JP2008215901A - Qualitative and/or quantitative analyzing method of blood corpuscle and method of detecting blood deterioration - Google Patents

Qualitative and/or quantitative analyzing method of blood corpuscle and method of detecting blood deterioration Download PDF

Info

Publication number
JP2008215901A
JP2008215901A JP2007050960A JP2007050960A JP2008215901A JP 2008215901 A JP2008215901 A JP 2008215901A JP 2007050960 A JP2007050960 A JP 2007050960A JP 2007050960 A JP2007050960 A JP 2007050960A JP 2008215901 A JP2008215901 A JP 2008215901A
Authority
JP
Japan
Prior art keywords
blood
qualitative
dielectric relaxation
dielectric
blood cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007050960A
Other languages
Japanese (ja)
Other versions
JP4935425B2 (en
Inventor
Yoshito Hayashi
義人 林
Ikuya Oshige
郁也 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007050960A priority Critical patent/JP4935425B2/en
Publication of JP2008215901A publication Critical patent/JP2008215901A/en
Application granted granted Critical
Publication of JP4935425B2 publication Critical patent/JP4935425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel qualitative and/or quantitative analyzing method of a blood corpuscle. <P>SOLUTION: The qualitative and/or quantitative analyzing method of the blood corpuscle contains at least an electric field applying process for applying an electric field changeable in frequency to a sampled blood, a dielectric constant measuring process for measuring the dielectric constant of the sampled blood while changing the frequency of the electric field and a dielectric relaxing phenomenon analyzing process for analyzing a dielectric relaxing phenomenon from the measuring result obtained through the dielectric constant measuring process. Since the qualitative and/or quantitative analyzing method can be performed in a label free state without damaging a blood corpuscle cell or the like, it can be rapidly and simply performed and blood used in analysis can be used in blood transfusion or a blood preparation as it is. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、血球の定性及び/又は定量分析方法に関する。より詳しくは、採取血液を誘電分光測定することによって、血球の形態及び/又は密度等を分析する方法に関する。   The present invention relates to a method for qualitative and / or quantitative analysis of blood cells. More specifically, the present invention relates to a method of analyzing blood cell morphology and / or density and the like by performing dielectric spectroscopy measurement on collected blood.

血液は、血液ガス(酸素、二酸化炭素)の運搬、栄養素の輸送、代謝老廃物の運搬・排出、体内の酸塩基平衡の維持、水分代謝の調節、生体防御、体温調節、生理活性物質の運搬とその代謝調節など、生体のホメオスタシスの維持に重要な役割を担っている。   Blood transports blood gases (oxygen, carbon dioxide), transports nutrients, transports and discharges metabolic waste, maintains acid-base balance in the body, regulates water metabolism, protects the body, regulates body temperature, transports bioactive substances It plays an important role in the maintenance of biological homeostasis, such as its metabolic regulation.

血液は大きく分けると、血球と血漿からなり、その比率は約45:55である。このうち血球は、赤血球、白血球、血小板で大別される。血球を構成する細胞成分について、以下、説明する。   Blood is roughly divided into blood cells and plasma, and the ratio is about 45:55. Among these, blood cells are roughly classified into red blood cells, white blood cells, and platelets. The cell components constituting the blood cell will be described below.

<赤血球>
赤血球は、血球中の約96%を占め、主に血液ガス(酸素、及び二酸化炭素)の運搬を行う。赤血球は、通常、血液1mm中に男子約500万個、女子約450万個存在するが、鉄欠乏性貧血、再生不良性貧血、溶血性貧血などにより、その数が減少する場合がある。
<Red blood cells>
Red blood cells occupy about 96% of blood cells and mainly carry blood gases (oxygen and carbon dioxide). The number of red blood cells is usually about 5 million for boys and about 4.5 million for girls in 1 mm 3 of blood, but the number may be reduced due to iron deficiency anemia, aplastic anemia, hemolytic anemia, and the like.

また、赤血球は、通常、直径7〜8μmの中央部の窪んだ円板状をなすが、種々の疾患等により、その形態が変化する場合がある。例えば、遺伝的原因による楕円状赤血球や鎌状赤血球、巨赤芽球状貧血、骨髄異形成症候群などによる涙滴状赤血球、鉄欠乏性貧血などによる菲薄状赤血球、尿毒症によるいが状(うに形、金平糖状、機雷状)赤血球などが挙げられる。また、赤血球は、細胞エネルギーが枯渇することで、いが状(うに形、金平糖状、機雷状)をなし、採血後の保存日数が経過するに従い、球状をなすことが分かっている。   In addition, the red blood cells usually have a concave disk shape with a central portion of 7 to 8 μm in diameter, but the form may change depending on various diseases. For example, elliptical erythrocytes and sickle erythrocytes due to genetic causes, megaloblastic anemia, teardrop erythrocytes due to myelodysplastic syndrome, thin erythrocytes due to iron deficiency anemia, uremia-related urine Red blood cells, etc.). In addition, it is known that red blood cells have a ginger shape (uniform shape, scallop shape, mine shape) due to depletion of cell energy, and have a spherical shape as the number of storage days after blood collection elapses.

<白血球>
白血球は、血球中の約3%を占め、主に生体防御機構に関わっている。白血球は、通常、血液1mm中に4000〜10000個(平均約7000個)存在するが、感染症やアレルギーによりその数が増加したり、逆に白血病などにより正常な白血球が減少したりする場合がある。
<White blood cells>
Leukocytes account for about 3% of blood cells, and are mainly involved in biological defense mechanisms. There are usually 4,000 to 10,000 leukocytes (average of about 7000) in 1 mm 3 of blood, but the number of leukocytes increases due to infection or allergy, or conversely normal leukocytes decrease due to leukemia. There is.

また、白血球は、顆粒球、単球、リンパ球に大別され、さらに顆粒球は、好中球、好酸球、好塩基球に分けられる。それぞれの直径は、好中球約10μm、好酸球約13〜18μm、好塩基球約12〜15μm、単球約12〜20μm、リンパ球約6〜15μmであるが、例えば、白血病などにより、異常な形状の白血球(白血病細胞)が多量に出現する場合がある。   Leukocytes are roughly classified into granulocytes, monocytes and lymphocytes, and granulocytes are further classified into neutrophils, eosinophils and basophils. The diameters are about 10 μm for neutrophils, about 13 to 18 μm for eosinophils, about 12 to 15 μm for basophils, about 12 to 20 μm for monocytes, and about 6 to 15 μm for lymphocytes. Abnormally shaped white blood cells (leukemia cells) may appear in large quantities.

<血小板>
血小板は、血球中約1%を占め、血栓形成に関わっている。血小板は、通常、血液1mm中に10万〜40万個存在するが、血小板減少症や血小板増加症といった血小板が増減する疾患も知られている。
<Platelets>
Platelets make up about 1% of blood cells and are involved in thrombus formation. There are usually 100,000 to 400,000 platelets in 1 mm 3 of blood, but diseases in which platelets increase or decrease such as thrombocytopenia and thrombocytosis are also known.

また、血小板は、直径2〜3μmの円盤状を呈しているが、出血時には、金平糖のような形状になることが知られている。   In addition, platelets have a disk shape with a diameter of 2 to 3 μm. However, it is known that platelets have a shape like gold saccharose when bleeding.

血球の形態等を調べる方法として、例えば、特許文献1には、細胞へのレーザ照射により発生する光散乱パターンの非対称性を分析して個々の赤血球の形状を決定する装置及び方法が開示されている。また、特許文献2には、フローサイトメータを用いて赤血球の形状異常を検出する方法が開示されている。
特表2001−507122号公報。 特開平10−307135号公報。
As a method for examining the morphology of blood cells, for example, Patent Document 1 discloses an apparatus and method for determining the shape of individual red blood cells by analyzing the asymmetry of a light scattering pattern generated by laser irradiation of cells. Yes. Patent Document 2 discloses a method for detecting an abnormal shape of red blood cells using a flow cytometer.
JP-T-2001-507122. JP-A-10-307135.

上述のように、血球の各構成成分の量や形態は様々な疾患等で変化することが分かっているため、血球の各構成成分の量や形態を調べることにより、様々な疾患の診断を行うことができる。また、採血後の血球の各構成成分の形態を調べることで、血液の保存状態(劣化状態)を分析することができる。   As described above, since it is known that the amount and form of each component of blood cells change due to various diseases, etc., various diseases are diagnosed by examining the amount and form of each component of blood cells. be able to. Moreover, the preservation | save state (deterioration state) of blood can be analyzed by investigating the form of each component of the blood cell after blood collection.

そこで、本発明は、新規な血球の定性及び/又は定量分析方法を提供するとともに、該方法の産業的利用を実現することを主目的とする。   Therefore, the main object of the present invention is to provide a novel qualitative and / or quantitative analysis method for blood cells and to realize industrial use of the method.

本願発明者らは、血球の定性及び/又は定量分析方法について、あらゆる分野の手法を鋭意研究した結果、採取血液の誘電緩和現象を解析することにより、血球を定性及び/又は定量分析できることを突き止めた。   The inventors of the present application have conducted extensive research on qualitative and / or quantitative analysis methods for blood cells, and as a result, have found that qualitative and / or quantitative analysis of blood cells can be performed by analyzing dielectric relaxation phenomena of collected blood. It was.

まず、本発明では、血球の定性及び/又は定量分析方法であって、採取血液に、周波数が変化可能な電界を印加する電界印加工程と、前記電界の周波数を変化させながら採取血液の誘電率を測定する誘電率測定工程と、前記誘電率測定工程を経て得られた測定結果より誘電緩和現象を解析する誘電緩和現象解析工程と、を少なくとも含む血球の定性及び/又は定量分析方法を提供する。
血球を含む血液は、血球の大きさ、形状、細胞膜の状態などの形態、血球密度などによって、異なる誘電緩和現象を示すため、誘電緩和現象を解析することで、血球の形態、密度などを分析することができる。
前記誘電緩和現象解析は、例えば、前記誘電率測定工程を経て得られた測定結果より、誘電緩和周波数、誘電緩和時間、誘電緩和強度を算出することにより行うことができる。
また、本発明に係る定性及び/又は定量分析方法は、赤血球、白血球、血小板の全ての血球の分析に用いることができる。
更に、本発明に係る定性及び/又は定量分析方法は、保存血液の劣化検出に応用することができる。
First, in the present invention, a method for qualitative and / or quantitative analysis of blood cells, an electric field applying step of applying an electric field whose frequency can be changed to the collected blood, and a dielectric constant of the collected blood while changing the frequency of the electric field A blood cell qualitative and / or quantitative analysis method comprising at least a dielectric constant measurement step for measuring a dielectric constant and a dielectric relaxation phenomenon analysis step for analyzing a dielectric relaxation phenomenon from a measurement result obtained through the dielectric constant measurement step .
Blood containing blood cells exhibits different dielectric relaxation phenomena depending on the size, shape, cell membrane state, etc. of the blood cells, blood cell density, etc. Therefore, analyzing the dielectric relaxation phenomenon analyzes the blood cell morphology, density, etc. can do.
The dielectric relaxation phenomenon analysis can be performed, for example, by calculating a dielectric relaxation frequency, a dielectric relaxation time, and a dielectric relaxation strength from a measurement result obtained through the dielectric constant measurement step.
Moreover, the qualitative and / or quantitative analysis method according to the present invention can be used for analysis of all blood cells of red blood cells, white blood cells, and platelets.
Furthermore, the qualitative and / or quantitative analysis method according to the present invention can be applied to detection of deterioration of stored blood.

以下、本発明で使用する技術用語等を説明する。   Hereinafter, technical terms used in the present invention will be described.

本発明において、「血液」とは、ヒトに限らず、動物から採取した血液も含む。また、血球を含む全ての血液を包含する。例えば、赤血球、白血球、血小板の全ての血球を含む血液だけでなく、いずれか1種、又は2種の血球を含む血液も包含する。   In the present invention, “blood” includes not only humans but also blood collected from animals. In addition, all blood including blood cells is included. For example, it includes not only blood containing all blood cells of red blood cells, white blood cells and platelets, but also blood containing any one or two blood cells.

本発明において、「誘電緩和」とは、導電率の高い細胞質と導電率の細胞膜の界面に印加電圧によって電化が蓄積する現象であり、典型的な界面分極として知られている。例えば、周波数を変化させながら、血球を主成分とする血液の誘電率を測定すると、低周波側では高い誘電率を示すが、高周波側へいくに従って低い誘電率へ落ち込む現象をいう。   In the present invention, “dielectric relaxation” is a phenomenon in which electrification accumulates due to an applied voltage at the interface between a cytoplasm having high conductivity and a cell membrane having conductivity, and is known as typical interface polarization. For example, when the dielectric constant of blood containing blood cells as a main component is measured while changing the frequency, it indicates a phenomenon that shows a high dielectric constant on the low frequency side but drops to a low dielectric constant as it goes to the high frequency side.

本発明において、「誘電緩和周波数」とは、誘電緩和現象の過程で、誘電率が最も大きく変化する周波数をいう。   In the present invention, “dielectric relaxation frequency” refers to a frequency at which the dielectric constant changes most greatly in the course of the dielectric relaxation phenomenon.

本発明において、「誘電緩和時間」とは、誘電緩和現象の時間スケールを特徴付ける値であって、測定された誘電緩和現象のデータを理論的または経験的な緩和関数式(例えば、後述する「数式1」など)を用いてカーブフィッティングを行い、求められるパラメータの中で時間の次元を持つ量をいう。   In the present invention, the “dielectric relaxation time” is a value characterizing the time scale of the dielectric relaxation phenomenon, and the measured data of the dielectric relaxation phenomenon is expressed by a theoretical or empirical relaxation function equation (for example, a “mathematical formula” described later). 1 ”etc.) is used to perform curve fitting, and is a quantity having a time dimension among the obtained parameters.

本発明において、「誘電緩和強度」とは、誘電緩和現象において緩和周波数より十分低周波側で観測される高い誘電率の値と、緩和周波数より十分高周波側で観測される低い誘電率の値との差をいう。ここで、十分低い(十分高い)周波数とは、少なくとも一桁以上低い(高い)ことが望ましい。誘電緩和強度の正確な値は、上記と同様に、測定された誘電緩和現象のデータを理論的または経験的な緩和関数式(例えば、後述する「数式1」など)を用いてカーブフィッティングを行うことで得ることができる。   In the present invention, “dielectric relaxation strength” means a value of a high dielectric constant observed at a frequency sufficiently lower than the relaxation frequency in a dielectric relaxation phenomenon, and a value of a low dielectric constant observed at a frequency sufficiently higher than the relaxation frequency. The difference between. Here, the sufficiently low (sufficiently high) frequency is desirably at least one digit lower (high). The accurate value of the dielectric relaxation strength is obtained by curve fitting the measured dielectric relaxation phenomenon data using a theoretical or empirical relaxation function formula (for example, “Formula 1” described later). Can be obtained.

本発明に係る定性及び/又は定量分析方法は、誘電率を測定するのみで、血球の定性及び/又は定量分析を行うことができるため、血球細胞等にダメージを与えることが少なく、また、血球に予めラベルする必要がない。従って、迅速かつ簡便に、血球の定性及び/又は定量分析を行うことができる。そして、本発明に係る血球の定性及び/又は定量分析用いれば、様々な疾患の診断、採血後血液の劣化状態の分析も簡単に行うことができる。   Since the qualitative and / or quantitative analysis method according to the present invention can perform qualitative and / or quantitative analysis of blood cells only by measuring the dielectric constant, it is less likely to damage blood cells and the like. There is no need to pre-label. Therefore, qualitative and / or quantitative analysis of blood cells can be performed quickly and easily. If the qualitative and / or quantitative analysis of blood cells according to the present invention is used, various diseases can be diagnosed and the blood deterioration state can be easily analyzed.

以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.

<血球の定性及び/又は定量分析方法>
図1は、本発明に係る定性及び/又は定量分析方法のフロー図である。
<Qualitative and / or quantitative analysis method for blood cells>
FIG. 1 is a flow diagram of a qualitative and / or quantitative analysis method according to the present invention.

本発明に係る定性及び/又は定量分析方法では、まず、採取した血液に電界を印加する電界印加工程を行う(図1中(I)参照)。電界の印加は、公知の方法を用いることができる。例えば、一対以上の電極を用いたり、コイルを用いたりする方法など、自由に採用することができる。ただし、前記電界は、周波数を変化させることが可能な電界でなければならない。後述する誘電緩和現象を解析するためである。   In the qualitative and / or quantitative analysis method according to the present invention, first, an electric field applying step of applying an electric field to the collected blood is performed (see (I) in FIG. 1). A known method can be used to apply the electric field. For example, a method of using a pair of electrodes or using a coil can be employed freely. However, the electric field must be an electric field capable of changing the frequency. This is for analyzing a dielectric relaxation phenomenon described later.

次に、周波数を変化させながら血液の誘電率を測定する誘電率測定工程を行う(図1中(II)参照)。周波数の変化範囲は、定性及び/又は定量分析の対象となる血球(赤血球、白血球、血小板)に合わせて適宜設定することができる。例えば、赤血球では10〜10Hz、白血球では10〜10Hz、血小板では5×10〜5×10Hzの範囲で掃印することが好適である。 Next, a dielectric constant measurement step is performed in which the dielectric constant of blood is measured while changing the frequency (see (II) in FIG. 1). The change range of the frequency can be appropriately set according to the blood cells (red blood cells, white blood cells, and platelets) to be qualitatively and / or quantitatively analyzed. For example, 10 5 to 10 8 Hz in erythrocytes, the leukocytes 10 5 to 10 8 Hz, the platelets it is preferable to sweep the range of 5 × 10 5 ~5 × 10 8 Hz.

本発明に係る定性及び/又は定量分析方法は、誘電率を測定するのみで、血球の定性及び/又は定量分析を行うことができるため、血球細胞等にダメージを与えることが少なく、また、血球を予めラベルする必要がない。従って、迅速かつ簡便に、血球の定性及び/又は定量分析を行うことができる。   Since the qualitative and / or quantitative analysis method according to the present invention can perform qualitative and / or quantitative analysis of blood cells only by measuring the dielectric constant, it is less likely to damage blood cells and the like. Need not be pre-labeled. Therefore, qualitative and / or quantitative analysis of blood cells can be performed quickly and easily.

次に、誘電率測定工程(II)を経て得られた測定結果より、誘電緩和現象を解析する誘電緩和現象解析工程を行う(図1中(III)参照)。誘電緩和現象解析工程(III)について、赤血球の誘電率測定結果を例に挙げて詳しく説明する。   Next, a dielectric relaxation phenomenon analysis step for analyzing the dielectric relaxation phenomenon is performed from the measurement result obtained through the dielectric constant measurement step (II) (see (III) in FIG. 1). The dielectric relaxation phenomenon analysis step (III) will be described in detail by taking the results of measuring the dielectric constant of red blood cells as an example.

図2は、電界の周波数を変化させながら、形状の異なる4種類の赤血球の誘電率を測定した結果を示す図である(後述の実施例1参照)。この赤血球は、pHのコントロールにより、正常形1(円盤状、図3参照)、うに形2(いが状、金平糖状、機雷状、図4参照)、膨張形3(図5参照)、球形4(図6参照)に変化させ、全てほぼ同一の密度に設定している。   FIG. 2 is a diagram showing the results of measuring the dielectric constants of four types of red blood cells having different shapes while changing the frequency of the electric field (see Example 1 described later). These erythrocytes can be controlled by controlling the pH, normal form 1 (disc shape, see FIG. 3), sea urchin shape 2 (garage shape, scallop shape, mine shape, see FIG. 4), expanded shape 3 (see FIG. 5), spherical shape. 4 (see FIG. 6), all are set to substantially the same density.

図2に示す通り、それぞれの赤血球は、低周波側では高い値の誘電率を示しているのに対し、高周波側に行くに従って誘電率は低く落ち込んでいるが(以下、「誘電緩和現象」と称する。)、それぞれの赤血球の形状によって、異なる現象を示していることが確認できる。   As shown in FIG. 2, each red blood cell shows a high dielectric constant on the low frequency side, whereas the dielectric constant decreases toward the high frequency side (hereinafter referred to as “dielectric relaxation phenomenon”). It can be confirmed that different phenomena are shown depending on the shape of each red blood cell.

このように誘電緩和現象は、血球の大きさ、形状、細胞膜の状態などの形態、血球密度などによって異なる現象を示すため、血球の誘電緩和現象を解析すれば、血球の形態や密度を分析することができる。   In this way, the dielectric relaxation phenomenon shows a phenomenon that varies depending on the size, shape, cell membrane state, etc. of the blood cell, the density of the blood cell, etc. Therefore, if the dielectric relaxation phenomenon of the blood cell is analyzed, the shape and density of the blood cell are analyzed. be able to.

誘電緩和現象の解析方法としては、例えば、誘電緩和周波数を算出する方法がある(図1中(i)参照)。図2に示す通り、誘電率が大きく変化する周波数、即ち、誘電緩和周波数は、各形状の赤血球によって異なることが分かる。従って、誘電率測定工程(II)を経て得られた測定結果より、血球の誘電緩和周波数を算出することで、血球の形態や密度を分析することができる。   As an analysis method of the dielectric relaxation phenomenon, for example, there is a method of calculating a dielectric relaxation frequency (see (i) in FIG. 1). As shown in FIG. 2, it can be seen that the frequency at which the dielectric constant changes greatly, that is, the dielectric relaxation frequency, differs depending on the red blood cells of each shape. Therefore, the morphology and density of blood cells can be analyzed by calculating the dielectric relaxation frequency of blood cells from the measurement results obtained through the dielectric constant measurement step (II).

また、誘電率測定工程(II)を経て得られた測定結果を、誘電緩和関数などを用いて統計的にカーブフィッティング(曲線あてはめ)することができる。具体的には、測定によって得られた、周波数によって変化する複素誘電率の実数部、虚数部、又は実数部と虚数部を同時に用いてカーブフィッティングを行う。例えば、下記の数式1を用いて、実験値と関数値との残差自乗和が最小となるようなパラメータ(緩和時間、緩和強度、緩和時間分布、直流電気伝導度など)のセットを求めることができる。
Further, the measurement result obtained through the dielectric constant measurement step (II) can be statistically curve-fitted (curve fitting) using a dielectric relaxation function or the like. Specifically, curve fitting is performed by using a real part, an imaginary part, or a real part and an imaginary part of a complex dielectric constant that varies depending on the frequency obtained by measurement. For example, the following formula 1 is used to determine a set of parameters (relaxation time, relaxation strength, relaxation time distribution, direct current conductivity, etc.) that minimize the residual sum of squares between the experimental value and the function value. Can do.

ここで、jは虚数単位、ω=2πfは角周波数、Δεは誘電緩和強度、τは誘電緩和時間、εは誘電率の高周波リミット、εは真空の誘電率、σは直流電気伝導度、αとβは誘電緩和時間の分布をあらわすパラメータ(以下αを「Cole-Coleパラメータ」と、βを「Cole-Davidsonパラメータ」と称する。)である。 Where j is the imaginary unit, ω = 2πf is the angular frequency, Δε is the dielectric relaxation strength, τ is the dielectric relaxation time, ε is the high frequency limit of the dielectric constant, ε 0 is the vacuum dielectric constant, and σ is the DC electrical conductivity , Α and β are parameters representing the distribution of dielectric relaxation time (hereinafter, α is referred to as “Cole-Cole parameter” and β is referred to as “Cole-Davidson parameter”).

このとき、β=1と固定した解析(Cole-Cole式による解析)を行うと、誘電緩和時間τ、Cole-Coleパラメータα、誘電緩和強度Δεを算出することができる(図1中(ii)(iii)参照)。誘電緩和時間τ、Cole-Coleパラメータα、誘電緩和強度Δεなども、血球の形態や密度によって異なることから(後述の実施例参照)、誘電率測定工程(II)を経て得られた測定結果より、誘電緩和時間τ、Cole-Coleパラメータα、誘電緩和強度Δεを算出することで、血球の形態や密度を分析することができる。なお、誘電緩和強度Δε値は数式1による解析によらなくても10kHzから500kHzの任意の周波数におけるε’の値の変化で代用することができる。   At this time, by performing analysis with β = 1 fixed (analysis by Cole-Cole equation), dielectric relaxation time τ, Cole-Cole parameter α, and dielectric relaxation strength Δε can be calculated ((ii) in FIG. 1). (See (iii)). Dielectric relaxation time τ, Cole-Cole parameter α, dielectric relaxation strength Δε, etc. also vary depending on the morphology and density of blood cells (see examples below), and from the measurement results obtained through the dielectric constant measurement step (II) By calculating the dielectric relaxation time τ, the Cole-Cole parameter α, and the dielectric relaxation strength Δε, the morphology and density of blood cells can be analyzed. The dielectric relaxation strength Δε value can be substituted by a change in the value of ε ′ at an arbitrary frequency from 10 kHz to 500 kHz without being analyzed by Equation 1.

以上、上記説明で用いた図2は、赤血球を一例に挙げて説明しているが、本発明に係る定性及び/又は定量分析方法は、赤血球、白血球、血小板の全ての血球の定性及び/又は定量分析に用いることができ、赤血球に限定されない。   As described above, FIG. 2 used in the above description is explained by taking erythrocytes as an example. However, the qualitative and / or quantitative analysis method according to the present invention is not limited to qualitative and / or It can be used for quantitative analysis and is not limited to red blood cells.

また、本発明に係る定性及び/又は定量分析方法は、必要に応じて、電界印加工程Iの前に、採取血液を前処理する工程を行ってもよい(図1中符号A参照)。   Moreover, the qualitative and / or quantitative analysis method according to the present invention may perform a step of pretreating the collected blood before the electric field application step I as necessary (see reference A in FIG. 1).

例えば、採取した全血に赤血球溶血剤等による前処理(図1中符号A「採取血液前処理工程」参照)を施すことにより、白血球の定性及び/又は定量分析を好適に行うことができる。また、採取した全血を電解質溶液で希釈する等の前処理工程Aを行うことで、血小板の定性及び/又は定量分析を好適に行うことができる。   For example, qualitative and / or quantitative analysis of leukocytes can be suitably performed by subjecting the collected whole blood to pretreatment with an erythrocyte hemolyzing agent or the like (see symbol A “collected blood pretreatment step” in FIG. 1). Moreover, qualitative and / or quantitative analysis of platelets can be suitably performed by performing pretreatment step A such as diluting the collected whole blood with an electrolyte solution.

<血液劣化検出方法>
本発明に係る定性及び/又は定量分析方法は、血液劣化検出方法に用いることができる。
<Blood deterioration detection method>
The qualitative and / or quantitative analysis method according to the present invention can be used for a blood deterioration detection method.

例えば、赤血球は、通常、中央部の窪んだ円板状をしているが、採血後、保存日数が経過するにつれて、次第に球形に変化することが分かっている。従って、例えば、予め、赤血球の形態と誘電緩和現象との関係を調べておけば、赤血球を主成分とする保存全血の誘電緩和現象を測定することで、保存全血の劣化状態を検出することができる。   For example, it is known that red blood cells are usually in the shape of a hollow disc in the center, but gradually change to a spherical shape as the number of storage days elapses after blood collection. Therefore, for example, if the relationship between the morphology of red blood cells and the dielectric relaxation phenomenon is examined in advance, the deterioration state of the stored whole blood is detected by measuring the dielectric relaxation phenomenon of the stored whole blood mainly composed of red blood cells. be able to.

保存全血、特に人全血液は、保存温度4〜6度で採血後21日の有効期間である。しかし、血液の劣化は、保存期間のみでなく、他の何らかの原因により、有効期間を待たずに劣化が進むことも考えられる。このような場合に、本発明に係る血液劣化検出方法を行えば、輸血や血液製剤用に誤って使用する危険を回避することができる。   Preserved whole blood, particularly human whole blood, has an effective period of 21 days after blood collection at a storage temperature of 4 to 6 degrees. However, it is conceivable that the deterioration of blood progresses without waiting for the effective period, not only for the storage period but also for some other reason. In such a case, if the blood deterioration detection method according to the present invention is performed, it is possible to avoid the risk of erroneous use for blood transfusion and blood products.

一方、有効期間が経過していても、十分使用可能な血液も存在すると考えられるが、確認作業が煩雑なため、本来有効な血液であっても破棄されるのが現状である。しかし、本発明に係る血液劣化検出方法を行えば、有効期間という画一的の評価でなく、個々の血液の劣化状態を検出することができるため、採取血液を、本質的に劣化するまで、有効に活用することができる。   On the other hand, even though the effective period has passed, it is considered that there is blood that can be used sufficiently, but since the confirmation work is complicated, even blood that is originally effective is discarded. However, if the blood deterioration detection method according to the present invention is performed, it is possible to detect the deterioration state of individual blood rather than a uniform evaluation of the effective period. It can be used effectively.

図7は、保存日数毎のウサギ保存全血の周波数と誘電率の関係を示す図面代用グラフである(後述の実施例2参照)。図7に示す通り、保存日数によって異なる誘電緩和現象を示すことが確認できる。特に、1日目から9日目は、ほとんど同一の誘電緩和現象を示しているが、13日目は全く異なる誘電緩和現象を示していることが確認できる。これは、9日目から13日目の間で、血液の劣化が進んだと考えられる。このように、血液の誘電緩和現象を解析すれば、血液の劣化を検出することができる。   FIG. 7 is a drawing-substituting graph showing the relationship between the frequency and the dielectric constant of the rabbit-stored whole blood for each storage day (see Example 2 described later). As shown in FIG. 7, it can be confirmed that the dielectric relaxation phenomenon varies depending on the storage days. In particular, it can be confirmed that the first to ninth days show almost the same dielectric relaxation phenomenon, but the thirteenth day shows a completely different dielectric relaxation phenomenon. This is considered that blood deterioration progressed between the 9th day and the 13th day. Thus, if the dielectric relaxation phenomenon of blood is analyzed, blood deterioration can be detected.

誘電緩和現象の解析方法としては、上述の血球の定性及び/又は定量分析方法と同様に、例えば、誘電緩和周波数を算出する方法がある。図7に示す通り、誘電緩和周波数は、保存日数毎に異なることが分かる。従って、保存血液の誘電緩和周波数を算出することで、血液の劣化を検出することができる。   As a method of analyzing the dielectric relaxation phenomenon, there is a method of calculating a dielectric relaxation frequency, for example, as in the above-described qualitative and / or quantitative analysis method of blood cells. As shown in FIG. 7, it can be seen that the dielectric relaxation frequency differs for each storage day. Therefore, blood degradation can be detected by calculating the dielectric relaxation frequency of stored blood.

また、誘電緩和現象の解析方法としては、上述の血球の定性及び/又は定量分析方法と同様に、誘電緩和時間τ、Cole-Coleパラメータαを算出する方法がある。図8は保存日数と誘電緩和時間τの関係を示す図面代用グラフであり、図9は保存日数とCole-Coleパラメータαの関係を示す図面代用グラフである(後述の実施例3参照)。   In addition, as a method of analyzing the dielectric relaxation phenomenon, there is a method of calculating the dielectric relaxation time τ and the Cole-Cole parameter α, similarly to the above-described qualitative and / or quantitative analysis method of blood cells. FIG. 8 is a drawing substitute graph showing the relationship between the storage days and the dielectric relaxation time τ, and FIG. 9 is a drawing substitute graph showing the relationship between the storage days and the Cole-Cole parameter α (see Example 3 described later).

図8に示す通り、誘電緩和時間τは経過日数21日目から増加し始めることが分かる。また、図9に示す通り、Cole-Coleパラメータαは21日目から減少に転じることが分かる。即ち、誘電緩和時間τ、及びCole-Coleパラメータαの値から、21日目以降の血液は劣化が一段と進んでいくことを示している。従って、誘電緩和時間τ、Cole-Coleパラメータαを算出することで、血液の劣化を検出することができる。   As shown in FIG. 8, it can be seen that the dielectric relaxation time τ starts to increase from the 21st day. Also, as shown in FIG. 9, it can be seen that the Cole-Cole parameter α starts to decrease from the 21st day. That is, from the values of the dielectric relaxation time τ and the Cole-Cole parameter α, it is shown that the blood after the 21st day is further deteriorated. Therefore, blood deterioration can be detected by calculating the dielectric relaxation time τ and the Cole-Cole parameter α.

更に、誘電緩和現象の解析方法としては、上述の血球の定性及び/又は定量分析方法と同様に、誘電緩和強度Δεを算出する方法がある。図10は、保存日数と誘電緩和強度Δεの関係を示す図面代用グラフである(後述の実施例3参照)。   Furthermore, as a method for analyzing the dielectric relaxation phenomenon, there is a method for calculating the dielectric relaxation strength Δε, similar to the above-described qualitative and / or quantitative analysis method for blood cells. FIG. 10 is a drawing-substituting graph showing the relationship between the storage days and the dielectric relaxation strength Δε (see Example 3 described later).

図10に示す通り、誘電緩和強度Δεは、保存日数と共に減少していくことが分かる。そして、誘電緩和強度Δεの減少量は、図10中の直線で示す通り、ほぼ一定の傾きを有している。従って、誘電緩和強度Δεを算出することで、血液の劣化を検出することができる。   As shown in FIG. 10, it can be seen that the dielectric relaxation strength Δε decreases with the number of storage days. The amount of decrease in the dielectric relaxation strength Δε has a substantially constant slope as shown by the straight line in FIG. Therefore, blood deterioration can be detected by calculating the dielectric relaxation strength Δε.

また、保存日数に対する誘電緩和強度Δεの減少率を算出することで、血液の劣化速度の予測を行うことができる。例えば、誘電緩和強度Δεの減少率が、図10の減少率よりも大きい場合には、血液の劣化速度が大きいことが分かり、血液が汚染されている可能性のあることが予測できる。このように、本発明に係る血液劣化検出方法を用いれば、法定保存期間内であっても劣化の進んだ血液を、輸血や血液製剤に誤って用いる危険を回避することができる。   In addition, by calculating the decrease rate of the dielectric relaxation strength Δε with respect to the storage days, the blood deterioration rate can be predicted. For example, when the rate of decrease of the dielectric relaxation strength Δε is larger than the rate of decrease in FIG. 10, it can be seen that the blood deterioration rate is high, and it can be predicted that there is a possibility that the blood is contaminated. As described above, by using the blood deterioration detection method according to the present invention, it is possible to avoid the risk of erroneously using the deteriorated blood in blood transfusions or blood products even within the legal storage period.

逆に、本発明に係る血液劣化検出方法を用いれば、法定保存期間を経過した血液であっても、劣化の無い血液を検出することが可能であるため、血液が本質的に劣化するまで、有効に活用することができる。   Conversely, if the blood deterioration detection method according to the present invention is used, even blood that has passed the legal storage period can be detected without deterioration, until the blood is essentially deteriorated, It can be used effectively.

本発明に係る血液劣化検出方法は、誘電率を測定するのみで血液の劣化状態を検出できるので、血液中の血球等の細胞を破壊することなく、また、予め、血液中の血球等にラベル等をする必要もないため、迅速かつ簡便に血液の劣化状態を検出することができ、血液劣化検出に用いた血液をそのまま、輸血や血液製剤等に用いることが可能である。従って、保存血液の不足した状況であっても、保存血液を無駄にすることなく、安全に使用できる保存血液を見分けることができる。   Since the blood deterioration detection method according to the present invention can detect the blood deterioration state only by measuring the dielectric constant, it does not destroy cells such as blood cells in the blood and labels the blood cells in the blood in advance. Therefore, the blood deterioration state can be detected quickly and easily, and the blood used for blood deterioration detection can be used as it is for blood transfusions, blood products and the like. Therefore, even in a situation where the stored blood is insufficient, the stored blood that can be used safely can be identified without wasting the stored blood.

以上、赤血球を主成分とする全血を例に挙げて説明したが、本発明に係る血液劣化検出方法は、濃厚赤血球(RC−M.A.P)、洗浄赤血球(WRC)、白血球除去赤血球(LPRC)、解凍赤血球濃厚液(FTRC)、合成血(BET)などの劣化検出に用いることも可能であり、その他、濃厚血小板(PC)、濃厚血小板HLA(PC−HLA)などの劣化検出にも用いることが可能である。   As described above, the whole blood mainly composed of erythrocytes has been described as an example. However, the method for detecting blood deterioration according to the present invention includes concentrated erythrocytes (RC-MAPP), washed erythrocytes (WRC), leukocyte-removed erythrocytes. (LPRC), thawed erythrocyte concentrate (FTRC), synthetic blood (BET), etc. can also be used for detection of deterioration, and for other detection of deterioration such as concentrated platelet (PC), concentrated platelet HLA (PC-HLA), etc. Can also be used.

以下、本発明に係る血液劣化検出方法を用いた保存血液の使用可否判定方法の一例について、図11を用いて説明する。図11は、本発明に係る血液検出方法を用いた保存血液の使用可否判定方法の一例を示すフロー図である。   Hereinafter, an example of a method for determining the availability of stored blood using the blood deterioration detection method according to the present invention will be described with reference to FIG. FIG. 11 is a flowchart showing an example of a method for determining the availability of stored blood using the blood detection method according to the present invention.

本発明に係る血液劣化検出方法を用いた保存血液の使用可否判定では、まず、必要に応じて前処理工程Aを行った保存血液に電界を印加する電界印加工程(I)を行う。次に、周波数を変化させながら、保存血液の誘電率を測定する誘電率測定工程(II)を行う。そして、誘電率測定工程(II)を経て得られた測定結果より、誘電緩和現象を解析する誘電緩和現象解析工程(III)を行う。   In determining whether or not the stored blood can be used using the blood deterioration detection method according to the present invention, first, an electric field applying step (I) for applying an electric field to the stored blood subjected to the pretreatment step A is performed as necessary. Next, a dielectric constant measurement step (II) is performed in which the dielectric constant of the stored blood is measured while changing the frequency. Then, a dielectric relaxation phenomenon analysis step (III) for analyzing the dielectric relaxation phenomenon is performed based on the measurement result obtained through the dielectric constant measurement step (II).

誘電緩和現象解析工程(III)では、例えば、法定有効期間中に、誘電緩和強度Δεを算出し、保存日数に対する減少率を算出することで、個々の保存血液の劣化速度の予測を行うことができる。例えば、前記減少率が著しく大きい場合には、その保存血液は、何らかの汚染を受けている可能性が高く、法定有効期間内であっても、破棄することが望ましい。   In the dielectric relaxation phenomenon analysis step (III), for example, during the legal validity period, the dielectric relaxation strength Δε is calculated, and the decrease rate with respect to the storage days is calculated, thereby predicting the deterioration rate of each stored blood. it can. For example, when the rate of decrease is extremely large, the stored blood is likely to be contaminated, and it is desirable to discard it even within the legal validity period.

より安全性を高めるために、使用時に保存血液の誘電緩和周波数や誘電緩和時間τの算出を行うことが望ましい。算出結果が基準値外の場合、保存血液の劣化が進んでいることが予測できるため、法定有効期間内であっても、破棄することが望ましい。逆に、算出結果が基準内の場合には、安心して、輸血や血液製剤等に使用することができる。   In order to further improve safety, it is desirable to calculate the dielectric relaxation frequency and dielectric relaxation time τ of stored blood during use. If the calculation result is out of the reference value, it can be predicted that the stored blood is deteriorating. Therefore, it is desirable to discard it even within the legally valid period. On the other hand, when the calculation result is within the standard, it can be used for blood transfusion, blood product and the like with peace of mind.

法定有効期間が経過した場合、保存血液は、安全性の面から画一的に破棄されているのが現状であるが、本発明に係る血液劣化検出方法を用いれば、本質的に劣化していない保存血液を、有効に使用することが可能である。   When the legal validity period has passed, the stored blood has been uniformly discarded from the viewpoint of safety, but if the blood deterioration detection method according to the present invention is used, the stored blood is essentially deteriorated. It is possible to use effectively no stored blood.

例えば、上記と同様に、法定有効期間を経過した保存血液の誘電緩和周波数や誘電緩和時間τの算出を行う。算出結果が基準外の場合には、保存血液の劣化が進んでいることが予測できるため、破棄しなければならないが、算出結果が基準内の場合には、法定有効期限を経過していても、安全に使用することが可能である。この場合、例えば、研究目的などに用いることができる。   For example, in the same manner as described above, the dielectric relaxation frequency and dielectric relaxation time τ of stored blood that has passed the legal effective period are calculated. If the calculation result is out of the standard, it can be predicted that deterioration of the stored blood has progressed, so it must be discarded, but if the calculation result is within the standard, the legal expiration date has passed. It can be used safely. In this case, for example, it can be used for research purposes.

実施例1では、血球の形状のよって誘電緩和現象が異なるか否かについて調べた。血球の一例として、ウサギ赤血球を用いた。   In Example 1, it was examined whether the dielectric relaxation phenomenon differs depending on the shape of blood cells. Rabbit erythrocytes were used as an example of blood cells.

まず、pHコントロールによって、赤血球の形状を、正常形1(図3参照)、うに形2(図4参照)、膨張形3(図5参照)、球形4(図6参照)に変化させた。   First, the shape of red blood cells was changed to normal form 1 (see FIG. 3), sea urchin form 2 (see FIG. 4), expanded form 3 (see FIG. 5), and spherical form 4 (see FIG. 6) by pH control.

次に、25℃でほぼ同一の血球密度(ヘマトクリット値)において、10Hzの周波数で電界を印加した。そして、10〜10Hzの範囲で掃印しながら誘電率を測定した。測定結果を図2に示す。 Next, an electric field was applied at a frequency of 10 5 Hz at 25 ° C. and almost the same blood cell density (hematocrit value). The dielectric constant was measured while sweeping in the range of 10 5 to 10 8 Hz. The measurement results are shown in FIG.

図2に示す通り、どの形状の赤血球も低周波側では高い誘電率の値を示すが高周波側では低い値に落ち込んでいるが(誘電緩和現象)、それぞれ異なる誘電緩和現象を示している。なお、図2のデータは電極分極の寄与をAsami等の方法によって補正したものである(文献:K. Asami, A. Irimajiri, T. Hanai, N. Shiraishi, K. Utsumi, Biochim. Biophys. Acta 778, 559, 1984.)。   As shown in FIG. 2, each shape of red blood cells shows a high dielectric constant value on the low frequency side but drops to a low value on the high frequency side (dielectric relaxation phenomenon), but shows different dielectric relaxation phenomena. The data in FIG. 2 is obtained by correcting the contribution of electrode polarization by the method of Asami et al. (Reference: K. Asami, A. Irimajiri, T. Hanai, N. Shiraishi, K. Utsumi, Biochim. Biophys. Acta). 778, 559, 1984.).

図2の測定結果から、それぞれの誘電緩和周波数、誘電緩和時間τ、誘電緩和強度Δεを算出した。それぞれの算出結果を表1に示す。
From the measurement results of FIG. 2, each dielectric relaxation frequency, dielectric relaxation time τ, and dielectric relaxation strength Δε were calculated. Each calculation result is shown in Table 1.

また、球形赤血球4の血球密度(ヘマトクリット値)を変化させて、上記と同様に誘電緩和強度Δεを求めた。誘電緩和強度Δεと血球密度(ヘマトクリット値)との関係を図12に示す。   Further, the blood cell density (hematocrit value) of the spherical red blood cells 4 was changed, and the dielectric relaxation strength Δε was obtained in the same manner as described above. FIG. 12 shows the relationship between the dielectric relaxation strength Δε and the blood cell density (hematocrit value).

実施例1では、血球(赤血球)の形態や血球密度(ヘマトクリット値)の違いにより、異なる誘電緩和現象を示すことが分かった。また、誘電緩和現象から算出される誘電緩和周波数、誘電緩和時間τ、誘電緩和強度Δεも、血球の形態や血球密度(ヘマトクリット値)の違いにより、異なる値を示すことが分かった。従って、血球の誘電緩和現象を解析することで、血球の形態や血球密度(ヘマトクリット値)を分析できることが分かった。   In Example 1, it was found that different dielectric relaxation phenomena were exhibited depending on the form of blood cells (red blood cells) and the difference in blood cell density (hematocrit value). It was also found that the dielectric relaxation frequency, dielectric relaxation time τ, and dielectric relaxation strength Δε calculated from the dielectric relaxation phenomenon show different values depending on the blood cell morphology and blood cell density (hematocrit value). Therefore, it was found that by analyzing the dielectric relaxation phenomenon of blood cells, the morphology and blood cell density (hematocrit value) of blood cells can be analyzed.

実施例2では、本発明に係る定性及び/又は定量分析方法を、血液劣化検出方法に用いることができるか否かを調べた。   In Example 2, it was examined whether the qualitative and / or quantitative analysis method according to the present invention can be used for a blood deterioration detection method.

まず、コージンバイオ株式会社(埼玉県坂戸市千代田5−1−3)より購入したウサギ保存血液(アルセーバー氏液による)を、pHコントロールしたPBSバッファーで洗浄することによって正常形赤血球にして、調整保存血液を得た。この調整保存血液を5℃で保存した。   First, rabbit-preserved blood (by Alsaver's solution) purchased from Kojin Bio Inc. (5-1-3 Chiyoda, Sakado City, Saitama Prefecture) was washed with a pH-controlled PBS buffer to prepare normal erythrocytes. Stored blood was obtained. The adjusted stored blood was stored at 5 ° C.

次に、1日目、2日目、3日目、6日目、7日目、8日目、9日目、13日目に、実施例1と同様の方法で、調整保存血液の誘電率を測定した。測定結果を図7に示す。   Next, on the first day, the second day, the third day, the sixth day, the seventh day, the eighth day, the ninth day, and the thirteenth day, in the same manner as in Example 1, the dielectric of the adjusted stored blood The rate was measured. The measurement results are shown in FIG.

図7に示す通り、1日目から9日目は、ほとんど同一の誘電緩和現象を示しているが、13日目は全く異なる誘電緩和現象を示していることが確認できる。   As shown in FIG. 7, it can be confirmed that the first to ninth days show almost the same dielectric relaxation phenomenon, but the thirteenth day shows a completely different dielectric relaxation phenomenon.

また、1日目と13日目の調製保存血液の様子を図13に示す。図13に示す通り、13日目の調整保存血液を観察すると、変色が見られ、完全に劣化していた。   Moreover, the state of the prepared and preserved blood on the first day and the thirteenth day is shown in FIG. As shown in FIG. 13, when the adjusted and preserved blood on the 13th day was observed, discoloration was seen and it was completely deteriorated.

実施例2では、保存日数が経過するにつれ血液の劣化が進むと、異なる誘電緩和現象を示すことが分かった。また、誘電緩和現象から算出される誘電緩和周波数、誘電緩和時間τ、誘電緩和強度Δεも、保存日数が経過するにつれ血液の劣化が進むと、異なる値を示すことが分かった。従って、本発明に係る定性及び/又は定量分析方法は、血液劣化の検出に用いることができることが分かった。   In Example 2, it was found that when the deterioration of blood progresses as the storage days elapse, a different dielectric relaxation phenomenon is exhibited. It was also found that the dielectric relaxation frequency, dielectric relaxation time τ, and dielectric relaxation strength Δε calculated from the dielectric relaxation phenomenon show different values as the blood deteriorates as the storage days elapse. Therefore, it has been found that the qualitative and / or quantitative analysis method according to the present invention can be used for detection of blood deterioration.

実施例3では、本発明に係る定性及び/又は定量分析方法を、未調整の血液の血液劣化検出方法にも用いることができるか否かを調べた。   In Example 3, it was examined whether the qualitative and / or quantitative analysis method according to the present invention can be used for a blood deterioration detection method for unadjusted blood.

まず、コージンバイオ株式会社より購入したウサギ保存血液(アルセーバー氏による)を、調整せずにそのままの状態で、5℃にて保存した。次に、1日目、2日目、3日目、4日目、7日目、8日目、9日目、10日目、14日目、15日目、16日目、18日目、21日目、22日目、23日目、24日目、28日目、29日目、30日目、31日目、35日目、36日目に、実施例1と同様の方法で、調整保存血液の誘電率を測定した。測定結果を図14に示す。   First, the rabbit preserved blood purchased from Kojin Bio Inc. (according to Mr. Alsaber) was preserved at 5 ° C. without adjustment. Next, 1st day, 2nd day, 3rd day, 4th day, 7th day, 8th day, 9th day, 10th day, 14th day, 15th day, 16th day, 18th day On the 21st day, 22nd day, 23rd day, 24th day, 28th day, 29th day, 30th day, 31st day, 35th day, 36th day, the same method as in Example 1 The dielectric constant of the adjusted stored blood was measured. The measurement results are shown in FIG.

図14に示す通り、保存日数によって異なる誘電緩和現象を示すことが確認できる。   As shown in FIG. 14, it can be confirmed that the dielectric relaxation phenomenon varies depending on the storage days.

誘電緩和現象から、各保存期間後の誘電緩和周波数、誘電緩和時間τ、誘電緩和強度Δεを算出した。それぞれの算出結果を表2に示す。また、保存日数と誘電緩和時間τとの関係を図8に、保存日数とCole-Coleパラメータαとの関係を図9に、保存日数と緩和強度Δεとの関係を図10に示す。
From the dielectric relaxation phenomenon, the dielectric relaxation frequency, dielectric relaxation time τ, and dielectric relaxation strength Δε after each storage period were calculated. Table 2 shows the respective calculation results. FIG. 8 shows the relationship between the storage days and the dielectric relaxation time τ, FIG. 9 shows the relationship between the storage days and the Cole-Cole parameter α, and FIG. 10 shows the relationship between the storage days and the relaxation strength Δε.

図8に示す通り、誘電緩和時間τは経過日数21日目から増加し始めることが分かる。また、図9に示す通り、Cole-Coleパラメータαは21日目から減少に転じることが分かる。即ち、誘電緩和時間τ、及びCole-Coleパラメータαの値から、21日目以降の血液は劣化が一段と進んでいくことを示している。   As shown in FIG. 8, it can be seen that the dielectric relaxation time τ starts to increase from the 21st day. Also, as shown in FIG. 9, it can be seen that the Cole-Cole parameter α starts to decrease from the 21st day. That is, from the values of the dielectric relaxation time τ and the Cole-Cole parameter α, it is shown that the blood after the 21st day is further deteriorated.

実施例3では、未調整の血液であっても、誘電緩和現象を解析することにより、血液劣化の有無を検出することができることが分かった。   In Example 3, it was found that the presence or absence of blood deterioration can be detected by analyzing the dielectric relaxation phenomenon even for unadjusted blood.

また、図10に示す通り、誘電緩和強度Δεは、保存日数と共に減少していくことが分かる。そして、誘電緩和強度Δεの減少量は、図10中の直線で示す通り、ほぼ一定の傾きを有している。   Further, as shown in FIG. 10, it can be seen that the dielectric relaxation strength Δε decreases with the storage days. The amount of decrease in the dielectric relaxation strength Δε has a substantially constant slope as shown by the straight line in FIG.

従って、実施例3では、誘電緩和現象より誘電緩和強度Δεを算出し、保存日数に対する減少率を算出することで、血液の劣化速度の予測を行うことが可能であることが分かった。   Therefore, in Example 3, it was found that the blood degradation rate can be predicted by calculating the dielectric relaxation strength Δε from the dielectric relaxation phenomenon and calculating the decrease rate with respect to the storage days.

本発明に係る定性及び/又は定量分析方法は、誘電率を測定するのみで、血球の定性及び/又は定量分析を行うことができる全く新規な方法であり、血球細胞等にダメージを与えることが少なく、また、血球を予めラベルする必要がない。従って、迅速かつ簡便に、血球の定性及び/又は定量分析を行うことができる。   The qualitative and / or quantitative analysis method according to the present invention is a completely new method capable of performing qualitative and / or quantitative analysis of blood cells only by measuring the dielectric constant, and may damage blood cells and the like. And there is no need to pre-label blood cells. Therefore, qualitative and / or quantitative analysis of blood cells can be performed quickly and easily.

そして、本発明に係る血球の定性及び/又は定量分析方法は、様々な疾患の新規な診断技術に応用することができる。また、本発明に係る血球の定性及び/又は定量分析方法は、保存血液の劣化を検出する方法にも簡単に用いることができる。   The qualitative and / or quantitative analysis method for blood cells according to the present invention can be applied to novel diagnostic techniques for various diseases. Moreover, the qualitative and / or quantitative analysis method for blood cells according to the present invention can be easily used for a method for detecting deterioration of stored blood.

本発明に係る血液劣化検出方法を用いれば、画一的に使用することができた有効期間内の保存血液の劣化を、個別に検出することができるので、有効期間内であっても、何らかの原因により劣化した保存血液の使用を防ぐことができる。また、画一的に使用が制限されていた有効期限経過後の保存血液の劣化を、個別に検出することができるため、本質的に有効な血液を破棄することなく、医療分野、研究分野等での使用が可能となり、更なる医療分野、研究分野等の発展に貢献することができる。   By using the blood deterioration detection method according to the present invention, it is possible to individually detect the deterioration of stored blood within the effective period that could be used uniformly. The use of stored blood that has deteriorated due to the cause can be prevented. In addition, it is possible to individually detect the deterioration of stored blood after the expiration date for which the use was uniformly restricted, so that it is possible to detect the blood effectively without destroying the blood that is essentially effective. And can contribute to further development of medical field and research field.

本発明に係る定性及び/又は定量分析方法のフロー図である。It is a flow figure of the qualitative and / or quantitative analysis method concerning the present invention. 実施例1において、形状の異なる4種類の赤血球の誘電率と周波数の関係を示す図面代用グラフである。In Example 1, it is a drawing substitute graph which shows the relationship between the dielectric constant and frequency of four types of red blood cells from which a shape differs. 正常形赤血球を示す図面代用写真である。It is a drawing substitute photograph which shows normal form erythrocytes. うに形(いが状、金平糖状、機雷状)赤血球を示す図面代用写真である。FIG. 2 is a drawing-substituting photograph showing urchin-shaped (garlic, scalloped, mined) red blood cells. 膨張形赤血球を示す図面代用写真である。It is a drawing-substituting photograph showing expanded erythrocytes. 球形赤血球を示す図面代用写真である。It is a drawing substitute photograph which shows a spherical red blood cell. 実施例2において、ウサギ保存全血(調整後)の保存日数毎の誘電率と周波数の関係を示す図面代用グラフである。In Example 2, it is a drawing substitute graph which shows the relationship between the dielectric constant for every preservation | save days of a rabbit preservation | save whole blood (after adjustment), and a frequency. 実施例3において、保存日数と誘電緩和時間τの関係を示す図面代用グラフである。In Example 3, it is a drawing substitute graph which shows the relationship between storage days and dielectric relaxation time (tau). 実施例3において、保存日数とCole-Coleパラメータαの関係を示す図面代用グラフである。In Example 3, it is a drawing substitute graph which shows the relationship between storage days and Cole-Cole parameter (alpha). 実施例3において、保存日数と誘電緩和強度Δεの関係を示す図面代用グラフである。In Example 3, it is a drawing substitute graph which shows the relationship between storage days and dielectric relaxation intensity | strength (DELTA) epsilon. 本発明に係る血液検出方法を用いた保存血液の使用可否判定方法の一例を示すフロー図である。It is a flowchart which shows an example of the determination method of the availability of the preservation | save blood using the blood detection method which concerns on this invention. 誘電緩和強度Δεと血球密度(ヘマトクリット値)との関係を示す図面代用グラフである。6 is a drawing substitute graph showing the relationship between dielectric relaxation strength Δε and blood cell density (hematocrit value). 実施例2において、1日目と13日目の調製保存血液の様子を示す図面代用写真である。In Example 2, it is a drawing substitute photograph which shows the mode of the preparation preservation | save blood of the 1st day and the 13th day. 実施例3において、ウサギ保存全血(未調整)の保存日数毎の誘電率と周波数の関係を示す図面代用グラフである。In Example 3, it is a drawing substitute graph which shows the dielectric constant and the relationship of a frequency for every preservation | save day of rabbit preservation | save whole blood (unadjusted).

符号の説明Explanation of symbols

1 正常形赤血球
2 うに形(いが状、金平糖状、機雷状)赤血球
3 膨張形赤血球
4 球形赤血球
1 Normal shape red blood cell 2 Sea urchin shape (garage, scallop, mines) Red blood cell 3 Expanded red blood cell 4 Spherical red blood cell

Claims (8)

血球の定性及び/又は定量分析方法であって、
採取血液に、周波数が変化可能な電界を印加する電界印加工程と、
前記電界の周波数を変化させながら採取血液の誘電率を測定する誘電率測定工程と、
前記誘電率測定工程を経て得られた測定結果より誘電緩和現象を解析する誘電緩和現象解析工程と、
を少なくとも含む血球の定性及び/又は定量分析方法。
A method for qualitative and / or quantitative analysis of blood cells,
An electric field application step of applying an electric field whose frequency is variable to the collected blood;
A dielectric constant measurement step of measuring the dielectric constant of the collected blood while changing the frequency of the electric field;
Dielectric relaxation phenomenon analysis step of analyzing the dielectric relaxation phenomenon from the measurement result obtained through the dielectric constant measurement step,
A method for qualitative and / or quantitative analysis of blood cells containing at least
前記誘電緩和現象解析工程は、誘電緩和周波数を算出する工程であることを特徴とする請求項1記載の定性及び/又は定量分析方法。   The qualitative and / or quantitative analysis method according to claim 1, wherein the dielectric relaxation phenomenon analysis step is a step of calculating a dielectric relaxation frequency. 前記誘電緩和現象解析工程は、誘電緩和時間を算出する工程であることを特徴とする請求項1記載の定性及び/又は定量分析方法。   The qualitative and / or quantitative analysis method according to claim 1, wherein the dielectric relaxation phenomenon analysis step is a step of calculating a dielectric relaxation time. 前記誘電緩和現象解析工程は、誘電緩和強度を算出する工程であることを特徴とする請求項1記載の定性及び/又は定量分析方法。   The qualitative and / or quantitative analysis method according to claim 1, wherein the dielectric relaxation phenomenon analysis step is a step of calculating a dielectric relaxation strength. 前記血球は、赤血球であることを特徴とする請求項1記載の血球の定性及び/又は定量分析方法。   The method for qualitative and / or quantitative analysis of blood cells according to claim 1, wherein the blood cells are red blood cells. 前記血球は、白血球であることを特徴とする請求項1記載の血球の定性及び/又は定量分析方法。   The method for qualitative and / or quantitative analysis of blood cells according to claim 1, wherein the blood cells are leukocytes. 前記血球は、血小板であることを特徴とする請求項1記載の血球の定性及び/又は定量分析方法。   The method for qualitative and / or quantitative analysis of blood cells according to claim 1, wherein the blood cells are platelets. 請求項1記載の分析方法を用いた血液劣化検出方法。   A blood deterioration detection method using the analysis method according to claim 1.
JP2007050960A 2007-03-01 2007-03-01 Method for qualitative and / or quantitative analysis of blood cells and method for detecting blood deterioration Active JP4935425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007050960A JP4935425B2 (en) 2007-03-01 2007-03-01 Method for qualitative and / or quantitative analysis of blood cells and method for detecting blood deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050960A JP4935425B2 (en) 2007-03-01 2007-03-01 Method for qualitative and / or quantitative analysis of blood cells and method for detecting blood deterioration

Publications (2)

Publication Number Publication Date
JP2008215901A true JP2008215901A (en) 2008-09-18
JP4935425B2 JP4935425B2 (en) 2012-05-23

Family

ID=39836121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050960A Active JP4935425B2 (en) 2007-03-01 2007-03-01 Method for qualitative and / or quantitative analysis of blood cells and method for detecting blood deterioration

Country Status (1)

Country Link
JP (1) JP4935425B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079845A1 (en) * 2009-01-08 2010-07-15 ソニー株式会社 Blood coagulation system analyzer, and blood coagulation system analysis method and program
WO2010079844A1 (en) * 2009-01-09 2010-07-15 ソニー株式会社 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
JP2011112497A (en) * 2009-11-26 2011-06-09 Sony Corp Corpuscle cell analyzer, corpuscle cell analysis method, and corpuscle cell analyzing system
JP2015028500A (en) * 2009-01-08 2015-02-12 ソニー株式会社 Device for analysis of blood coagulation system, and method and program for analysis of blood coagulation system
JP2016188777A (en) * 2015-03-30 2016-11-04 日本電信電話株式会社 Constituent concentration analytic method
JP2017219528A (en) * 2016-06-06 2017-12-14 盛群半導體股▲ふん▼有限公司 Method for measuring full blood of hematocrit and full blood measuring circuit
WO2022071162A1 (en) 2020-09-29 2022-04-07 日本精工株式会社 State diagnosis method, state diagnosis device, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359017A (en) * 1976-11-02 1978-05-27 Terumo Corp Fractionation and purification of red blood corpuscle
JPH05322817A (en) * 1991-11-19 1993-12-07 Houston Advanced Res Center Method and device for detecting molecule
JP2001050967A (en) * 1999-08-10 2001-02-23 Suntory Ltd Method for measuring oil-and-fat content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359017A (en) * 1976-11-02 1978-05-27 Terumo Corp Fractionation and purification of red blood corpuscle
JPH05322817A (en) * 1991-11-19 1993-12-07 Houston Advanced Res Center Method and device for detecting molecule
JP2001050967A (en) * 1999-08-10 2001-02-23 Suntory Ltd Method for measuring oil-and-fat content

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030217A (en) * 2009-01-08 2020-02-27 ソニー株式会社 Device for analysis of blood coagulation system, and method and program for analysis of blood coagulation system
US9518997B2 (en) 2009-01-08 2016-12-13 Sony Corporation Blood coagulation system analyzer, and blood coagulation system analysis method and program
JP2017040667A (en) * 2009-01-08 2017-02-23 ソニー株式会社 Device for analysis of blood coagulation system, and method and program for analysis of blood coagulation system
US11067523B2 (en) 2009-01-08 2021-07-20 Sony Corporation Blood coagulation system analysis device, and method and program for analysis of blood coagulation system
WO2010079845A1 (en) * 2009-01-08 2010-07-15 ソニー株式会社 Blood coagulation system analyzer, and blood coagulation system analysis method and program
JP2015028500A (en) * 2009-01-08 2015-02-12 ソニー株式会社 Device for analysis of blood coagulation system, and method and program for analysis of blood coagulation system
CN102282460B (en) * 2009-01-09 2013-12-11 索尼公司 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
JP2010181399A (en) * 2009-01-09 2010-08-19 Sony Corp Flow path device, complex dielectric constant measuring device, and dielectric cytometry device
WO2010079844A1 (en) * 2009-01-09 2010-07-15 ソニー株式会社 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
US10222314B2 (en) 2009-01-09 2019-03-05 Sony Corporation Flow channel device, complex permittivity measuring apparatus, and dielectric cytometry system
JP2011112497A (en) * 2009-11-26 2011-06-09 Sony Corp Corpuscle cell analyzer, corpuscle cell analysis method, and corpuscle cell analyzing system
JP2016188777A (en) * 2015-03-30 2016-11-04 日本電信電話株式会社 Constituent concentration analytic method
US10151721B2 (en) 2016-06-06 2018-12-11 Holtek Semiconductor Inc. Whole blood measurement method associated to hematocrit (HCT) and whole blood measurement circuit thereof
JP2017219528A (en) * 2016-06-06 2017-12-14 盛群半導體股▲ふん▼有限公司 Method for measuring full blood of hematocrit and full blood measuring circuit
US10753899B2 (en) 2016-06-06 2020-08-25 Holtek Semiconductor Inc. Whole blood measurement method associated to hematocrit
WO2022071162A1 (en) 2020-09-29 2022-04-07 日本精工株式会社 State diagnosis method, state diagnosis device, and program
KR20230078747A (en) 2020-09-29 2023-06-02 닛본 세이고 가부시끼가이샤 State diagnosis method, state diagnosis device, and program

Also Published As

Publication number Publication date
JP4935425B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4935425B2 (en) Method for qualitative and / or quantitative analysis of blood cells and method for detecting blood deterioration
Parsons et al. A protocol for improved precision and increased confidence in nanoparticle tracking analysis concentration measurements between 50 and 120 nm in biological fluids
Panzer et al. Methods for testing platelet function for transfusion medicine
Lippi et al. Interference in coagulation testing: focus on spurious hemolysis, icterus, and lipemia
JP6607186B2 (en) Blood state analysis device, blood state analysis system, blood state analysis method and program
Xu et al. Study of damage to red blood cells exposed to different doses of γ-ray irradiation
JP2016511391A5 (en)
Lippi Interference studies: focus on blood cell lysates preparation and testing
Bauer et al. Influence of blood collection technique on platelet function and coagulation variables in dogs
JP7070641B2 (en) Platelet agglutination ability analyzer, platelet agglutination ability analysis system, platelet agglutination ability analysis program and platelet agglutination ability analysis method
EP3133395A1 (en) Blood condition analysis device, blood condition analysis system, blood condition analysis method, and blood condition analysis program for enabling computer to perform said method
Bauer et al. Effect of submaximal aerobic exercise on platelet function, platelet activation, and secondary and tertiary hemostasis in dogs
Bajpai et al. Platelet estimation by peripheral smear: Reliable, rapid, cost-effective method to assess degree of thrombocytopenia
Inanc et al. Quantifying the influences of radiation therapy on deformability of human red blood cells by dual-beam optical tweezers
Schlimp et al. Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer
Taqi et al. Effects of High Doses of X-Ray on Hematological Parameters and Morphology of Red Blood Cells in Human Blood.
Grabner et al. Amperometric resolution of a prespike stammer and evoked phases of fast release from retinal bipolar cells
Prudent What about platelet function in platelet concentrates?
DE102014003386B4 (en) Method and device for quality control of a blood product
JP2004513369A (en) How to measure platelet activity
Zsóri et al. Preanalytical factors affecting the mean platelet volume: a review
Fry et al. Improved method for electronic counting of platelets
Sallam et al. Enhancement of human blood storage period by irradiation of low level He-Ne laser
WO2018066207A1 (en) Platelet aggregation ability analyzing method, platelet aggregation ability analyzing device, program for platelet aggregation ability analysis, and platelet aggregation ability analyzing system
JP2018124264A (en) Inflammatory marker measuring method, inflammatory marker measuring apparatus, inflammatory marker measurement program, and record medium recording program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4935425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250