JP2008216032A - Underground position detection method - Google Patents

Underground position detection method Download PDF

Info

Publication number
JP2008216032A
JP2008216032A JP2007053691A JP2007053691A JP2008216032A JP 2008216032 A JP2008216032 A JP 2008216032A JP 2007053691 A JP2007053691 A JP 2007053691A JP 2007053691 A JP2007053691 A JP 2007053691A JP 2008216032 A JP2008216032 A JP 2008216032A
Authority
JP
Japan
Prior art keywords
magnet
axis
coordinate
magnetic field
axis component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007053691A
Other languages
Japanese (ja)
Other versions
JP5131729B2 (en
Inventor
Jun Kawakami
純 川上
Kanji Higaki
貫司 檜垣
Hiroyasu Ishii
裕泰 石井
Tadashi Nakatsuka
正 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Taisei Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Taisei Corp
Priority to JP2007053691A priority Critical patent/JP5131729B2/en
Publication of JP2008216032A publication Critical patent/JP2008216032A/en
Application granted granted Critical
Publication of JP5131729B2 publication Critical patent/JP5131729B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an underground position detection method, by which the underground position of a drilling unit can be detected easily, using a simple structure, without being affected by obstructions on the ground. <P>SOLUTION: The underground position detection method is employed for detecting the underground position of the drilling unit 1. A magnet 2 is provided in the drilling unit 1; a rotating magnetic field is generated by rotating this magnet 2 on a plane containing an x-axis and a z-axis, orthogonal to a y-axis stretching in the axial direction of the drilling unit 1; the x-axis component and the z-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet 2 are measured at, at least three measuring points P<SB>1</SB>, P<SB>2</SB>, P<SB>3</SB>, respectively as a time calendar; from the x-axis and z-axis components, phase differences among the individual measuring points P<SB>1</SB>, P<SB>2</SB>, P<SB>3</SB>are calculated respectively; each of the acquired phase differences is considered as a viewing angle, by which the position of the magnet 2 is viewed from each projection point which is a respectively projected point of each measuring point to an xz-plane containing an origin; and from this viewing angle the x coordinate and z-coordinate of the position of the magnet 2 are calculated, whereas, the y-coordinate of the position of the magnet 2 is calculated from the drilled distance of the drilling unit 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボーリングやシールドトンネルなどの掘削装置の地中位置を検知する地中位置検知方法に関する。   The present invention relates to an underground position detection method for detecting an underground position of a drilling device such as a boring or a shield tunnel.

ボーリングやシールドトンネルなどの掘削装置の地中位置を検知する方法としては、従来、(1)ジャイロスコープを用いる方法と、(2)地磁気方位センサーおよび傾斜計を用いる方法と、(3)電磁誘導を利用した方法と、(4)弾性波を利用した方法などがあった。   Conventional methods for detecting the underground position of drilling equipment such as boring and shield tunnels include (1) a method using a gyroscope, (2) a method using a geomagnetic orientation sensor and an inclinometer, and (3) electromagnetic induction. And (4) a method using an elastic wave.

(1)のジャイロスコープを用いた方法は、ボーリングやシールドトンネルの坑内にジャイロスコープを出し入れして掘削孔の三次元的な曲がりを計測することにより、ボーリングやシールドトンネルの先端等の位置を検知するようになっている。   The method using the gyroscope of (1) detects the position of the tip of the boring or shield tunnel by measuring the three-dimensional bending of the drilling hole by taking the gyroscope into and out of the borehole of the boring or shield tunnel. It is supposed to be.

(2)の地磁気方位センサーおよび傾斜計を用いる方法は、ボーリングやシールドトンネルの坑内に地磁気方位センサーおよび傾斜計をボーリングやシールドトンネル先端に設置してその位置を計測することにより、ボーリングやシールドトンネルの先端等の位置を検知するようになっている。   The method of (2) using a geomagnetic orientation sensor and inclinometer is to install a geomagnetic orientation sensor and inclinometer in the borehole of a borehole or shield tunnel and measure the position of the borehole or shield tunnel. The position of the tip or the like is detected.

(3)の電磁誘導を利用した方法は、ボーリングやシールドトンネルの先端に設置したコイルに電流を流して磁界を発生させ、その磁界の強度を地上で測定して、ボーリングやシールドトンネルの先端の位置を検知するようになっている。   In the method using electromagnetic induction (3), a magnetic field is generated by passing a current through a coil installed at the tip of a boring or shield tunnel, and the strength of the magnetic field is measured on the ground. The position is detected.

(4)の弾性波を利用した方法は、ボーリングやシールドトンネルの先端から弾性波を発生させ、地上あるいは地中で弾性波の到達時間を測定して、ボーリングやシールドトンネルの先端の位置を検知するようになっている。   The method using elastic waves in (4) detects the position of the tip of the boring or shield tunnel by generating the elastic wave from the tip of the boring or shield tunnel and measuring the arrival time of the elastic wave on the ground or in the ground. It is supposed to be.

また、その他の位置検知方法としては、特許文献1および特許文献2に示すようなものもあった。特許文献1の位置検出装置は、相対向させて発進させた2台の地中掘削機の相対位置を検出するための装置であって、一方の地中掘削機の前部に磁界発生器が設けられ、他方の地中掘削機磁界検出器が設けられている。そして、磁界発生器から発生される磁界のピーク発生時間差に基づいて、磁界発生器から見た磁界検出器間の角度を求め、各地中掘削機間の相対位置を求めるようになっている。特許文献2の位置検出装置は、地下掘削体に磁力発生源が内蔵され、測定点に磁力発生源が発生する磁界の直交する3方向成分を検出可能な一の検出手段が設けられている。そして、三次元座標の原点に測定点を置き、y軸上に磁界発生源を任意の姿勢に置いた状態を想定して、所定の計算式を用いて、磁力発生源の位置を算出するようになっている。
特開平3−257321号公報 特開2006−10628号公報
Further, as other position detection methods, there are methods as shown in Patent Document 1 and Patent Document 2. The position detection device of Patent Document 1 is a device for detecting the relative position of two underground excavators that are started to face each other, and a magnetic field generator is provided at the front of one of the underground excavators. The other underground excavator magnetic field detector is provided. Based on the difference in peak generation time of the magnetic field generated from the magnetic field generator, the angle between the magnetic field detectors as viewed from the magnetic field generator is obtained, and the relative position between the excavators in each place is obtained. In the position detection apparatus of Patent Document 2, a magnetic force generation source is built in an underground excavation body, and one detection unit capable of detecting three orthogonal components of a magnetic field generated by the magnetic force generation source is provided at a measurement point. Then, assuming that the measurement point is placed at the origin of the three-dimensional coordinates and the magnetic field generation source is placed in an arbitrary posture on the y-axis, the position of the magnetic force generation source is calculated using a predetermined calculation formula. It has become.
JP-A-3-257321 JP 2006-10628 A

しかしながら、(1)のジャイロスコープを用いた方法では、坑内に装置を出し入れするため、位置検知を行うために掘削作業を一時中断する必要があり、作業効率が低下してしまうといった問題があった。また、(2)の地磁気方位センサーおよび傾斜計を用いる方法では、地磁気方位センサーおよび傾斜計等の精密機械をボーリングやシールドトンネル先端に設置し、計測データを有線あるいは無線にて外部に伝送するようになっているので、構造が複雑になる問題があるとともに、地磁気方位センサーの近くに鉄類があるとその測定結果に誤差を生じてしまうといった問題もあった。さらに(3)の電磁誘導を利用した方法では、コイルの真上で測定をする必要があるため、既設構造物の下方での測定は困難であるといった問題があった。また、(4)の弾性波を利用した方法では、坑内に弾性波発生のための装置が必要であるため、構造が複雑になる問題があるとともに、地層の弾性波速度が均質でない場合は、測定結果に大きな誤差を生じてしまうといった問題もあった。   However, in the method using the gyroscope (1), since the apparatus is taken in and out of the mine, it is necessary to temporarily suspend the excavation work in order to detect the position, and the work efficiency is lowered. . In the method (2) using the geomagnetic azimuth sensor and inclinometer, a precision machine such as a geomagnetic azimuth sensor and inclinometer is installed at the tip of the boring or shield tunnel, and the measurement data is transmitted to the outside by wire or wirelessly. Therefore, there is a problem that the structure becomes complicated, and there is a problem that an error occurs in the measurement result if there is iron near the geomagnetic direction sensor. Furthermore, in the method using electromagnetic induction (3), since it is necessary to perform measurement directly above the coil, there is a problem that it is difficult to perform measurement below an existing structure. In addition, in the method using the elastic wave of (4), since an apparatus for generating an elastic wave is required in the pit, there is a problem that the structure becomes complicated, and when the elastic wave velocity of the formation is not uniform, There is also a problem that a large error occurs in the measurement result.

そこで、本発明は前記の問題を解決すべく案出されたものであって、位置検知のための装置を簡易な構造にすることができ、地上障害物に影響されることなく、ボーリングやシールドトンネルの地中位置を容易に検知することができる地中位置検知方法を提供することを課題とする。   Therefore, the present invention has been devised to solve the above-described problem, and the position detection device can be made simple in structure, and can be bored and shielded without being affected by obstacles on the ground. It is an object of the present invention to provide an underground position detection method capable of easily detecting the underground position of a tunnel.

前記課題を解決するため、請求項1に係る発明は、掘削装置の地中位置を検知する地中位置検知方法において、前記掘削装置に磁石を設け、この磁石を、前記掘削装置の軸方向に伸びるy軸と直交するx軸およびz軸を含む平面上で回転させることで回転磁場を発生させ、少なくとも三つの測点で前記磁石が発生させる回転磁場の磁束密度のx軸成分およびz軸成分をそれぞれ時刻暦データとして測定し、前記x軸成分およびz軸成分より前記各測点間の位相差をそれぞれ算出し、得られた位相差を、原点を含むxz平面に前記各測点をそれぞれ投影した各投影点から前記磁石の位置を見込む見込み角度とみなし、前記見込み角度より前記磁石の位置のx座標およびz座標を算出し、他方、前記掘削装置の掘削距離より前記磁石の位置のy座標を算出することを特徴とする地中位置検知方法である。   In order to solve the above-mentioned problem, the invention according to claim 1 is an underground position detection method for detecting an underground position of an excavator, wherein the excavator is provided with a magnet, and the magnet is disposed in an axial direction of the excavator. A rotating magnetic field is generated by rotating on a plane including the x-axis and z-axis orthogonal to the extending y-axis, and the x-axis component and the z-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet at at least three measurement points. Are respectively measured as time calendar data, the phase difference between the respective measurement points is calculated from the x-axis component and the z-axis component, respectively, and the obtained phase difference is set on the xz plane including the origin. It is regarded as an expected angle at which the position of the magnet is expected from each projected point, and the x coordinate and the z coordinate of the magnet position are calculated from the estimated angle, while the y of the magnet position is calculated from the excavation distance of the excavator. seat A ground position detecting method characterized by calculating the.

このような方法によれば、掘削装置内には磁石を取り付けておくだけでよいので、掘削機内には電源や精密機器を設置する必要がなく、位置検知のための装置は簡易な構造となる。また、回転磁場の測定は、地上や地中において、磁石からの磁場を測定するだけでよいので、測定場所の制限を受けず、地上障害物に影響されることはない。さらに、その測定データに基づいて位置を算出することで地中位置を容易に検知することができる。   According to such a method, since it is only necessary to attach a magnet in the excavator, there is no need to install a power source or precision equipment in the excavator, and the position detection device has a simple structure. . In addition, the measurement of the rotating magnetic field only needs to measure the magnetic field from the magnet on the ground or in the ground, so that it is not limited by the measurement location and is not affected by obstacles on the ground. Furthermore, the underground position can be easily detected by calculating the position based on the measurement data.

請求項2に係る発明は、掘削装置の地中位置を検知する地中位置検知方法において、前記掘削装置に磁石を設け、この磁石を、前記掘削装置の軸方向に伸びるy軸と直交するx軸およびz軸を含む平面上で回転させることで回転磁場を発生させ、少なくとも三つの測点で前記磁石が発生させる回転磁場の磁束密度のx軸成分およびz軸成分をそれぞれ時刻暦データとして測定し、前記x軸成分およびz軸成分より前記各測点間の位相差をそれぞれ算出し、得られた位相差を、原点を含むxz平面に前記各測点をそれぞれ投影した各投影点から前記磁石の位置を見込む見込み角度とみなし、前記見込み角度より前記磁石の位置のx座標およびz座標を算出し、他方、前記掘削装置に磁石を設け、この磁石を、前記y軸およびz軸を含む平面上、またはx軸およびy軸を含む平面上で回転させることで回転磁場を発生させ、少なくとも三つの測点で前記磁石が発生させる回転磁場の磁束密度のy軸成分およびz軸成分、またはx軸成分およびy軸成分をそれぞれ時刻暦データとして測定し、前記y軸成分およびz軸成分、または前記x軸成分およびy軸成分より前記各測点間の位相差をそれぞれ算出し、得られた位相差を、前記原点を含むyz平面またはxy平面に前記各測点をそれぞれ投影した各投影点から前記磁石の位置を見込む見込み角度とみなし、前記見込み角度より前記磁石の位置のy座標およびz座標、またはx座標およびy座標を算出することを特徴とする地中位置検知方法である。   The invention according to claim 2 is an underground position detection method for detecting an underground position of an excavator, wherein the excavator is provided with a magnet, and the magnet is orthogonal to a y-axis extending in the axial direction of the excavator. A rotating magnetic field is generated by rotating on a plane including the axis and the z-axis, and the x-axis component and the z-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet at at least three measurement points are measured as time calendar data, respectively. The phase difference between the measurement points is calculated from the x-axis component and the z-axis component, and the obtained phase difference is calculated from the projection points obtained by projecting the measurement points on the xz plane including the origin. Considering the expected angle as the expected position of the magnet, the x-coordinate and z-coordinate of the position of the magnet are calculated from the estimated angle. On the other hand, the excavator is provided with a magnet, which includes the y-axis and the z-axis. On the plane, Alternatively, a rotating magnetic field is generated by rotating on a plane including the x-axis and the y-axis, and the y-axis component and the z-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet at at least three measurement points, or the x-axis Component and y-axis component are respectively measured as time calendar data, and the phase difference between the respective measuring points is calculated from the y-axis component and z-axis component, or the x-axis component and y-axis component, respectively. The phase difference is regarded as an expected angle at which the position of the magnet is estimated from each projection point obtained by projecting each measurement point on the yz plane or the xy plane including the origin, and the y coordinate and the z coordinate of the magnet position from the expected angle. Or an underground position detection method characterized by calculating x-coordinate and y-coordinate.

請求項1の方法が掘削装置の掘削距離よりy座標を算出するのに対して、請求項2の方法は、x座標とz座標と同様にy座標も回転磁場の磁束密度から算出するようにしたものである。このような方法によれば、請求項1の発明と同様に、位置検知に必要な装置は簡易な構造となる。また、回転磁場の測定は、測定場所の制限を受けず、地上障害物に影響されることはない。さらに、その測定データに基づいて位置を算出することで地中位置を容易に検知することができる。   The method of claim 1 calculates the y coordinate from the excavation distance of the excavator, while the method of claim 2 calculates the y coordinate from the magnetic flux density of the rotating magnetic field as well as the x coordinate and the z coordinate. It is a thing. According to such a method, as in the first aspect of the invention, the device necessary for position detection has a simple structure. Further, the measurement of the rotating magnetic field is not limited by the measurement location and is not affected by the obstacle on the ground. Furthermore, the underground position can be easily detected by calculating the position based on the measurement data.

本発明によれば、位置検知のための装置を簡易な構造にすることができ、地上障害物に影響されることなく、ボーリングやシールドトンネルの地中位置を容易に検知することができるといった優れた効果を発揮する。   According to the present invention, an apparatus for position detection can have a simple structure, and it is possible to easily detect the underground position of a boring or shield tunnel without being affected by an obstacle on the ground. Show the effect.

次に、本発明を実施するための最良の形態について、添付図面を参照しながら詳細に説明する。   Next, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1に示すように、磁石2の回転中心を原点Oとして、磁石2がy軸と直交するx軸およびz軸を含む平面上で回転する場合、磁石2のN極の向きのx軸からの回転角をφとすると、ある点P(x,y,z)における回転磁場の磁束密度の3方向成分(B,B,B)は、下記の式1、式2および式3で表される。

Figure 2008216032
Figure 2008216032
Figure 2008216032
As shown in FIG. 1, when the rotation center of the magnet 2 is the origin O, and the magnet 2 rotates on a plane including the x axis and the z axis perpendicular to the y axis, the x direction of the N pole of the magnet 2 Is a three-direction component (B x , B y , B z ) of the magnetic flux density of the rotating magnetic field at a certain point P (x, y, z), the following equations 1, 2 and 3 It is represented by
Figure 2008216032
Figure 2008216032
Figure 2008216032

なお、式1〜式3中、rは点Pの原点Oからの距離を示し、mは磁石2の磁気モーメントを示している。   In Expressions 1 to 3, r represents the distance from the origin O of the point P, and m represents the magnetic moment of the magnet 2.

次に、下記の式4に示す関数式Fを計算すると、図2の(a)に示すような、正弦波に表される。

Figure 2008216032
Then, when calculating the function formula F 1 shown in Equation 4 below, as shown in FIG. 2 (a), represented in a sine wave.
Figure 2008216032

ここで、図2の(b)に示すように、点Pを、原点Oを含むxz平面に投影した投影点P’(x,0,z)について、直線OP’のx軸からの角度をθとすると、Fが最大値となるときの磁石2の回転角φと角度θとは、以下の式5のような関係が成立する。

Figure 2008216032
Here, as shown in FIG. 2B, the angle from the x-axis of the straight line OP ′ with respect to the projection point P ′ (x, 0, z) obtained by projecting the point P onto the xz plane including the origin O is expressed as follows. Assuming that θ, the relationship of the rotation angle φ m of the magnet 2 and the angle θ when F 1 is the maximum value holds the relationship as shown in the following Expression 5.
Figure 2008216032

また、下記の式6に示す関数式Fを計算すると、図3の(a)に示すような、正弦波に表される。

Figure 2008216032
Also, when calculating the function formula F 2 shown in Equation 6 below, as shown in FIG. 3 (a), expressed in sine wave.
Figure 2008216032

ここで、図3の(b)に示すように、点Pを、原点Oを含むxz平面に投影した投影点P’(x,0,z)について、直線OP’のx軸からの角度をθとすると、Fがマイナス側からプラス側へ変化するときのF=0の時点の磁石2の回転角φと角度θとは、下記の式7のような関係が成立する。

Figure 2008216032
Here, as shown in FIG. 3B, the angle from the x-axis of the straight line OP ′ with respect to the projection point P ′ (x, 0, z) obtained by projecting the point P onto the xz plane including the origin O. when theta, F 2 is the angle of rotation phi 0 and the angle of the magnet 2 at the time of F 2 = 0 theta when changes to the positive side from the minus side, the relationship of equation 7 below is established.
Figure 2008216032

すなわち、回転角φおよびφは、直線OP’とx軸とが成す角θに、π(=180°)のn倍を加えたものに等しくなる。この性質を利用することで、地上あるいは地中で、時刻歴データとして測定した回転磁場の磁束密度のx成分Bとz成分Bから、以下に説明するようにして、測点Pに対する磁石2のx座標とz座標を求める。 That is, the rotation angles φ m and φ 0 are equal to the angle θ formed by the straight line OP ′ and the x axis plus n times π (= 180 °). By utilizing this property, the magnet for the measuring point P can be obtained from the x component B x and the z component B z of the magnetic flux density of the rotating magnetic field measured as time history data on the ground or in the ground as described below. 2 x and z coordinates are obtained.

図4に示すように、本実施の形態に係る地中位置検知方法では、水平ボーリングやシールドトンネルなどの掘削装置1に磁石2が設けられている。磁石2には、永久磁石が用いられている。磁石2は、掘削装置1の回転軸などの回転部位に、磁石2のNS方向が掘削装置1の軸方向に直交するように取り付けられている。ここで、掘削装置1の軸方向をy軸にとり、このy軸に直交する水平方向をx軸にとり、y軸に直交する鉛直方向をz軸にとる。これによって、掘削装置1が作動して回転部位が回転すると、掘削装置1の軸方向に伸びるy軸と直交するx軸およびz軸を含む平面上で磁石2が回転することとなる。このように磁石2が回転することによって、回転磁場が発生する。   As shown in FIG. 4, in the underground position detection method according to the present embodiment, a magnet 2 is provided in an excavating apparatus 1 such as a horizontal boring or a shield tunnel. A permanent magnet is used for the magnet 2. The magnet 2 is attached to a rotating part such as the rotating shaft of the excavator 1 so that the NS direction of the magnet 2 is orthogonal to the axial direction of the excavator 1. Here, the axial direction of the excavator 1 is taken as the y-axis, the horizontal direction perpendicular to the y-axis is taken as the x-axis, and the vertical direction perpendicular to the y-axis is taken as the z-axis. As a result, when the excavator 1 is activated and the rotation portion rotates, the magnet 2 rotates on a plane including the x-axis and the z-axis orthogonal to the y-axis extending in the axial direction of the excavator 1. As the magnet 2 rotates in this way, a rotating magnetic field is generated.

そして、地上の二つの測点P,Pと地中の測点Pの三箇所において、回転磁場の磁束密度のx成分Bとz成分Bとをそれぞれ時刻暦データとして測定する。なお、各測点P,P,Pには、3軸コイルやフラックスゲート磁力計などの計測装置が設けられており、これらの計測装置で回転磁場の磁束密度を測定する。そして、測定されたx成分Bとz成分Bを式4に代入してFを算出するか、式6に代入してFを算出する。そうすると、各測点P,P,PにおけるFは、図5に示すようにそれぞれ正弦波状の形状になり、各測点P,P,PにおけるFも、図6に示すようにそれぞれ正弦波状の形状になる。 Then, the x component B x and the z component B z of the magnetic flux density of the rotating magnetic field are respectively measured as time calendar data at the three measurement points P 1 and P 2 on the ground and the measurement point P 3 in the ground. . Each measuring point P 1 , P 2 , P 3 is provided with a measuring device such as a triaxial coil or a fluxgate magnetometer, and the measuring device measures the magnetic flux density of the rotating magnetic field. Then, F 1 is calculated by substituting the measured x component B x and z component B z into Equation 4 or substituting into Equation 6 to calculate F 2 . Then, F 1 at each of the measurement points P 1 , P 2 , and P 3 has a sinusoidal shape as shown in FIG. 5, and F 2 at each of the measurement points P 1 , P 2 , and P 3 is also shown in FIG. As shown in FIG.

ここで、FまたはFの各測点間(PとP間、PとP間)の位相の時間差ΔT12およびΔT23を測定する。磁石2の回転の1周期をTとすると、時間差ΔT12およびΔT23から回転磁場の正弦波における磁石の回転角の位相差φ12およびφ23は、下記の式8および式9に表される。

Figure 2008216032
Figure 2008216032
Here, the phase time differences ΔT 12 and ΔT 23 between the measurement points of F 1 or F 2 (between P 1 and P 2 and between P 2 and P 3 ) are measured. Assuming that one period of rotation of the magnet 2 is T, the phase differences φ 12 and φ 23 of the rotation angle of the magnet in the sine wave of the rotating magnetic field from the time differences ΔT 12 and ΔT 23 are expressed by the following equations 8 and 9. .
Figure 2008216032
Figure 2008216032

