JP2008215944A - Rotation detecting apparatus - Google Patents

Rotation detecting apparatus Download PDF

Info

Publication number
JP2008215944A
JP2008215944A JP2007051673A JP2007051673A JP2008215944A JP 2008215944 A JP2008215944 A JP 2008215944A JP 2007051673 A JP2007051673 A JP 2007051673A JP 2007051673 A JP2007051673 A JP 2007051673A JP 2008215944 A JP2008215944 A JP 2008215944A
Authority
JP
Japan
Prior art keywords
rotation
magnetic
detection
detection device
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007051673A
Other languages
Japanese (ja)
Inventor
Shigeki Santo
繁樹 山藤
Hirotaka Ono
浩孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2007051673A priority Critical patent/JP2008215944A/en
Publication of JP2008215944A publication Critical patent/JP2008215944A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation detecting apparatus capable of precisely detecting rotation of a rotational axis which does not slide axially as a matter of course, and even a rotation axis which slides axially, without malfunction. <P>SOLUTION: The rotation detecting apparatus comprises: a cylindrical body 2 made of a magnetic material which is coupled with a rotating body 1a which slides axially, so as to be rotated thereby, and has a plurality of magnetic poles 5 being disposed along its circumferential surface; and magnetic detection means 3, 4 facing the cylindrical body 2 through a prescribed spacing, wherein the magnetic field area formed by the magnetic detection means 3, 4 and the magnetic poles 5 is equivalent to or exceeds the amount of slide of the rotating body 1a in the direction of the rotational axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は回転軸の回転を検出する回転検出装置に係り、特に軸方向の摺動量の多い回転軸の回転検出に用いられる回転検出装置に関するものである。   The present invention relates to a rotation detection device that detects rotation of a rotation shaft, and more particularly to a rotation detection device used for rotation detection of a rotation shaft that has a large amount of sliding in the axial direction.

回転検出装置は、検出原理から光学式、磁気式、誘導式、機械式があり、また、信号分類からパルス発信形、レゾルバ形などがあって、用途あるいは目的に合わせた回転検出装置が開発され使用されている。これらの回転検出装置としてラジアル方向の軸振れの大きい回転軸を検出する回転検出装置、あるいは回転軸の軸方向の摺動に感応しない回転検出装置が種々提案されており、次の提案例を挙げることができる。   There are optical, magnetic, inductive, and mechanical types of rotation detectors based on the detection principle, and there are pulse transmission types and resolver types based on the signal classification. in use. As these rotation detection devices, various types of rotation detection devices that detect a rotation shaft with a large radial shaft runout, or rotation detection devices that are insensitive to axial sliding of the rotation shaft, have been proposed. be able to.

即ち、回転軸の回転位置検出器として、円形の磁石を外周上に着磁し、シャフトを中心に回転する回転子の磁束がおよぶ位置にホール素子を置き、その出力のアナログ的変化で回転位置を出力する回転位置検出器が提案されている(例えば、特許文献1参照)。   That is, as a rotational position detector of the rotating shaft, a circular magnet is magnetized on the outer periphery, and a Hall element is placed at a position where the magnetic flux of the rotor rotating around the shaft extends. Has been proposed (see, for example, Patent Document 1).

また、回転軸の端部平坦面に形成された磁気異方性を有する軟磁性体と、この軟磁性体に対向して固定されたコイルを有し、磁気異方性を有する軟磁性体の回転に伴う透磁率の変化をコイルにより検出する回転数センサが提案されている(例えば、特許文献2参照)。   In addition, a soft magnetic body having magnetic anisotropy formed on the flat surface at the end of the rotating shaft and a coil fixed to face the soft magnetic body and having magnetic anisotropy There has been proposed a rotation speed sensor that detects a change in magnetic permeability accompanying rotation with a coil (see, for example, Patent Document 2).

更に、強磁性体磁気センサを用いた回転角度検出装置において、小型で、かつ分解能を向上することができ、しかもアブソリュートの回転角度を検出できる回転角度検出装置が提案されている(例えば、特許文献3参照)。   Further, a rotation angle detection device using a ferromagnetic magnetic sensor has been proposed that is small in size, can improve resolution, and can detect the absolute rotation angle (for example, Patent Documents). 3).

また、ラジアル方向の軸振れが大きい回転軸の回転情報を非接触で検出する回転検出装置として、回転検出器と回転体の軸振れを検出する軸振れ検出器を具備し、回転検出器からの回転検出信号と軸振れ検出器からの軸振検出信号とを処理し、回転検出信号の信号成分から軸振れ成分を除去する信号処理手段を設けた回転検出装置が提案されている(例えば、特許文献4参照)。   In addition, as a rotation detection device that detects rotation information of a rotating shaft with a large radial shaft shake in a non-contact manner, a rotation detector and a shaft shake detector that detects the shaft shake of a rotating body are provided. There has been proposed a rotation detection device provided with signal processing means for processing a rotation detection signal and an axial vibration detection signal from an axial vibration detector and removing an axial vibration component from the signal component of the rotation detection signal (for example, a patent Reference 4).

更に、回転軸のラジアル方向の軸振れを許容し、超高速で回転する機械、特殊機械、工業用回転機械に使用できる回転角センサが提案されている(例えば、特許文献5参照)。   Furthermore, a rotation angle sensor that allows a shaft deflection in the radial direction of the rotating shaft and can be used for a machine that rotates at an ultra high speed, a special machine, or an industrial rotating machine has been proposed (for example, see Patent Document 5).

特開昭58−162813号公報(特許請求の範囲の欄、第4図)Japanese Patent Laid-Open No. 58-162813 (claimed column, FIG. 4) 特開平5−333032号公報(要約の欄、図1)JP-A-5-333032 (Summary column, FIG. 1) 特開昭61−292503号公報(第2頁右上欄12行〜15行、第1図)JP-A-61-292503 (page 2, upper right column, lines 12 to 15, line 1) 特開2001−201362号公報(要約の欄、図1)JP 2001-201362 A (summary column, FIG. 1) 特開平4−366716号公報(段落0001、図1)JP-A-4-366716 (paragraph 0001, FIG. 1)

上記のように、回転軸の回転を検出する回転検出装置については従来から多くの提案がなされているが、大型の電動機や回転機械等のように、回転軸方向の摺動量の多い回転軸の回転検出に適用できる回転検出装置についての提案もしくは開示がなされていない状況にある。   As described above, many proposals have been made for a rotation detection device that detects the rotation of the rotary shaft. However, a rotary shaft having a large amount of sliding in the rotary shaft direction, such as a large motor or a rotary machine, has been proposed. There is no proposal or disclosure of a rotation detection device applicable to rotation detection.

ところで、一般の産業用回転電機、例えば電動機の軸受には転がり軸受が採用されているが、大型電動機のように大型回転機械になると軸受にはすべり軸受が採用されている。これは、転がり軸受がすべり面の周速条件、荷重条件、振動条件などにより適用制限されるためであって、特に容量が大きい大型回転機械になると必然的にすべり軸受が採用されることになる。しかし、このすべり軸受が採用される大型回転機械における回転軸の回転を検出する場合に問題となるのは、すべり軸受の構造上から生じる回転軸の軸方向への摺動量である。   By the way, a rolling bearing is adopted for a general industrial rotating electric machine, for example, a bearing of an electric motor. However, a sliding bearing is adopted for a bearing in a large rotating machine such as a large electric motor. This is because the application of rolling bearings is limited by the peripheral speed conditions, load conditions, vibration conditions, etc. of the sliding surface. In particular, a large size rotating machine with a large capacity will inevitably adopt a sliding bearing. . However, a problem in detecting the rotation of the rotary shaft in a large-sized rotating machine in which the slide bearing is employed is the amount of sliding in the axial direction of the rotary shaft generated from the structure of the slide bearing.

即ち、転がり軸受(特にボール軸受)は軸方向への摺動を抑える構造となっており、回転軸の摺動は温度上昇に伴う熱伸び程度であるのに対し、大型回転機械はすべり軸受が採用されることから、回転軸に軸方向の摺動量が生じる。その摺動量をエンドプレーと言い、両端の摺動量の総和をエンドフロートと言うが、このエンドプレーは大型回転機械で5mm、エンドフロートは2倍の10mmにもなる。   In other words, rolling bearings (especially ball bearings) have a structure that suppresses sliding in the axial direction, and the sliding of the rotating shaft is about the degree of thermal expansion accompanying the rise in temperature, whereas large rotating machines have a sliding bearing. Since it is adopted, a sliding amount in the axial direction is generated on the rotating shaft. The amount of sliding is called an end play, and the total amount of sliding at both ends is called an end float. This end play is 5 mm for a large rotating machine, and the end float is twice as large as 10 mm.

通常、電動機等の回転機械の場合、起動による電磁力で回転軸はエンドフロートの中心(マグネットのセンター位置)に引き寄せられるが、負荷の軽重や駆動される機械装置の機械軸からのスラスト力を受けて回転軸が摺動する。一般に、機械軸のエンドプレー値は回転軸のエンドプレー値よりも小さく設定されており、機械装置側から制限されるので、実際に回転軸が摺動する距離は回転軸のエンドフロートの半分以下となることが多いが、それでも回転軸には数mm程度の摺動が発生することになる。   Normally, in the case of a rotating machine such as an electric motor, the rotating shaft is attracted to the center of the end float (the center position of the magnet) by the electromagnetic force generated by the startup. However, the thrust force from the mechanical shaft of the driven mechanical device is reduced. In response, the rotating shaft slides. Generally, the end play value of the machine shaft is set smaller than the end play value of the rotating shaft and is limited from the machine side, so the actual distance that the rotating shaft slides is less than half of the end float of the rotating shaft. In many cases, however, sliding of about several mm occurs on the rotating shaft.

この大型回転機械においても、監視あるいは保護用、または可変速制御用などの目的で、実際の回転を検出し目的を達成するように回転検出装置が用いられるが、上記のような回転軸の軸方向摺動により、検出精度を満足できる回転検出装置を得るに至っていない現状にある。   Even in this large rotating machine, a rotation detecting device is used to detect the actual rotation and achieve the purpose for the purpose of monitoring or protection or variable speed control. There is no current state of obtaining a rotation detecting device that can satisfy the detection accuracy by sliding in the direction.

この発明は、従来における上記実情に鑑みてなされたもので、軸方向へ摺動しない回転軸には勿論のこと、軸方向へ摺動する回転軸に対してもその回転軸の回転を誤動作なく、精度よく検出できる回転検出装置を提供することを目的とするものである。   The present invention has been made in view of the above-described situation in the prior art. In addition to a rotating shaft that does not slide in the axial direction, rotation of the rotating shaft does not malfunction even with respect to a rotating shaft that slides in the axial direction. An object of the present invention is to provide a rotation detection device that can detect with high accuracy.

この発明に係る回転検出装置は、回転軸方向に摺動する回転体の回転を非接触で検出する回転検出装置であって、上記回転体に連結されて回転し、複数の磁極が円周表面に沿って形成される磁性材料の円筒形状体と、上記円筒形状体と所定間隙を介して対向する磁気検出手段と、を備え、上記磁気検出手段と上記磁極で形成される磁場領域が上記回転体の回転軸方向摺動量以上の磁場領域であることを特徴とするものである。   A rotation detection device according to the present invention is a rotation detection device that detects the rotation of a rotating body that slides in the direction of the rotation axis in a non-contact manner, and is connected to the rotating body to rotate, and a plurality of magnetic poles are circumferential surfaces. A magnetic body formed along the cylindrical body, and a magnetic detection means facing the cylindrical body with a predetermined gap therebetween, and a magnetic field region formed by the magnetic detection means and the magnetic pole is rotated. The magnetic field region is greater than the amount of sliding of the body in the rotation axis direction.

この発明に係る回転検出装置によれば、軸方向へ摺動しない回転軸には勿論、軸方向へ摺動する回転軸に対してもその回転軸の回転位置を誤動作なく、精度よく検出できる効果がある。   According to the rotation detection device of the present invention, the rotational position of the rotary shaft can be detected with high accuracy without malfunction, not only for the rotary shaft that does not slide in the axial direction but also for the rotary shaft that slides in the axial direction. There is.

以下に添付図面を参照して、この発明に係る回転軸検出装置について好適な実施の形態を説明する。なお、説明の便宜上、回転機械として電動機を一例に挙げ、その回転軸の回転を検出する回転検出装置について説明するが、この発明はこれに限定されるものではなく、発電機などその他の回転機械における回転軸の回転検出に適用できるものである。   Exemplary embodiments of a rotational axis detection device according to the present invention will be described below with reference to the accompanying drawings. For convenience of explanation, an electric motor is taken as an example of a rotating machine, and a rotation detecting device that detects the rotation of the rotating shaft will be described. However, the present invention is not limited to this, and other rotating machines such as a generator. The present invention can be applied to the rotation detection of the rotation shaft.

実施の形態1.
図1は実施の形態1に係る回転検出装置の構成図である。この図1において、電動機1の回転軸1aに同芯状態となるように円筒形状体、例えば円筒形円板2が機械的に取り付けられて連結されている。円筒形円板2の外周面より一定のギャップを介して磁気検出手段であるMR検出器(磁気抵抗効果型検出器で、以下、単に検出器と称する。)3が固定設置され、この検出器3と円筒形円板2を介して検出器4が対向して固定設置されている。なお、電動機1は大容量の大型電動機であって、その回転軸1aは前述のように数mm程度のエンドフロートが発生するものである。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a rotation detection device according to the first embodiment. In FIG. 1, a cylindrical body, for example, a cylindrical disk 2 is mechanically attached and connected to a rotating shaft 1a of an electric motor 1 so as to be concentric. An MR detector (a magnetoresistive effect detector, hereinafter simply referred to as a detector) 3 is fixedly installed through a certain gap from the outer peripheral surface of the cylindrical disk 2, and this detector A detector 4 is fixedly installed oppositely through 3 and a cylindrical disk 2. The electric motor 1 is a large-capacity large electric motor, and the rotating shaft 1a generates an end float of about several millimeters as described above.

一方、円筒形円板2の外周面には電動機1の回転軸1aの軸方向に偶数個の細長帯状の磁極5が互いに平行に、かつ均一に形成されている。この磁極5は、例えば円筒形円板2の外周面に磁性体を塗布して磁性体層を形成させ、その磁性体層を着磁することにより構成されている。この磁極5と検出器3により第1の非接触検出手段6が構成され、磁極5と検出器4により第2の非接触検出手段7が構成されている。そして、検出器3及び検出器4の検出信号である出力電圧は、合成信号生成手段の補正回路8に出力され、補正回路8から信号処理手段の信号処理回路9に出力されるように構成されている。また、円筒形円板2の軸方向長さ、即ち厚みは、電動機1の回転軸1aの摺動量Lmm以上に構成されており、磁極5も同様に電動機1の回転軸1aの摺動量Lmm以上に構成されて配置されている。なお、補正回路8及び信号処理回路9の動作並びに作用については後述する。   On the other hand, an even number of strip-shaped magnetic poles 5 are formed in parallel and uniformly on the outer peripheral surface of the cylindrical disk 2 in the axial direction of the rotating shaft 1 a of the electric motor 1. The magnetic pole 5 is configured, for example, by applying a magnetic material to the outer peripheral surface of the cylindrical disk 2 to form a magnetic material layer and magnetizing the magnetic material layer. The magnetic pole 5 and the detector 3 constitute a first non-contact detecting means 6, and the magnetic pole 5 and the detector 4 constitute a second non-contact detecting means 7. The output voltage that is the detection signal of the detector 3 and the detector 4 is output to the correction circuit 8 of the combined signal generation unit, and is output from the correction circuit 8 to the signal processing circuit 9 of the signal processing unit. ing. Further, the axial length, that is, the thickness of the cylindrical disk 2 is configured to be not less than the sliding amount Lmm of the rotating shaft 1a of the electric motor 1, and the magnetic pole 5 is similarly not less than the sliding amount Lmm of the rotating shaft 1a of the electric motor 1. It is configured and arranged. The operations and actions of the correction circuit 8 and the signal processing circuit 9 will be described later.

図2は、図1に示した回転検出装置に、その検出結果を監視する監視手段である検出信号監視回路を設けた回転検出装置の構成図である。この図において、回転検出装置の検出結果を監視する監視手段、即ち、検出信号監視回路20は、ロジック回路21を含む演算処理回路22、及び表示手段23から構成されている。検出器3の出力電圧は波形振幅平均値演算器24、最大及び最小振幅演算器25に入力され、検出器4の出力電圧は波形振幅平均値演算器26、最大及び最小振幅演算器27に入力されて各々振幅が演算される。波形振幅平均値演算器24,26、最大及び最小振幅演算器25,27の演算結果はロジック回路21に出力されると共に、表示手段23に出力される。   FIG. 2 is a configuration diagram of the rotation detection device in which the rotation detection device shown in FIG. 1 is provided with a detection signal monitoring circuit which is a monitoring means for monitoring the detection result. In this figure, the monitoring means for monitoring the detection result of the rotation detecting device, that is, the detection signal monitoring circuit 20 is composed of an arithmetic processing circuit 22 including a logic circuit 21 and a display means 23. The output voltage of the detector 3 is input to the waveform amplitude average value calculator 24 and the maximum and minimum amplitude calculator 25, and the output voltage of the detector 4 is input to the waveform amplitude average value calculator 26 and the maximum and minimum amplitude calculator 27. Each amplitude is calculated. The calculation results of the waveform amplitude average value calculators 24 and 26 and the maximum and minimum amplitude calculators 25 and 27 are output to the logic circuit 21 and also to the display means 23.

実施の形態1に係る回転検出装置は上記のように構成されており、次にその動作並びに作用について説明する。
電動機1の回転軸1aが回転することにより、機械的に取り付けられて連結された円筒形円板2が回転され、外周に形成された磁極5が回転する。この回転により検出器3,4が磁束の変化を感知し、磁束の変化に伴った電圧を出力する。そして、回転軸1aが軸方向に摺動しても検出器3,4は磁場領域を逸脱することなく、連続した出力電圧が得られる。なお、電動機軸などの回転検出に用いられる従来の回転検出装置は、回転軸1aがその軸方向に摺動しないもの、或いは摺動するとしても熱による伸縮程度で、摺動を吸収するためにフレキシブルカップリングにより回転軸1aと回転検出器の軸が結合されたものを検出対象としており、いずれも円筒形円板2と回転検出器の位置がずれないことを前提としたものであって、回転軸1aが摺動する用途には適用が困難であった。
The rotation detection device according to the first embodiment is configured as described above, and the operation and action thereof will be described next.
When the rotating shaft 1a of the electric motor 1 rotates, the cylindrical disk 2 that is mechanically attached and connected rotates, and the magnetic pole 5 formed on the outer periphery rotates. By this rotation, the detectors 3 and 4 sense a change in magnetic flux and output a voltage associated with the change in magnetic flux. And even if the rotating shaft 1a slides in the axial direction, the detectors 3 and 4 can obtain a continuous output voltage without departing from the magnetic field region. In addition, the conventional rotation detection device used for detecting the rotation of the motor shaft or the like is for the rotation shaft 1a not to slide in the axial direction or to absorb the sliding with the extent of expansion or contraction due to heat even if sliding. The object to be detected is a combination of the rotating shaft 1a and the shaft of the rotation detector by a flexible coupling, both of which are based on the assumption that the positions of the cylindrical disk 2 and the rotation detector do not shift, It has been difficult to apply to applications where the rotating shaft 1a slides.

電動機1の回転軸1aが回転することにより円筒形円板2が回転されると、検出器3,4から図3に示す出力電圧を発生する。図3は横軸に時間、縦軸に検出器3あるいは検出器4の出力電圧を示す図で、図3aは回転円筒円板2の取り付けが軸振れしない取り付け状態の場合(理想の場合)を示しており、図3bは回転円筒円板2の取り付けが軸振れを生じている場合(偏角でも図形は同様)を示している。   When the rotating shaft 1a of the electric motor 1 rotates to rotate the cylindrical disk 2, the output voltage shown in FIG. FIG. 3 is a graph showing time on the horizontal axis and the output voltage of the detector 3 or the detector 4 on the vertical axis, and FIG. 3a shows a case where the rotating cylindrical disk 2 is not attached to the shaft (an ideal case). FIG. 3b shows the case where the mounting of the rotating cylindrical disk 2 causes an axial runout (the figure is the same even with a declination).

図3aでは、検出器3,4の検出信号波形は同形であり、位相も同じである。図3bは軸振れ最大時点を示し、検出器3と磁極5の距離が最も接近している位置では検出器3の出力電圧が最大値になるが、検出器4側では磁極5と最も離れていることになり出力電圧は最小値となる。これらの出力電圧は補正回路8に入力され、この補正回路8で電圧加算され、検出器3,4の合成電圧となるが、合成されることにより図4に示す軸振れを含まない電圧に補正される。図4は補正回路8の出力電圧(合成電圧)を示すもので、横軸に時間、縦軸に検出器3,4の出力電圧の合成電圧を示している。   In FIG. 3a, the detection signal waveforms of the detectors 3 and 4 have the same shape and the same phase. FIG. 3b shows the maximum shaft deflection time point, and the output voltage of the detector 3 becomes the maximum value at the position where the distance between the detector 3 and the magnetic pole 5 is closest, but it is farthest from the magnetic pole 5 on the detector 4 side. The output voltage becomes the minimum value. These output voltages are input to the correction circuit 8, and the voltage is added by the correction circuit 8 to become a combined voltage of the detectors 3 and 4, but is corrected to a voltage that does not include the shaft shake shown in FIG. Is done. FIG. 4 shows the output voltage (combined voltage) of the correction circuit 8, where the horizontal axis represents time and the vertical axis represents the combined voltage of the output voltages of the detectors 3 and 4.

また、図5は信号処理回路9の出力電圧波形を示し、この信号処理回路9は補正回路8から出力される合成電圧を所定のレベルでスレッショルドし、短形波の出力電圧を得る。この出力電圧はパルス波形になる。電動機1の回転軸1aの摺動量がLmm以内であれば、磁極5からうける磁束量は変わらず、つまり、摺動量Lmm以内であれば、どの摺動位置においても検出器3,4の受ける磁束量は変わらず、出力電圧は均一となる。   FIG. 5 shows an output voltage waveform of the signal processing circuit 9. The signal processing circuit 9 thresholds the composite voltage output from the correction circuit 8 at a predetermined level to obtain a short-wave output voltage. This output voltage has a pulse waveform. If the sliding amount of the rotating shaft 1a of the electric motor 1 is within Lmm, the amount of magnetic flux received from the magnetic pole 5 does not change, that is, if the sliding amount is within Lmm, the magnetic flux received by the detectors 3 and 4 at any sliding position. The amount does not change and the output voltage is uniform.

図6はロジック回路21の動作フローを示す図で、ロジック回路21は次のように動作する。即ち、波形振幅平均値演算器24,26からの平均振幅値、及び最大及び最小振幅演算器25,27からの最大及び最小振幅値を入力すると(ST1)、先ず、波形振幅平均値演算器24の平均振幅値と波形振幅平均値演算器26の平均振幅値を比較する(ST2)。その結果、波形振幅平均値演算器24の平均振幅値が大きければ、検出器3と円筒形円板2が接近しすぎであり、検出器3の取り付け位置を修正し(ST3)、波形振幅平均値演算器24の平均振幅値が小さければ(ST4)、検出器4と円筒形円板2が接近しすぎであり、検出器4の取り付け位置を修正する(ST5)。   FIG. 6 is a diagram showing an operation flow of the logic circuit 21, and the logic circuit 21 operates as follows. That is, when the average amplitude value from the waveform amplitude average value calculators 24 and 26 and the maximum and minimum amplitude values from the maximum and minimum amplitude calculators 25 and 27 are input (ST1), first, the waveform amplitude average value calculator 24 is set. Are compared with the average amplitude value of the waveform amplitude average value calculator 26 (ST2). As a result, if the average amplitude value of the waveform amplitude average value calculator 24 is large, the detector 3 and the cylindrical disk 2 are too close, the mounting position of the detector 3 is corrected (ST3), and the waveform amplitude average If the average amplitude value of the value calculator 24 is small (ST4), the detector 4 and the cylindrical disk 2 are too close, and the mounting position of the detector 4 is corrected (ST5).

その後、最大及び最小振幅演算器25或いは27の最大振幅値及び最小振幅値が大きく離れているか確認し(ST6)、大きく離れていれば円筒形円板2が軸振れ又は偏芯しており、円筒形円板2の取り付け位置を修正する(ST7)。   Thereafter, it is confirmed whether the maximum amplitude value and the minimum amplitude value of the maximum and minimum amplitude calculator 25 or 27 are greatly separated (ST6), and if they are largely separated, the cylindrical disk 2 is axially shaken or eccentric. The mounting position of the cylindrical disk 2 is corrected (ST7).

なお、波形振幅平均値演算器24,26、最大及び最小振幅演算器25,27の演算結果は、それぞれ表示手段23の各表示器23a〜23dに図7に示す表示例のように表示される。   The calculation results of the waveform amplitude average value calculators 24 and 26 and the maximum and minimum amplitude calculators 25 and 27 are displayed on the respective display units 23a to 23d of the display means 23 as shown in the display example in FIG. .

以上のように、実施の形態1による回転検出装置によれば、回転軸1aのラジアル方向の軸振れに対応した上で、軸方向へ摺動する回転軸1aに対してその回転軸1aの回転を誤動作なく、精度よく検出でき、その検出状態を監視できる効果がある。   As described above, according to the rotation detection device according to the first embodiment, the rotation shaft 1a rotates with respect to the rotation shaft 1a that slides in the axial direction while corresponding to the radial shaft runout of the rotation shaft 1a. Can be accurately detected without malfunction, and the detection state can be monitored.

実施の形態2.
次に実施の形態2について説明する。実施の形態1では、円筒形円板2の外周面に電動機1の回転軸1aの軸方向に偶数個の細長帯状の磁極5が互いに平行に、かつ均一に形成されていることを前提としているが、実際の製作では磁極5を均一な形状に形成することが困難な場合がある。これを図8により説明すると、図8aは回転軸1aの摺動時における一つの磁極80と検出器3の関係を拡大した模式図で、磁極の形状(境目)が正確に形成されず、磁極不均一部81が生じている場合を示している。なお、破線は回転軸1aの軸方向移動時における磁極80の位置を示している。
Embodiment 2. FIG.
Next, a second embodiment will be described. In the first embodiment, it is assumed that an even number of strip-like magnetic poles 5 are formed in parallel and uniformly on the outer peripheral surface of the cylindrical disk 2 in the axial direction of the rotating shaft 1a of the electric motor 1. However, in actual manufacture, it may be difficult to form the magnetic pole 5 in a uniform shape. This will be described with reference to FIG. 8. FIG. 8 a is an enlarged schematic view of the relationship between one magnetic pole 80 and the detector 3 when the rotary shaft 1 a slides, and the shape (boundary) of the magnetic pole is not accurately formed. The case where the nonuniform part 81 has arisen is shown. The broken line indicates the position of the magnetic pole 80 when the rotating shaft 1a moves in the axial direction.

図8bは図8aにおける検出器3の出力電圧を示し、便宜上、回転停止の状態で模擬したものである。磁束により検出器3の出力電圧が発せられているが、回転軸1aの軸方向移動が始まって回転部(磁極)80が移動し、検出器3は磁束の不均一部81の通過を捕らえて出力電圧が変化する。検出器3は磁束の不均一部81を通過し、t秒後には磁束の均一な磁極部位に位置する。検出器3の出力電圧は磁束の不均一部81の通過前後では磁束均一時に比べて電圧が乱れ、一種の「すだれ」状態となり、場合により補正回路8、信号処理回路9で誤パルスの発生となる。   FIG. 8b shows the output voltage of the detector 3 in FIG. 8a, which is simulated for the sake of convenience. Although the output voltage of the detector 3 is generated by the magnetic flux, the axial movement of the rotating shaft 1a starts and the rotating part (magnetic pole) 80 moves, and the detector 3 catches the passage of the magnetic flux non-uniform part 81. The output voltage changes. The detector 3 passes through the non-uniform part 81 of the magnetic flux and is located at a magnetic pole part where the magnetic flux is uniform after t seconds. The output voltage of the detector 3 is distorted before and after passing through the non-uniform part 81 of the magnetic flux as compared with the case where the magnetic flux is uniform, and is in a kind of “blurred” state. Become.

このように、特に停止中に回転軸1aに何らかの軸方向移動が生じ、誤パルス発生に至ると完全停止等のインターロックを設けているシステムでは起動条件が成立せず起動不能となる。実施の形態2は、磁極の形状を工夫することで、磁極の不均一による摺動中の誤パルス発生を防止する回転検出装置を得るものである。   In this way, especially when the rotating shaft 1a moves in the axial direction during the stop and an erroneous pulse is generated, the start-up condition is not satisfied and the start-up is impossible in a system provided with an interlock such as a complete stop. The second embodiment obtains a rotation detection device that prevents the generation of erroneous pulses during sliding due to non-uniformity of magnetic poles by devising the shape of the magnetic poles.

即ち、図9は実施の形態2に係る回転検出装置を示す構成図で、帯状磁極91の形状を軸方向に若干の角度(軸水平に対し数度以下)を設けて形成したものである。即ち、帯状磁極91はスキューしたパターンで形成されている。なお、その他の構成については実施の形態1と同様であるので、同一符号を付すことにより、説明を省略する。   That is, FIG. 9 is a block diagram showing the rotation detecting device according to the second embodiment, in which the shape of the belt-like magnetic pole 91 is formed by providing a slight angle in the axial direction (a few degrees or less with respect to the horizontal axis). That is, the strip-shaped magnetic pole 91 is formed in a skewed pattern. Since other configurations are the same as those in the first embodiment, the same reference numerals are used and description thereof is omitted.

次に実施の形態2による改善効果について図10を用いて説明する。即ち、図10aは回転軸1aの軸方向への摺動時の一つの磁極91と検出器3の関係を拡大して示す模式図で、磁極の形状(境目)が正確に形成されず、磁極不均一部81が生じている場合を示している。なお、破線は回転軸1aの軸方向移動時における磁極91の位置をしている。   Next, the improvement effect by Embodiment 2 is demonstrated using FIG. That is, FIG. 10A is a schematic diagram showing an enlarged relationship between one magnetic pole 91 and the detector 3 when the rotary shaft 1a slides in the axial direction, and the shape (boundary) of the magnetic pole is not accurately formed. The case where the nonuniform part 81 has arisen is shown. In addition, the broken line has shown the position of the magnetic pole 91 at the time of the axial movement of the rotating shaft 1a.

図10bは図10aにおける検出器3,4の出力電圧と、補正回路8の出力電圧を示し、便宜上、回転停止の状態で模擬したものである。磁束により検出器3,4の出力が発せられているが、回転軸1aの軸方向移動が始まって回転部(磁極)91が移動する。図10bでは、回転軸1aの軸方向移動の際、磁極91にスキューの方向と、回転軸1aの移動方向の関係より、検出器3は磁極91に接近する方向、つまり磁束が増加する領域に移動することとなり、対向して取り付けた検出器4は逆に磁極91から離れる方向、つまり磁束が減少する領域に移動することとなる。検出器3は磁束の不均一部81の通過を捕らえ出力電圧が変化する。検出器3,4の出力電圧は補正回路8により合成されるが、合成波形(電圧)には短形波状の「すだれ」状態は生じず、波形の立ち上がり(立下り)時間の遅れとなって発生する。   FIG. 10b shows the output voltage of the detectors 3 and 4 and the output voltage of the correction circuit 8 in FIG. 10a, and for the sake of convenience, is simulated in a state where rotation is stopped. Although the outputs of the detectors 3 and 4 are generated by the magnetic flux, the axial movement of the rotating shaft 1a starts and the rotating part (magnetic pole) 91 moves. In FIG. 10b, when the rotary shaft 1a is moved in the axial direction, the detector 3 moves closer to the magnetic pole 91, that is, in a region where the magnetic flux increases, based on the relationship between the skew direction of the magnetic pole 91 and the moving direction of the rotary shaft 1a. The detector 4 mounted oppositely moves in a direction away from the magnetic pole 91, that is, in a region where the magnetic flux decreases. The detector 3 captures the passage of the magnetic flux non-uniform part 81 and the output voltage changes. Although the output voltages of the detectors 3 and 4 are synthesized by the correction circuit 8, a short waveform “blade” state does not occur in the synthesized waveform (voltage), and the rise (fall) time of the waveform is delayed. appear.

以上のように、実施の形態2によれば、回転軸1aの軸方向移動による誤パルスの発生を防止し、特に停止中の回転軸1aの軸方向移動には威力を発揮する。尚、スキューの角度を大きく設定すると回転軸1aの摺動前と摺動後では検出信号は回転角がずれることになり、回転角制御の場合には制御に支障のない範囲にスキュー角を設定する必要がある。   As described above, according to the second embodiment, the generation of erroneous pulses due to the axial movement of the rotating shaft 1a is prevented, and it is particularly effective for the axial movement of the rotating shaft 1a that is stopped. Note that if the skew angle is set large, the rotation angle of the detection signal will be shifted before and after sliding of the rotary shaft 1a. In the case of rotation angle control, the skew angle is set within a range that does not hinder the control. There is a need to.

実施の形態3.
次に実施の形態3について説明する。実施の形態1では、円筒形円板2の外周面に電動機1の回転軸1aの軸方向に偶数個の細長帯状の磁極5が互いに平行に、かつ均一に形成されていることを前提としているが、均一で細長い磁極の形成が困難な場合がある。実施の形態3では、磁極は円形等の均一な磁束を形成しやすい形状(構造)とし、逆に互いに対向するそれぞれの検出器は軸方向に細長い形状として取り付ける。検出器が細長く製作することが困難な場合には軸方向に複数個並設する等の応用により実現する。
Embodiment 3 FIG.
Next, a third embodiment will be described. In the first embodiment, it is assumed that an even number of strip-like magnetic poles 5 are formed in parallel and uniformly on the outer peripheral surface of the cylindrical disk 2 in the axial direction of the rotating shaft 1a of the electric motor 1. However, it may be difficult to form a uniform and elongated magnetic pole. In the third embodiment, the magnetic pole has a shape (structure) that easily forms a uniform magnetic flux such as a circle, and conversely, the detectors facing each other are attached as elongated shapes in the axial direction. When it is difficult to manufacture a long and narrow detector, it can be realized by applying a plurality of detectors in the axial direction.

このように実施の形態3では、磁極の形状を円形等の形状とし、検出器側で検出幅を広げる構造とすることにより、磁極の不均一な形成(磁束の不均一)を防止し、摺動中の誤パルス発生を防止する回転検出装置を得るものである。   As described above, in the third embodiment, the magnetic pole has a circular shape or the like and the detection width is widened on the detector side to prevent the magnetic pole from being unevenly formed (magnetic flux nonuniformity) and to slide. A rotation detection device that prevents generation of erroneous pulses during movement is obtained.

即ち、図11は実施の形態3に係る回転検出装置を示す構成図で、実施の形態1あるいは実施の形態2の帯状磁極5,91に変わり円形形状の磁極110を、実施の形態1あるいは実施の形態2の円筒形円板2より厚さ寸法の小さい円筒形円板111の円周表面に偶数個配置し、検出器3,4の代わりに検出器112,113を取り付ける。検出器112は回転軸1aの摺動距離L以上の軸方向における検出が可能な構造で、検出器112と円筒形円板111を介して対向する検出器113も同様である。なお、その他の構成については実施の形態1あるいは実施の形態2と同様であるので、同一符号を付すことにより、説明を省略する。   That is, FIG. 11 is a block diagram showing the rotation detecting device according to the third embodiment. Instead of the strip-shaped magnetic poles 5 and 91 of the first or second embodiment, a circular magnetic pole 110 is used instead of the first or second embodiment. An even number is arranged on the circumferential surface of the cylindrical disc 111 having a thickness smaller than that of the cylindrical disc 2 of the second embodiment, and detectors 112 and 113 are attached instead of the detectors 3 and 4. The detector 112 has a structure capable of detecting in the axial direction longer than the sliding distance L of the rotating shaft 1a, and the detector 113 facing the detector 112 via the cylindrical disk 111 is the same. Since other configurations are the same as those in the first embodiment or the second embodiment, the same reference numerals are given and description thereof is omitted.

実施の形態3は上記の構成であるので、均一で細長い磁極を形成し難い場合であっても、磁極は円形等均一な磁極の形成が容易な形状とし、この磁極が回転軸1aの移動と共に回転円板111が移動しても、固定取り付けの検出器112,113の検出領域を外れることなく摺動領域全域にわたり検出器112,113による検出が可能となり、電動機1の摺動する回転軸1aの回転検出に適した回転検出装置を得ることができる。   Since Embodiment 3 has the above-described configuration, even when it is difficult to form a uniform and elongated magnetic pole, the magnetic pole has a shape such as a circular shape that facilitates the formation of a uniform magnetic pole, and the magnetic pole moves along with the movement of the rotating shaft 1a. Even if the rotating disk 111 moves, detection by the detectors 112 and 113 is possible over the entire sliding region without departing from the detection region of the fixedly mounted detectors 112 and 113, and the rotating shaft 1a on which the motor 1 slides. The rotation detection device suitable for the rotation detection can be obtained.

なお、上記各実施の形態では非接触検出手段として、円筒形状体の外周面より一定のギャップを介して対向するMR検出器を用いた場合について説明したが、この発明はこれに限定されるものではなく、諸種の設計的変更を包含するものである。   In each of the above-described embodiments, the case has been described in which the MR detector that is opposed to the outer peripheral surface of the cylindrical body through a certain gap is used as the non-contact detection means. However, the present invention is not limited to this. Rather, it encompasses various design changes.

この発明による回転検出装置は、大型の電動機や回転機械、特に軸方向の摺動量の多い回転機械の回転軸の回転検出に利用できる。   The rotation detecting device according to the present invention can be used for detecting rotation of a rotating shaft of a large-sized electric motor or rotating machine, particularly a rotating machine having a large amount of sliding in the axial direction.

この発明の実施の形態1に係る回転検出装置の構成図である。It is a block diagram of the rotation detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転検出装置にその検出結果を監視する検出信号監視回路を設けた回転検出装置の構成図である。It is a block diagram of the rotation detection apparatus which provided the detection signal monitoring circuit which monitors the detection result in the rotation detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転検出装置の検出信号を示し、横軸に時間、縦軸に検出信号を示す図である。It is a figure which shows the detection signal of the rotation detection apparatus which concerns on Embodiment 1 of this invention, shows a time on a horizontal axis, and a detection signal on a vertical axis. この発明の実施の形態1に係る回転検出装置の補正回路の出力電圧(合成信号)を示し、横軸に時間、縦軸に出力電圧(合成電圧)を示す図である。It is a figure which shows the output voltage (synthetic signal) of the correction circuit of the rotation detection apparatus according to Embodiment 1 of the present invention, wherein the horizontal axis represents time and the vertical axis represents the output voltage (synthetic voltage). この発明の実施の形態1に係る回転検出装置の信号処理回路の出力信号波形を示す図である。It is a figure which shows the output signal waveform of the signal processing circuit of the rotation detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転検出装置のロジック回路の動作フローを示す図である。It is a figure which shows the operation | movement flow of the logic circuit of the rotation detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転検出装置の表示器に表示される表示例を示す図である。It is a figure which shows the example of a display displayed on the indicator of the rotation detection apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る回転検出装置の動作背景を説明する模式図である。It is a schematic diagram explaining the operation | movement background of the rotation detection apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る回転検出装置の構成図である。It is a block diagram of the rotation detection apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る回転検出装置の動作を説明する模式図である。It is a schematic diagram explaining operation | movement of the rotation detection apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る回転検出装置の構成図である。It is a block diagram of the rotation detection apparatus which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 電動機
1a 回転軸
2,111 円筒形円板
3,4,112,113 MR検出器
5,80,91,110 磁極
6 第1の検出手段
7 第2の検出手段
8 補正回路
9 信号処理回路
20 検出信号監視回路
21 ロジック回路
22 演算処理回路
23 表示手段
23a〜23d 表示器
24,26 波形振幅平均値演算器
25,27 最大及び最小振幅演算器
81 磁極不均一部
DESCRIPTION OF SYMBOLS 1 Electric motor 1a Rotating shaft 2,111 Cylindrical disk 3,4,112,113 MR detector 5,80,91,110 Magnetic pole 6 1st detection means 7 2nd detection means 8 Correction circuit 9 Signal processing circuit 20 Detection signal monitoring circuit 21 Logic circuit 22 Arithmetic processing circuit 23 Display means 23a to 23d Display units 24 and 26 Waveform amplitude average value calculators 25 and 27 Maximum and minimum amplitude calculators 81 Magnetic pole nonuniformity portion

Claims (7)

回転軸方向に摺動する回転体の回転を非接触で検出する回転検出装置であって、上記回転体に連結されて回転し、複数の磁極が円周表面に沿って形成される磁性材料の円筒形状体と、上記円筒形状体と所定間隙を介して対向する磁気検出手段と、を備え、
上記磁気検出手段と上記磁極で形成される磁場領域が上記回転体の回転軸方向摺動量以上の磁場領域であることを特徴とする回転検出装置。
A rotation detection device that detects rotation of a rotating body that slides in the direction of the rotation axis in a non-contact manner, wherein the magnetic material is connected to the rotating body and rotates, and a plurality of magnetic poles are formed along a circumferential surface. A cylindrical body, and magnetic detection means facing the cylindrical body via a predetermined gap,
A rotation detection device, wherein a magnetic field region formed by the magnetic detection means and the magnetic pole is a magnetic field region equal to or greater than a sliding amount in the rotation axis direction of the rotating body.
上記磁極を帯状磁極とし、上記円筒形状体の回転軸方向長さを上記回転体の回転軸方向摺動量以上の長さに構成すると共に、上記帯状磁極の長さを上記回転体の回転軸方向摺動量以上の長さに構成したことを特徴とする請求項1に記載の回転検出装置。   The magnetic pole is a strip-shaped magnetic pole, and the length in the rotation axis direction of the cylindrical body is configured to be longer than the sliding amount in the rotation axis direction of the rotation body, and the length of the band-shaped magnetic pole is set in the rotation axis direction of the rotation body. The rotation detection device according to claim 1, wherein the rotation detection device is configured to have a length equal to or greater than a sliding amount. 上記帯状磁極は、上記円筒形状体の回転軸方向に互いに平行に形成されていることを特徴とする請求項2に記載の回転検出装置。   The rotation detecting device according to claim 2, wherein the strip-shaped magnetic poles are formed in parallel to each other in the rotation axis direction of the cylindrical body. 上記帯状磁極は、上記円筒形状体の回転軸方向に対して傾斜して形成されると共に、上記磁極相互は互いに平行に形成されることを特徴とする請求項2に記載の回転検出装置。   The rotation detecting device according to claim 2, wherein the belt-like magnetic poles are formed to be inclined with respect to the rotation axis direction of the cylindrical body, and the magnetic poles are formed in parallel to each other. 上記磁気検出手段の上記円筒形状体の回転軸方向長さを上記回転体の回転軸方向摺動量以上の長さに構成したことを特徴とする請求項1に記載の回転検出装置。   2. The rotation detection device according to claim 1, wherein the length of the cylindrical body of the magnetic detection means in the rotation axis direction is longer than the sliding amount of the rotation body in the rotation axis direction. 上記磁気検出手段を、上記円筒形状体を介して対向する第1及び第2の磁気検出手段から構成すると共に、上記第1の磁気検出手段の検出信号と上記第2の磁気検出手段の検出信号の合成信号を生成する合成信号生成手段と、上記合成信号生成手段の出力信号からパルス信号を生成する信号処理手段と、を備えたことを特徴とする請求項1〜請求項5の何れかに記載の回転検出装置。   The magnetic detection means is composed of first and second magnetic detection means facing each other through the cylindrical body, and a detection signal of the first magnetic detection means and a detection signal of the second magnetic detection means 6. A composite signal generating means for generating a composite signal of the above and a signal processing means for generating a pulse signal from an output signal of the composite signal generating means. The rotation detection device described. 上記第1の磁気検出手段の検出信号と上記第2の磁気検出手段の検出信号に基づき上記回転検出装置の検出結果を監視する監視手段を備えたことを特徴とする請求項6に記載の回転検出装置。   The rotation according to claim 6, further comprising monitoring means for monitoring a detection result of the rotation detection device based on a detection signal of the first magnetic detection means and a detection signal of the second magnetic detection means. Detection device.
JP2007051673A 2007-03-01 2007-03-01 Rotation detecting apparatus Pending JP2008215944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051673A JP2008215944A (en) 2007-03-01 2007-03-01 Rotation detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051673A JP2008215944A (en) 2007-03-01 2007-03-01 Rotation detecting apparatus

Publications (1)

Publication Number Publication Date
JP2008215944A true JP2008215944A (en) 2008-09-18

Family

ID=39836164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051673A Pending JP2008215944A (en) 2007-03-01 2007-03-01 Rotation detecting apparatus

Country Status (1)

Country Link
JP (1) JP2008215944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169716A (en) * 2010-02-18 2011-09-01 Honda Motor Co Ltd Rotation angle detecting device, and power steering device including the same
JP2012018091A (en) * 2010-07-08 2012-01-26 Tokai Rika Co Ltd Rotation angle detecting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169716A (en) * 2010-02-18 2011-09-01 Honda Motor Co Ltd Rotation angle detecting device, and power steering device including the same
JP2012018091A (en) * 2010-07-08 2012-01-26 Tokai Rika Co Ltd Rotation angle detecting device

Similar Documents

Publication Publication Date Title
CN103958919B (en) Electric direct-acting actuator and electrical braking device
JP5131537B2 (en) Angle detector
JP2012533058A5 (en)
JP2011039056A (en) Bearing state monitoring device and method
JP2017156266A (en) Rotation angle sensor and correction method therefor
JP2007198843A (en) Magnetism detecting system
WO2017073280A1 (en) Magnetism-detecting device and moving-body-detecting device
JP7122182B2 (en) MAGNETIC POSITION DETECTION SYSTEM, MANUFACTURING METHOD OF MAGNETIC POSITION DETECTION SYSTEM, AND METHOD OF ESTIMATING POSITION OF ROTATING BODY
JP2009243992A (en) Multiple-rotation absolute encoder
JP2008215944A (en) Rotation detecting apparatus
JP2009168679A (en) Rotation detector
US20120262160A1 (en) Asymmetric variable reluctance (vr) target for multi-dimensional monitoring
JP2010249671A (en) Rotation angle sensor
JP2018151159A (en) Relative position detecting device, accelerator position sensor and vehicle
JP6675570B2 (en) Magnetostrictive torque sensor
JP6401955B2 (en) Absolute angle detection device and magnetic encoder thereof
CN110050192A (en) Speed detector
JP6201910B2 (en) Rotation detection sensor and manufacturing method thereof
WO2023223389A1 (en) Rotation speed detector
JP2016008929A (en) Revolution speed sensor
JP5454204B2 (en) Angle sensor
JP2009168072A (en) Bearing device, and centrifugal compressor provided with the same
JP2004117101A (en) Magnetic encoder device
JP4941378B2 (en) Rotation angle detector
JP2011064569A (en) Physical quantity measuring device of rolling bearing unit