JP2008216089A - Instrument for measuring three-dimensional position and direction of specimen - Google Patents

Instrument for measuring three-dimensional position and direction of specimen Download PDF

Info

Publication number
JP2008216089A
JP2008216089A JP2007055044A JP2007055044A JP2008216089A JP 2008216089 A JP2008216089 A JP 2008216089A JP 2007055044 A JP2007055044 A JP 2007055044A JP 2007055044 A JP2007055044 A JP 2007055044A JP 2008216089 A JP2008216089 A JP 2008216089A
Authority
JP
Japan
Prior art keywords
dimensional
marker
dimensional position
subject
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055044A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hasegawa
智之 長谷川
Hideo Murayama
秀雄 村山
Taiga Yamaya
泰賀 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
National Institute of Radiological Sciences
Original Assignee
Kitasato Institute
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Institute, National Institute of Radiological Sciences filed Critical Kitasato Institute
Priority to JP2007055044A priority Critical patent/JP2008216089A/en
Publication of JP2008216089A publication Critical patent/JP2008216089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To continuously measure a three-dimensional position and a three-dimensional direction of a solid marker, by a device comprising only one solid marker and one continuous imaging device, even in a slender narrow space such as a gantry inside. <P>SOLUTION: This measuring instrument photographs the solid marker 40 arranged three-dimensionally with four or more of marks, using the imaging device (camera 24), measures an apparent two-dimensional position in a photographed image, and calculates the three-dimensional position and the three-dimensional direction of the solid marker 40, based on a known geometry of the solid marker 40. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被験体の3次元的位置及び向き測定装置に係り、特に、PET(ポジトロンCT)検査やシンチグラフィ検査等の被験者の動きを測定する必要がある放射線画像診断分野や放射線治療分野で、患者の部位(頭や身体)の移動量を計量する際に用いるのに好適な、被検体を撮影した画像から被検体の位置と向き及び角度を検出するための被験体の3次元的位置及び向き測定方法及び装置、及び、これに用いるための立体マーカ及び立体マーカ撮像装置に関する。   The present invention relates to a three-dimensional position and orientation measuring apparatus for a subject, and particularly in the field of radiological image diagnosis and radiotherapy where it is necessary to measure the movement of a subject such as a PET (positron CT) inspection or a scintigraphy inspection. The three-dimensional position of the subject for detecting the position, orientation and angle of the subject from an image of the subject, which is suitable for measuring the amount of movement of the patient's part (head or body) And a direction measuring method and apparatus, and a stereoscopic marker and a stereoscopic marker imaging apparatus for use therewith.

PET検査やシンチグラフィ検査等の核医学検査は、通常、数分〜数十分という長い撮像時間を必要とする。少しでも被験者(患者)が動いてしまえば画質が劣化し、診断精度が著しく悪化してしまうので、その間、特殊な器具を使用するなどして、被験者の動きを抑えるのが一般的である。このような身体的束縛は、取り分け高齢者、心身疾患者、幼児、小児にとっては大変な精神的・肉体的負担である。また、たとえ動きを抑える努力をしたとしても小さな動きは避けられない。近年の高分解能装置においては、そのわずかな動きでも画質に影響を与える可能性がある。従って、被験者の動きをある程度は許容しても最終的な画質の劣化が生じないような核医学イメージング手法が求められている。検査装置とは別の何らかの装置により被験者の動きを測定し、動きの影響を補正することができれば、この問題を解決できる。   Nuclear medicine examinations such as PET examinations and scintigraphic examinations usually require a long imaging time of several minutes to several tens of minutes. If the subject (patient) moves even a little, the image quality deteriorates and the diagnostic accuracy deteriorates remarkably. During this time, it is common to suppress the subject's movement by using a special instrument. Such physical restraint is a great mental and physical burden for the elderly, the physically and mentally ill, infants and children. In addition, even if efforts are made to suppress movement, small movements are inevitable. In recent high-resolution devices, even a slight movement may affect the image quality. Therefore, there is a need for a nuclear medicine imaging technique that does not cause final image quality degradation even if the movement of the subject is allowed to some extent. This problem can be solved if the movement of the subject can be measured by some device other than the inspection device and the influence of the movement can be corrected.

このような目的で、従来技術において、図1に示す如く、被験者10から所定距離離れて設置された複数(図では2台)のデジタルビデオカメラ等の光学的連続撮像装置21、22により、検査中の被験者10の頭部の動きを2眼ステレオ方式で測定する場合、撮像装置から見える部位の少なくとも3ヵ所(図では4ヵ所)に取り付けた点状マーカ31、32、33、34を、離れた位置に置かれた2台以上の連続撮像装置21、22により互いに異なる方向から連続撮像し、得られた像全体の中から画像処理により各点状マーカ像を抽出し、その抽出像から各点状マーカの三次元座標を三角測量法により計算して複数のマーカ座標値を得、そして得られた各座標値を組合せることで被験者10の位置や向きを計算していた。   For this purpose, as shown in FIG. 1, in the prior art, a plurality of (two in the figure) optical continuous imaging devices 21 and 22 such as digital video cameras installed at a predetermined distance from the subject 10 are used for inspection. When measuring the movement of the head of the subject 10 in the binocular stereo method, the point-shaped markers 31, 32, 33, 34 attached to at least three places (four places in the figure) that can be seen from the imaging device are separated. Two or more continuous imaging devices 21 and 22 placed at different positions are continuously imaged from different directions, and each point marker image is extracted from the entire obtained image by image processing. The three-dimensional coordinates of the point marker are calculated by triangulation to obtain a plurality of marker coordinate values, and the position and orientation of the subject 10 are calculated by combining the obtained coordinate values.

又、特許文献1には、手術中の患者に、磁場を発生する基準ユニットを備えたヘッドセットを装着し、前記基準ユニットの磁場をセンサによって検出して、手術器具の位置を検出することが記載されている。   In Patent Document 1, a patient equipped with a headset including a reference unit that generates a magnetic field is attached to a patient during surgery, and the position of the surgical instrument is detected by detecting the magnetic field of the reference unit with a sensor. Are listed.

又、特許文献2には、特定のマーカを使用せずに、画像中から、被験者の顔の眉、目、鼻、ほくろ、口等の特徴的な認識対象(特徴点)を抽出し、その3次元位置を2眼ステレオ法により計測し、その特徴点の相対的な位置変化から、頭部の動きを測定することが記載されている。   Further, Patent Document 2 extracts characteristic recognition objects (feature points) such as eyebrows, eyes, nose, moles, and mouths of a subject's face from an image without using a specific marker. It describes that a three-dimensional position is measured by a binocular stereo method, and a head movement is measured from a relative position change of the feature point.

又、発明者らが先に提案した特許文献3には、立体マーカを用いて、1台のカメラのみで対象の位置と向きを計測する手法が記載されている。   Patent Document 3 previously proposed by the inventors describes a method of measuring the position and orientation of an object using only a single camera using a three-dimensional marker.

一方、医療分野以外にも目を向けると、特許文献4や5には、光学的手段で撮像した画像中から対象物の位置を抽出するための平面状のターゲットやマーカが記載されている。   On the other hand, looking beyond the medical field, Patent Documents 4 and 5 describe planar targets and markers for extracting the position of an object from an image captured by optical means.

又、特許文献6には、向き(対象の傾き)を高精度で測定するための、図2に示すような2段の平行な円形などの面をもつ立体的なターゲットが提案されている。   Further, Patent Document 6 proposes a three-dimensional target having two parallel circular surfaces as shown in FIG. 2 for measuring the direction (the inclination of the object) with high accuracy.

特開平11−318937号公報JP 11-318937 A 特開平11−63927号公報Japanese Patent Laid-Open No. 11-63927 特開2005−111115号公報JP-A-2005-111115 特開平9−178447号公報JP-A-9-178447 特開平7−98208号公報JP 7-98208 A 特開平11−63952号公報JP-A-11-63952

しかしながら、図1に示した2眼ステレオ方式による方法は、少なくとも2台の撮像装置の間隔、及び、それらと測定対象物との距離を、ある程度離さねばならず、ガントリ内部のような狭い空間には適用できないという問題点があった。   However, in the method using the binocular stereo method shown in FIG. 1, the distance between at least two imaging devices and the distance between them and the measurement object must be separated to some extent, and the narrow space such as the inside of the gantry is used. There was a problem that was not applicable.

又、特許文献1のように磁気センサを用いる方法では、磁場発信装置が必要になると共に、医療装置等、磁場に影響を与える物質が測定に影響を及ぼさないように測定状況が限定されるという問題点があった。   In addition, in the method using a magnetic sensor as in Patent Document 1, a magnetic field transmission device is required, and the measurement situation is limited so that a substance that affects the magnetic field, such as a medical device, does not affect the measurement. There was a problem.

又、特許文献2のように画像中から特徴的な認識対象を抽出する方法では、髪の毛や洋服等の影響や、複雑な変形運動による影響を受け易いという問題点があり、又、複数の撮像装置が必要であるため図1の手法と同様な問題点があった。   In addition, the method of extracting a characteristic recognition target from an image as in Patent Document 2 has a problem that it is easily affected by the influence of hair, clothes, etc., and complicated deformation motion, and a plurality of imaging operations. Since an apparatus is necessary, there is a problem similar to the method of FIG.

又、特許文献3の方法は、カメラを1台のみしか使用しないため、ガントリ内部のような細長い空間にも設置可能ではあるが、カメラと対象物との距離を表す座標を正確には測定できず、3次元的な位置を計測するには、何らかの補助的測定手段を併用しなければならないという問題点があった。   In addition, since the method of Patent Document 3 uses only one camera, it can be installed in an elongated space such as the inside of the gantry, but can accurately measure the coordinates representing the distance between the camera and the object. First, in order to measure a three-dimensional position, there is a problem that some auxiliary measuring means must be used together.

又、特許文献4や5で用いられているターゲットやマーカは、いずれも平面的なものであり、向きや回転角度の測定精度には限界があった。   In addition, the targets and markers used in Patent Documents 4 and 5 are both planar, and there is a limit to the measurement accuracy of the direction and the rotation angle.

又、特許文献6に用いられている立体的なターゲットでは、ターゲットに目印が付けられていないため、ターゲット中心軸の周りの回転角度を検出することができず、更にターゲット上に2つの平行な図形が存在する必要があるため、比較的大きなターゲットを用いる場合には、被験者の頭部等には取り付け難いという問題点があった。   Further, in the three-dimensional target used in Patent Document 6, since the target is not marked, the rotation angle around the target central axis cannot be detected, and two parallel targets are further formed on the target. Since a figure needs to exist, there is a problem that it is difficult to attach to a subject's head or the like when a relatively large target is used.

本発明は、前記従来の問題点を解決するべくなされたもので、ガントリ内部のような狭い空間であっても、1個の立体マーカと1台の連続撮像装置のみからなる装置で、立体マーカの3次元的な位置と3次元的な向きを連続して測定可能とすることを課題とする。   The present invention has been made in order to solve the above-described conventional problems. Even in a narrow space such as the inside of a gantry, the present invention is an apparatus comprising only one stereoscopic marker and one continuous imaging device. It is an object to enable continuous measurement of the three-dimensional position and the three-dimensional orientation.

本発明は4以上の目印が立体的に配置されている立体マーカを、撮像装置を用いて撮影し、撮影画像中の見かけの2次元的位置を計測し、立体マーカの既知の幾何学的形状をもとに、立体マーカの3次元的位置と向きを計算することにより、前記課題を解決したものである。   In the present invention, a three-dimensional marker in which four or more marks are three-dimensionally arranged is photographed using an imaging device, an apparent two-dimensional position in the photographed image is measured, and a known geometric shape of the three-dimensional marker is measured. Based on the above, the above-mentioned problem is solved by calculating the three-dimensional position and orientation of the three-dimensional marker.

前記立体マーカと撮像装置の距離は、見かけの拡大率を十分な精度で計測できるように、十分に小さくすることが望ましい。   It is desirable that the distance between the three-dimensional marker and the imaging device be sufficiently small so that the apparent magnification can be measured with sufficient accuracy.

前記立体マーカを、検査時に被験体の検査部位近傍面に一つ取り付け、被験体測定部位の動きを計量することができる。   One of the three-dimensional markers can be attached to the surface near the examination site of the subject at the time of examination, and the movement of the subject measurement site can be measured.

本発明は、又、3以上の目印が平面的に配置され、その平面から撮像装置側に向かって所定の高さに1以上の目印を有することにより、4以上の目印が立体的に配置されていることを特徴とする、前記被験体の3次元的位置及び向き測定方法に用いるための立体マーカを提供するものである。   In the present invention, three or more marks are arranged in a plane, and one or more marks are arranged at a predetermined height from the plane toward the image pickup apparatus, whereby four or more marks are arranged in three dimensions. The present invention provides a three-dimensional marker for use in the method for measuring the three-dimensional position and orientation of the subject.

前記所定の高さは、3次元的向きを表す3種類の角度座標を高精度で計測できるように、十分に大きくすることが望ましい。   It is desirable that the predetermined height be sufficiently large so that three types of angular coordinates representing a three-dimensional orientation can be measured with high accuracy.

本発明は、又、前記立体マーカの目印を動画撮影し、画像中における目印の2次元的位置を測定するための一台のカメラと、動画処理装置を備えたことを特徴とする、前記被験体の3次元的位置及び向き測定方法に用いるための立体マーカ撮像装置を提供するものである。   The present invention is also characterized by comprising a camera for capturing a moving image of the marker of the three-dimensional marker and measuring a two-dimensional position of the marker in the image, and a moving image processing apparatus. A stereoscopic marker imaging device for use in a method for measuring a three-dimensional position and orientation of a body is provided.

本発明は、又、前記の立体マーカと、前記の立体マーカ撮像装置と、該立体マーカ撮像装置を用いて撮像された画像中の見かけの2次元的位置を計測し、立体マーカの既知の幾何学的形状をもとに、立体マーカの3次元的位置と向きを計算する手段と、を備えたことを特徴とする被験体の3次元的位置及び向き測定装置を提供するものである。   The present invention also measures the apparent two-dimensional position in the image picked up using the three-dimensional marker, the three-dimensional marker imaging device, and the three-dimensional marker imaging device. And a means for calculating the three-dimensional position and orientation of a three-dimensional marker based on the geometric shape.

前記立体マーカ撮像装置は、ガントリに配設することができる。   The three-dimensional marker imaging device can be disposed in a gantry.

本発明によれば、ガントリ内部のような細長い狭い空間であっても、1個の立体マーカと1台の連続撮像装置のみからなる装置で、三角測量法を使うことなく立体マーカの3次元的位置と3次元的向きを計測でき、それらの時間的変化を追跡できる。   According to the present invention, even in a narrow and narrow space such as the inside of a gantry, it is an apparatus composed of only one stereoscopic marker and one continuous imaging device, and the three-dimensional marker 3D can be used without using triangulation. Position and 3D orientation can be measured and their temporal changes can be tracked.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る立体マーカ40は、図3に示す如く、所定の平面に3つ以上の目印41、42、43が付され、その平面から所定の高さに少なくとも1つの目印44が付されたものであり、PET検査やSPECT検査などの核医学検査時に被験者の身体面に取り付けて使用するものである。   As shown in FIG. 3, the three-dimensional marker 40 according to the present invention has three or more marks 41, 42, 43 on a predetermined plane, and at least one mark 44 at a predetermined height from the plane. It is used by attaching to the body surface of a subject at the time of nuclear medicine inspection such as PET inspection or SPECT inspection.

前記立体マーカ40を撮像する連続撮像装置(単にカメラと称する)24は、図3に示す如く、従来の技術と同様にデジタルビデオカメラなど、所定位置から立体マーカ40の目印41〜44を連続して撮像可能なものである。   As shown in FIG. 3, a continuous imaging device (simply referred to as a camera) 24 that images the stereoscopic marker 40 continuously includes marks 41 to 44 of the stereoscopic marker 40 from a predetermined position, such as a digital video camera, as in the prior art. Can be captured.

前記カメラ24で取得された画像を処理するコンピュータ部50は、図3に示した如く、撮像された画像を処理する画像処理部52と、続く演算処理部54と、予め立体マーカ40の目印41〜44の配置、形状、相対位置などを記憶しておく記憶部56とで構成することができる。   As shown in FIG. 3, the computer unit 50 that processes the image acquired by the camera 24 includes an image processing unit 52 that processes the captured image, a subsequent arithmetic processing unit 54, and a mark 41 of the three-dimensional marker 40 in advance. The storage unit 56 that stores the arrangement, shape, relative position, and the like of .about.44 can be configured.

前記画像処理部52においては、所定の画像処理により、先ず立体マーカ40上の目印41〜44が2次元画像中で抽出される。但し、カメラは全ての目印41〜44の位置や向きの変化が見える位置にあらかじめ設置されているものとする。   In the image processing unit 52, the marks 41 to 44 on the three-dimensional marker 40 are first extracted from the two-dimensional image by predetermined image processing. However, it is assumed that the camera is installed in advance at a position where changes in the positions and orientations of all the marks 41 to 44 can be seen.

被験者の動きに伴う立体マーカ40の3次元的位置と3次元的向きの変化により、抽出2次元画像上での見掛の目印41〜44の位置が変化する。逆に、2次元画像中における目印41〜44の2次元的な位置から、図4に手順を示す演算により、3次元的位置と3次元的向きを計測することができる。   Due to the change in the three-dimensional position and the three-dimensional direction of the three-dimensional marker 40 accompanying the movement of the subject, the positions of the apparent marks 41 to 44 on the extracted two-dimensional image change. Conversely, from the two-dimensional positions of the marks 41 to 44 in the two-dimensional image, the three-dimensional position and the three-dimensional direction can be measured by the calculation shown in the procedure of FIG.

まず、図4のステップ100で初期設定する。具体的には、立体マーカ40に付された目印41〜44の個数をn(自然数)(この例ではn=4)とする。図5に示す如く、所定の目印iと目印j(iとjはn以下の自然数でi<j)の距離をlij、目印iで形成される平面Sからの目印jの高さをhjとする。この例では、所定の高さに付された目印は1つのみなので、高さをhと記す。 First, initialization is performed in step 100 of FIG. Specifically, the number of the marks 41 to 44 attached to the three-dimensional marker 40 is n (natural number) (n = 4 in this example). As shown in FIG. 5, the distance between a predetermined mark i and the mark j (i and j are natural numbers less than n and i <j) is l ij , and the height of the mark j from the plane S formed by the mark i is h j . In this example, since only one mark is given to the predetermined height, the height is denoted as h.

次に、図6に示す如く、前記立体マーカ40をカメラ24の中心光軸を横軸Z軸とし、Y軸を鉛直上向きとする座標系の中に設置し、原点に置かれたカメラ仮想視点から観察するとする。原点から目印iまでの距離をdi、目印iの極座標系での極角をθi、位相角をφiとする。 Next, as shown in FIG. 6, the three-dimensional marker 40 is installed in a coordinate system in which the central optical axis of the camera 24 is the horizontal axis Z-axis and the Y-axis is vertically upward, and the camera virtual viewpoint placed at the origin. Let's observe from. The distance from the origin to the mark i is d i , the polar angle of the mark i in the polar coordinate system is θ i , and the phase angle is φ i .

次に、図7に示す如く、カメラ24で撮影したある時刻における2次元画像中において、目印iのピクセル座標を(pxi、pyi)、原点からの距離をpri、位相角をψiとする。 Next, as shown in FIG. 7, in a two-dimensional image taken at a certain time taken by the camera 24, the pixel coordinates of the mark i are (px i , py i ), the distance from the origin is pr i , and the phase angle is ψ i. And

次に、カメラ仮想視点を中心とした半径d0の球面を想定し、これを基準球面と考え、基準球面上における極角θと位相角φを対応する2次元画像中の座標pr、ψ、及びd0の関数としてθ=θ(pr、ψ、d0)、φ=φ(pr、ψ、d0)のように表せるように校正を行う。ちなみに、カメラ特性の線形性が優れていれば、近似的には、
θ≒c×pr(cは定数)、
φ≒ψ
とすることができる。
Next, assuming a spherical surface with a radius d 0 centered on the camera virtual viewpoint, this is considered as a reference spherical surface, and the polar angle θ and phase angle φ on the reference spherical surface correspond to coordinates pr, ψ, and theta = theta as a function of d 0 (pr, ψ, d 0), φ = φ (pr, ψ, d 0) is calibrated as expressed as. By the way, if the linearity of the camera characteristics is excellent, approximately,
θ≈c × pr (c is a constant),
φ ≒ ψ
It can be.

以上により、xyz座標系における目印iの3次元座標(xi,yi,zi)は以下のように表せる(ステップ110)。 Thus, the three-dimensional coordinates (x i , y i , z i ) of the mark i in the xyz coordinate system can be expressed as follows (step 110).

xi=di×sin(θi)×cos(φi) …(1)
yi=di×sin(θi)×sin(φi) …(2)
zi=di×cos(θi) …(3)
θi=θi(pri、ψi、di)≒c×pri …(4)
φi=φi(pri、ψi、di)≒ψi …(5)
x i = d i × sin (θ i ) × cos (φ i ) (1)
y i = d i × sin (θ i ) × sin (φ i ) (2)
z i = d i × cos (θ i ) (3)
θ i = θ i (pr i , ψ i , d i ) ≈c × pr i (4)
φ i = φ i (pr i , ψ i , d i ) ≈ψ i (5)

次に、目印間の距離は既知なので、次の制約条件が成立する。   Next, since the distance between the landmarks is known, the following constraint condition is satisfied.

lij2=|(xi,yi,zi)−(xj,yj,zj)|2 …(6)
(i、jはn以下の自然数で、i<j)
lij 2 = | (x i , y i , z i ) − (x j , y j , z j ) | 2 (6)
(i and j are natural numbers less than n, i <j)

制約条件の数はn(n−1)/2個、演算により決定しなければならない変数はdi(iはn以下の自然数)でn個なので、nが4以上ならば十分にdiを決定することが可能である。 The number of constraints n (n-1) / 2 pieces, since the variables that must be determined by calculation of the n by d i (i is a natural number not exceeding n), a sufficiently d i If n is 4 or more It is possible to determine.

実際の演算処理においては、最小にすべき関数を適切に定義し、非線形の最小化演算法によりdiを決定する(ステップ120)。例えば、最小化関数δを以下で定義する。 In actual calculation processing, a function to be minimized is appropriately defined, and d i is determined by a non-linear minimization calculation method (step 120). For example, the minimization function δ is defined below.

δ=Σ|lij 2−|(xi,yi,zi)−(xj,yj,zj)|2| …(7) δ = Σ | l ij 2 − | (x i , y i , z i ) − (x j , y j , z j ) | 2 | (7)

全ての目印について変数diが求まれば、目印の座標(xi,yi,zi)が求まり(ステップ130)、結果として、立体マーカ40の3次元的位置と3次元的向きを計測できる。 When the variables d i are obtained for all the landmarks, the coordinates (x i , y i , z i ) of the landmarks are obtained (step 130), and as a result, the three-dimensional position and the three-dimensional orientation of the three-dimensional marker 40 are measured. it can.

次に、立体マーカとすることで、向きの変化における極角の測定精度が向上することを説明する。図8に示す如く、立体マーカ40が中心光軸に対してγの角度(極角)だけ微小に変化したとする。所定の高さhの位置に目印があるので、2次元画像中における目印の見掛けの位置の変化はh×sinγ〜hγに比例する。もし、立体マーカではなく平面マーカならば、2次元画像中における目印の見掛けの位置の変化は、立体マーカの底面の半径をr程度とすると、
r×(1−cosγ)∝γ
となり、γの微小変化を測定することが困難である。
Next, it will be described that the polar marker measurement accuracy in the change in orientation is improved by using a three-dimensional marker. As shown in FIG. 8, it is assumed that the three-dimensional marker 40 is slightly changed by an angle γ (polar angle) with respect to the central optical axis. Since there is a mark at the position of the predetermined height h, the change in the apparent position of the mark in the two-dimensional image is proportional to h × sinγ to hγ. If the marker is a planar marker instead of a three-dimensional marker, the change in the apparent position of the mark in the two-dimensional image is as follows.
r × (1-cosγ) ∝γ 2
Therefore, it is difficult to measure a minute change in γ.

次に、従来技術の特許文献3で問題となっていた、立体マーカとカメラの距離方向の動きの計測精度の向上について、試行結果を含めて説明する。距離zがdzだけ微小に変化するとすれば、2次元画像中における見掛けの拡大率の変化の割合はdz/zの程度である。2次元画像中におけるマーカの大きさの程度がピクセル数にしてpr程度とすれば、検出可能なzの変化はdz〜z/pr程度となる。即ち、立体マーカを数百ピクセル程度の大きさで撮影すれば、距離zの数百分の1程度の距離測定精度が得られることになる。図8に示す実施例では、ピクセル数が高々640×480のデジタル動画カメラ24を、立体マーカ40に距離20cm程度まで近づけ撮影して動きを計測した場合、prは200ピクセル程度であり、z方向の測定精度として良好な測定精度が得られた。   Next, an improvement in the measurement accuracy of the movement in the distance direction between the stereoscopic marker and the camera, which has been a problem in Patent Document 3 of the prior art, will be described including trial results. If the distance z slightly changes by dz, the rate of change of the apparent enlargement ratio in the two-dimensional image is about dz / z. If the size of the marker in the two-dimensional image is about pr in terms of the number of pixels, the detectable change in z is about dz to z / pr. That is, if the stereoscopic marker is photographed with a size of about several hundred pixels, a distance measurement accuracy of about one hundredth of the distance z can be obtained. In the embodiment shown in FIG. 8, when the motion of the digital video camera 24 having a maximum number of pixels of 640 × 480 is measured by moving the stereoscopic marker 40 close to a distance of about 20 cm, pr is about 200 pixels, and the z direction Good measurement accuracy was obtained.

前記カメラ24は、図9に例示する如く、ガントリ60内、例えばガントリ上部60Aの被験者10に装着した立体マーカ40の近傍に配設することができる。図において、60Bはガントリ下部である。   As illustrated in FIG. 9, the camera 24 can be disposed in the gantry 60, for example, in the vicinity of the three-dimensional marker 40 attached to the subject 10 in the upper gantry 60A. In the figure, 60B is the lower part of the gantry.

前記実施形態では、4つの目印を持つ立体マーカを用いていたが、目印の数は4つに限定されず、5つ以上であっても良い。また、連続撮像装置もデジタル動画カメラに限定されない。   In the above embodiment, a three-dimensional marker having four marks is used, but the number of marks is not limited to four and may be five or more. Further, the continuous imaging device is not limited to a digital moving camera.

更に、本発明の立体マーカ撮像装置を2台以上組み合わせ、冗長性を高め、データの相互比較などにより計測精度を高めることができる。   Furthermore, it is possible to combine two or more three-dimensional marker imaging devices of the present invention, increase redundancy, and increase measurement accuracy by comparing data with each other.

2眼ステレオ方式による従来技術の一例を示す斜視図The perspective view which shows an example of the prior art by a twin-lens stereo system 特開平11−63952で提案された立体マーカの例を示す斜視図The perspective view which shows the example of the solid marker proposed by Unexamined-Japanese-Patent No. 11-63952 本発明の実施形態による測定状況を示す斜視図The perspective view which shows the measurement condition by embodiment of this invention 前記実施形態の演算処理手順を示す流れ図The flowchart which shows the arithmetic processing procedure of the said embodiment 前記実施形態で用いた立体マーカを示す斜視図The perspective view which shows the solid marker used in the said embodiment 本発明の原理を説明するための、カメラ仮想視点と目印の位置関係を示す正面図The front view which shows the positional relationship of a camera virtual viewpoint and a mark for demonstrating the principle of this invention 同じく2次元撮影画像中における目印の位置を示す正面図Similarly, a front view showing the position of the mark in the two-dimensional photographed image 同じく極角と距離の測定精度を説明するための斜視図Similarly perspective view for explaining the measurement accuracy of polar angle and distance 前記実施形態のガントリへの配設例を示す断面図Sectional drawing which shows the example of arrangement | positioning to the gantry of the said embodiment

符号の説明Explanation of symbols

10…被験者
24…連続撮像装置(カメラ)
40…立体マーカ
41〜44…目印
50…コンピュータ部
52…画像処理部
54…演算処理部
56…記憶部
60…ガントリ
10 ... Subject 24 ... Continuous imaging device (camera)
40 ... Solid marker 41-44 ... Mark 50 ... Computer part 52 ... Image processing part 54 ... Arithmetic processing part 56 ... Storage part 60 ... Gantry

Claims (6)

4以上の目印が立体的に配置されている立体マーカを、撮像装置を用いて撮影し、
撮影画像中の見かけの2次元的位置を計測し、
立体マーカの既知の幾何学的形状をもとに、立体マーカの3次元的位置と向きを計算することを特徴とする被験体の3次元的位置及び向き測定方法。
Photograph a three-dimensional marker in which four or more landmarks are arranged in three dimensions using an imaging device,
Measure the apparent two-dimensional position in the captured image,
A method for measuring a three-dimensional position and orientation of a subject, wherein the three-dimensional position and orientation of a three-dimensional marker are calculated based on a known geometric shape of the three-dimensional marker.
前記立体マーカを、検査時に被験体の検査部位近傍面に取り付け、被験体測定部位の動きを計量することを特徴とする請求項1に記載の被験体の3次元的位置及び向き測定方法。   The method for measuring a three-dimensional position and orientation of a subject according to claim 1, wherein the three-dimensional marker is attached to a surface near the examination site of the subject at the time of examination, and the movement of the subject measurement site is measured. 3以上の目印が平面的に配置され、その平面から撮像装置側に向かって所定の高さに1以上の目印を有することにより、4以上の目印が立体的に配置されていることを特徴とする、請求項1に記載の被験体の3次元的位置及び向き測定方法に用いるための立体マーカ。   Three or more marks are arranged in a plane, and one or more marks are arranged at a predetermined height from the plane toward the image pickup apparatus, whereby four or more marks are arranged in three dimensions. A three-dimensional marker for use in the method for measuring a three-dimensional position and orientation of a subject according to claim 1. 請求項3に記載の立体マーカの目印を動画撮影し、画像中における目印の2次元的位置を測定するための一台のカメラと、動画処理装置を備えたことを特徴とする、請求項1に記載の被験体の3次元的位置及び向き測定方法に用いるための立体マーカ撮像装置。   A moving image processing apparatus comprising: a camera for capturing a moving image of the mark of the three-dimensional marker according to claim 3 and measuring a two-dimensional position of the mark in the image; A three-dimensional marker imaging device for use in the method for measuring a three-dimensional position and orientation of a subject described in 1. 請求項3に記載の立体マーカと、
請求項4に記載の立体マーカ撮像装置と、
該立体マーカ撮像装置を用いて撮像された画像中の見かけの2次元的位置を計測し、立体マーカの既知の幾何学的形状をもとに、立体マーカの3次元的位置と向きを計算する手段と、
を備えたことを特徴とする被験体の3次元的位置及び向き測定装置。
The three-dimensional marker according to claim 3,
The three-dimensional marker imaging device according to claim 4,
The apparent two-dimensional position in the image imaged using the three-dimensional marker imaging device is measured, and the three-dimensional position and orientation of the three-dimensional marker are calculated based on the known geometric shape of the three-dimensional marker. Means,
A three-dimensional position and orientation measuring device for a subject characterized by comprising:
前記立体マーカ撮像装置が、ガントリに配設されていることを特徴とする請求項5に記載の被験体の3次元的位置及び向き測定装置。   6. The three-dimensional position and orientation measuring device for a subject according to claim 5, wherein the three-dimensional marker imaging device is disposed in a gantry.
JP2007055044A 2007-03-06 2007-03-06 Instrument for measuring three-dimensional position and direction of specimen Pending JP2008216089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055044A JP2008216089A (en) 2007-03-06 2007-03-06 Instrument for measuring three-dimensional position and direction of specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055044A JP2008216089A (en) 2007-03-06 2007-03-06 Instrument for measuring three-dimensional position and direction of specimen

Publications (1)

Publication Number Publication Date
JP2008216089A true JP2008216089A (en) 2008-09-18

Family

ID=39836296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055044A Pending JP2008216089A (en) 2007-03-06 2007-03-06 Instrument for measuring three-dimensional position and direction of specimen

Country Status (1)

Country Link
JP (1) JP2008216089A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839687A (en) * 2009-03-16 2010-09-22 富士施乐株式会社 Position measurement system and position measurement method
JP2010223909A (en) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd Position/attitude recognizing method, part holding method, part arranging method, part assembling method, position/attitude recognizing apparatus, part holding apparatus, part arranging apparatus and part assembling apparatus
KR101199764B1 (en) 2011-02-23 2012-11-09 가천대학교 산학협력단 Relative coordinate extraction device and medical images system using the same
WO2013162093A1 (en) * 2012-04-25 2013-10-31 가천대학교 산학협력단 Apparatus for extracting relative coordinates and medical imaging system using same
WO2013162092A1 (en) * 2012-04-25 2013-10-31 가천대학교 산학협력단 Medical imaging system using position monitoring system for merging medical images
JP2015223459A (en) * 2014-05-30 2015-12-14 株式会社吉田製作所 Method for reducing motion artifact in dental tomography apparatus
JP2015223458A (en) * 2014-05-30 2015-12-14 株式会社吉田製作所 Dental X-ray CT imaging system
CN105279795A (en) * 2014-07-09 2016-01-27 先科媒体有限公司 Augmented reality system based on 3D marker
JP6475311B1 (en) * 2017-12-20 2019-02-27 コー・ヤング・テクノロジー・インコーポレーテッド Optical tracking system and optical tracking method
JP6475312B1 (en) * 2017-12-20 2019-02-27 コー・ヤング・テクノロジー・インコーポレーテッド Optical tracking system and optical tracking method
EP3209204B1 (en) * 2014-10-20 2023-02-15 Modjaw Method and system for modeling the mandibular kinematics of a patient

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839687A (en) * 2009-03-16 2010-09-22 富士施乐株式会社 Position measurement system and position measurement method
JP2010223909A (en) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd Position/attitude recognizing method, part holding method, part arranging method, part assembling method, position/attitude recognizing apparatus, part holding apparatus, part arranging apparatus and part assembling apparatus
KR101199764B1 (en) 2011-02-23 2012-11-09 가천대학교 산학협력단 Relative coordinate extraction device and medical images system using the same
WO2013162093A1 (en) * 2012-04-25 2013-10-31 가천대학교 산학협력단 Apparatus for extracting relative coordinates and medical imaging system using same
WO2013162092A1 (en) * 2012-04-25 2013-10-31 가천대학교 산학협력단 Medical imaging system using position monitoring system for merging medical images
JP2015223459A (en) * 2014-05-30 2015-12-14 株式会社吉田製作所 Method for reducing motion artifact in dental tomography apparatus
JP2015223458A (en) * 2014-05-30 2015-12-14 株式会社吉田製作所 Dental X-ray CT imaging system
CN105279795B (en) * 2014-07-09 2018-07-24 先科媒体有限公司 Augmented reality system based on 3D marker
CN105279795A (en) * 2014-07-09 2016-01-27 先科媒体有限公司 Augmented reality system based on 3D marker
EP3209204B1 (en) * 2014-10-20 2023-02-15 Modjaw Method and system for modeling the mandibular kinematics of a patient
JP6475311B1 (en) * 2017-12-20 2019-02-27 コー・ヤング・テクノロジー・インコーポレーテッド Optical tracking system and optical tracking method
JP6475312B1 (en) * 2017-12-20 2019-02-27 コー・ヤング・テクノロジー・インコーポレーテッド Optical tracking system and optical tracking method
JP2019113394A (en) * 2017-12-20 2019-07-11 コー・ヤング・テクノロジー・インコーポレーテッド Optical tracking system and optical tracking method
JP2019113393A (en) * 2017-12-20 2019-07-11 コー・ヤング・テクノロジー・インコーポレーテッド Optical tracking system and optical tracking method
US10692239B2 (en) 2017-12-20 2020-06-23 Koh Young Technology Inc. Optical tracking system and optical tracking method
US11033337B2 (en) 2017-12-20 2021-06-15 Koh Young Technology Inc. Optical tracking system and optical tracking method
US11436750B2 (en) 2017-12-20 2022-09-06 Koh Young Technology Inc. Optical tracking system and optical tracking method

Similar Documents

Publication Publication Date Title
JP2008216089A (en) Instrument for measuring three-dimensional position and direction of specimen
US11123144B2 (en) Registration of frames of reference
US6640127B1 (en) Surgical operation navigating system using a reference frame
US5967979A (en) Method and apparatus for photogrammetric assessment of biological tissue
CN107238396A (en) The pose recovery of ultrasonic transducer
EP3195823B1 (en) Optical tracking system
EP2506215B1 (en) Information processing apparatus, imaging system, information processing method, and program causing computer to execute information processing
JP3910239B2 (en) Medical image synthesizer
US10078906B2 (en) Device and method for image registration, and non-transitory recording medium
KR102247072B1 (en) Shape restoration device and method using ultrasonic probe
CN205849553U (en) A kind of location of operation scale
Schaller et al. Time-of-flight sensor for patient positioning
KR102285337B1 (en) Calibration method and apparatus of x-ray apparatus
JP2017153827A (en) Composite image presentation system
KR20160057024A (en) Markerless 3D Object Tracking Apparatus and Method therefor
US11439336B2 (en) Biological information measurement system and recording medium
JP2000020696A (en) Medical image compositing apparatus
JP4653461B2 (en) Digital X-ray tomography apparatus
Corbi et al. Joint calibration of RGB and X-ray cameras
JP2020054788A (en) Biological information measurement system and biological information measurement program
JP3041420B1 (en) Endoscope system and recording medium storing control program for detecting depth information of endoscope image
US10657726B1 (en) Mixed reality system and method for determining spatial coordinates of dental instruments
EP4295775A1 (en) Patient monitoring during a scan
Chae et al. Coordinates tracking and augmented reality system using bipolar X-ray fluoroscopy and stereo vision for image-guided neurosurgery
EP4295774A1 (en) Patient monitoring during a scan