式8で示された回転角の位相差φ12は、各測点P,Pを、原点Oを含むxz平面にそれぞれ投影した各投影点P’,P’から磁石2の位置を見込む見込み角度(直線OP’と直線OP’とが成す角度)θ12(図7参照)と等しくなる。また、式9で示された回転角の位相差φ23は、各測点P,Pを、原点Oを含むxz平面にそれぞれ投影した各投影点P’,P’から磁石2の位置を見込む見込み角度(直線OP’と直線OP’とが成す角度)θ23(図7参照)と等しくなる。したがって、各測点P,P,P間の回転磁場の正弦波における回転角の位相差φ12,φ23を読み取って、原点Oを含むxz平面にそれぞれ投影した各投影点P’,P’,P’から磁石2の位置を見込む見込み角度θ12,θ23とみなすことで、各投影点P’,P’,P’の各位置に対して相対的な磁石2の位置を算出して求めることができる。 Phase difference phi 12 of the rotation angle shown by the formula 8, each measuring points P 1, P 2, the position of the magnet 2 from each projection point P 1 ', P 2' obtained by projecting each xz plane including the origin O Expected angle (angle formed by straight line OP 1 ′ and straight line OP 2 ′) θ 12 (see FIG. 7). Further, the phase difference φ 23 of the rotation angle shown in Expression 9 is calculated from the projection points P 2 ′ and P 3 ′ obtained by projecting the measurement points P 2 and P 3 onto the xz plane including the origin O, respectively. The expected angle (the angle formed by the straight line OP 2 ′ and the straight line OP 3 ′) θ 23 (see FIG. 7) is estimated. Therefore, the phase difference φ 12 , φ 23 of the rotation angle in the sine wave of the rotating magnetic field between the measurement points P 1 , P 2 , P 3 is read, and each projection point P 1 projected on the xz plane including the origin O is read. ', P 2', relative to the respective positions of P 3 'prospective angle theta 12 looking into position of the magnet 2 from that regarded as theta 23, the projection points P 1', P 2 ', P 3' The position of the correct magnet 2 can be calculated and obtained.

以下に、各見込み角度θ12,θ23から磁石2の位置を算出する方法を説明する。 Below, the method to calculate the position of the magnet 2 from each prospective angle (theta) 12 , (theta) 23 is demonstrated.

各測点座標を、P(x,y,z)、P(x,y,z)、P(x,y,z)とする。また、図7に示すように、磁石2の位置から地表への鉛直線Lと測点P’との角度をθ’として、求めたい磁石2の位置を(X,Z)とすると、下記の式10〜式12からなる方程式が成立する。

Figure 2008216032
Figure 2008216032
Figure 2008216032
Each station coordinate is defined as P 1 (x 1 , y 1 , z 1 ), P 2 (x 2 , y 2 , z 2 ), and P 3 (x 3 , y 3 , z 3 ). As shown in FIG. 7, when the angle between the vertical line L from the position of the magnet 2 to the ground surface and the measuring point P 2 ′ is θ ′ and the position of the magnet 2 to be obtained is (X, Z), Equations 10 to 12 are established.
Figure 2008216032
Figure 2008216032
Figure 2008216032

これらの式10〜式12を整理すると、下記の式13および式14からなる連立方程式のようになる。

Figure 2008216032
Figure 2008216032
If these formulas 10 to 12 are rearranged, they become a simultaneous equation consisting of the following formulas 13 and 14.
Figure 2008216032
Figure 2008216032

この連立方程式を解くことで、磁石の位置(X,Z)を求めることができる。   By solving this simultaneous equation, the position (X, Z) of the magnet can be obtained.

なお、前記の測点P,P,Pは、地上のみに配置してもよいし、地上と地中の組み合わせでもよく、任意の位置に設置することができる。また、前記の説明では、測点は三つ設けられていたが、四つ以上であってもよい。この場合、最小二乗法を適用して磁石の位置(X,Z)を求める。 The measurement points P 1 , P 2 , and P 3 may be arranged only on the ground, or may be a combination of the ground and the ground, and can be installed at any position. In the above description, three measuring points are provided, but four or more measuring points may be provided. In this case, the magnet position (X, Z) is obtained by applying the least square method.

なお、本実施の形態では、FまたはFの一方を用いて計算しているが、両方の関数式を用いて計算して平均値を採用するようにしてもよい。このようにすれば、位相差データの精度が向上する。なお、Fを計算する場合は、掘削装置2の回転軸の回転に同期した信号を選択的に検知して用いればよい。 In the present embodiment, calculation is performed using one of F 1 and F 2 , but an average value may be adopted by calculation using both functional expressions. In this way, the accuracy of the phase difference data is improved. In the case of calculating the F 2 may be used selectively to detect a signal synchronized with the rotation of the rotary shaft drilling rig 2.

次に、掘削装置2の掘削距離より、磁石2のy座標を算出する。具体的には、例えば、ボーリングの延長距離を求めることで、y座標を精度よく算出することができる。以上のように、各座標を求めることで、3次元的に磁石2の位置を検知することができる。   Next, the y coordinate of the magnet 2 is calculated from the excavation distance of the excavator 2. Specifically, for example, the y coordinate can be calculated with high accuracy by obtaining the extended distance of the boring. As described above, the position of the magnet 2 can be detected three-dimensionally by obtaining each coordinate.

なお、掘削装置2が、シールドトンネル掘削機の場合は、図8に示すように、掘削装置1に、側方に掘削する側方掘削装置3を設け、掘削装置1の先端のほかに、側方掘削装置3の先端にも磁石4を設けて回転させて、前記の手法に従って、y座標を算出するようにしてもよい。   When the excavator 2 is a shield tunnel excavator, as shown in FIG. 8, the excavator 1 is provided with a side excavator 3 that excavates sideways. The y-coordinate may be calculated according to the above method by providing a magnet 4 at the tip of the side excavator 3 and rotating it.

