfaces 17b of the arrayed glass molded bodies 10b are parallel to each other. The jig 50 can be easily manufactured.

また、多数のガラス成形体10bを切断する際、更に効率良く加工を行うためにこのような固定治具50を複数準備して順に使用こともできる。この場合の固定治具50は、配列基準面51の間隔L3を略同一に形成しておくことが好ましい。配列基準面51の間隔L3を略同一とすることで、固定治具を取り替える毎に切断ラインの間隔の設定を変更することなく、複数準備した固定治具の何れを用いる場合であっても切断ラインの間隔は同一の設定のまま切断を行うことができる。従って、固定治具の取り替えに必要な時間が短縮されると共に、設定変更のミスによる不良品の発生を防止でき、ビーム整形素子等の光学素子を更に高い生産性で製造することが可能となる。なお、この場合の略同一とは、製造する光学素子の仕様上、位置決め基準面として用いる切断面と光学面との距離のバラツキとして許容できる範囲であれば良く、通常は50μm程度以下であることが好ましい。   Moreover, when cutting many glass molded objects 10b, in order to process more efficiently, several such fixing jigs 50 can be prepared and used in order. In this case, it is preferable that the fixing jig 50 is formed so that the interval L3 between the arrangement reference surfaces 51 is substantially the same. By making the interval L3 of the array reference plane 51 substantially the same, it is possible to cut any of a plurality of fixing jigs prepared without changing the setting of the cutting line interval every time the fixing jig is replaced. Cutting can be performed with the same interval between lines. Accordingly, the time required for replacing the fixing jig can be shortened, the generation of defective products due to a setting change error can be prevented, and an optical element such as a beam shaping element can be manufactured with higher productivity. . In this case, “substantially the same” is acceptable as long as the distance between the cut surface used as the positioning reference surface and the optical surface is acceptable in the specification of the optical element to be manufactured, and is usually about 50 μm or less. Is preferred.

更に、配列基準面を3つ以上有する固定治具を用いることも好ましい。この場合、1つの固定治具の配列基準面の間隔が全て等しい必要はなく、異なっていても良い。上述のように固定治具を複数準備する場合には、対応する位置の配列基準面の間隔が全ての固定治具で等しいことが好ましい。例えば、x番目の固定治具のy本目とz本目の配列基準面の間隔をLxyzと書くとすると、L112(1番目の固定治具の1本目と2本目の配列基準面の間隔)とL212とL312、L123とL223とL323とはそれぞれ等しいことが好ましい。しかし、L112とL123とが異なっていても、固定治具を取り替える際に切断ラインの間隔の設定を変更する必要はなく問題とはならない。   Furthermore, it is also preferable to use a fixing jig having three or more array reference surfaces. In this case, the intervals of the array reference planes of one fixing jig do not have to be all equal, and may be different. When a plurality of fixing jigs are prepared as described above, it is preferable that the intervals between the arrangement reference planes at corresponding positions are the same for all the fixing jigs. For example, if the interval between the y-th and z-th arrangement reference planes of the x-th fixing jig is written as Lxyz, L112 (the interval between the first and second arrangement reference planes of the first fixing jig) and L212 And L312, L123, L223, and L323 are preferably equal to each other. However, even if L112 and L123 are different, it is not necessary to change the setting of the interval between the cutting lines when the fixing jig is replaced.

複数のガラス成形体10が固定された固定治具40をガラス成形体10の成形面11側から見た図である。It is the figure which looked at the fixing jig 40 with which the some glass molded object 10 was fixed from the molding surface 11 side of the glass molded object 10. FIG. 複数のガラス成形体10が固定された固定治具40のA−A’断面図である。It is A-A 'sectional drawing of the fixing jig 40 to which the some glass molded object 10 was fixed. 複数のガラス成形体10bが固定された固定治具50をガラス成形体10bの成形面11側から見た図である。It is the figure which looked at the fixing jig 50 with which the some glass molded object 10b was fixed from the molding surface 11 side of the glass molded object 10b. 複数のガラス成形体10bが固定された固定治具50のB−B’断面図である。It is a B-B 'sectional view of fixing jig 50 to which a plurality of glass fabrication objects 10b were fixed. 本発明で用いるガラス成形体10を示す図である。It is a figure which shows the glass molded object 10 used by this invention. ガラス成形体10を切断して製造したビーム整形素子20を示す図である。It is a figure which shows the beam shaping element 20 manufactured by cut | disconnecting the glass molded object 10. FIG. 本発明で用いるガラス成形体の別の例を示す図である。It is a figure which shows another example of the glass forming body used by this invention. ガラス成形体10を成形するための成形金型の一例を示す断面図である。1 is a cross-sectional view showing an example of a molding die for molding a glass molded body 10.

符号の説明Explanation of symbols

10、10a、10b ガラス成形体
11c、12c 光学面(シリンドリカル面)
13、14、15、16、16a、16b 側面
17a、17b 成形転写面
30 成形金型
40、50 固定治具
41、51 配列基準面
45、55 逃げ溝
46、56 切断ライン
58 配列部材
L3 配列基準面の間隔
10, 10a, 10b Glass molded body 11c, 12c Optical surface (cylindrical surface)
13, 14, 15, 16, 16a, 16b Side surface 17a, 17b Mold transfer surface 30 Mold 40, 50 Fixing jig 41, 51 Arrangement reference surface 45, 55 Escape groove 46, 56 Cutting line 58 Arrangement member L3 Arrangement reference Face spacing

Claims (6)

少なくとも1つの光学面と側面とを有するガラス成形体を固定治具に固定した状態で切断して光学素子を得るための光学素子の製造方法において、
前記側面の少なくとも1つは成形転写面を有し、
前記固定治具は複数の前記ガラス成形体の前記成形転写面を当接するための配列基準面を有し、
前記成形転写面を前記配列基準面に当接し、複数の前記ガラス成形体を直線上に配列して固定した状態で切断する切断工程を有することを特徴とする光学素子の製造方法。
In a method of manufacturing an optical element for obtaining an optical element by cutting a glass molded body having at least one optical surface and a side surface while being fixed to a fixing jig,
At least one of the side surfaces has a molded transfer surface;
The fixing jig has an array reference surface for contacting the molding transfer surfaces of the plurality of glass molded bodies,
A method for manufacturing an optical element, comprising: a cutting step in which the molding transfer surface is brought into contact with the arrangement reference surface and the plurality of glass molded bodies are arranged and fixed in a straight line.
前記固定治具は複数の前記配列基準面を有し、
前記切断工程は、複数の前記ガラス成形体を互いに平行な複数列の直線上に配列して固定した状態で、互いに平行な複数の切断ライン上を切断する工程であることを特徴とする請求項1に記載の光学素子の製造方法。
The fixing jig has a plurality of the array reference surfaces,
The cutting step is a step of cutting a plurality of parallel cutting lines in a state where the plurality of glass molded bodies are arranged and fixed on a plurality of parallel straight lines. 2. A method for producing an optical element according to 1.
前記固定治具は、対向する2つの配列基準面を有する配列部材を備えていることを特徴とする請求項2に記載の光学素子の製造方法。   The method of manufacturing an optical element according to claim 2, wherein the fixing jig includes an array member having two array reference surfaces facing each other. 対応する前記配列基準面の間隔がそれぞれ略同一である複数の前記固定治具を用いて、前記切断工程における切断ラインの間隔を、複数の前記固定治具の何れを用いる場合であっても同一の設定として切断することを特徴とする請求項2又は3に記載の光学素子の製造方法。   Using a plurality of the fixing jigs that have substantially the same interval between the corresponding array reference planes, the cutting line intervals in the cutting step are the same regardless of which of the plurality of fixing jigs is used. The method for manufacturing an optical element according to claim 2, wherein the optical element is cut as a setting. 前記光学面の少なくとも1つはシリンドリカル面であることを特徴とする請求項1乃至4の何れか1項に記載の光学素子の製造方法。   The method for manufacturing an optical element according to claim 1, wherein at least one of the optical surfaces is a cylindrical surface. 前記光学素子は、半導体レーザから出力される楕円形状の出力ビームを円形に整形するためのビーム整形素子であることを特徴とする請求項1乃至5の何れか1項に記載の光学素子の製造方法。   6. The optical element manufacturing method according to claim 1, wherein the optical element is a beam shaping element for shaping an elliptical output beam output from a semiconductor laser into a circular shape. Method.
JP2007051200A 2007-03-01 2007-03-01 Optical element manufacturing method Expired - Fee Related JP4935428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051200A JP4935428B2 (en) 2007-03-01 2007-03-01 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051200A JP4935428B2 (en) 2007-03-01 2007-03-01 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2008216419A true JP2008216419A (en) 2008-09-18
JP4935428B2 JP4935428B2 (en) 2012-05-23

Family

ID=39836571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051200A Expired - Fee Related JP4935428B2 (en) 2007-03-01 2007-03-01 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP4935428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534111A (en) * 2012-09-13 2015-11-26 フィスバ・オプティック・アクチェンゲゼルシャフトFisba Optik Ag Beam converting element, apparatus for converting electromagnetic radiation, method for manufacturing a beam converting element, and method for converting electromagnetic radiation
DE102018204124A1 (en) 2017-03-30 2018-10-04 Fanuc Corporation Lens shaping tool and method of manufacturing cylindrical lenses

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105465A (en) * 1991-10-15 1993-04-27 Nec Kagoshima Ltd Glass scriber
JPH09152518A (en) * 1995-11-29 1997-06-10 Mitsubishi Rayon Co Ltd Production of light transmission body array made of resin
JP2002219641A (en) * 2001-01-25 2002-08-06 Nippon Sheet Glass Co Ltd Working method for rod lens and working tool and working device therefor
JP2003021733A (en) * 2001-07-06 2003-01-24 Mitsubishi Rayon Co Ltd Manufacturing method for optical transmission body
JP2005181949A (en) * 2003-01-29 2005-07-07 Mitsubishi Rayon Co Ltd Method for manufacturing rod lens array, arraying tool used therefor, original plate cutter and end face cutting device
JP2006301249A (en) * 2005-04-20 2006-11-02 Konica Minolta Opto Inc Beam shaping element and manufacturing method therefor
JP2006323404A (en) * 2006-06-28 2006-11-30 Asahi Techno Glass Corp Planar glass optical element and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105465A (en) * 1991-10-15 1993-04-27 Nec Kagoshima Ltd Glass scriber
JPH09152518A (en) * 1995-11-29 1997-06-10 Mitsubishi Rayon Co Ltd Production of light transmission body array made of resin
JP2002219641A (en) * 2001-01-25 2002-08-06 Nippon Sheet Glass Co Ltd Working method for rod lens and working tool and working device therefor
JP2003021733A (en) * 2001-07-06 2003-01-24 Mitsubishi Rayon Co Ltd Manufacturing method for optical transmission body
JP2005181949A (en) * 2003-01-29 2005-07-07 Mitsubishi Rayon Co Ltd Method for manufacturing rod lens array, arraying tool used therefor, original plate cutter and end face cutting device
JP2006301249A (en) * 2005-04-20 2006-11-02 Konica Minolta Opto Inc Beam shaping element and manufacturing method therefor
JP2006323404A (en) * 2006-06-28 2006-11-30 Asahi Techno Glass Corp Planar glass optical element and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534111A (en) * 2012-09-13 2015-11-26 フィスバ・オプティック・アクチェンゲゼルシャフトFisba Optik Ag Beam converting element, apparatus for converting electromagnetic radiation, method for manufacturing a beam converting element, and method for converting electromagnetic radiation
US10095042B2 (en) 2012-09-13 2018-10-09 Fisba Optik Ag Beam transformation element, device for transforming electromagnetic radiation, method for producing a beam transformation element, and method for transforming an electromagnetic emission
DE102018204124A1 (en) 2017-03-30 2018-10-04 Fanuc Corporation Lens shaping tool and method of manufacturing cylindrical lenses
US10508051B2 (en) 2017-03-30 2019-12-17 Fanuc Corporation Lens forming mold and manufacturing method for cylindrical lens

Also Published As

Publication number Publication date
JP4935428B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
TW523460B (en) Method of manufacturing a microlens array mold and a microlens array
US7106528B2 (en) Method and apparatus for manufacturing large double-sided curved Fresnel lens
TW200533975A (en) Optical component with holder and manufacturing method thereof
JP2007077003A (en) Flat optical element semi-finished product from which a plurality of optical elements are made and apparatus for manufacturing the same
JP4935428B2 (en) Optical element manufacturing method
US8045279B2 (en) Molded lens and molding tool
EP1474851B1 (en) Method of manufacturing an optical device by means of a replication method
JP5017798B2 (en) Molding device for molding shaping element used for pickup optical system and shaping element manufactured by the device
JP2019089203A (en) Electrode for electric discharge processing and electric discharge processing method with use of electrode
JP2004059355A (en) Glass blank, and method of manufacturing substrate for information recording medium and information recording medium
US6796145B2 (en) Method for cutting mother rod lens
WO2004076366A1 (en) Method of producing optical element, optical element, and optical element array
JP2001163628A (en) Producing method of molding
US10508051B2 (en) Lens forming mold and manufacturing method for cylindrical lens
JP2008150225A (en) Press mold for molding glass optical device and manufacturing method and manufacturing apparatus therefor
JP2511269B2 (en) Lens molding press die
JP7507360B2 (en) Beam Intensity Uniformizer
JP2004262681A (en) Method of manufacturing optical device for semiconductor laser apparatus and optical device for semiconductor laser apparatus
JP6532201B2 (en) Electrode for electric discharge machining and electric discharge machining method using the electrode
JP2002122720A (en) Optical device and method for processing the optical device
JP2008008945A (en) Optical element, optical element holder and optical element module
JP2004287250A (en) Light source unit and manufacturing method therefor
JP2004348008A (en) V groove substrate, its manufacturing method and v groove molding metallic mold
CN113366347A (en) Device for emitting light
JP3217153B2 (en) Optical material molding die, optical material molding method using the same, and optical material obtained thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees