JP2008215192A - Start controller of internal combustion engine - Google Patents

Start controller of internal combustion engine Download PDF

Info

Publication number
JP2008215192A
JP2008215192A JP2007053764A JP2007053764A JP2008215192A JP 2008215192 A JP2008215192 A JP 2008215192A JP 2007053764 A JP2007053764 A JP 2007053764A JP 2007053764 A JP2007053764 A JP 2007053764A JP 2008215192 A JP2008215192 A JP 2008215192A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
amount
fuel
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007053764A
Other languages
Japanese (ja)
Inventor
Takayuki Demura
隆行 出村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007053764A priority Critical patent/JP2008215192A/en
Priority to PCT/IB2008/000490 priority patent/WO2008107775A1/en
Publication of JP2008215192A publication Critical patent/JP2008215192A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0095Synchronisation of the cylinders during engine shutdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/005Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
    • F02N2019/008Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0802Transmission state, e.g. gear ratio or neutral state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/101Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/102Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/103Clutch pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder

Abstract

<P>PROBLEM TO BE SOLVED: To provide a start controller of an internal combustion engine capable of appropriately controlling a fuel amount sucked into a cylinder in starting. <P>SOLUTION: In the start controller of an internal combustion engine which is applied to the internal combustion engine 1 having a plurality of cylinders 2 and with an injector 12 being respectively arranged in an intake port 3a of respective cylinder 2, judges the piston position of respective cylinder 2 during stopping of the internal combustion engine 1, determines a suction stroke cylinder whose piston 5 has been stopping at a suction stroke on the basis of the result of the judgement, and sets the fuel amount to be supplied to the intake port 3a of the suction stroke cylinder before the start of the internal combustion engine 1 on the basis of the piston position of the suction stroke cylinder, when the fuel is supplied to the intake port 3a of the suction stroke cylinder before the start of the internal combustion engine 1, a compensation amount is set on the basis of the piston position of the suction stroke cylinder, and the fuel amount supplied to the suction stroke cylinder before the start of the internal combustion engine 1 is reduced to be less than the fuel amount supplied to other cylinders in accordance with the compensation amount. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の停止時におけるピストン位置に基づいて吸気行程でピストンが停止している気筒に供給する燃料量を設定する内燃機関の始動制御装置に関する。   The present invention relates to an internal combustion engine start control device that sets an amount of fuel to be supplied to a cylinder in which a piston is stopped in an intake stroke based on a piston position when the internal combustion engine is stopped.

内燃機関の停止時におけるピストン位置を判別し、その判別結果に基づいて吸気行程でピストンが停止している気筒を特定し、その特定された気筒に対して始動時の燃料噴射量を他の気筒に対する燃料噴射量よりも増加させる始動制御装置が知られている(特許文献1参照)。また、内燃機関の停止時に少なくとも膨張行程となる気筒に対して停止直前に燃料を噴射する制御装置において、内燃機関の出力軸を駆動して内燃機関を再始動させる再始動モータに電力を供給するバッテリの残量を検出し、バッテリ残量が少ない場合にはバッテリ残量が多い場合と比べて内燃機関の停止直前に噴射される燃料の噴射量を大きな値に設定する制御装置が知られている(特許文献2参照)。その他、本発明に関連する先行技術文献として特許文献3〜8が存在する。   The piston position when the internal combustion engine is stopped is determined, the cylinder where the piston is stopped in the intake stroke is specified based on the determination result, and the fuel injection amount at the start for the specified cylinder is determined for other cylinders There is known a start control device that increases the fuel injection amount relative to the fuel injection amount (see Patent Document 1). Further, in a control device that injects fuel immediately before stopping to a cylinder that is at least in an expansion stroke when the internal combustion engine is stopped, power is supplied to a restart motor that drives the output shaft of the internal combustion engine to restart the internal combustion engine. There is known a control device that detects the remaining amount of the battery and sets the injection amount of the fuel injected just before the stop of the internal combustion engine to a larger value when the remaining amount of the battery is small than when the remaining amount of the battery is large. (See Patent Document 2). In addition, Patent Documents 3 to 8 exist as prior art documents related to the present invention.

特開2006−220141号公報JP 2006-220141 A 特開2005−30218号公報JP 2005-30218 A 特開2005−307826号公報JP 2005-307826 A 特開2005−214124号公報JP-A-2005-214124 特開2001−342874号公報JP 2001-342874 A 特開2003−269222号公報JP 2003-269222 A 特開平9−42012号公報Japanese Patent Laid-Open No. 9-42012 特開2004−68621号公報JP 2004-686621 A

吸気ポートに燃料を噴射する、いわゆるポート噴射式の内燃機関の場合、内燃機関の始動時など吸入空気量が少ないときは噴射された燃料の一部が吸気ポートに付着し、次回以降に吸気ポートに噴射された燃料とともに気筒に吸入されることが知られている。このような内燃機関において特許文献1又は2に記載されているように始動時に噴射すべき燃料を増量すると吸気ポートに付着する燃料も増加する。そのため、吸気ポートに付着した燃料が次回以降に噴射された燃料とともに気筒に吸入されると気筒内に供給される燃料量が過剰になるおそれがある。   In the case of a so-called port injection type internal combustion engine that injects fuel into the intake port, when the amount of intake air is small, such as when the internal combustion engine is started, part of the injected fuel adheres to the intake port, and the intake port It is known to be sucked into a cylinder together with fuel injected into the cylinder. In such an internal combustion engine, as described in Patent Document 1 or 2, when the amount of fuel to be injected at the start is increased, the fuel adhering to the intake port also increases. Therefore, if the fuel adhering to the intake port is sucked into the cylinder together with the fuel injected after the next time, the amount of fuel supplied into the cylinder may be excessive.

そこで、本発明は、始動時に気筒に吸入される燃料量を適切に制御可能な内燃機関の始動制御装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a start control device for an internal combustion engine that can appropriately control the amount of fuel sucked into a cylinder at the time of start.

本発明の内燃機関の始動制御装置は、複数の気筒を有し、気筒毎の吸気ポートに燃料噴射弁がそれぞれ設けられた内燃機関に適用され、前記内燃機関の停止時における各気筒のピストン停止位置を判別し、その判別結果に基づいて吸気行程でピストンが停止している吸気行程気筒を特定する気筒特定手段と、前記気筒特定手段にて判別された前記吸気行程気筒のピストン停止位置に基づいて前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに供給すべき燃料量を設定する始動前燃料噴射量設定手段と、前記内燃機関の始動時に各気筒に供給する燃料噴射量を算出する基本燃料噴射量算出手段と、を備えた内燃機関の始動制御装置において、前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに燃料が供給された場合、前記内燃機関の始動時に前記気筒特定手段にて判別された前記吸気行程気筒に供給される燃料噴射量を前記基本燃料噴射量算出手段により算出された燃料噴射量よりも減少させる減量補正手段を備えていることにより、上述した課題を解決する(請求項1)。 The start control device for an internal combustion engine according to the present invention is applied to an internal combustion engine having a plurality of cylinders and provided with a fuel injection valve in an intake port of each cylinder, and the piston stop of each cylinder when the internal combustion engine is stopped Based on the piston stop position of the intake stroke cylinder determined by the cylinder specifying means for determining the position and specifying the intake stroke cylinder in which the piston is stopped in the intake stroke based on the determination result And a fuel injection amount setting means for setting a fuel amount to be supplied to the intake port of the intake stroke cylinder before starting the internal combustion engine, and a fuel injection amount to be supplied to each cylinder when the internal combustion engine is started. in starting control apparatus for an internal combustion engine having a basic fuel injection amount calculating means, and the case where fuel is supplied to the intake port of the intake stroke cylinder before the start of the internal combustion engine, said internal combustion engine By has a decreasing correction means for reducing than the fuel injection amount calculated by the fuel injection amount supplied to the intake stroke cylinder, which is determined by the cylinder identifying means when starting the basic fuel injection amount calculating means The problem described above is solved (claim 1).

本発明の始動制御装置によれば、内燃機関の始動時に吸気行程気筒に供給する燃料噴射量を減少させるので、始動前に行った燃料噴射によって吸気ポートに燃料が付着し、この燃料が蒸発して始動時に吸気行程気筒に吸入されても吸気行程気筒に供給される燃料が過剰になることを防止できる。そのため、始動時に気筒に吸入される燃料量を適切に制御することができる。これにより、未燃燃料などの排出を抑制できるので排気エミッションを改善することができる。また、内燃機関のトルク変動を抑制できるので、内燃機関の振動及び騒音を抑制することができる。なお、前記減量補正手段は、前記気筒特定手段にて判別された前記吸気行程気筒のピストン停止位置に基づいて補正量を設定し、この設定した補正量に応じて前記基本燃料噴射量算出手段により算出された燃料噴射量を減少させてもよい(請求項2)。 According to the start control device of the present invention, since the fuel injection amount supplied to the intake stroke cylinder at the start of the internal combustion engine is reduced, the fuel is attached to the intake port by the fuel injection performed before the start, and this fuel evaporates. Thus, even if the intake stroke cylinder is inhaled at the start, it is possible to prevent the fuel supplied to the intake stroke cylinder from becoming excessive. Therefore, the amount of fuel sucked into the cylinder at the start can be appropriately controlled. Thereby, since discharge | emission of unburned fuel etc. can be suppressed, exhaust emission can be improved. Moreover, since the torque fluctuation of the internal combustion engine can be suppressed, vibration and noise of the internal combustion engine can be suppressed. The reduction correction means sets a correction amount based on the piston stop position of the intake stroke cylinder determined by the cylinder specifying means, and the basic fuel injection amount calculation means sets the correction amount according to the set correction amount. The calculated fuel injection amount may be decreased (claim 2).

本発明の始動制御装置の一形態において、前記内燃機関は、前記内燃機関を始動するためのスタータモータと、前記スタータモータに電力を供給するバッテリと、をさらに備え、前記始動前燃料噴射量設定手段は、前記内燃機関の停止時における前記バッテリの電圧に基づいて前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに供給すべき燃料量を補正し、前記減量補正手段は、前記気筒特定手段にて判別された前記吸気行程気筒のピストン停止位置及び前記内燃機関の停止時における前記バッテリの電圧の両方に基づいて前記補正量を設定してもよい(請求項3)。このように始動前に吸気行程気筒の吸気ポートに供給すべき燃料量がバッテリの電圧に基づいて補正される場合は始動時に吸気行程気筒に供給する燃料噴射量もバッテリの電圧に基づいて補正する。これにより、内燃機関の始動時に吸気行程気筒に吸入される燃料量をさらに適切に制御することができる。 In one form of the start control device of the present invention, the internal combustion engine further includes a starter motor for starting the internal combustion engine, and a battery for supplying electric power to the starter motor, and the pre-startup fuel injection amount setting The means corrects the amount of fuel to be supplied to the intake port of the intake stroke cylinder before starting the internal combustion engine based on the voltage of the battery when the internal combustion engine is stopped, and the reduction correction means It may be set the correction amount based on both the voltage of the battery at the time of stopping the determined piston stop position and the internal combustion engine of the intake stroke cylinder in means (claim 3). As described above, when the fuel amount to be supplied to the intake port of the intake stroke cylinder before the start is corrected based on the battery voltage, the fuel injection amount supplied to the intake stroke cylinder at the start is also corrected based on the battery voltage. . As a result, the amount of fuel drawn into the intake stroke cylinder when the internal combustion engine is started can be controlled more appropriately.

本発明の始動制御装置の一形態において、前記減量補正手段は、前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに燃料が供給された場合、前記気筒特定手段にて判別された前記吸気行程気筒のピストン停止位置に基づいて前記気筒特定手段にて判別された前記吸気行程気筒に供給される燃料噴射量を前記基本燃料噴射量算出手段により算出された燃料噴射量よりも減少させる減量補正の回数を設定する補正回数設定手段を備えていてもよい(請求項4)。吸気ポートに付着した燃料量が多いほどその付着した燃料量が蒸発するまでに要する時間が長くなる。そのため、吸気ポートに付着した燃料は始動時に吸気行程気筒に対して行われる複数回の燃料噴射に対しても影響を及ぼす。始動前に吸気行程気筒の吸気ポートに供給される燃料量は停止時における吸気行程気筒のピストン停止位置に基づいて設定されるため、このようにそのピストン停止位置に基づいて減量補正の回数を設定することにより、最初の燃料噴射によって吸気ポートに付着した燃料を考慮して減量補正の回数を適切に設定できる。これにより、吸気ポートに付着した燃料が吸気行程気筒の燃焼状態に影響を及ぼす期間に対応して始動時に吸気行程気筒に供給する燃料噴射量を適切に補正することができるので、吸気行程気筒に吸入される燃料量をより適切に制御することができる。 In one form of the start control device of the present invention, the reduction correction means, when the fuel is supplied to the intake port of the intake stroke cylinder before starting the internal combustion engine, the intake air determined by the cylinder specifying means. Reduction correction for reducing the fuel injection amount supplied to the intake stroke cylinder determined by the cylinder specifying means based on the piston stop position of the stroke cylinder, from the fuel injection amount calculated by the basic fuel injection amount calculating means It is provided with a number of corrections setting means for setting the number of good (claim 4). The greater the amount of fuel adhering to the intake port, the longer it takes to evaporate the adhering fuel amount. Therefore, the fuel adhering to the intake port also has an effect on the multiple fuel injections performed on the intake stroke cylinder at the start. Since the amount of fuel supplied to the intake port of the intake stroke cylinder before starting is set based on the piston stop position of the intake stroke cylinder at the time of stop , the number of reduction corrections is set based on the piston stop position in this way By doing so, the number of reduction corrections can be appropriately set in consideration of the fuel adhering to the intake port by the first fuel injection. This makes it possible to appropriately correct the fuel injection amount supplied to the intake stroke cylinder at the start-up corresponding to the period when the fuel adhering to the intake port affects the combustion state of the intake stroke cylinder. The amount of fuel sucked can be controlled more appropriately.

この形態において、前記減量補正手段は、前記補正回数設定手段にて減量補正の回数として複数回が設定された場合、後の回ほど前記補正量を小さくする補正量変更手段をさらに備えていてもよい(請求項5)。また、前記補正量変更手段は、前記補正量を漸次小さくしてもよい(請求項6)。吸気ポートから蒸発する燃料量は徐々に減少するため、このように後の回ほど補正量を小さくすることにより吸気ポートから蒸発した燃料量に対応して吸気行程気筒に吸入される燃料量を適切に制御できる。 In this embodiment, the reduction correction unit may further include a correction amount changing unit that reduces the correction amount in later cycles when the correction number setting unit sets a plurality of reduction corrections. ( Claim 5 ). Further, the correction amount changing means may be progressively reduced the amount of correction (claim 6). Since the amount of fuel that evaporates from the intake port gradually decreases, the amount of fuel that is drawn into the intake stroke cylinder in accordance with the amount of fuel that evaporates from the intake port is reduced by reducing the correction amount in this way. Can be controlled.

本発明の始動制御装置の一形態において、前記減量補正手段は、前記補正回数設定手段により設定された回数の途中で前記内燃機関の始動が完了しても前記吸気行程気筒に供給する燃料噴射量を他の気筒に供給する燃料噴射量よりも減少させる減量補正を継続して行ってもよい(請求項7)。このように内燃機関の始動完了後も吸気ポートから蒸発した燃料が吸気行程気筒に吸入されると推定される期間は吸気行程気筒に供給される燃料噴射量を減少させることにより、内燃機関の始動完了後も吸気行程気筒に吸入される燃料量を適切に制御することができる。 In one form of the start control device of the present invention, the decrease correction means is a fuel injection amount supplied to the intake stroke cylinder even when the start of the internal combustion engine is completed in the middle of the number of times set by the correction number setting means. the may be done to continue decreasing correction to reduce than the fuel injection amount supplied to the other cylinders (claim 7). Thus, even after the completion of the start of the internal combustion engine, the fuel injection amount supplied to the intake stroke cylinder is reduced during a period in which it is estimated that the fuel evaporated from the intake port is sucked into the intake stroke cylinder. Even after completion, the amount of fuel drawn into the intake stroke cylinder can be appropriately controlled.

この形態において、前記減量補正手段は、前記内燃機関の始動完了後の補正量を前記内燃機関の始動中の補正量よりも小さくしてもよい(請求項8)。一般に内燃機関の始動中は空燃比が理論空燃比よりもリッチ側になるように噴射量が調整され、始動が完了した後は始動中よりも空燃比がリーン側、例えば理論空燃比になるように噴射量が調整される。そのため、始動が完了した後も始動中と同様の減量補正を行うと空燃比がリーン側に過剰に制御されるおそれがある。この形態では、内燃機関の始動完了後は補正量を小さくするので、吸気行程気筒の空燃比を適切に制御することができる。 In this embodiment, the decrease correction means, the correction amount after completion of starting of the internal combustion engine may be smaller than the correction amount during starting of the internal combustion engine (claim 8). In general, the injection amount is adjusted so that the air-fuel ratio becomes richer than the stoichiometric air-fuel ratio during start-up of the internal combustion engine, and after the start-up is completed, the air-fuel ratio becomes leaner than during start-up, for example, the stoichiometric air-fuel ratio. The injection amount is adjusted. For this reason, if the same reduction correction is performed after the start is completed, the air-fuel ratio may be excessively controlled to the lean side. In this embodiment, since the correction amount is reduced after the start of the internal combustion engine, the air-fuel ratio of the intake stroke cylinder can be appropriately controlled.

本発明の始動制御装置の一形態において、前記内燃機関は、所定の停止条件が成立すると内燃機関を停止させ、所定の再始動条件が成立すると内燃機関を再始動させるアイドルストップ制御の適用対象であり、前記減量補正手段は、アイドルストップ制御による停止状態からの再始動前に前記吸気行程気筒の吸気ポートに燃料が供給された場合、その再始動時に前記吸気行程気筒に供給する燃料噴射量を他の気筒に供給する燃料噴射量よりも前記補正量に応じて減少させてもよい(請求項9)。このような内燃機関ではアイドルストップ制御の適用対象外の内燃機関よりも内燃機関の停止、始動を行う回数が多い。そのため、本発明を適用することにより、始動時の排気エミッションを適切に改善したり、振動及び騒音を適切に抑制できる。 In one form of the start control device of the present invention, the internal combustion engine is an application target of idle stop control that stops the internal combustion engine when a predetermined stop condition is satisfied and restarts the internal combustion engine when a predetermined restart condition is satisfied. And when the fuel is supplied to the intake port of the intake stroke cylinder before restarting from the stop state by the idle stop control, the decrease correction means is configured to determine a fuel injection amount to be supplied to the intake stroke cylinder at the time of restart. The fuel injection amount supplied to the other cylinders may be decreased according to the correction amount ( claim 9 ). In such an internal combustion engine, the number of times of stopping and starting the internal combustion engine is larger than that of an internal combustion engine that is not subject to idling stop control. Therefore, by applying the present invention, it is possible to appropriately improve the exhaust emission at start-up and appropriately suppress vibration and noise.

以上に説明したように、本発明の始動制御装置によれば、始動前に吸気行程気筒の吸気ポートに燃料が供給された場合は、このときに吸気ポートに付着した燃料を考慮して始動時に吸気行程気筒に供給する燃料噴射量を減量補正するので、内燃機関の始動時に吸気行程気筒に吸入される燃料量を適切に制御することができる。 As described above, according to the start control device of the present invention, when fuel is supplied to the intake port of the intake stroke cylinder before starting, the fuel adhering to the intake port at this time is taken into consideration at the time of starting. Since the fuel injection amount supplied to the intake stroke cylinder is reduced and corrected, the amount of fuel drawn into the intake stroke cylinder when the internal combustion engine is started can be appropriately controlled.

(第1の形態)
図1は、本発明の第1の形態に係る始動制御装置が組み込まれた内燃機関を示している。図1の内燃機関(以下、エンジンと称することがある。)1は、車両に走行用動力源として搭載されるものであり、4つの気筒2と、各気筒2に接続される吸気通路3及び排気通路4とを備えている。なお、図1に示したように各気筒にはそれらの並び方向一端から他端側に向かって#1〜#4の気筒番号を付して互いに区別する。図2は、#1の気筒2の断面の概略図を示している。なお、他の気筒2も#1の気筒2と同様の構造を有している。図2に示したように各気筒2には、ピストン5が往復動可能にそれぞれ挿入され、このピストン5と気筒2の壁面とによって各気筒2に燃焼室6がそれぞれ形成される。各ピストン5はコンロッド7及びクランクアーム8にてクランク軸9とそれぞれ連結されている。各気筒2におけるピストン5の位相はクランク角にして180°ずつずらされている。これにより、4つの気筒2のうちいずれか一つの気筒2のピストン5は必ず吸気行程にあり、他の気筒2のピストン3は吸気行程以外の行程に位置する。各気筒2には点火プラグ15と、吸気通路3の一部を形成する吸気ポート3aを開閉するための吸気弁10及び排気通路4の一部を形成する排気ポート4aを開閉するための排気弁11とがそれぞれ設けられている。各吸気ポート3aには、燃料噴射弁としてのインジェクタ12がそれぞれ設けられている。そのため、エンジン1はポート噴射型エンジンとして構成される。また、エンジン1には、クランク軸9を回転させてエンジン1を始動させるためのスタータモータ13と、スタータモータ13に電力を供給するバッテリ14とが設けられている。なお、これらの構成は周知のエンジンと同様でよい。
(First form)
FIG. 1 shows an internal combustion engine in which a start control device according to a first embodiment of the present invention is incorporated. An internal combustion engine (hereinafter sometimes referred to as an engine) 1 in FIG. 1 is mounted on a vehicle as a driving power source, and includes four cylinders 2, an intake passage 3 connected to each cylinder 2, and And an exhaust passage 4. In addition, as shown in FIG. 1, the cylinder numbers # 1 to # 4 are assigned to the cylinders from one end to the other end in the arrangement direction to distinguish them from each other. FIG. 2 shows a schematic view of a cross section of the cylinder 2 of # 1. The other cylinders 2 have the same structure as the cylinder 2 of # 1. As shown in FIG. 2, a piston 5 is inserted into each cylinder 2 so as to be able to reciprocate, and a combustion chamber 6 is formed in each cylinder 2 by the piston 5 and the wall surface of the cylinder 2. Each piston 5 is connected to a crankshaft 9 by a connecting rod 7 and a crank arm 8. The phase of the piston 5 in each cylinder 2 is shifted by 180 ° as a crank angle. Thus, the piston 5 of any one of the four cylinders 2 is always in the intake stroke, and the pistons 3 of the other cylinders 2 are positioned in a stroke other than the intake stroke. Each cylinder 2 has an ignition plug 15, an intake valve 10 for opening and closing an intake port 3 a forming part of the intake passage 3, and an exhaust valve for opening and closing an exhaust port 4 a forming part of the exhaust passage 4. 11 are provided. Each intake port 3a is provided with an injector 12 as a fuel injection valve. Therefore, the engine 1 is configured as a port injection type engine. Further, the engine 1 is provided with a starter motor 13 for starting the engine 1 by rotating the crankshaft 9 and a battery 14 for supplying electric power to the starter motor 13. In addition, these structures may be the same as a well-known engine.

エンジン1の運転状態はエンジンコントロールユニット(ECU)20によって制御される。ECU20はマイクロプロセッサ、及びその動作に必要なRAM、ROM等の周辺装置を含んだコンピュータとして構成され、ROMに記録されたプログラムに従ってエンジン1の運転状態を制御するために必要な各種の処理を実行する。例えば、ECU20は、エンジン1の回転数及び吸入空気量を所定のセンサの出力信号から検出して所定の空燃比が得られるようにインジェクタ12から噴射させる燃料量を制御する。ECU20が参照するセンサとしては、クランク軸9の位相(クランク角)に対応した信号を出力するクランク角センサ21、吸入空気量に対応した信号を出力するエアフローメータ22(図1参照)、バッテリ14の電圧に対応した信号を出力する電圧センサ23、アクセルペダルの開度に対応した信号を出力するアクセル開度センサ24、及びブレーキペダルの操作を検出するブレーキセンサ25等が設けられる。   The operating state of the engine 1 is controlled by an engine control unit (ECU) 20. The ECU 20 is configured as a computer including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation, and executes various processes necessary for controlling the operating state of the engine 1 according to a program recorded in the ROM. To do. For example, the ECU 20 detects the number of revolutions of the engine 1 and the intake air amount from the output signal of a predetermined sensor, and controls the amount of fuel injected from the injector 12 so that a predetermined air-fuel ratio is obtained. As sensors referred to by the ECU 20, a crank angle sensor 21 that outputs a signal corresponding to the phase (crank angle) of the crankshaft 9, an air flow meter 22 (see FIG. 1) that outputs a signal corresponding to the intake air amount, and a battery 14. A voltage sensor 23 that outputs a signal corresponding to the voltage of the accelerator pedal, an accelerator opening sensor 24 that outputs a signal corresponding to the opening of the accelerator pedal, a brake sensor 25 that detects the operation of the brake pedal, and the like are provided.

ECU20は、所定の停止条件が満たされるとエンジン1への燃料噴射を中止してその運転を停止させ、所定の再始動条件が満たされるとエンジン1を再始動させる、いわゆるアイドルストップ制御をエンジン1に対して実行する。停止条件は、例えばブレーキペダルが操作されて車速が0のときに成立する。再始動条件は、例えばオートマチックトランスミッションを搭載した車両であればブレーキペダルがリリースされたことによって成立する。マニュアルトランスミッションを搭載した車両の場合には変速レバーのニュートラル位置から1速へのシフト操作、クラッチペダルの踏込み操作等が行われたことによって再始動条件が成立する。この他、停止条件及び再始動条件はアイドルストップ制御に関する公知の技術と同様に設定してよい。   The ECU 20 performs so-called idle stop control in which when the predetermined stop condition is satisfied, the fuel injection to the engine 1 is stopped and its operation is stopped, and when the predetermined restart condition is satisfied, the engine 1 is restarted. Run against. The stop condition is satisfied, for example, when the brake pedal is operated and the vehicle speed is zero. For example, in the case of a vehicle equipped with an automatic transmission, the restart condition is satisfied when the brake pedal is released. In the case of a vehicle equipped with a manual transmission, the restart condition is established by performing a shift operation from the neutral position of the shift lever to the first speed, a depression operation of the clutch pedal, or the like. In addition, the stop condition and the restart condition may be set in the same manner as a known technique related to idle stop control.

図3は、停止条件が満たされてエンジン1が停止しているときにエンジン1を再始動させるべくECU20が実行する再始動制御ルーチンを示している。図3の制御ルーチンは、エンジン1が運転中か否かに拘わりなく所定の周期で繰り返し実行される。   FIG. 3 shows a restart control routine executed by the ECU 20 to restart the engine 1 when the stop condition is satisfied and the engine 1 is stopped. The control routine of FIG. 3 is repeatedly executed at a predetermined cycle regardless of whether or not the engine 1 is in operation.

図3の制御ルーチンにおいてECU20は、まずステップS11でエンジン1が停止中か否か判断する。エンジン1が停止中と判断した場合はステップS12に進み、ECU20は上述した所定の再始動条件が成立したか否か判断する。再始動条件が不成立と判断した場合は今回の制御ルーチンを終了する。一方、再始動条件が成立したと判断した場合はステップS13に進み、ECU20はクランク角センサ21の出力信号に基づいて#1〜#4のいずれの気筒2のピストン5が吸気行程で停止しているか判別する。以降、エンジン1の停止中にピストン5が吸気行程で停止していた気筒2を吸気行程気筒と称することがある。また、クランク角センサ21の出力信号に基づいてその判別した気筒2のピストン5の位置を取得する。周知のようにクランク角は#1〜#4のいずれかの気筒2のピストン5が所定位置にある状態(例えば#1の気筒2のピストン5が吸気行程の上死点にある状態)を基準として特定されているため、停止時のクランク角を取得することによって各気筒2のピストン5の位置を判別することができる。このように吸気行程気筒を判別することにより、ECU20が本発明の気筒特定手段として機能する。   In the control routine of FIG. 3, the ECU 20 first determines in step S11 whether or not the engine 1 is stopped. When it is determined that the engine 1 is stopped, the process proceeds to step S12, and the ECU 20 determines whether or not the predetermined restart condition described above is satisfied. If it is determined that the restart condition is not satisfied, the current control routine is terminated. On the other hand, if it is determined that the restart condition is satisfied, the process proceeds to step S13, where the ECU 20 stops the piston 5 of any cylinder # 1 to # 4 in the intake stroke based on the output signal of the crank angle sensor 21. Determine if it is. Hereinafter, the cylinder 2 in which the piston 5 is stopped in the intake stroke while the engine 1 is stopped may be referred to as an intake stroke cylinder. Further, the position of the piston 5 of the cylinder 2 determined based on the output signal of the crank angle sensor 21 is acquired. As is well known, the crank angle is based on a state in which the piston 5 of any cylinder # 1 to # 4 is in a predetermined position (for example, the piston 5 of the cylinder 2 # 1 is at the top dead center of the intake stroke). Therefore, the position of the piston 5 of each cylinder 2 can be determined by acquiring the crank angle at the time of stopping. By discriminating the intake stroke cylinder in this way, the ECU 20 functions as the cylinder specifying means of the present invention.

次のステップS14においてECU20は、吸気行程気筒のピストン5の位置が上死点後(ATDC)0°すなわち上死点(TDC)〜上死点後(ATDC)θ°の範囲内か否か判断する。ピストン5が吸気行程の下死点(BDC)に近いと気筒2内に大量の空気が加熱された状態で滞留するため、ここに燃料を供給すると自着火が発生するおそれがある。そこで、θ°としてはこの自着火を防止可能な角度、例えば90°が設定される。   In the next step S14, the ECU 20 determines whether the position of the piston 5 of the intake stroke cylinder is 0 ° after top dead center (ATDC), that is, within the range of top dead center (TDC) to after top dead center (ATDC) θ °. To do. When the piston 5 is close to the bottom dead center (BDC) of the intake stroke, a large amount of air stays in the cylinder 2 in a heated state, and therefore there is a possibility that self-ignition may occur if fuel is supplied here. Therefore, as θ °, an angle capable of preventing this self-ignition, for example, 90 ° is set.

吸気行程の気筒2のピストン5がATDC0°〜θ°の範囲内で停止していると判断した場合はステップS15に進み、ECU20はエンジン1の停止中に吸気行程気筒の吸気ポート3aに供給する燃料量である始動前噴射量を算出する。始動前噴射量は、例えば吸気行程気筒のピストン5の停止位置及びバッテリ電圧に基づいて算出される。ピストン5の停止位置が下死点に近いほど、ピストン5の下降時に気筒2内に吸い込まれる空気量が少なくなりその流入速度が低下するため、燃料が気筒2内に吸い込まれ難くなる。また、バッテリ14の電圧が低いほど、始動時のクランク軸9の回転速度が低下するため、気筒2内への空気の流入速度が低下する。そのため、この場合も燃料が気筒2内に吸い込まれ難くなる。そこで、ピストン5の停止位置が下死点に近いほど、またバッテリ14の電圧が低いほど始動前噴射量を多くし、吸気行程気筒内に確実に燃料を供給する。具体的には、例えばまず図4に一例を示したピストン停止位置と始動前基本噴射量との関係に基づいて始動前基本噴射量を算出し、次に図5に一例を示したバッテリ電圧と補正噴射量との関係に基づいて補正噴射量を算出する。その後、始動前基本噴射量と補正噴射量とを足すことにより始動前噴射量を算出する。なお、図4及び図5に示した関係は、予め実験又は数値計算等により求めてECU20のROMに記憶させておく。この処理を実行することにより、ECU20が本発明の始動前燃料噴射量設定手段として機能する。 When it is determined that the piston 5 of the cylinder 2 in the intake stroke is stopped within the range of ATDC 0 ° to θ °, the process proceeds to step S15, and the ECU 20 supplies the intake port 3a of the intake stroke cylinder while the engine 1 is stopped. A pre-startup injection amount that is a fuel amount is calculated. The pre-startup injection amount is calculated based on, for example, the stop position of the piston 5 of the intake stroke cylinder and the battery voltage. The closer the stop position of the piston 5 is to the bottom dead center, the smaller the amount of air sucked into the cylinder 2 when the piston 5 is lowered, and the inflow speed thereof decreases, so that the fuel is less likely to be sucked into the cylinder 2. Further, as the voltage of the battery 14 is lower, the rotational speed of the crankshaft 9 at the time of start-up decreases, so the air inflow speed into the cylinder 2 decreases. Therefore, in this case as well, the fuel is hardly sucked into the cylinder 2. Therefore, the closer the stop position of the piston 5 is to the bottom dead center, and the lower the voltage of the battery 14, the greater the injection amount before start, and the fuel is reliably supplied into the intake stroke cylinder. Specifically, for example, first, the basic injection amount before start is calculated based on the relationship between the piston stop position shown in FIG. 4 and the basic injection amount before start, and then the battery voltage shown in FIG. A corrected injection amount is calculated based on the relationship with the corrected injection amount. Thereafter, the pre-startup injection amount is calculated by adding the pre-startup basic injection amount and the corrected injection amount. The relationship shown in FIGS. 4 and 5 is obtained in advance by experiment or numerical calculation and stored in the ROM of the ECU 20. By executing this processing, the ECU 20 functions as the pre-startup fuel injection amount setting means of the present invention.

次のステップS16においてECU20は、吸気行程気筒に対応するインジェクタ12から算出した始動前噴射量の燃料が噴射されるようにそのインジェクタ12の動作を制御する。以下、エンジン1の始動前に吸気行程気筒の吸気ポート3aに燃料を供給することを始動前噴射と称することがある。続くステップS17においてECU20は、エンジン1の始動前に吸気行程気筒の吸気ポート3aに燃料を供給したことを示す補正フラグをオンの状態に切り替える。次のステップS18においてECU20は、スタータモータ13を起動させる。これによりエンジン1の再始動が開始される。その後、今回の制御ルーチンを終了する。   In the next step S16, the ECU 20 controls the operation of the injector 12 so that the pre-startup injection amount of fuel calculated from the injector 12 corresponding to the intake stroke cylinder is injected. Hereinafter, supplying fuel to the intake port 3a of the intake stroke cylinder before the engine 1 is started may be referred to as pre-start injection. In the subsequent step S17, the ECU 20 switches the correction flag indicating that the fuel has been supplied to the intake port 3a of the intake stroke cylinder before the engine 1 is started to an on state. In the next step S18, the ECU 20 starts the starter motor 13. Thereby, restart of the engine 1 is started. Thereafter, the current control routine is terminated.

ステップS11が否定判断された場合はステップS19に進み、ECU20はエンジン1が始動中か否か判断する。エンジン1が始動中か否かは、例えばエンジン1の回転数に基づいて判定され、エンジン1の回転数が完爆回転数、すなわちエンジン1が燃焼を継続可能な完爆状態を得られたときの回転数未満の場合にエンジン1が始動中と判断する。エンジン1が運転中と判断した場合は今回の制御ルーチンを終了する。   When a negative determination is made in step S11, the process proceeds to step S19, and the ECU 20 determines whether or not the engine 1 is being started. Whether or not the engine 1 is being started is determined based on, for example, the rotational speed of the engine 1. When the rotational speed of the engine 1 is a complete explosion rotational speed, that is, when a complete explosion state in which the engine 1 can continue combustion is obtained. It is determined that the engine 1 is being started when the rotational speed is less than. If it is determined that the engine 1 is in operation, the current control routine is terminated.

一方、エンジン1が始動中と判断した場合、又はステップS14が否定判断された場合はステップS20に進み、ECU20はエンジン1の始動時に各気筒2に供給する燃料噴射量を算出する。燃料噴射量の算出は、ECU20が図6に示した燃料噴射量算出ルーチンを実行することにより行われる。図6の燃料噴射量算出ルーチンについて説明する。   On the other hand, when it is determined that the engine 1 is being started, or when step S14 is negatively determined, the process proceeds to step S20, and the ECU 20 calculates the fuel injection amount to be supplied to each cylinder 2 when the engine 1 is started. The calculation of the fuel injection amount is performed by the ECU 20 executing a fuel injection amount calculation routine shown in FIG. The fuel injection amount calculation routine of FIG. 6 will be described.

図6のルーチンにおいてECU20は、まずステップS101でエンジン1の始動時に各気筒2に供給すべき基本燃料量を算出する。この基本燃料量の算出方法は、エンジン1の冷却水温、バッテリ電圧、及び回転数等に基づいて算出する周知の算出方法でよい。そのため、詳細な説明は省略する。この処理を実行することにより、ECU20が本発明の基本燃料噴射量算出手段として機能する。続くステップS102においてECU20は補正フラグがオンの状態か否か判断する。補正フラグがオフと判断した場合は今回のルーチンを終了する。この場合、ステップS101で算出された基本噴射量が燃料噴射量に設定される。一方、補正フラグがオンと判断した場合はステップS103に進み、ECU20は今回算出する燃料噴射量が吸気行程気筒に供給される燃料量か否か判断する。今回算出する燃料噴射量は吸気行程気筒以外の気筒に供給される燃料量と判断した場合は今回のルーチンを終了する。この場合もステップS101で算出された基本噴射量が燃料噴射量に設定される。 In the routine of FIG. 6, the ECU 20 first calculates the basic fuel amount to be supplied to each cylinder 2 when the engine 1 is started in step S101. The calculation method of the basic fuel amount may be a known calculation method for calculating based on the coolant temperature of the engine 1, the battery voltage, the rotation speed, and the like. Therefore, detailed description is omitted. By executing this process, the ECU 20 functions as a basic fuel injection amount calculating means of the present invention. In subsequent step S102, the ECU 20 determines whether or not the correction flag is on. If it is determined that the correction flag is off, the current routine is terminated. In this case, the basic injection amount calculated in step S101 is set as the fuel injection amount. On the other hand, if it is determined that the correction flag is on, the process proceeds to step S103, where the ECU 20 determines whether or not the fuel injection amount calculated this time is the amount of fuel supplied to the intake stroke cylinder. If it is determined that the fuel injection amount calculated this time is the amount of fuel supplied to cylinders other than the intake stroke cylinder, the current routine is terminated. Also in this case, the basic injection amount calculated in step S101 is set as the fuel injection amount.

一方、今回算出する燃料噴射量は吸気行程気筒に供給される燃料量であると判断した場合はステップS104に進み、ECU20は減少補正量を算出する。減少補正量は、例えばまず図7に一例を示したピストン停止位置と第1補正量との関係に基づいて第1補正量を算出し、次に図8に一例を示したバッテリ電圧と第2補正量との関係に基づいて第2補正量を算出し、その後第1補正量と第2補正量とを足すことにより算出する。なお、図7及び図8に示したように第1補正量及び第2補正量はマイナスの値が設定されるため、減少補正量もマイナスの値となる。次のステップS105においてECU20は、基本噴射量と減少補正量を足すことにより基本噴射量を補正する。これにより、基本噴射量が減量補正される。そして、この場合は補正後の基本噴射量が燃料噴射量として設定される。この処理を実行することにより、ECU20は本発明の減量補正手段として機能する。続くステップS106においてECU20は、補正フラグをオフの状態に切り替える。その後、今回のルーチンを終了する。   On the other hand, if it is determined that the fuel injection amount calculated this time is the amount of fuel supplied to the intake stroke cylinder, the routine proceeds to step S104, where the ECU 20 calculates a decrease correction amount. As the decrease correction amount, for example, first the first correction amount is calculated based on the relationship between the piston stop position shown in FIG. 7 and the first correction amount, and then the battery voltage shown in FIG. The second correction amount is calculated based on the relationship with the correction amount, and then calculated by adding the first correction amount and the second correction amount. Since the first correction amount and the second correction amount are set to negative values as shown in FIGS. 7 and 8, the decrease correction amount is also a negative value. In the next step S105, the ECU 20 corrects the basic injection amount by adding the basic injection amount and the decrease correction amount. Thereby, the basic injection amount is corrected to decrease. In this case, the corrected basic injection amount is set as the fuel injection amount. By executing this process, the ECU 20 functions as a weight reduction correction unit of the present invention. In subsequent step S106, the ECU 20 switches the correction flag to an off state. Thereafter, the current routine is terminated.

図3に戻って説明を続ける。ステップS20にて燃料噴射量を算出した後はステップS21に進み、ECU20は算出した燃料噴射量に基づいて各インジェクタ12の動作を制御する。すなわち、吸気行程気筒には、減少補正量にて補正された噴射量の燃料が、それ以外の気筒2には基本噴射量の燃料が供給されるように各インジェクタ12の動作を制御する。続くステップS22においてECU20はスタータモータ13を起動する。なお、既にスタータモータ13が動作中の場合はその状態を維持する。その後、今回の制御ルーチンを終了する。   Returning to FIG. 3, the description will be continued. After calculating the fuel injection amount in step S20, the process proceeds to step S21, and the ECU 20 controls the operation of each injector 12 based on the calculated fuel injection amount. In other words, the operation of each injector 12 is controlled so that the fuel of the injection amount corrected by the decrease correction amount is supplied to the intake stroke cylinder and the fuel of the basic injection amount is supplied to the other cylinders 2. In subsequent step S22, the ECU 20 activates the starter motor 13. If the starter motor 13 is already operating, this state is maintained. Thereafter, the current control routine is terminated.

始動前噴射が行われた場合は、吸気行程気筒の吸気ポート3aに燃料が付着するため、この燃料が徐々に蒸発してこの吸気ポート3aに2回目に噴射された燃料とともに気筒2内に吸い込まれる。第1の形態によれば、始動前噴射が行われた場合は吸気行程気筒に2回目に供給する燃料量を減少させるので、吸気行程気筒に過剰に燃料が吸入されることを防止できる。これにより、未燃燃料などの排出を抑制することができるので、排気エミッションの悪化を防止できる。また、エンジン1のトルク変動を抑制できるので、エンジン1の振動及び騒音を抑制できる。なお、吸気行程気筒に2回目に供給する噴射量を算出する時期は、図6のルーチンを実行した時期に限定されない。この噴射量は、例えば、始動前噴射量を算出した時点で算出し、ECU20のRAMなどに記憶させておいてもよい。   When injection before start is performed, the fuel adheres to the intake port 3a of the intake stroke cylinder. Therefore, the fuel gradually evaporates and is sucked into the cylinder 2 together with the fuel injected for the second time into the intake port 3a. It is. According to the first aspect, when the pre-startup injection is performed, the amount of fuel supplied to the intake stroke cylinder for the second time is reduced, so that excessive intake of fuel into the intake stroke cylinder can be prevented. Thereby, since discharge | emission of unburned fuel etc. can be suppressed, deterioration of exhaust emission can be prevented. Moreover, since the torque fluctuation of the engine 1 can be suppressed, vibration and noise of the engine 1 can be suppressed. Note that the timing for calculating the injection amount supplied to the intake stroke cylinder for the second time is not limited to the timing when the routine of FIG. 6 is executed. This injection amount may be calculated, for example, when the pre-startup injection amount is calculated, and stored in the RAM of the ECU 20 or the like.

(第2の形態)
図9〜図13を参照して本発明の第2の形態について説明する。この形態でも、エンジン1については図1及び図2が参照される。図9は、第2の形態における再始動制御ルーチンを示している。なお、図9において図3と同一の処理には同一の参照符号を付して説明を省略する。第2の形態では、エンジン1の始動前に吸気行程気筒の吸気ポート3aに燃料を供給した場合、吸気行程気筒への燃料噴射量に対して減量補正を行う回数(以下、補正回数と称することがある。)を設定し、吸気行程気筒への燃料噴射量をその回数、減量補正する点が第1の形態と異なる。
(Second form)
A second embodiment of the present invention will be described with reference to FIGS. Also in this form, FIG.1 and FIG.2 is referred about the engine 1. FIG. FIG. 9 shows a restart control routine in the second embodiment. In FIG. 9, the same processes as those of FIG. In the second embodiment, when fuel is supplied to the intake port 3a of the intake stroke cylinder before the engine 1 is started, the number of times that the fuel injection amount to the intake stroke cylinder is corrected to be reduced (hereinafter referred to as the number of corrections). Is different from the first embodiment in that the amount of fuel injection into the intake stroke cylinder is corrected by decreasing the number of times.

図9の制御ルーチンではステップS17まで図3の制御ルーチンと同様に処理を進める。次のステップS31においてECU20は補正回数を設定する。補正回数は、例えば図10に一例を示したピストン停止位置と補正回数との関係に基づいて設定すればよい。上述したように吸気行程の気筒2に最初に供給される燃料量は、ピストン停止位置が下死点に近いほど多く設定される。そのため、ピストン停止位置が下死点に近いほど最初の燃料供給時に吸気ポート3aに付着する燃料量が多くなり、その付着した燃料量が空燃比に影響を与える期間は長くなると考えられる。そこで、図10に示したようにピストン停止位置が下死点に近いほど補正回数に大きい値を設定する。この処理を実行することにより、ECU20が本発明の補正回数設定手段として機能する。続くステップS32においてECU20は吸気行程気筒に対して減量補正を行った回数をカウントするためのカウンタCに1を代入する。次のステップS18においてECU20はスタータモータ13を起動した後、今回の制御ルーチンを終了する。   In the control routine of FIG. 9, the process proceeds to step S17 as in the control routine of FIG. In the next step S31, the ECU 20 sets the number of corrections. What is necessary is just to set the frequency | count of correction | amendment based on the relationship between the piston stop position which showed an example in FIG. 10, and the frequency | count of correction | amendment, for example. As described above, the amount of fuel initially supplied to the cylinder 2 in the intake stroke is set to be larger as the piston stop position is closer to the bottom dead center. Therefore, it is considered that the closer the piston stop position is to the bottom dead center, the larger the amount of fuel that adheres to the intake port 3a when the fuel is supplied for the first time, and the longer the period in which the attached fuel amount affects the air-fuel ratio. Therefore, as shown in FIG. 10, the correction number is set to a larger value as the piston stop position is closer to the bottom dead center. By executing this process, the ECU 20 functions as the correction number setting means of the present invention. In the following step S32, the ECU 20 substitutes 1 for a counter C for counting the number of times of performing the reduction correction for the intake stroke cylinder. In the next step S18, the ECU 20 starts the starter motor 13, and then ends the current control routine.

ステップS11が否定判断され、その後ステップS19が肯定判断された場合はステップS33に進み、ECU20は燃料噴射量を算出する。この形態では図11の燃料噴射量算出ルーチンにて燃料噴射量が算出される。なお、図11において図6と同一の処理には同一の参照符号を付して説明を省略する。   If step S11 is negatively determined and then step S19 is positively determined, the process proceeds to step S33, and the ECU 20 calculates the fuel injection amount. In this embodiment, the fuel injection amount is calculated by the fuel injection amount calculation routine of FIG. In FIG. 11, the same processes as those in FIG.

図11のルーチンでは、ステップS103まで図6と同様に処理が進められる。ステップS103において今回算出する燃料噴射量は吸気行程気筒に供給される燃料量であると判断した場合はステップS111に進み、ECU20はカウンタCが補正回数以下か否か判断する。カウンタCが補正回数より大きいと判断した場合は今回のルーチンを終了する。一方、カウンタCが補正回数以下と判断した場合はステップS112に進み、ECU20はカウンタCに応じた減少補正量を算出する。吸気行程気筒の吸気ポート3aから蒸発する燃料量は徐々に減少するため、カウンタCの値が大きいほど減少補正量を少なくする。   In the routine of FIG. 11, the process proceeds in the same manner as in FIG. 6 until step S103. When it is determined in step S103 that the fuel injection amount calculated this time is the amount of fuel supplied to the intake stroke cylinder, the process proceeds to step S111, and the ECU 20 determines whether or not the counter C is equal to or smaller than the correction count. If it is determined that the counter C is greater than the correction count, the current routine is terminated. On the other hand, if it is determined that the counter C is equal to or less than the correction count, the process proceeds to step S112, where the ECU 20 calculates a decrease correction amount corresponding to the counter C. Since the amount of fuel evaporated from the intake port 3a of the intake stroke cylinder gradually decreases, the decrease correction amount decreases as the value of the counter C increases.

図12及び図13を参照して第2の形態における減少補正量の算出方法について具体的に説明する。図12は、ピストン停止位置と第1補正量との関係の一例を示している。図12の線L1〜線L3はそれぞれ始動中の1回目、2回目、3回目の燃料供給時におけるピストン停止位置と第1補正量との関係を示している。そのため、例えば、エンジン1の始動時に吸気行程気筒に2回目の燃料供給が行われるとき、すなわちカウンタCが2のときの第1補正量を算出する場合は図12の線L2が用いられる。図12に示したようにカウンタCの値が大きくなるほど、すなわち始動前噴射から時間が経過するほど第1補正量は漸次少なく算出される。図13は、バッテリ電圧と第2補正量との関係の一例を示している。図13の線L11〜L13はそれぞれ始動中の1回目、2回目、3回目の燃料供給時におけるバッテリ電圧と第2補正量との関係を示している。そのため、例えば、エンジン1の始動時に吸気行程気筒に2回目の燃料供給が行われるとき、すなわちカウンタCが2のときの第2補正量を算出する場合は図13の線L12が用いられる。第2補正量も第1補正量と同様にカウンタCの値が大きくなるほど、すなわち始動前噴射から時間が経過するほど第2補正量は漸次少なく算出される。減少補正量は、これら第1補正量と第2補正量とを足すことにより算出する。このように減少補正量を徐々に小さくすることにより、ECU20が本発明の補正量変更手段として機能する。なお、図12及び図13の関係はそれぞれ予め実験又は数値計算などにより求めてECU20のROMにマップとして記憶させておく。なお、図12では一例として4回目までの関係を示したが、これらピストン停止位置と第1補正量との関係は補正回数の上限値、すなわちATDCθ°における補正回数までの個数分がECU20のROMにマップとして記憶される。図13も同様に補正回数として設定される上限値までの個数分の関係がECU20のROMにマップとして記憶される。   With reference to FIGS. 12 and 13, the calculation method of the decrease correction amount in the second embodiment will be specifically described. FIG. 12 shows an example of the relationship between the piston stop position and the first correction amount. Lines L1 to L3 in FIG. 12 indicate the relationship between the piston stop position and the first correction amount during the first, second, and third fuel supply during startup, respectively. Therefore, for example, when the second fuel supply is performed to the intake stroke cylinder when the engine 1 is started, that is, when the first correction amount is calculated when the counter C is 2, the line L2 in FIG. 12 is used. As shown in FIG. 12, the first correction amount is gradually decreased as the value of the counter C increases, that is, as time elapses from the pre-start injection. FIG. 13 shows an example of the relationship between the battery voltage and the second correction amount. Lines L11 to L13 in FIG. 13 indicate the relationship between the battery voltage and the second correction amount during the first, second, and third fuel supply during startup, respectively. Therefore, for example, when the second fuel supply is performed to the intake stroke cylinder when the engine 1 is started, that is, when calculating the second correction amount when the counter C is 2, the line L12 in FIG. 13 is used. Similarly to the first correction amount, the second correction amount is calculated to gradually decrease as the value of the counter C increases, that is, as time elapses from the pre-start injection. The decrease correction amount is calculated by adding the first correction amount and the second correction amount. Thus, the ECU 20 functions as the correction amount changing means of the present invention by gradually reducing the decrease correction amount. The relationship shown in FIGS. 12 and 13 is obtained in advance by experiment or numerical calculation and stored in the ROM of the ECU 20 as a map. In FIG. 12, the relationship up to the fourth time is shown as an example, but the relationship between the piston stop position and the first correction amount is the upper limit value of the number of corrections, that is, the number of corrections up to the number of corrections in ATDCθ ° is the ROM of the ECU 20. Is stored as a map. Similarly in FIG. 13, the number of relationships up to the upper limit set as the number of corrections is stored as a map in the ROM of the ECU 20.

次のステップS113においてECU20は、カウンタCの値を1繰り上げる。続くステップS105においてECU20は、算出した減少補正量と基本噴射量を足すことによって基本噴射量を減量補正する。その後、今回のルーチンを終了する。   In the next step S113, the ECU 20 increments the value of the counter C by one. In the subsequent step S105, the ECU 20 corrects the basic injection amount by decreasing the amount by adding the calculated decrease correction amount and the basic injection amount. Thereafter, the current routine is terminated.

図9の制御ルーチンの説明に戻る。ステップS33にて燃料噴射量を算出した後はステップS21に進み、ECU20は算出した燃料噴射量に基づいて各インジェクタ12の動作を制御する。続くステップS22においてECU20はスタータモータ13を起動する。その後、今回の制御ルーチンを終了する。   Returning to the description of the control routine of FIG. After calculating the fuel injection amount in step S33, the process proceeds to step S21, and the ECU 20 controls the operation of each injector 12 based on the calculated fuel injection amount. In subsequent step S22, the ECU 20 activates the starter motor 13. Thereafter, the current control routine is terminated.

第2の形態では、始動前噴射を行った場合、吸気行程気筒のピストン停止位置に応じて吸気行程気筒に対して減量補正を行う補正回数を設定するので、吸気行程気筒への過剰な燃料の供給をさらに適切に防止できる。また、減量補正に使用される減少補正量は吸気ポート3aから蒸発する燃料量が漸次減少することを考慮して後の回ほど徐々に少なく設定されるので、過剰な燃料の供給を防止するとともに吸気行程気筒の空燃比を適切に制御できる。そのため、排気エミッションの悪化をより適切に防止したり、エンジン1の振動及び騒音を適切に抑制できる。なお、エンジン1の始動中に吸気行程気筒に供給する燃料量を算出する時期は上述した時期に限定されない。例えば、補正回数を設定した時点で算出し、ECU20のRAMなどに記憶させておいてもよい。   In the second mode, when the injection before start is performed, the number of corrections for performing the reduction correction for the intake stroke cylinder is set in accordance with the piston stop position of the intake stroke cylinder. Supply can be prevented more appropriately. In addition, the decrease correction amount used for the decrease correction is set to be gradually smaller in later times in consideration of the gradual decrease in the amount of fuel evaporated from the intake port 3a, thereby preventing excessive fuel supply. The air-fuel ratio of the intake stroke cylinder can be appropriately controlled. Therefore, deterioration of exhaust emission can be prevented more appropriately, and vibration and noise of the engine 1 can be appropriately suppressed. Note that the timing for calculating the amount of fuel supplied to the intake stroke cylinder during the start of the engine 1 is not limited to the timing described above. For example, it may be calculated when the number of corrections is set and stored in the RAM of the ECU 20 or the like.

(第3の形態)
図14〜図17を参照して本発明の第3の形態を説明する。この形態でも、エンジン1については図1及び図2が参照される。図14及び図15は、第3の形態における再始動制御ルーチンを示している。なお、図15は図14に続くフローチャートである。図14及び図15において図3及び図9と同一の処理には同一の参照符号を付して説明を省略する。第3の形態では、吸気行程気筒に対して始動前噴射を行った場合、その始動前噴射によって吸気ポート3aに付着した燃料が吸気行程気筒の空燃比に影響を及ぼす期間はエンジン1の始動完了後も吸気行程気筒への燃料噴射量を減量補正する点が他の形態と異なる。
(Third form)
A third embodiment of the present invention will be described with reference to FIGS. Also in this form, FIG.1 and FIG.2 is referred about the engine 1. FIG. 14 and 15 show a restart control routine in the third embodiment. FIG. 15 is a flowchart following FIG. 14 and 15, the same processes as those in FIGS. 3 and 9 are denoted by the same reference numerals, and the description thereof is omitted. In the third mode, when the pre-start injection is performed on the intake stroke cylinder, the start of the engine 1 is completed during a period in which the fuel adhering to the intake port 3a due to the pre-start injection affects the air-fuel ratio of the intake stroke cylinder. After that, it is different from the other embodiments in that the fuel injection amount to the intake stroke cylinder is corrected to decrease.

第3の形態における再始動制御制御ルーチンは、図14に示した部分は図9と同一であり、図15に示した部分が図9と異なる。そこで、図14に示した部分の説明は省略し、図15に示した部分について説明する。図14の制御ルーチンにおいてステップS11が否定判断され、かつステップS19が否定判断された場合は図15のステップS41に進み、ECU20は運転時基本噴射量を算出する。運転時基本噴射量の算出は、例えばエンジン1の回転数及び吸入空気量に基づいて算出する周知の算出方法で行われる。次のステップS42においてECU20は補正フラグがオンの状態か否か判断する。補正フラグがオフと判断した場合はステップS43〜S47をスキップしてステップS48に進む。一方、補正フラグがオンと判断した場合はステップS43に進み、ECU20は今回算出する燃料噴射量は吸気行程気筒への燃料噴射量か否か判断する。今回算出する燃料噴射量が吸気行程気筒以外の気筒への燃料噴射量であると判断した場合はステップS44〜S47をスキップしてステップS48に進む。一方、今回算出する燃料噴射量が吸気行程気筒への燃料噴射量であると判断した場合はステップS44に進み、ECU20はカウンタCが補正回数以下か否か判断する。カウンタCが補正回数より大きいと判断した場合はステップS45〜S47をスキップしてステップS48に進む。   In the restart control control routine in the third embodiment, the part shown in FIG. 14 is the same as FIG. 9, and the part shown in FIG. 15 is different from FIG. Therefore, the description of the part shown in FIG. 14 is omitted, and only the part shown in FIG. 15 will be described. If the determination in step S11 is negative and the determination in step S19 is negative in the control routine of FIG. 14, the process proceeds to step S41 of FIG. 15, and the ECU 20 calculates the operating basic injection amount. The calculation of the basic injection amount during operation is performed by a known calculation method that calculates based on, for example, the rotation speed of the engine 1 and the intake air amount. In the next step S42, the ECU 20 determines whether or not the correction flag is on. If it is determined that the correction flag is off, steps S43 to S47 are skipped and the process proceeds to step S48. On the other hand, if it is determined that the correction flag is on, the process proceeds to step S43, and the ECU 20 determines whether or not the fuel injection amount calculated this time is the fuel injection amount to the intake stroke cylinder. If it is determined that the fuel injection amount calculated this time is the fuel injection amount to cylinders other than the intake stroke cylinder, steps S44 to S47 are skipped and the process proceeds to step S48. On the other hand, when it is determined that the fuel injection amount calculated this time is the fuel injection amount to the intake stroke cylinder, the process proceeds to step S44, and the ECU 20 determines whether or not the counter C is equal to or less than the correction count. If it is determined that the counter C is larger than the number of corrections, steps S45 to S47 are skipped and the process proceeds to step S48.

一方、カウンタCが補正回数以下と判断した場合はステップS45に進み、ECU20はカウンタCの値に応じた減少補正量を算出する。減少補正量は、ピストン停止位置及びバッテリ電圧に基づいて算出される。図16はピストン停止位置と第1補正量との関係の一例を、図17はバッテリ電圧と第2補正量との関係の一例をそれぞれ示している。図16の線L21〜L23はそれぞれ始動中の1回目、2回目、3回目の燃料供給時におけるピストン停止位置と第1補正量との関係を示している。なお、図16には比較例として図12で示したエンジン1の始動中における関係を破線L1〜L3で示した。これら比較例との比較から明らかなように、エンジン1の始動完了後はエンジン1の始動中よりも第1補正量として0に近い値、すなわち補正量としては小さい値が設定される。図17の線L31〜L33はそれぞれ始動中の1回目、2回目、3回目の燃料供給時におけるバッテリ電圧と第2補正量との関係を示している。なお、図17にも比較例として図13に示したエンジン1の始動中における関係を破線L11〜L13で示した。これら比較例との比較から明らかなように、第1補正量と同様にエンジン1の始動完了後はエンジン1の始動中よりも第2補正量として0に近い値、すなわち補正量としては小さい値が設定される。減少補正量は、これら第1補正量と第2補正量とを足すことにより算出する。なお、図16及び図17の関係は、それぞれ予め実験又は数値計算などにより求めてECU20のROMにマップとして記憶させておく。図16では一例として4回目までの関係を示したが、これらの関係は補正回数として設定される上限値までの個数分がECU20のROMにマップとして記憶される。図17も同様に補正回数として設定される上限値までの個数分の関係がECU20のROMにマップとして記憶される。   On the other hand, if it is determined that the counter C is equal to or less than the correction count, the process proceeds to step S45, where the ECU 20 calculates a decrease correction amount corresponding to the value of the counter C. The decrease correction amount is calculated based on the piston stop position and the battery voltage. FIG. 16 shows an example of the relationship between the piston stop position and the first correction amount, and FIG. 17 shows an example of the relationship between the battery voltage and the second correction amount. Lines L21 to L23 in FIG. 16 indicate the relationship between the piston stop position and the first correction amount during the first, second, and third fuel supply during startup, respectively. In FIG. 16, as a comparative example, the relationship during the start of the engine 1 shown in FIG. 12 is indicated by broken lines L1 to L3. As is clear from the comparison with these comparative examples, after the start of the engine 1 is completed, a value closer to 0 is set as the first correction amount than during the start of the engine 1, that is, a smaller value is set as the correction amount. Lines L31 to L33 in FIG. 17 indicate the relationship between the battery voltage and the second correction amount during the first, second, and third fuel supply during startup, respectively. In FIG. 17, the relationship during the start of the engine 1 shown in FIG. 13 as a comparative example is indicated by broken lines L11 to L13. As is clear from the comparison with these comparative examples, like the first correction amount, after the start of the engine 1 is completed, the second correction amount is closer to 0 than during the start of the engine 1, that is, the correction amount is a small value. Is set. The decrease correction amount is calculated by adding the first correction amount and the second correction amount. 16 and 17 are obtained in advance by experiments or numerical calculations and stored in the ROM of the ECU 20 as maps. In FIG. 16, the relationship up to the fourth time is shown as an example, but the number of these relationships up to the upper limit set as the number of corrections is stored as a map in the ROM of the ECU 20. In FIG. 17 as well, the relationship of the number up to the upper limit set as the number of corrections is stored as a map in the ROM of the ECU 20.

次のステップS46においてECU20はカウンタCを1繰り上げる。続くステップS47においてECU20は運転時基本噴射量に減少補正量を足すことによって運転時基本噴射量を減量補正する。次のステップS48においてECU20は運転時基本噴射量の燃料がその量の燃料を供給すべき気筒2に供給されるように各インジェクタ12の動作を制御する。これにより、各気筒2への燃料噴射が実行される。その後、今回の制御ルーチンを終了する。   In the next step S46, the ECU 20 increments the counter C by one. In the following step S47, the ECU 20 corrects the driving basic injection amount by decreasing the driving basic injection amount by adding the decreasing correction amount. In the next step S48, the ECU 20 controls the operation of each injector 12 so that the basic fuel injection amount during operation is supplied to the cylinder 2 to which that amount of fuel is to be supplied. Thereby, fuel injection to each cylinder 2 is performed. Thereafter, the current control routine is terminated.

第3の形態では、始動前噴射を行った場合はエンジン1の始動が完了した後もカウンタCが補正回数より大きくなるまで吸気行程気筒に供給する燃料量に対して減量補正を行うので、吸気行程気筒への過剰な燃料の供給をさらに防止することができる。そのため、排気エミッションの悪化を防止したり、エンジン1の振動及び騒音を抑制できる。一般にエンジン1の始動中は各気筒2の空燃比が理論空燃比よりリッチ側に制御され、エンジン1の始動完了後は各気筒2の空燃比が理論空燃比に制御される。そのため、エンジン1の始動完了後もエンジン1の始動中と同じ減量補正を行うと、吸気行程気筒の空燃比が理論空燃比よりもリーン側に制御される。この形態では、エンジン1の始動中と始動完了後とで減少補正量を変更するので、エンジン1の状態に応じて吸気行程気筒の空燃比を適切に制御できる。なお、ECU20が図14とは別のルーチンでもエンジン1の運転中における燃料噴射量を算出している場合は、いずれのルーチンで算出した燃料噴射量を使用するか予め優先度を設定し、この優先度に従って使用する燃料噴射量を決めればよい。   In the third mode, when the pre-startup injection is performed, the amount of fuel supplied to the intake stroke cylinder is reduced until the counter C becomes greater than the number of corrections even after the start of the engine 1 is completed. An excessive supply of fuel to the stroke cylinder can be further prevented. Therefore, deterioration of exhaust emission can be prevented, and vibration and noise of the engine 1 can be suppressed. In general, the air-fuel ratio of each cylinder 2 is controlled to be richer than the stoichiometric air-fuel ratio during the start of the engine 1, and the air-fuel ratio of each cylinder 2 is controlled to the stoichiometric air-fuel ratio after the start of the engine 1 is completed. Therefore, if the same reduction correction is performed after the engine 1 is started, the air-fuel ratio of the intake stroke cylinder is controlled to be leaner than the stoichiometric air-fuel ratio. In this embodiment, since the decrease correction amount is changed between when the engine 1 is started and after the start is completed, the air-fuel ratio of the intake stroke cylinder can be appropriately controlled according to the state of the engine 1. If the ECU 20 calculates the fuel injection amount during operation of the engine 1 even in a routine different from that shown in FIG. 14, a priority is set in advance as to which routine the fuel injection amount calculated in which routine is used. The fuel injection amount to be used may be determined according to the priority.

本発明は、上述した各形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明はアイドルストップ制御による停止状態からの再始動時に限らず、イグニッションスイッチのオンによる始動時にもこれを適用することができる。従って、本発明はアイドルストップ制御の適用対象となるエンジンに限らず、アイドルストップ制御が行われないエンジンに対しても適用することができる。また、本発明は、電動機及び発電機として機能するモータジェネレータとエンジンとを走行用動力源として備えた車両いわゆるハイブリッド車両に搭載されるエンジンに適用してもよい。このような車両ではモータジェネレータにてエンジンを始動するため、モータジェネレータがスタータモータとして機能する。従って、減少補正量はスタータモータに電力を供給するバッテリの電圧に基づいて算出してもよい。上述した各形態ではピストン位置をクランク角によって判別したが、ピストン位置の判別はそのような手段に限らず、各種の手段を利用して行ってよい。また、上述した各形態ではマップを用いて減少補正量を算出したが、マップの他に物理モデル又は数式にて算出してもよい。   This invention is not limited to each form mentioned above, It can implement with a various form. For example, the present invention can be applied not only at the time of restart from the stop state by the idle stop control but also at the time of start by turning on the ignition switch. Therefore, the present invention can be applied not only to the engine to which the idle stop control is applied, but also to an engine in which the idle stop control is not performed. The present invention may also be applied to an engine mounted on a vehicle so-called hybrid vehicle that includes a motor generator and an engine that function as an electric motor and a generator as a driving power source. In such a vehicle, since the engine is started by the motor generator, the motor generator functions as a starter motor. Therefore, the decrease correction amount may be calculated based on the voltage of the battery that supplies power to the starter motor. In each embodiment described above, the piston position is determined by the crank angle. However, the piston position is not limited to such means, and various means may be used. In each embodiment described above, the reduction correction amount is calculated using a map, but may be calculated using a physical model or a mathematical expression in addition to the map.

本発明の第1の形態に係る始動制御装置が組み込まれた内燃機関を示す図。The figure which shows the internal combustion engine in which the starting control apparatus which concerns on the 1st form of this invention was integrated. 図1の#1の気筒2の断面を示す図。The figure which shows the cross section of the cylinder 2 of # 1 of FIG. ECUが実行する再始動制御ルーチンを示すフローチャート。The flowchart which shows the restart control routine which ECU performs. ピストン停止位置と初回基本噴射量との関係の一例を示す図。The figure which shows an example of the relationship between a piston stop position and the first time basic injection amount. バッテリ電圧と補正噴射量との関係の一例を示す図。The figure which shows an example of the relationship between a battery voltage and correction | amendment injection quantity. ECUが実行する燃料噴射量算出ルーチンを示すフローチャート。The flowchart which shows the fuel injection amount calculation routine which ECU performs. ピストン停止位置と第1補正量との関係の一例を示す図。The figure which shows an example of the relationship between a piston stop position and the 1st correction amount. バッテリ電圧と第2補正量との関係の一例を示す図。The figure which shows an example of the relationship between a battery voltage and the 2nd correction amount. 第2の形態に係る再始動制御ルーチンを示すフローチャート。The flowchart which shows the restart control routine which concerns on a 2nd form. ピストン停止位置と補正回数との関係の一例を示す図。The figure which shows an example of the relationship between a piston stop position and the frequency | count of correction | amendment. 図9の再始動制御ルーチン内で実行される燃料噴射量算出ルーチンを示すフローチャート。10 is a flowchart showing a fuel injection amount calculation routine executed in the restart control routine of FIG. 第2の形態に係るピストン停止位置と第1補正量との関係の一例を示す図。The figure which shows an example of the relationship between the piston stop position and 1st correction amount which concern on a 2nd form. 第2の形態に係るバッテリ電圧と第2補正量との関係の一例を示す図。The figure which shows an example of the relationship between the battery voltage which concerns on a 2nd form, and 2nd correction amount. 第3の形態に係る再始動制御ルーチンを示すフローチャート。The flowchart which shows the restart control routine which concerns on a 3rd form. 図14に続くフローチャート。The flowchart following FIG. 第3の形態に係るピストン停止位置と第1補正量との関係の一例を示す図。The figure which shows an example of the relationship between the piston stop position and 1st correction amount which concern on a 3rd form. 第3の形態に係るバッテリ電圧と第2補正量との関係の一例を示す図。The figure which shows an example of the relationship between the battery voltage which concerns on a 3rd form, and 2nd correction amount.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3a 吸気ポート
12 インジェクタ(燃料噴射弁)
13 スタータモータ
14 バッテリ
20 エンジンコントロールユニット(気筒特定手段、始動前燃料噴射量設定手段、減量補正手段、補正回数設定手段、補正量変更手段、基本燃料噴射量算出手段
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3a Intake port 12 Injector (fuel injection valve)
13 starter motor 14 battery 20 engine control unit (cylinder specifying means, pre-starting fuel injection amount setting means , reduction correction means, correction number setting means, correction amount changing means, basic fuel injection amount calculation means )

Claims (8)