具体的には、磁石4を、前記y軸およびz軸を含む平面上(またはx軸およびy軸を含む平面上)で回転させることで回転磁場を発生させ、地上あるいは地中の少なくとも三つの測点(図示せず)で磁石4が発生させる回転磁場の磁束密度のy軸成分およびz軸成分(またはx軸成分およびy軸成分)をそれぞれ時刻暦として測定し、得られたy軸成分およびz軸成分(または前記x軸成分およびy軸成分)より、正弦の関数式FまたはFを求め、各測点の正弦波の位相の時間差から位相差をそれぞれ算出し、得られた位相差を、各測点を原点を含むyz平面(またはxy平面)にそれぞれ投影した各投影点から磁石4の位置を見込む見込み角度とみなし、この見込み角度より磁石4の位置のy座標およびz座標(またはx座標およびy座標)を算出する。これによって、y座標が算出され、先に算出されたx座標とz座標と合わせて、磁石4の位置を3次元的に検知することができる。 Specifically, the magnet 4 is rotated on a plane including the y-axis and the z-axis (or on a plane including the x-axis and the y-axis) to generate a rotating magnetic field, and at least three on the ground or in the ground The y-axis component obtained by measuring the y-axis component and the z-axis component (or the x-axis component and the y-axis component) of the magnetic flux density of the rotating magnetic field generated by the magnet 4 at a measurement point (not shown), respectively. And the z-axis component (or the x-axis component and the y-axis component) to obtain a sine function formula F 1 or F 2, and calculate the phase difference from the time difference of the phase of the sine wave at each measurement point, respectively. The phase difference is regarded as an expected angle at which the position of the magnet 4 is estimated from each projection point obtained by projecting each measurement point onto the yz plane (or the xy plane) including the origin. Coordinates (or x-coordinate and Coordinate) is calculated. Thereby, the y coordinate is calculated, and the position of the magnet 4 can be detected three-dimensionally by combining the previously calculated x coordinate and z coordinate.

以上のような方法によれば、掘削装置1内には磁石2を取り付けておくだけでよい。掘削機内1には精密機器を設置する必要がない。特に、磁石2を掘削装置1の回転軸に取り付けておけば、掘削機内1には磁石の回転のための回転機構や電源を別途に設置する必要がなく、位置検知のための装置は簡易な構造となる。また、回転磁場の測定は、地上や地中において、磁石2の回転による回転磁場を測定するだけでよいので、測定場所の制限を受けず、地上障害物に影響されることはない。さらに、その測定データに基づいて位置を算出することで地中位置を容易に検知することができる。   According to the method as described above, the magnet 2 need only be attached to the excavator 1. There is no need to install precision equipment in the excavator 1. In particular, if the magnet 2 is attached to the rotating shaft of the excavator 1, there is no need to separately install a rotating mechanism and a power source for rotating the magnet in the excavator 1, and the apparatus for position detection is simple. It becomes a structure. Further, the measurement of the rotating magnetic field only needs to measure the rotating magnetic field due to the rotation of the magnet 2 on the ground or in the ground, so that it is not limited by the measurement location and is not affected by the obstacle on the ground. Furthermore, the underground position can be easily detected by calculating the position based on the measurement data.

前記した地中位置検知方法の他の検知方法としては、以下に説明するような方法もある。かかる地中位置検知方法は、掘削装置の回転軸に磁石を設け、この磁石を掘削装置の軸方向に直交するx軸およびz軸を含む平面上で回転させることで回転磁場を発生させ、地上あるいは地中の任意の測点で回転磁場の磁束密度の3方向成分(B,B,B)を測定する。そして、この磁束密度の3方向成分(B,B,B)と別途測定した磁石の回転角φと、事前に測定した磁石2の磁気モーメントmとを前記の式1、式2および式3に代入して磁石の位置を算出する。 As another detection method of the above-described underground position detection method, there is a method as described below. In this underground position detection method, a magnet is provided on the rotating shaft of the excavator, and a rotating magnetic field is generated by rotating the magnet on a plane including the x-axis and the z-axis orthogonal to the axial direction of the excavator. Alternatively, the three-direction components (B x , B y , B z ) of the magnetic flux density of the rotating magnetic field are measured at arbitrary measurement points in the ground. Then, the three-direction components (B x , B y , B z ) of the magnetic flux density, the separately measured rotation angle φ of the magnet, and the magnetic moment m of the magnet 2 measured in advance are expressed by the above-described equations 1, 2 and Substituting into Equation 3, the position of the magnet is calculated.

なお、磁石の回転角φは、掘削装置の回転軸の回転角度を検知することで測定される。また、磁石の磁気モーメントmは、磁石からある距離での磁場の振幅を予め測定しておくことで求めておく。   Note that the rotation angle φ of the magnet is measured by detecting the rotation angle of the rotation shaft of the excavator. Further, the magnetic moment m of the magnet is obtained by measuring in advance the amplitude of the magnetic field at a certain distance from the magnet.

このような方法によっても、磁石の回転による回転磁場を測定するだけでよいので、測定場所の制限を受けず、地上障害物に影響されることはない。さらに、その測定データに基づいて位置を算出することで地中位置を容易に検知することができる。   Also by such a method, since it is only necessary to measure the rotating magnetic field due to the rotation of the magnet, there is no limitation on the measurement location and it is not affected by the obstacle on the ground. Furthermore, the underground position can be easily detected by calculating the position based on the measurement data.

なお、前記の検知方法の他には、磁場の振幅を測定する方法もある。この方向は、掘削装置の直上位置付近で、磁場を測定できる場合に適用できる方法であって、本発明の構成要件を示すものではない。この方法は、磁石の真上の位置で磁場が最大となる性質を利用した方法である。   In addition to the detection method described above, there is a method for measuring the amplitude of the magnetic field. This direction is a method that can be applied when the magnetic field can be measured in the vicinity of the position directly above the excavator, and does not indicate the constituent requirements of the present invention. This method uses the property that the magnetic field is maximized at a position directly above the magnet.

図9に示すように、掘削装置1の先端に磁石2を設けて回転させて回転磁場を発生させる。そして、その掘削装置1の真上位置付近の掘削計画線上で、回転磁場のz成分Bを測定する。ここで、回転磁場のz成分Bの振幅は、磁石が測点に近づくに連れて大きくなり、磁石が測点から遠ざかるに連れて小さくなる。すなわち、回転磁場のz成分Bの振幅が最大になる位置の真下が掘削装置1の先端位置となる。そして、掘削装置1の深度は、測定した回転磁場の大きさもしくは距離減衰から逆算して求める。すなわち、回転磁場のz成分Bは、下記の式15のように表され、磁石と測点との距離rの三乗に反比例する。

Figure 2008216032
As shown in FIG. 9, a magnet 2 is provided at the tip of the excavator 1 and rotated to generate a rotating magnetic field. Then, the z component B z of the rotating magnetic field is measured on the excavation plan line near the position directly above the excavator 1. Here, the amplitude of the z component B z of the rotating magnetic field increases as the magnet approaches the measurement point, and decreases as the magnet moves away from the measurement point. That is, the tip position of the excavator 1 is directly below the position where the amplitude of the z component B z of the rotating magnetic field is maximized. Then, the depth of the excavator 1 is obtained by back calculation from the measured magnitude of the rotating magnetic field or distance attenuation. That is, the z component B z of the rotating magnetic field is expressed as the following Expression 15, and is inversely proportional to the cube of the distance r between the magnet and the measuring point.
Figure 2008216032

ここで、mは磁石の磁気モーメントであって、事前に磁石からある距離での磁場の振幅を測定しておくことで求めておき、mを式15に代入することによって、磁石と測点との距離rを算出することができる。   Here, m is the magnetic moment of the magnet, and is obtained by measuring the amplitude of the magnetic field at a certain distance from the magnet in advance, and by substituting m into Equation 15, The distance r can be calculated.

以上、本発明を実施するための形態について説明したが、本発明は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。例えば、前記実施の形態では、磁石2は永久磁石にて構成されているが、電磁石等の他の構成であってもよい。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning of this invention, a design change is possible suitably. For example, in the above-described embodiment, the magnet 2 is composed of a permanent magnet, but may be another configuration such as an electromagnet.

本発明に係る地中位置検知方法の磁石と座標軸の定義を示した斜視図である。It is the perspective view which showed the definition of the magnet and coordinate axis of the underground position detection method which concerns on this invention. (a)はFの波形形状を示した波形図、(b)は測点をxz平面に投影した投影平面図である。(A) is a waveform diagram showing the waveform of the F 1, (b) is a projection plan view obtained by projecting the stations to the xz plane. (a)はFの波形形状を示した波形図、(b)は測点をxz平面に投影した投影平面図である。(A) is a waveform diagram showing the waveform of the F 2, (b) is a projection plan view obtained by projecting the stations to the xz plane. 本発明に係る地中位置検知方法の磁石と測点の配置例を示した斜視図である。It is the perspective view which showed the example of arrangement | positioning of the magnet of the underground position detection method which concerns on this invention, and a measuring point. 各測点のFの波形形状をそれぞれ示した波形図である。Each measuring point F 1 of the waveform shape is a waveform diagram illustrating respectively. 各測点のFの波形形状をそれぞれ示した波形図である。Each measuring point F 2 of the waveform shape is a waveform diagram illustrating respectively. 各測点から磁石を見た見込み角度を示した図である。It is the figure which showed the prospective angle which looked at the magnet from each measuring point. y座標を求める場合の掘削装置を示した概略図である。It is the schematic which showed the excavation apparatus in the case of calculating | requiring y coordinate. 磁界の振幅を利用して地中位置を検地する場合の掘削状態を示した概略図である。It is the schematic which showed the excavation state in the case of detecting an underground position using the amplitude of a magnetic field.

符号の説明Explanation of symbols

1,3 掘削装置
2,4 磁石
1,3 drilling equipment 2,4 magnet

Claims (2)

掘削装置の地中位置を検知する地中位置検知方法において、
前記掘削装置に磁石を設け、この磁石を、前記掘削装置の軸方向に伸びるy軸と直交するx軸およびz軸を含む平面上で回転させることで回転磁場を発生させ、
少なくとも三つの測点で前記磁石が発生させる回転磁場の磁束密度のx軸成分およびz軸成分をそれぞれ時刻暦データとして測定し、
前記x軸成分およびz軸成分より前記各測点間の位相差をそれぞれ算出し、
得られた位相差を、原点を含むxz平面に前記各測点をそれぞれ投影した各投影点から前記磁石の位置を見込む見込み角度とみなし、
前記見込み角度より前記磁石の位置のx座標およびz座標を算出し、
他方、前記掘削装置の掘削距離より前記磁石の位置のy座標を算出する
ことを特徴とする地中位置検知方法。
In the underground position detection method for detecting the underground position of the excavator,
A magnet is provided in the excavator, and a rotating magnetic field is generated by rotating the magnet on a plane including an x-axis and a z-axis orthogonal to the y-axis extending in the axial direction of the excavator,
Measuring the x-axis component and the z-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet at at least three measurement points as time calendar data,
Calculating a phase difference between the measurement points from the x-axis component and the z-axis component,
The obtained phase difference is regarded as a prospective angle for estimating the position of the magnet from each projection point obtained by projecting each measurement point on the xz plane including the origin,
Calculate the x-coordinate and z-coordinate of the magnet position from the expected angle,
On the other hand, the y-coordinate of the position of the magnet is calculated from the excavation distance of the excavator.
掘削装置の地中位置を検知する地中位置検知方法において、
前記掘削装置に磁石を設け、この磁石を、前記掘削装置の軸方向に伸びるy軸と直交するx軸およびz軸を含む平面上で回転させることで回転磁場を発生させ、
少なくとも三つの測点で前記磁石が発生させる回転磁場の磁束密度のx軸成分およびz軸成分をそれぞれ時刻暦データとして測定し、
前記x軸成分およびz軸成分より前記各測点間の位相差をそれぞれ算出し、
得られた位相差を、原点を含むxz平面に前記各測点をそれぞれ投影した各投影点から前記磁石の位置を見込む見込み角度とみなし、
前記見込み角度より前記磁石の位置のx座標およびz座標を算出し、
他方、前記掘削装置に磁石を設け、この磁石を、前記y軸およびz軸を含む平面上、またはx軸およびy軸を含む平面上で回転させることで回転磁場を発生させ、
少なくとも三つの測点で前記磁石が発生させる回転磁場の磁束密度のy軸成分およびz軸成分、またはx軸成分およびy軸成分をそれぞれ時刻暦データとして測定し、
前記y軸成分およびz軸成分、または前記x軸成分およびy軸成分より前記各測点間の位相差をそれぞれ算出し、
得られた位相差を、前記原点を含むyz平面またはxy平面に前記各測点をそれぞれ投影した各投影点から前記磁石の位置を見込む見込み角度とみなし、
前記見込み角度より前記磁石の位置のy座標およびz座標、またはx座標およびy座標を算出する
ことを特徴とする地中位置検知方法。
In the underground position detection method for detecting the underground position of the excavator,
A magnet is provided in the excavator, and a rotating magnetic field is generated by rotating the magnet on a plane including an x-axis and a z-axis orthogonal to the y-axis extending in the axial direction of the excavator,
Measuring the x-axis component and the z-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet at at least three measurement points as time calendar data,
Calculating a phase difference between the measurement points from the x-axis component and the z-axis component,
The obtained phase difference is regarded as a prospective angle for estimating the position of the magnet from each projection point obtained by projecting each measurement point on the xz plane including the origin,
Calculate the x-coordinate and z-coordinate of the magnet position from the expected angle,
On the other hand, a magnet is provided in the excavator, and a rotating magnetic field is generated by rotating the magnet on a plane including the y axis and the z axis, or on a plane including the x axis and the y axis,
Measuring the y-axis component and the z-axis component or the x-axis component and the y-axis component of the magnetic flux density of the rotating magnetic field generated by the magnet at at least three measurement points, respectively, as time calendar data;
Calculating a phase difference between the measurement points from the y-axis component and the z-axis component, or the x-axis component and the y-axis component, respectively;
The obtained phase difference is regarded as a prospective angle for estimating the position of the magnet from each projection point obtained by projecting each measurement point on the yz plane or the xy plane including the origin,
An underground position detection method characterized by calculating a y-coordinate and a z-coordinate or an x-coordinate and a y-coordinate of the position of the magnet from the expected angle.
JP2007053691A 2007-03-05 2007-03-05 Underground position detection method Expired - Fee Related JP5131729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053691A JP5131729B2 (en) 2007-03-05 2007-03-05 Underground position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053691A JP5131729B2 (en) 2007-03-05 2007-03-05 Underground position detection method

Publications (2)

Publication Number Publication Date
JP2008216032A true JP2008216032A (en) 2008-09-18
JP5131729B2 JP5131729B2 (en) 2013-01-30

Family

ID=39836246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053691A Expired - Fee Related JP5131729B2 (en) 2007-03-05 2007-03-05 Underground position detection method

Country Status (1)

Country Link
JP (1) JP5131729B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059091A (en) * 2009-09-07 2011-03-24 Aichi Micro Intelligent Corp Apparatus for detecting indoor position
CN108104798A (en) * 2017-03-10 2018-06-01 苏州弘开传感科技有限公司 A kind of tunnel position indicator and its application method based on magnetic principles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257321A (en) * 1990-03-08 1991-11-15 Komatsu Ltd Relative position detecting apparatus of underground excavator
JPH03260284A (en) * 1990-03-08 1991-11-20 Komatsu Ltd Horizontal displacement detector of underground moving body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257321A (en) * 1990-03-08 1991-11-15 Komatsu Ltd Relative position detecting apparatus of underground excavator
JPH03260284A (en) * 1990-03-08 1991-11-20 Komatsu Ltd Horizontal displacement detector of underground moving body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059091A (en) * 2009-09-07 2011-03-24 Aichi Micro Intelligent Corp Apparatus for detecting indoor position
CN108104798A (en) * 2017-03-10 2018-06-01 苏州弘开传感科技有限公司 A kind of tunnel position indicator and its application method based on magnetic principles
CN108104798B (en) * 2017-03-10 2021-09-21 苏州弘开传感科技有限公司 Tunnel positioning instrument based on magnetic field principle and using method thereof

Also Published As

Publication number Publication date
JP5131729B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US10520632B2 (en) Rotating magnetic field range finder and its measurement method for relative separation between drilling wells
US6736222B2 (en) Relative drill bit direction measurement
CN106050223B (en) A kind of omnidirectional&#39;s magnetostatic field relief well is with boring localization method and positioning system
US10094850B2 (en) Magnetic ranging while rotating
US20140374159A1 (en) Positioning techniques in multi-well environments
US10031153B2 (en) Magnetic ranging to an AC source while rotating
JP6419731B2 (en) Method for measuring underground excavation position and underground excavation position measuring apparatus
JPH0637825B2 (en) Mooring equipment
EP3640428A1 (en) Tumble gyro surveyor
EP2749906A1 (en) Determining seismic sensor orientation in a wellbore
US9938773B2 (en) Active magnetic azimuthal toolface for vertical borehole kickoff in magnetically perturbed environments
CN111173451A (en) Non-excavation underground guiding system
CN109915116A (en) Magnetic surveys offset well anti-collision method and device with probing
JP5131729B2 (en) Underground position detection method
JPH10318748A (en) Method and system for measuring position
JP3224004B2 (en) Drilling tube tip location method
WO1991003708A1 (en) Position detecting device for underground excavator
JP2757058B2 (en) Underground excavator relative position detector
JP3716743B2 (en) Drilling pipe tip position and orientation measurement method and excavation pipe tip position and orientation measurement apparatus
Yanbo et al. A rotating magnetic guidance method for measurement while drilling
JP2003240552A (en) Method and device for propelling head position/direction measurement
JP3711878B2 (en) Propulsion head position direction measuring method and propulsion head position direction measuring apparatus
JP2006010628A (en) Detector for detecting object
RU2285931C1 (en) Device for determining angular position of moveable object
JP2004347533A (en) Method and device for magnetic prospecting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees