JP2008216158A - Displacement measuring device - Google Patents

Displacement measuring device Download PDF

Info

Publication number
JP2008216158A
JP2008216158A JP2007056535A JP2007056535A JP2008216158A JP 2008216158 A JP2008216158 A JP 2008216158A JP 2007056535 A JP2007056535 A JP 2007056535A JP 2007056535 A JP2007056535 A JP 2007056535A JP 2008216158 A JP2008216158 A JP 2008216158A
Authority
JP
Japan
Prior art keywords
measurement
displacement
image
point
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007056535A
Other languages
Japanese (ja)
Inventor
Zaofi Don
ザオフィ ドン
Takeaki Kuramoto
武明 蔵本
Shigeru Hiranuma
茂 平沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASIC ENGINEERING KK
Original Assignee
BASIC ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASIC ENGINEERING KK filed Critical BASIC ENGINEERING KK
Priority to JP2007056535A priority Critical patent/JP2008216158A/en
Publication of JP2008216158A publication Critical patent/JP2008216158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement measuring device capable of accurately calculating displacement of a measuring point. <P>SOLUTION: This displacement measuring device 1 calculates a displacement quantity of an optional measuring point 3a from an image before and after displacement of a plurality of measuring objects 10 photographed by an imaging element, and has an image processing part 13 processing the image photographed by the imaging element. The image processing part 13 has a reference point selecting means 24 for selecting optional one measuring point as a reference point 12 from a plurality of measuring points 3a of the image, and a displacement quantity calculating means 25 for calculating the displacement quantity of the respective measuring points 3a based on the reference point 12. The reference point selecting means 24 selects the reference point 12 from a variation in a coordinate value of the measuring point 3a of the image photographed first and a coordinate value of the optional measuring point 3a of the image photographed later, and sets such a measuring point 3a as the reference point 12 when determining that the variation in the coordinate value of the optional measuring point 3a is smaller than a predetermined quantity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、変位計測装置に関する。   The present invention relates to a displacement measuring device.

特許文献1には、計測対象物の変位を計測する変位計測装置において、変位前後で変位しない複数の固定点を含むように写真画像を撮影し、固定点を基準点として計測対象物の変位を求める技術が開示されている。   In Patent Document 1, in a displacement measuring apparatus that measures the displacement of a measurement object, a photographic image is taken so as to include a plurality of fixed points that are not displaced before and after the displacement, and the displacement of the measurement object is determined using the fixed points as reference points. The required technology is disclosed.

特開2004−77377号公報JP 2004-77377 A

しかし、特許文献1に記載の従来技術では、計測対象物に固定の基準点を設置する必要があるので、計測対象物自身が変位するような場合には、基準点を設置することが難しく、計測点の変位を精度良く算出できないという問題があった。   However, in the prior art described in Patent Document 1, it is necessary to install a fixed reference point on the measurement object. Therefore, when the measurement object itself is displaced, it is difficult to install the reference point. There was a problem that the displacement of the measurement point could not be calculated accurately.

本発明は、計測点の変位を精度良く算出できる変位計測装置を得ることを目的とする。   An object of this invention is to obtain the displacement measuring apparatus which can calculate the displacement of a measurement point accurately.

前記課題を解決するために、請求項1に記載された発明は、撮像素子に撮影した複数の計測対象物の変位前後の画像から任意の計測点の変位量を算出する変位計測装置において、撮像素子に撮影した画像を処理する画像処理部を備え、画像処理部は画像の複数の計測点から任意の一の計測点を基準点として選択する基準点選択手段と、基準点に基づいて各計測点の変位量を算出する変位量算出手段とを備え、基準点選択手段は先に撮影した画像の計測点の座標値と後から撮影した画像の計測点の座標値の変化量から基準点を選択しており、任意の計測点の座標値の変化量が所定量より小さいと判断した場合、係る計測点を基準点とすることを特徴とする。   In order to solve the above-mentioned problem, the invention described in claim 1 is a displacement measurement device that calculates a displacement amount at an arbitrary measurement point from images before and after displacement of a plurality of measurement objects photographed on an image sensor. The image processing unit includes an image processing unit that processes an image photographed on the element, and the image processing unit selects a reference point from a plurality of measurement points of the image as a reference point, and performs each measurement based on the reference point. A displacement amount calculating means for calculating a displacement amount of the point, and the reference point selecting means obtains the reference point from the change amount of the coordinate value of the measurement point of the previously captured image and the coordinate value of the measurement point of the image captured later. When it is determined that the amount of change in the coordinate value of an arbitrary measurement point is smaller than a predetermined amount, the measurement point is used as a reference point.

請求項2に記載された発明は、請求項1に記載の発明において、撮影部は計測対象物に対して撮影方向の異なる2つ以上の地点に設置しており、一方の撮影部で撮影した画像と、他方の撮影部で撮影した画像とを合成して3次元画像を得ることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the photographing unit is installed at two or more points having different photographing directions with respect to the measurement object, and is photographed by one photographing unit. A three-dimensional image is obtained by synthesizing an image and an image photographed by the other photographing unit.

請求項3に記載された発明は、請求項1又は2に記載の発明において、計測対象物には予め設置した標的を設けており、標的を計測点としていることを特徴とする。   The invention described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the target to be measured is provided with a target set in advance, and the target is used as a measurement point.

請求項4に記載された発明は、請求項1〜3の何れか一項に記載の発明において、標的は反射部を備えることを特徴とする。   The invention described in claim 4 is characterized in that, in the invention described in any one of claims 1 to 3, the target includes a reflecting portion.

請求項5に記載された発明は、請求項4に記載の発明において、反射部は撮影部と標的との間の距離に応じて面積を変更することを特徴とする。   The invention described in claim 5 is characterized in that, in the invention described in claim 4, the reflecting part changes the area according to the distance between the imaging part and the target.

請求項6に記載された発明は、請求項1に記載の発明において、画像処理部は反射部の重心位置を算出する重心位置算出部を備え、画像処理部は重心位置算出部で得た重心位置から計測点の座標を特定することを特徴とする。   According to a sixth aspect of the invention, in the first aspect of the invention, the image processing unit includes a centroid position calculating unit that calculates a centroid position of the reflecting unit, and the image processing unit obtains the centroid obtained by the centroid position calculating unit. It is characterized by specifying the coordinates of the measurement point from the position.

請求項7に記載された発明は、請求項6に記載の発明において、画像処理部は撮像素子の1ピクセル以下のサブピクセル単位で計測点の座標を算出するサブピクセル算出部を備えることを特徴とする。   The invention described in claim 7 is the invention according to claim 6, wherein the image processing unit includes a sub-pixel calculating unit that calculates the coordinates of the measurement point in units of sub-pixels of one pixel or less of the image sensor. And

請求項1に記載の発明によれば、基準点選択手段により任意の計測点の変化前後の座標値の変化量が所定量より小さいと判断した場合は、係る計測点を基準点とし、係る基準点に基づいて各計測点の変位量を算出するので、固定の基準点を設置しなくて済む。従って、固定の基準点を設置し難い計測対象物であっても、容易に計測点の変位量を算出できる。   According to the first aspect of the present invention, when the reference point selection unit determines that the change amount of the coordinate value before and after the change of the arbitrary measurement point is smaller than the predetermined amount, the measurement point is the reference point, and the reference Since the displacement amount of each measurement point is calculated based on the point, it is not necessary to install a fixed reference point. Therefore, even if the measurement object is difficult to set a fixed reference point, the displacement amount of the measurement point can be easily calculated.

撮影部で撮影した画像の処理により計測点の変位量を算出しているので、標尺等の測定器具を要さず、現場での測定時間を短縮化できる。   Since the displacement of the measurement point is calculated by processing the image captured by the imaging unit, a measuring instrument such as a staff is not required, and the measurement time at the site can be shortened.

請求項2に記載された発明によれば、請求項1に記載の発明と同様の効果を奏すると共に、撮影方向の異なる2以上の地点から測定対象物を撮影した画像を合成して3次元画像を得るので、計測点の3次元における変位量を容易に算出することができる。   According to the invention described in claim 2, the same effect as that of the invention described in claim 1 can be obtained, and a three-dimensional image can be obtained by synthesizing images obtained by shooting the measurement object from two or more points having different shooting directions. Therefore, the displacement in three dimensions of the measurement point can be easily calculated.

請求項3に記載された発明によれば、請求項1又は2に記載の発明と同様の効果を奏すると共に、計測対象物に設けた標的を計測点としているので、画像上で計測点を容易に把握することができ、計測点の変位量を精度良く算出することができる。   According to the invention described in claim 3, the same effect as that of the invention described in claim 1 or 2 can be obtained, and the measurement point can be easily displayed on the image because the target provided on the measurement object is used as the measurement point. Thus, the displacement amount of the measurement point can be calculated with high accuracy.

請求項4に記載された発明によれば、請求項1〜3の何れか一項に記載の発明と同様の効果を奏すると共に、標的は反射部を備えているので、画像における反射板の領域が他の領域よりも高い輝度値を示すことで、計測点の位置を精度良く特定することができる。   According to the invention described in claim 4, the same effect as in the invention described in any one of claims 1 to 3 can be obtained, and the target includes the reflecting portion. Indicates a higher luminance value than other regions, so that the position of the measurement point can be specified with high accuracy.

請求項5に記載された発明によれば、請求項4に記載の発明と同様の効果を奏すると共に、撮影部と計測点との距離に応じて反射部の面積を変更しているので、例えば撮影部と計測点との距離が長い場合に反射板の面積を大きくすることで、表示部に表示される反射部の画素数が多くなり、計測点の座標を精度良く計測できる。   According to the invention described in claim 5, the same effect as that of the invention described in claim 4 is achieved, and the area of the reflection part is changed according to the distance between the imaging part and the measurement point. When the distance between the imaging unit and the measurement point is long, by increasing the area of the reflection plate, the number of pixels of the reflection unit displayed on the display unit increases, and the coordinates of the measurement point can be measured with high accuracy.

請求項6に記載された発明によれば、請求項1に記載の発明と同様の効果を奏すると共に、重心位置算出部により反射部の重心位置を算出して計測点の座標を特定しているので、計測点の変位量を精度良く算出できる。   According to the invention described in claim 6, the same effect as that of the invention described in claim 1 is obtained, and the center of gravity position of the reflecting part is calculated by the center of gravity position calculating part to specify the coordinates of the measurement point. Therefore, the displacement amount of the measurement point can be calculated with high accuracy.

請求項7に記載された発明によれば、請求項6に記載の発明と同様の効果を奏すると共に、サブピクセル算出部によりサブピクセル単位で計測点の座標を算出するので、計測点の座標を更に精度良く算出でき、計測点の変位量を更に精度良く算出できる。   According to the invention described in claim 7, since the same effect as that of the invention described in claim 6 is obtained and the coordinates of the measurement point are calculated in units of subpixels by the subpixel calculation unit, the coordinates of the measurement point are calculated. Further, it can be calculated with high accuracy, and the displacement amount of the measurement point can be calculated with higher accuracy.

以下に、添付図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明の実施形態に係る変位計測装置の全体を示す制御ブロック図、図2は計測対象物を撮影しているようすを示す斜視図、図3は図2に示す計測対象物を撮影部の位置を変えて撮影した画像をそれぞれ示す図、図4は1回目の撮影画像と2回目の撮影画像とを重ね合わせを説明する図であり、2点鎖線で抜き出して示す(a)は変位前後の基準点の位置を説明する図、(b)は変位前後の計測点位置を説明する図、図5は図2に示す標的を拡大して示す正面図、図6はデジタルカメラの外部標定方法を説明する概略図、図7は複数の撮影画像から3次元座標を算出する方法を説明する図、図8は反射シールの重心点座標を算出する方法を説明する図、図9は計測対象物の画像認識を説明する図であり、(a)は通常のピクセルでの画像認識を説明する図、(b)はサブピクセルでの画像認識を説明する図、図10は誤差楕円を用いた基準点の選定を示す図、図11は本発明に係る変位計測装置の計測の流れを説明するフローチャート、図12は本発明に係る変位計測装置の計測結果を示し、奥行き方向の移動量の実測値と計測値との相関関係を示すグラフ、図13は本発明に係る変位計測装置の計測結果を示し、水平垂直方向の移動量の実測値と計測値との相関関係を示すグラフである。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a control block diagram showing the entire displacement measuring apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view showing a situation where a measurement object is photographed, and FIG. 3 is a photograph of the measurement object shown in FIG. FIG. 4 is a diagram for explaining the superposition of the first captured image and the second captured image, and FIG. 4A is extracted and shown by a two-dot chain line. The figure explaining the position of the reference point before and after the displacement, (b) is the figure explaining the position of the measurement point before and after the displacement, FIG. 5 is an enlarged front view of the target shown in FIG. 2, FIG. 6 is the outside of the digital camera 7 is a schematic diagram for explaining the orientation method, FIG. 7 is a diagram for explaining a method for calculating three-dimensional coordinates from a plurality of captured images, FIG. 8 is a diagram for explaining a method for calculating the center-of-gravity point coordinates of the reflective seal, and FIG. It is a figure explaining the image recognition of a target object, (a) is the image by a normal pixel. FIG. 10B is a diagram illustrating image recognition by subpixels, FIG. 10 is a diagram illustrating selection of a reference point using an error ellipse, and FIG. 11 is a diagram illustrating measurement by the displacement measuring apparatus according to the present invention. FIG. 12 is a flow chart for explaining the flow, FIG. 12 is a graph showing the measurement result of the displacement measuring apparatus according to the present invention, showing the correlation between the measured value of the movement amount in the depth direction, and FIG. 13 is the displacement measurement according to the present invention. It is a graph which shows the measurement result of an apparatus, and shows the correlation with the measured value and measured value of the movement amount of a horizontal / vertical direction.

本実施の形態に係る変位計測装置1は、擁壁等の計測対象物10の変位を計測するものであり、図1に示すように計測対象物10を撮像素子に撮影するデジタルカメラ(撮影部)7と、デジタルカメラ7で撮影したが画像を処理するコンピュータ9とを備える。図2に示すように、デジタルカメラ(撮影部)7を用いて計測対象物10を複数回撮影し、変位前後の同じ点に設けられた計測点の3次元座標を算出し、座標値の移動量から変位量を算出する。   A displacement measuring apparatus 1 according to the present embodiment measures a displacement of a measuring object 10 such as a retaining wall, and as shown in FIG. 1, a digital camera (imaging unit) that photographs the measuring object 10 on an image sensor. ) 7 and a computer 9 that has been photographed by the digital camera 7 and that processes the image. As shown in FIG. 2, the measurement object 10 is imaged a plurality of times using a digital camera (imaging unit) 7, the three-dimensional coordinates of the measurement points provided at the same point before and after the displacement are calculated, and the coordinate value is moved. The amount of displacement is calculated from the amount.

標的3は計測対象物10に複数設置しており、図5に示すように、黒色の標的基板3c(縦210mm×横210mm)に反射シール(反射部)3bを貼り付けている。反射シール3bは円形状であり、円の中心が変位を計測する計測点3aとなっている。   A plurality of targets 3 are installed on the measurement object 10, and as shown in FIG. 5, a reflective seal (reflecting part) 3b is attached to a black target substrate 3c (210 mm long × 210 mm wide). The reflective seal 3b has a circular shape, and the center of the circle is a measurement point 3a for measuring the displacement.

反射シール3bの直径はデジタルカメラ7で撮影した画像において5ピクセル以上になるようにデジタルカメラ7と標的3との間の距離に応じて面積を変更している。反射シール3bの直径Dが5ピクセル以上になる基準を下記の表1に示す。   The area of the reflective sticker 3b is changed according to the distance between the digital camera 7 and the target 3 so that the diameter of the image taken by the digital camera 7 is 5 pixels or more. Table 1 below shows the criteria for the diameter D of the reflective seal 3b to be 5 pixels or more.

Figure 2008216158
Figure 2008216158

デジタルカメラ7はUSBケーブル等を通じてコンピュータ9に接続できるようにしており、デジタルカメラ7で撮影した画像データはコンピュータ9に取り込んで、記憶部17に保存する。   The digital camera 7 can be connected to the computer 9 through a USB cable or the like, and image data captured by the digital camera 7 is taken into the computer 9 and stored in the storage unit 17.

コンピュータ9は、デジタルカメラ7で取り込んだ画像を解析処理する画像処理部13と、取り込んだ画像を画面上に表示する表示部15と、デジタルカメラ7から取り込んだ画像や画像処理部13で処理された各データを記憶する記憶部17とを備えている。   The computer 9 is processed by the image processing unit 13 that analyzes the image captured by the digital camera 7, the display unit 15 that displays the captured image on the screen, and the image captured by the digital camera 7 and the image processing unit 13. And a storage unit 17 for storing each data.

画像処理部13は、デジタルカメラ7で撮影した変位前後の画像を合成する画像合成部21と、デジタルカメラ7で撮影した複数枚の画像を合成して計測点3aの3次元座標を算出する3次元座標算出部23と、画像の複数の計測点3aから任意の一の計測点3aを基準点4として選択する基準点選択部(基準点選択手段)24と、測定点3aの変位量を算出する変位量算出部25と、反射シール3bの重心位置を算出する重心位置算出部27と、1ピクセル以下のサブピクセル単位で測定点3aの座標を算出するサブピクセル算出部29を備えている。   The image processing unit 13 combines an image combining unit 21 that combines the images before and after the displacement photographed by the digital camera 7, and calculates a three-dimensional coordinate of the measurement point 3a by combining a plurality of images photographed by the digital camera 7. A dimensional coordinate calculation unit 23, a reference point selection unit (reference point selection means) 24 for selecting any one measurement point 3a as a reference point 4 from a plurality of measurement points 3a in the image, and a displacement amount of the measurement point 3a is calculated. A displacement amount calculating unit 25, a center-of-gravity position calculating unit 27 for calculating the center of gravity position of the reflective sticker 3b, and a sub-pixel calculating unit 29 for calculating the coordinates of the measurement point 3a in sub-pixel units of one pixel or less.

画像合成部19ではデジタルカメラ7で撮影した1回目の撮影画像と、同じデジタルカメラ7で撮影した2回目の撮影画像とをアフィン変換によって重ね合わせる。アフィン変換によって1回目の撮影画像と2回目の撮影画像とを重ね合わせることによって、図4(a)に示す基準点4に基づいて、図4(b)に抜き出して示す変位前後の測定点3aの座標値を算出する。   The image composition unit 19 superimposes the first captured image captured by the digital camera 7 and the second captured image captured by the same digital camera 7 by affine transformation. By superimposing the first captured image and the second captured image by affine transformation, based on the reference point 4 shown in FIG. 4A, the measurement points 3a before and after displacement shown in FIG. 4B are extracted. The coordinate value of is calculated.

デジタルカメラ7の撮影位置(O1、O2)は、図6に示すように、計測対象物10以外の位置に設けた基準点を基準として算出する。デジタルカメラ7の撮影方向(デジタルカメラ7の3軸(X、Y、Z)に対する傾き)は、3軸(X、Y、Z)の基準線を任意に設置して、角度計測器を用いて算出している。尚、デジタルカメラ7の撮影位置はGPSを用いて算出しても良い。 The shooting positions (O 1 , O 2 ) of the digital camera 7 are calculated with reference points provided at positions other than the measurement object 10 as a reference, as shown in FIG. The shooting direction of the digital camera 7 (tilt with respect to the three axes (X, Y, Z) of the digital camera 7) is set by arbitrarily setting a reference line of three axes (X, Y, Z) and using an angle measuring instrument. Calculated. The shooting position of the digital camera 7 may be calculated using GPS.

図3に示すように、3次元座標算出部23は、計測対象物10を左側から撮影した第1画像31と、計測対象物10を右側から撮影した第2画像33と、デジタルカメラ7の撮影位置(レンズ中心位置(O1、O2))及び撮影方向の情報から計測点3aの3次元座標P(X,Y,Z)を算出する。 As shown in FIG. 3, the three-dimensional coordinate calculation unit 23 captures the first image 31 obtained by photographing the measurement object 10 from the left side, the second image 33 obtained by photographing the measurement object 10 from the right side, and the digital camera 7. The three-dimensional coordinates P (X, Y, Z) of the measurement point 3a are calculated from the position (lens center position (O 1 , O 2 )) and information on the shooting direction.

即ち、図7に示すように計測対象物10を左側から撮影した第1画像31には計測点3aの2次元座標値p1(x1、y1)が写り、計測対象物10を右側から撮影した第2画像33には計測点3aの2次元座標値p2(x2、y2)が写る。そして、第1画像31の2次元座標値p1(x1、y1)、第2画像33の2次元座標値p2(x2、y2)、左側から撮影した第1画像31のデジタルカメラ7のレンズ中心位置O1及び撮影方向、右側から撮影した第2画像33のデジタルカメラ7のレンズ中心位置O2及び撮影方向からフリーネットワーク(自由網)調整法を用いて計測点3aの3次元座標P(X,Y,Z)を算出している。 That is, as shown in FIG. 7, the first image 31 obtained by photographing the measurement object 10 from the left side shows the two-dimensional coordinate value p 1 (x 1 , y 1 ) of the measurement point 3a, and the measurement object 10 is taken from the right side. The photographed second image 33 shows the two-dimensional coordinate value p 2 (x 2 , y 2 ) of the measurement point 3a. Then, the two-dimensional coordinate value p 1 (x 1 , y 1 ) of the first image 31, the two-dimensional coordinate value p 2 (x 2 , y 2 ) of the second image 33, the digital of the first image 31 taken from the left side. The measurement point 3a 3 is measured using a free network adjustment method from the lens center position O 1 and the shooting direction of the camera 7 and the lens center position O 2 and the shooting direction of the digital camera 7 of the second image 33 taken from the right side. Dimensional coordinates P (X, Y, Z) are calculated.

尚、フリーネットワーク調整法では、2次元画像iに計測点jに写っている場合、下記式(1)の条件式を解くことで計測点jの3次元座標Pを求める。下記式(1)中、(x0、y0、0)はカメラの座標値を示すパラメータ、(ω、φ、κ)は撮影時の角度を示すパラメータである。また、Δxi及びΔyiは系統誤差を表し、中心投影の条件を妨げる要因となるもので、レンズ収差を表す係数と主点位置のズレを表す補正値からなる。 In the free network adjustment method, when the measurement point j appears in the two-dimensional image i, the three-dimensional coordinate P of the measurement point j is obtained by solving the conditional expression of the following equation (1). In the following formula (1), (x 0 , y 0, z 0 ) are parameters indicating camera coordinate values, and (ω, φ, κ) are parameters indicating angles at the time of photographing. Δx i and Δy i represent systematic errors, which are factors that hinder the center projection condition, and are composed of a coefficient representing lens aberration and a correction value representing deviation of the principal point position.

Figure 2008216158
・・・(1)
上記式(1)は非線形であるため、各未知数をテーラー展開することで方程式を線形化する。線形化した方程式を下記式(2)に示す。
Figure 2008216158
... (1)
Since the above equation (1) is non-linear, the equation is linearized by Taylor expansion of each unknown. The linearized equation is shown in the following formula (2).

Figure 2008216158
・・・(2)
Figure 2008216158
... (2)

図4に示すように、変位量算出部25では1回目の撮影画像と2回目の撮影画像とを重ね合わせたときに表示される、変位前の計測点3aの3次元座標P1(X1、Y1、Z1)と、変位後の計測点3aの3次元座標P2(X2、Y2、Z2)との差を求めることで計測点3aの変位量を算出している。 As shown in FIG. 4, the displacement amount calculation unit 25 displays the three-dimensional coordinates P 1 (X 1) of the measurement point 3a before displacement, which is displayed when the first captured image and the second captured image are superimposed. , Y 1 , Z 1 ) and the difference between the three-dimensional coordinates P 2 (X 2 , Y 2 , Z 2 ) of the measurement point 3a after displacement are calculated to calculate the displacement amount of the measurement point 3a.

重心位置算出部27では計測点3aの重心位置を算出する。図8に示すように重心位置の算出は、先ず反射シール3bの周囲を枠3dで取り囲んで計算領域を指定する。そして計算領域内の輝度値をヒストグラムとして生成し、ヒストグラムにおいて高輝度の輝度値を有する画素を特定する。その後、公知の大津モデル式を使用して閾値を設定し、閾値以上の輝度値を示す画素にグレースケール値を掛け算して重心点を算出する。尚、計算領域内の任意点(x、y)のグレースケール値をW、画素数をnとした場合、重心点(x0、y0)は、x0=Σ(x×W)/n、y0=Σ(y×W)/nでそれぞれ算出する。 The centroid position calculation unit 27 calculates the centroid position of the measurement point 3a. As shown in FIG. 8, in calculating the position of the center of gravity, first, the calculation area is designated by surrounding the reflective seal 3b with a frame 3d. Then, luminance values in the calculation area are generated as a histogram, and pixels having high luminance values are specified in the histogram. Thereafter, a threshold value is set using a well-known Otsu model equation, and a barycentric point is calculated by multiplying a pixel indicating a luminance value equal to or higher than the threshold value by a gray scale value. When the gray scale value of an arbitrary point (x, y) in the calculation area is W and the number of pixels is n, the center of gravity (x 0 , y 0 ) is x 0 = Σ (x × W) / n , Y 0 = Σ (y × W) / n, respectively.

サブピクセル算出部29は1ピクセル以下のサブピクセル単位で測定対象の座標を算出する。例えば、画像中に図9(a)に示すような測定対象Sが映っていた場合、測定対象Sは4つのピクセルT1、T2、T3、T4全体で認識される。即ち、測定対象Sが存在する4つのピクセルT1、T2、T3、T4全部のピクセルが「1」と認識される。   The subpixel calculation unit 29 calculates the coordinates of the measurement target in units of subpixels of 1 pixel or less. For example, when the measurement object S as shown in FIG. 9A is reflected in the image, the measurement object S is recognized by the four pixels T1, T2, T3, and T4 as a whole. That is, all the four pixels T1, T2, T3, and T4 in which the measurement target S exists are recognized as “1”.

サブピクセル算出部29では、ピクセルを複数のサブピクセルに分割(4分割)でき、図9(b)に示すように、測定対象Sは4つのサブピクセルT13、T24、T31、T42で認識される。即ち、4つのサブピクセルT13、T24、T31、T42は「1」と認識され、その他のサブピクセル(T11、T12、T14、T21、T22、T23、T32、T33、T34、T41、T43、T44)は「0」と認識される。   The sub-pixel calculating unit 29 can divide the pixel into a plurality of sub-pixels (divide into four), and the measurement target S is recognized by the four sub-pixels T13, T24, T31, and T42 as shown in FIG. 9B. . That is, the four subpixels T13, T24, T31, T42 are recognized as “1”, and the other subpixels (T11, T12, T14, T21, T22, T23, T32, T33, T34, T41, T43, T44). Is recognized as “0”.

基準点選択部24では、変位前の計測点3aの3次元座標P1(X1、Y1、Z1)と、変位後の測定点3aの3次元座標P2(X2、Y2、Z2)の移動量を算出し、移動量が所定量より小さい場合に、係る計測点を変位量算出のための基準点としている。 In the reference point selection unit 24, the three-dimensional coordinates P 1 (X 1 , Y 1 , Z 1 ) of the measurement point 3a before the displacement and the three-dimensional coordinates P 2 (X 2 , Y 2 , When the movement amount of Z 2 ) is calculated and the movement amount is smaller than the predetermined amount, the measurement point is used as a reference point for calculating the displacement amount.

尚、基準点選択部24では図10に示すように変位誤差楕球を用いた統計手法により、計測点を基準点として選択するか否か判断している。即ち、図10中、40a、41a、42a、43a、44aは変位前の計測点の座標位置を示しており、40b、41b、42b、43b、44bは変位後の計測点の座標位置を示している。そして各計測点において変位誤差楕球W1〜W5を生成している。変位誤差楕球は所定の確率で計測点3aが所定の領域内に存在するか否かを示している。まず、基準点を検知し、検知した基準点に対する計測点が変位誤差楕球の領域外にある場合(図10中40b)、基準点選択部24により、その基準点は選択しない。一方、基準点に対する変位後の計測点が変位誤差楕球の領域内にある場合(図10中、41b、42b、43b、44b)は基準点選択部24により、その基準点を採用して選択する。 The reference point selection unit 24 determines whether or not to select a measurement point as a reference point by a statistical method using a displacement error ellipse as shown in FIG. That is, in FIG. 10, 40a, 41a, 42a, 43a, 44a indicate the coordinate positions of the measurement points before displacement, and 40b, 41b, 42b, 43b, 44b indicate the coordinate positions of the measurement points after displacement. Yes. Displacement error ellipsoids W 1 to W 5 are generated at each measurement point. The displacement error ellipse indicates whether or not the measurement point 3a exists within a predetermined region with a predetermined probability. First, a reference point is detected, and when the measurement point with respect to the detected reference point is outside the area of the displacement error ellipse (40b in FIG. 10), the reference point selection unit 24 does not select the reference point. On the other hand, when the measurement point after displacement with respect to the reference point is within the area of the displacement error ellipse (41b, 42b, 43b, 44b in FIG. 10), the reference point is selected by the reference point selection unit 24. To do.

次に、上記した構成に基づき、本実施の形態の作用を図11に示すフローチャートに基づいて説明する。現場では先ず、測定対象物10の複数箇所に標的3を設置する。次いで、測定対象物10から所定距離だけ離れた位置であって、測定対象物10に対して撮影方向が異なる2つの撮影位置からデジタルカメラ7で撮影する。撮影した各画像はコンピュータ9の記憶部17に保存する。尚、デジタルカメラ7のキャリブレーションの精度を高めるため、各撮影位置においてカメラの向きをレンズの周方向に約90度ずつずらして合計4枚の画像を撮影している(ステップS1)。   Next, based on the above-described configuration, the operation of the present embodiment will be described based on the flowchart shown in FIG. At the site, first, the targets 3 are installed at a plurality of locations of the measurement object 10. Next, the digital camera 7 shoots images from two shooting positions that are separated from the measurement object 10 by a predetermined distance and have different shooting directions with respect to the measurement object 10. Each photographed image is stored in the storage unit 17 of the computer 9. In order to improve the calibration accuracy of the digital camera 7, a total of four images are photographed by shifting the camera direction by about 90 degrees in the circumferential direction of the lens at each photographing position (step S1).

記憶部17に保存された左側から撮影した第1画像31と、計測対象物10を右側から撮影した第2画像33から、フリーネットワーク調整法を用いて各計測点3aの3次元座標を求める(ステップS2)。尚、計測点3aの座標はコンピュータ9の表示部15に表示された画像を用いて、重心位置算出部27が標的3の反射シール3bの重心位置を算出することで求める。以上のステップで1回目の撮影が終了する。   From the first image 31 taken from the left side stored in the storage unit 17 and the second image 33 taken from the right side, the three-dimensional coordinates of each measurement point 3a are obtained using the free network adjustment method ( Step S2). The coordinates of the measurement point 3a are obtained by the center of gravity position calculation unit 27 calculating the center of gravity of the reflective seal 3b of the target 3 using the image displayed on the display unit 15 of the computer 9. The first shooting is completed by the above steps.

次に2回目の撮影を行う。2回目の撮影は上述の1回目のステップで説明した方法と同様の方法で左右の画像を撮影し、撮影した各画像は記憶部17に保存する。そして左右の画像からフリーネットワーク調整法を用いて各計測点3aの3次元座標を求める。   Next, the second shooting is performed. In the second shooting, the left and right images are shot in the same manner as described in the first step, and the shot images are stored in the storage unit 17. Then, the three-dimensional coordinates of each measurement point 3a are obtained from the left and right images using a free network adjustment method.

次のステップS3では、撮影した画像が1回目(エポックI)であるか否か判断され、1回目でない場合は次のステップS4に進み、2回目に撮影した画像の計測精度が1回目に撮影した画像の計測精度と同じであるか否か判断される。計測精度が同じであるか否かは、例えば1回目の撮影と2回目の撮影においてデジタルカメラ7のキャリブレーションの精度が同じであったか否かで判断する。   In the next step S3, it is determined whether or not the photographed image is the first (epoch I). If not, the process proceeds to the next step S4, and the measurement accuracy of the second photographed image is photographed for the first time. It is determined whether or not the measurement accuracy is the same as the measured image. Whether or not the measurement accuracy is the same is determined, for example, by whether or not the calibration accuracy of the digital camera 7 is the same in the first shooting and the second shooting.

次のステップS5では1回目に撮影した画像と2回目に撮影した画像とを比較して、計測対象物10が全体的に変位したか否か判断する。計測対象物10が全体的に変位したか否かは、計測点全点の座標をベクトル形式で表し、2回の計測での座標ベクトルの値に有意差があったか否かで判断する。計測対象物10に全体的な変位があると判断された場合、次のステップS6に進み、計測対象物10に全体的な変位がないと判断された場合、ステップS11に進む。   In the next step S5, the first image and the second image are compared to determine whether or not the measurement object 10 has been displaced as a whole. Whether or not the measurement object 10 has been displaced as a whole is determined by whether or not the coordinates of all the measurement points are expressed in a vector format and whether there is a significant difference between the coordinate vector values in the two measurements. If it is determined that the measurement object 10 has an overall displacement, the process proceeds to the next step S6, and if it is determined that the measurement object 10 has no overall displacement, the process proceeds to step S11.

ステップS6では、エポック1で求めた計測点の全点の重心座標と、エポック2で求めた計測点の全点の重心座標と重ね合わせて、重心座標が同じ値であるか(等確率変位)否か判断する。計測点の全点の重心座標が同じ値でない場合は、次のステップS7に進む。ステップS7では、基準点選択部24において計測点3aを基準点として選択するか否か判断し、計測点3aを基準点とする場合、次のステップS8に進み、ステップS2において全体重心座標系で計算した座標値を基準点に基づく相対基準点座標系に変換する。ステップS9ではエポック1で求めた各計測点の3次元座標値と、エポック2で求めた各計測点の3次元座標値とから変位差を算出し、ステップS10において各計測点が移動したか否か判断し、ステップS11において算出結果を出力する。そして次のステップS12において計測を継続する場合はステップS1に戻る。計測を継続しない場合はステップを終了する。   In step S6, the center-of-gravity coordinates of all the measurement points obtained in Epoch 1 and the center-of-gravity coordinates of all the measurement points obtained in Epoch 2 are overlapped to determine whether the center-of-gravity coordinates have the same value (equal probability displacement). Judge whether or not. When the barycentric coordinates of all the measurement points are not the same value, the process proceeds to the next step S7. In step S7, it is determined whether or not the measurement point 3a is selected as the reference point in the reference point selection unit 24. When the measurement point 3a is used as the reference point, the process proceeds to the next step S8. The calculated coordinate value is converted into a relative reference point coordinate system based on the reference point. In step S9, a displacement difference is calculated from the three-dimensional coordinate value of each measurement point obtained in epoch 1 and the three-dimensional coordinate value of each measurement point obtained in epoch 2, and whether or not each measurement point has moved in step S10. In step S11, the calculation result is output. If the measurement is continued in the next step S12, the process returns to step S1. If the measurement is not continued, the step ends.

本実施の形態では、基準点選択手段24が任意の計測点3aの座標値の移動量が所定量より小さいと判断した場合は、係る計測点3aを基準点とし、係る基準点に基づいて各計測点の変位量を算出するので、固定の基準点を設置し難い計測対象物10であっても、容易に計測点3aの変位量を算出できる。   In the present embodiment, when the reference point selection unit 24 determines that the movement amount of the coordinate value of an arbitrary measurement point 3a is smaller than a predetermined amount, the measurement point 3a is used as a reference point, and each measurement point 3a is set based on the reference point. Since the displacement amount of the measurement point is calculated, the displacement amount of the measurement point 3a can be easily calculated even for the measurement object 10 in which it is difficult to set a fixed reference point.

デジタルカメラ7で撮影した画像の処理により計測点3aの変位量を算出しているので、標尺等の測定器具を要さず、現場での測定時間を短縮化できる。   Since the displacement amount of the measurement point 3a is calculated by processing the image photographed by the digital camera 7, a measuring instrument such as a staff is not required, and the on-site measurement time can be shortened.

計測対象物10を撮影方向から異なる2つの地点で撮影した画像を合成して3次元画像を得るので、計測点3aの3次元における変位量を容易に算出することができる。   Since a three-dimensional image is obtained by combining images obtained by photographing the measurement object 10 at two points different from the photographing direction, it is possible to easily calculate the three-dimensional displacement amount of the measurement point 3a.

計測対象物10に設けた標的3を計測点3aとしているので、画像上で計測点3aを容易に把握することができ、計測点3aの変位量を精度良く算出することができる。   Since the target 3 provided on the measurement object 10 is the measurement point 3a, the measurement point 3a can be easily grasped on the image, and the displacement amount of the measurement point 3a can be calculated with high accuracy.

標的3には反射シール3bを備えているので、コンピュータ9の表示部15に表示される画像において、反射シール3bの領域が他の領域よりも高い輝度値を示すことで、測定点3aの位置を精度良く特定することができる。   Since the target 3 includes the reflective sticker 3b, in the image displayed on the display unit 15 of the computer 9, the area of the reflective sticker 3b shows a higher luminance value than the other areas, so that the position of the measurement point 3a Can be specified with high accuracy.

デジタルカメラ7の位置と測定点3aとの距離に応じて反射シール3bの面積を変更しているので、例えばデジタルカメラ7の位置と測定点3aとの距離が長い場合に反射シール3bの面積を大きくすることで、表示部15に表示される反射シール3bの画素数が多くなり、測定点3aの座標を精度良く測定できる。   Since the area of the reflective sticker 3b is changed according to the distance between the position of the digital camera 7 and the measurement point 3a, for example, when the distance between the position of the digital camera 7 and the measurement point 3a is long, the area of the reflective sticker 3b is changed. By enlarging, the number of pixels of the reflective sticker 3b displayed on the display unit 15 increases, and the coordinates of the measurement point 3a can be measured with high accuracy.

重心位置算出部27により反射シール3bの重心位置を算出して測定点3aの座標を特定しているので、測定点3aの変位量を精度良く算出できる。   Since the barycentric position calculation unit 27 calculates the barycentric position of the reflective seal 3b and specifies the coordinates of the measuring point 3a, the displacement amount of the measuring point 3a can be calculated with high accuracy.

サブピクセル算出部29によりサブピクセル単位で測定点3aの座標を算出するので、測定点3aの座標を更に精度良く算出でき、測定点3aの変位量を更に精度良く算出できる。   Since the subpixel calculation unit 29 calculates the coordinates of the measurement point 3a in subpixel units, the coordinates of the measurement point 3a can be calculated with higher accuracy, and the displacement amount of the measurement point 3a can be calculated with higher accuracy.

次に、本実施の形態に係る変位計測装置の変位量の精度について実験を行ったのでその結果について説明する。   Next, since the experiment was conducted on the accuracy of the displacement amount of the displacement measuring apparatus according to the present embodiment, the result will be described.

(実験例)
本実験例では、測定対象物10に設置した標的2を実際に移動させ、実測値と本発明の変位計測装置1で算出した変位の計測値との相関関係について実験した。その結果を図14の表に示す。図14は移動量の実測値と変位計測装置で求めた計測値とを表に示したものである。図12は図14の表に基づいて奥行き(Z)方向の移動量の実測値と計測値との相関関係を示すグラフ、図13は図14の表に基づいて水平垂直方向の移動量の実測値と計測値との相関関係を示すグラフである。
(Experimental example)
In this experimental example, the target 2 placed on the measurement object 10 was actually moved, and an experiment was conducted on the correlation between the actual measurement value and the displacement measurement value calculated by the displacement measurement device 1 of the present invention. The results are shown in the table of FIG. FIG. 14 is a table showing measured values of the movement amount and measured values obtained by the displacement measuring device. FIG. 12 is a graph showing the correlation between the measured value of the movement amount in the depth (Z) direction based on the table of FIG. 14, and FIG. 13 is the actual measurement of the movement amount in the horizontal and vertical directions based on the table of FIG. It is a graph which shows the correlation of a value and a measured value.

図12に示すように、奥行き(Z)方向の移動量の計測値(図12に示す□印、○印、×印、◇印、△印、●印、■印)は、実測値(図12に示す実線)のほぼ線上に位置し、本発明の変位計測装置1で算出した変位の計測値と実測値との間に高い相関関係が見られた。   As shown in FIG. 12, the measured values of the movement amount in the depth (Z) direction (□, ○, ×, ◇, Δ, ●, and ■ shown in FIG. A high correlation was found between the measured value and the measured value of the displacement calculated by the displacement measuring device 1 of the present invention.

図13に示すように、水平垂直(XY)方向の移動量の計測値(図13に示す□印、○印、×印、◇印、△印、●印、■印)は、実測値(図13に示す実線)のほぼ線上に位置し、本発明の変位計測装置1で算出した変位の計測値と実測値との間に高い相関関係が見られた。   As shown in FIG. 13, the measured values of the movement amount in the horizontal and vertical (XY) directions (□, ○, ×, ◇, Δ, ●, and ■ shown in FIG. 13) are measured values ( A high correlation was found between the measured value and the measured value of the displacement calculated by the displacement measuring device 1 of the present invention.

本発明は上述した実施の形態に限定されず、その要旨を逸脱しない範囲で種々の変形が可能である。例えば本実施の形態では、測定対象物10を2つの方向から撮影したが、これに限定されず、3以上の方向から測定対象物10を撮影しても良い。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the present embodiment, the measurement object 10 is photographed from two directions, but the measurement object 10 may be photographed from three or more directions.

本実施の形態では、計測点3aを標的3内に設けたが、これに限定されず、標的を設けずに測定対象物10の特徴点を計測点としても良い。   In the present embodiment, the measurement point 3a is provided in the target 3. However, the present invention is not limited to this, and the feature point of the measurement object 10 may be used as the measurement point without providing the target.

また、標的3には反射シール3bを設けることに限らず、周囲との関係で、その部分の濃淡が明確になっているものでも良い。また、測定点は突起等の特徴的な部分としても良い。   Further, the target 3 is not limited to being provided with the reflective seal 3b, but may be one in which the density of the portion is clear in relation to the surroundings. The measurement point may be a characteristic part such as a protrusion.

測定対象物10は、ダム、橋梁、トンネル、高架橋であっても良いし、山の斜面を観測して地滑りを計測するものであっても良い。   The measurement object 10 may be a dam, a bridge, a tunnel, a viaduct, or may measure a landslide by observing a slope of a mountain.

撮影部7はデジタルカメラに限らず、一眼レフカメラであっても良い。   The photographing unit 7 is not limited to a digital camera but may be a single lens reflex camera.

本発明の実施形態に係る変位計測装置の全体を示す制御ブロック図である。It is a control block diagram which shows the whole displacement measuring device which concerns on embodiment of this invention. 計測対象物を撮影しているようすを示す斜視図である。It is a perspective view which shows the appearance which image | photographs the measurement object. 図2に示す計測対象物を撮影部の位置を変えて撮影した画像をそれぞれ示す図である。It is a figure which shows each the image which image | photographed the measurement object shown in FIG. 2 by changing the position of an imaging | photography part. 1回目の撮影画像と2回目の撮影画像とを重ね合わせを説明する図であり、2点鎖線で抜き出して示す(a)は変位前後の基準点の位置を説明する図、(b)は変位前後の計測点位置を説明する図である。FIG. 4 is a diagram for explaining superposition of a first captured image and a second captured image, where (a) is a diagram illustrating the position of a reference point before and after displacement, and (b) is a displacement. It is a figure explaining the measurement point position before and behind. 図2に示す標的を拡大して示す正面図である。It is a front view which expands and shows the target shown in FIG. デジタルカメラの外部標定方法を説明する概略図である。It is the schematic explaining the external orientation method of a digital camera. 複数枚の撮影画像から3次元座標を算出する方法を説明する図である。It is a figure explaining the method of calculating a three-dimensional coordinate from several picked-up images. 反射シールの重心点座標を算出する方法を説明する図である。It is a figure explaining the method of calculating the barycentric point coordinate of a reflective sticker. 計測対象物の画像認識を説明する図であり、(a)は通常のピクセルでの画像認識を説明する図、(b)はサブピクセルでの画像認識を説明する図である。It is a figure explaining the image recognition of a measurement target object, (a) is a figure explaining the image recognition by a normal pixel, (b) is a figure explaining the image recognition by a sub pixel. 誤差楕円を用いた基準点の選定を示す図である。It is a figure which shows selection of the reference point using an error ellipse. 本発明に係る変位計測装置の計測の流れを説明するフローチャートである。It is a flowchart explaining the flow of measurement of the displacement measuring device which concerns on this invention. 本発明に係る変位計測装置の計測結果を示し、奥行き(Z)方向の移動量の実測値と計測値との相関関係を示すグラフである。It is a graph which shows the measurement result of the displacement measuring device which concerns on this invention, and shows the correlation with the measured value and measured value of the moving amount | distance in a depth (Z) direction. 本発明に係る変位計測装置の計測結果を示し、水平垂直(XY)方向の移動量の実測値と計測値との相関関係を示すグラフである。It is a graph which shows the measurement result of the displacement measuring device which concerns on this invention, and shows the correlation with the measured value and measured value of the moving amount | distance in a horizontal-vertical (XY) direction. 本発明に係る変位計測装置の計測値と移動量の実測値とを表に示した図である。It is the figure which showed the measured value of the displacement measuring device which concerns on this invention, and the measured value of movement amount in the table | surface.

符号の説明Explanation of symbols

1 変位測定装置
3 標的
3a 計測点
3b 反射シール
7 デジタルカメラ(撮影部)
10 計測対象物
12 基準点
13 画像処理部
21 画像合成部
23 3次元座標算出部
24 基準点選択部
25 変位量算出部
27 重心位置算出部
29 サブピクセル算出部
DESCRIPTION OF SYMBOLS 1 Displacement measuring device 3 Target 3a Measurement point 3b Reflective sticker 7 Digital camera (imaging part)
DESCRIPTION OF SYMBOLS 10 Measurement object 12 Reference point 13 Image processing part 21 Image composition part 23 Three-dimensional coordinate calculation part 24 Reference point selection part 25 Displacement amount calculation part 27 Center of gravity position calculation part 29 Sub pixel calculation part

Claims (7)

撮像素子に撮影した複数の計測対象物の変位前後の画像から任意の計測点の変位量を算出する変位計測装置において、撮像素子に撮影した画像を処理する画像処理部を備え、画像処理部は画像の複数の計測点から任意の一の計測点を基準点として選択する基準点選択手段と、基準点に基づいて各計測点の変位量を算出する変位量算出手段とを備え、基準点選択手段は先に撮影した画像の計測点の座標値と後から撮影した画像の計測点の座標値の変化量から基準点を選択しており、任意の計測点の座標値の変化量が所定量より小さいと判断した場合、かかる計測点を基準点とすることを特徴とする変位計測装置。   In a displacement measurement device that calculates the displacement amount of an arbitrary measurement point from images before and after displacement of a plurality of measurement objects photographed on an image sensor, the image processing unit includes an image processing unit that processes an image photographed on the image sensor. Reference point selection means comprising a reference point selection means for selecting any one measurement point as a reference point from a plurality of measurement points of the image, and a displacement amount calculation means for calculating the displacement amount of each measurement point based on the reference point The means selects the reference point from the coordinate value of the measurement point of the image taken first and the change amount of the coordinate value of the measurement point of the image taken later, and the change amount of the coordinate value of the arbitrary measurement point is a predetermined amount. A displacement measuring device characterized in that, when it is determined that it is smaller, the measurement point is set as a reference point. 撮影部は計測対象物に対して撮影方向の異なる2つ以上の地点に設置しており、一方の撮影部で撮影した画像と、他方の撮影部で撮影した画像とを合成して3次元画像を得ることを特徴とする請求項1に記載の変位計測装置。   The photographing unit is installed at two or more points with different photographing directions with respect to the measurement object, and a three-dimensional image is synthesized by combining an image photographed by one photographing unit and an image photographed by the other photographing unit. The displacement measuring apparatus according to claim 1, wherein: 計測対象物には予め設置した標的を設けており、標的を計測点としていることを特徴とする請求項1又は2に記載の変位計測装置。   The displacement measuring apparatus according to claim 1, wherein a target set in advance is provided on the measurement object, and the target is a measurement point. 標的は反射部を備えることを特徴とする請求項1〜3の何れか一項に記載の変位計測装置。   The displacement measuring apparatus according to claim 1, wherein the target includes a reflecting portion. 反射部は撮影部と標的との間の距離に応じて面積を変更することを特徴とする請求項4に記載の変位計測装置。   The displacement measuring apparatus according to claim 4, wherein the reflection unit changes an area according to a distance between the imaging unit and the target. 画像処理部は反射部の重心位置を算出する重心位置算出部を備え、画像処理部は重心位置算出部で得た重心位置から計測点の座標を特定することを特徴とする請求項1に記載の変位計測装置。   The image processing unit includes a centroid position calculation unit that calculates a centroid position of the reflection unit, and the image processing unit specifies the coordinates of the measurement point from the centroid position obtained by the centroid position calculation unit. Displacement measuring device. 画像処理部は撮像素子の1ピクセル以下のサブピクセル単位で計測点の座標を算出するサブピクセル算出部を備えることを特徴とする請求項6に記載の変位計測装置。   The displacement measurement apparatus according to claim 6, wherein the image processing unit includes a sub-pixel calculation unit that calculates the coordinates of the measurement point in units of sub-pixels of one pixel or less of the image sensor.
JP2007056535A 2007-03-07 2007-03-07 Displacement measuring device Pending JP2008216158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056535A JP2008216158A (en) 2007-03-07 2007-03-07 Displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056535A JP2008216158A (en) 2007-03-07 2007-03-07 Displacement measuring device

Publications (1)

Publication Number Publication Date
JP2008216158A true JP2008216158A (en) 2008-09-18

Family

ID=39836358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056535A Pending JP2008216158A (en) 2007-03-07 2007-03-07 Displacement measuring device

Country Status (1)

Country Link
JP (1) JP2008216158A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230423A (en) * 2009-03-26 2010-10-14 Saxa Inc Instrument and method for measuring amount of displacement
JP2011069797A (en) * 2009-09-28 2011-04-07 Saxa Inc Displacement measuring device and displacement measuring method
JP2011179980A (en) * 2010-03-01 2011-09-15 Saxa Inc Position measuring system using solid marker
CN106225777A (en) * 2016-06-27 2016-12-14 北京林业大学 A kind of measuring method of unmanned plane photographic light flux method elements of exterior orientation
CN106323176A (en) * 2016-08-09 2017-01-11 鞍钢集团矿业有限公司 Three dimensional displacement monitoring method for strip mine side slope
JP2018028439A (en) * 2016-08-15 2018-02-22 国立大学法人福井大学 Method of measuring displacement
JPWO2020194539A1 (en) * 2019-03-26 2020-10-01
CN114719770A (en) * 2022-04-02 2022-07-08 基康仪器股份有限公司 Deformation monitoring method and device based on image recognition and spatial positioning technology

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230423A (en) * 2009-03-26 2010-10-14 Saxa Inc Instrument and method for measuring amount of displacement
JP2011069797A (en) * 2009-09-28 2011-04-07 Saxa Inc Displacement measuring device and displacement measuring method
JP2011179980A (en) * 2010-03-01 2011-09-15 Saxa Inc Position measuring system using solid marker
CN106225777A (en) * 2016-06-27 2016-12-14 北京林业大学 A kind of measuring method of unmanned plane photographic light flux method elements of exterior orientation
CN106323176A (en) * 2016-08-09 2017-01-11 鞍钢集团矿业有限公司 Three dimensional displacement monitoring method for strip mine side slope
JP2018028439A (en) * 2016-08-15 2018-02-22 国立大学法人福井大学 Method of measuring displacement
JPWO2020194539A1 (en) * 2019-03-26 2020-10-01
WO2020194539A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Structure displacement measurement device
CN114719770A (en) * 2022-04-02 2022-07-08 基康仪器股份有限公司 Deformation monitoring method and device based on image recognition and spatial positioning technology
CN114719770B (en) * 2022-04-02 2024-04-02 基康仪器股份有限公司 Deformation monitoring method and device based on image recognition and space positioning technology

Similar Documents

Publication Publication Date Title
US10825198B2 (en) 3 dimensional coordinates calculating apparatus, 3 dimensional coordinates calculating method, 3 dimensional distance measuring apparatus and 3 dimensional distance measuring method using images
JP4832878B2 (en) Image composition processing apparatus and method
JP2008216158A (en) Displacement measuring device
JP6395423B2 (en) Image processing apparatus, control method, and program
JP4435145B2 (en) Method and apparatus for providing panoramic image by calibrating geometric information
JP5097765B2 (en) Measuring method, measuring program and measuring device
JP3426459B2 (en) Photogrammetry system and photogrammetry method
EP3421930B1 (en) Three-dimensional shape data and texture information generation system, photographing control program, and three-dimensional shape data and texture information generation method
US20180262737A1 (en) Scan colorization with an uncalibrated camera
JP6516558B2 (en) Position information processing method
JP2007225423A (en) Displacement measuring apparatus
JP2009042162A (en) Calibration device and method therefor
US7409152B2 (en) Three-dimensional image processing apparatus, optical axis adjusting method, and optical axis adjustment supporting method
WO2015068470A1 (en) 3d-shape measurement device, 3d-shape measurement method, and 3d-shape measurement program
KR20130121290A (en) Georeferencing method of indoor omni-directional images acquired by rotating line camera
JP2004342067A (en) Image processing method, image processor and computer program
JP2023546739A (en) Methods, apparatus, and systems for generating three-dimensional models of scenes
JP5991821B2 (en) Photogrammetry equipment
JP2011155412A (en) Projection system and distortion correction method in the same
CN111402315A (en) Three-dimensional distance measuring method for adaptively adjusting base line of binocular camera
JP4102386B2 (en) 3D information restoration device
JP2002163647A (en) Device and method for calculating lens distortion coefficient and computer readable recording medium recording lens distortion coefficient calculation program
JP4776983B2 (en) Image composition apparatus and image composition method
JP2005063041A (en) Three-dimensional modeling apparatus, method, and program
EP2106128B1 (en) Compound eye photographing apparatus, control method therefor, and program

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909