複数の気筒を有し、気筒毎の吸気ポートに燃料噴射弁がそれぞれ設けられた内燃機関に適用され、
前記内燃機関の停止時における各気筒のピストン位置を判別し、その判別結果に基づいて吸気行程でピストンが停止している吸気行程気筒を特定する気筒特定手段と、前記気筒特定手段にて判別された前記吸気行程気筒のピストン位置に基づいて前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに供給すべき燃料量を設定する燃料量設定手段と、を備えた内燃機関の始動制御装置において、
前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに燃料が供給された場合、前記気筒特定手段にて判別された前記吸気行程気筒のピストン位置に基づいて補正量を設定し、前記内燃機関の始動時に前記吸気行程気筒に供給する燃料量を他の気筒に供給する燃料量よりも前記補正量に応じて減少させる減量補正手段を備えていることを特徴とする内燃機関の始動制御装置。
Applied to an internal combustion engine having a plurality of cylinders, each provided with a fuel injection valve in the intake port of each cylinder,
Cylinder specifying means for determining the piston position of each cylinder when the internal combustion engine is stopped and determining the intake stroke cylinder in which the piston is stopped in the intake stroke based on the determination result, and the cylinder specifying means And a fuel amount setting means for setting a fuel amount to be supplied to an intake port of the intake stroke cylinder before starting the internal combustion engine based on a piston position of the intake stroke cylinder. ,
When fuel is supplied to the intake port of the intake stroke cylinder before starting the internal combustion engine, a correction amount is set based on the piston position of the intake stroke cylinder determined by the cylinder specifying means, and the internal combustion engine A start control device for an internal combustion engine, comprising: a reduction correction means for reducing the amount of fuel supplied to the intake stroke cylinder at the time of start of the engine in accordance with the correction amount than the amount of fuel supplied to the other cylinders.
前記内燃機関は、前記内燃機関を始動するためのスタータモータと、前記スタータモータに電力を供給するバッテリと、をさらに備え、
前記燃料量設定手段は、前記内燃機関の停止時における前記バッテリの電圧に基づいて前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに供給すべき燃料量を補正し、
前記減量補正手段は、前記気筒特定手段にて判別された前記吸気行程気筒のピストン位置及び前記内燃機関の停止時における前記バッテリの電圧の両方に基づいて前記補正量を設定することを特徴とする請求項1に記載の内燃機関の始動制御装置。
The internal combustion engine further includes a starter motor for starting the internal combustion engine, and a battery for supplying electric power to the starter motor,
The fuel amount setting means corrects the amount of fuel to be supplied to the intake port of the intake stroke cylinder before starting the internal combustion engine based on the voltage of the battery when the internal combustion engine is stopped.
The reduction amount correction means sets the correction amount based on both the piston position of the intake stroke cylinder determined by the cylinder specifying means and the voltage of the battery when the internal combustion engine is stopped. The start control device for an internal combustion engine according to claim 1.
前記減量補正手段は、前記内燃機関の始動前に前記吸気行程気筒の吸気ポートに燃料が供給された場合、前記気筒特定手段にて判別された前記吸気行程気筒のピストン位置に基づいて前記吸気行程気筒に供給する燃料量を他の気筒に供給する燃料量よりも減少させる減量補正の回数を設定する補正回数設定手段を備えていることを特徴とする請求項1又は2に記載の内燃機関の始動制御装置。   When the fuel is supplied to the intake port of the intake stroke cylinder before the internal combustion engine is started, the reduction correction means is configured to perform the intake stroke based on the piston position of the intake stroke cylinder determined by the cylinder specifying means. 3. The internal combustion engine according to claim 1, further comprising a correction number setting unit that sets a number of times of reduction correction for reducing the amount of fuel supplied to the cylinders less than the amount of fuel supplied to the other cylinders. Start control device. 前記減量補正手段は、前記補正回数設定手段にて減量補正の回数として複数回が設定された場合、後の回ほど前記補正量を小さくする補正量変更手段をさらに備えることを特徴とする請求項3に記載の内燃機関の始動制御装置。   The said reduction | decrease correction means is further provided with the correction amount change means which makes the said correction amount small later, when multiple times are set as the frequency | count of reduction correction by the said correction frequency setting means. The start control device for an internal combustion engine according to claim 3. 前記補正量変更手段は、前記補正量を漸次小さくすることを特徴とする請求項4に記載の内燃機関の始動制御装置。   The start control apparatus for an internal combustion engine according to claim 4, wherein the correction amount changing means gradually decreases the correction amount. 前記減量補正手段は、前記補正回数設定手段により設定された回数の途中で前記内燃機関の始動が完了しても前記吸気行程気筒に供給する燃料量を他の気筒に供給する燃料量よりも減少させる減量補正を継続して行うことを特徴とする請求項3〜5のいずれか一項に記載の内燃機関の始動制御装置。   The reduction amount correction means reduces the amount of fuel supplied to the intake stroke cylinder below the amount of fuel supplied to other cylinders even if the start of the internal combustion engine is completed in the middle of the number of times set by the correction number setting means. The start control device for an internal combustion engine according to any one of claims 3 to 5, wherein the reduction correction is continuously performed. 前記減量補正手段は、前記内燃機関の始動完了後の補正量を前記内燃機関の始動中の補正量よりも小さくすることを特徴とする請求項6に記載の内燃機関の始動制御装置。   7. The start control device for an internal combustion engine according to claim 6, wherein the reduction amount correction means makes a correction amount after completion of starting of the internal combustion engine smaller than a correction amount during startup of the internal combustion engine. 前記内燃機関は、所定の停止条件が成立すると内燃機関を停止させ、所定の再始動条件が成立すると内燃機関を再始動させるアイドルストップ制御の適用対象であり、
前記減量補正手段は、アイドルストップ制御による停止状態からの再始動前に前記吸気行程気筒の吸気ポートに燃料が供給された場合、その再始動時に前記吸気行程気筒に供給する燃料量を他の気筒に供給する燃料量よりも減量補正に応じて減少させることを特徴とする請求項1〜7のいずれか一項に記載の内燃機関の始動制御装置。
The internal combustion engine is an application subject of idle stop control that stops the internal combustion engine when a predetermined stop condition is satisfied, and restarts the internal combustion engine when a predetermined restart condition is satisfied,
When the fuel is supplied to the intake port of the intake stroke cylinder before restarting from the stop state by the idle stop control, the reduction amount correction means supplies the amount of fuel supplied to the intake stroke cylinder at the time of restart to another cylinder. The start control device for an internal combustion engine according to any one of claims 1 to 7, wherein the amount of fuel supplied to the engine is decreased in accordance with a decrease correction.
JP2007053764A 2007-03-05 2007-03-05 Start controller of internal combustion engine Pending JP2008215192A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007053764A JP2008215192A (en) 2007-03-05 2007-03-05 Start controller of internal combustion engine
PCT/IB2008/000490 WO2008107775A1 (en) 2007-03-05 2008-03-04 Start control apparatus and start control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007053764A JP2008215192A (en) 2007-03-05 2007-03-05 Start controller of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008215192A true JP2008215192A (en) 2008-09-18

Family

ID=39590687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053764A Pending JP2008215192A (en) 2007-03-05 2007-03-05 Start controller of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2008215192A (en)
WO (1) WO2008107775A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021494A (en) * 2009-07-13 2011-02-03 Toyota Motor Corp Start control device for multiple cylinder internal combustion engine
DE102010062675A1 (en) 2009-12-14 2011-06-16 Hitachi Automotive Systems, Ltd., Hitachinaka-shi Apparatus and method for controlling fuel injection in an internal combustion engine
US20170030287A1 (en) * 2014-03-25 2017-02-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection device for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524318B (en) * 2014-03-21 2017-12-13 Jaguar Land Rover Ltd Method of injecting fuel into an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942012A (en) 1995-07-27 1997-02-10 Hitachi Ltd Engine control device
JP3196646B2 (en) * 1996-07-18 2001-08-06 トヨタ自動車株式会社 Fuel injection control device for multi-cylinder internal combustion engine
JP3966216B2 (en) 1998-01-26 2007-08-29 株式会社デンソー Fuel injection control device for internal combustion engine
JP3756034B2 (en) * 2000-02-04 2006-03-15 株式会社日立製作所 Multi-cylinder engine control system
JP3850632B2 (en) 2000-06-01 2006-11-29 株式会社日立製作所 Fuel injection control device for internal combustion engine
JP3571014B2 (en) * 2001-08-30 2004-09-29 本田技研工業株式会社 Automatic stop / start control device for internal combustion engine
JP2003097319A (en) * 2001-09-26 2003-04-03 Toyota Motor Corp Control device of cylinder injection type internal combustion engine
JP3991809B2 (en) 2002-08-01 2007-10-17 トヨタ自動車株式会社 Fuel injection device for start of internal combustion engine
JP4206847B2 (en) 2003-07-07 2009-01-14 マツダ株式会社 Vehicle control device
DE10332635A1 (en) * 2003-07-18 2005-02-17 Audi Ag Injecting fuel method during cold phase of internal combustion engine, involves fuel amount separated during cold starting of engine and forming wall film on intake manifold, and then dissolved and carried away during further operation
JP2005214124A (en) 2004-01-30 2005-08-11 Suzuki Motor Corp Start control device for internal combustion engine
JP4120614B2 (en) 2004-04-20 2008-07-16 トヨタ自動車株式会社 Start control device for internal combustion engine
JP4589214B2 (en) * 2005-01-13 2010-12-01 トヨタ自動車株式会社 Start control device for internal combustion engine
US8763582B2 (en) * 2005-05-12 2014-07-01 Ford Global Technologies, Llc Engine starting for engine having adjustable valve operation and port fuel injection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021494A (en) * 2009-07-13 2011-02-03 Toyota Motor Corp Start control device for multiple cylinder internal combustion engine
DE102010062675A1 (en) 2009-12-14 2011-06-16 Hitachi Automotive Systems, Ltd., Hitachinaka-shi Apparatus and method for controlling fuel injection in an internal combustion engine
JP2011122558A (en) * 2009-12-14 2011-06-23 Hitachi Automotive Systems Ltd Fuel injection control device for internal combustion engine
US9797333B2 (en) 2009-12-14 2017-10-24 Hitachi Automotive Systems, Ltd. Apparatus for and method of controlling fuel injection of internal combustion engine
DE102010062675B4 (en) 2009-12-14 2019-07-25 Hitachi Automotive Systems, Ltd. Apparatus and method for controlling fuel injection in an internal combustion engine
US20170030287A1 (en) * 2014-03-25 2017-02-02 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection device for internal combustion engine
US10450989B2 (en) * 2014-03-25 2019-10-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel injection device for internal combustion engine

Also Published As

Publication number Publication date
WO2008107775A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
US8364386B2 (en) Stop-start control apparatus and method for an internal combustion engine
US8265860B2 (en) Stop-start control apparatus for internal combustion engine
JP2002130015A (en) Fuel injection controller for cylinder injection type internal combustion engine
JP2006220141A (en) Start controller for internal combustion engine
JP4019570B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP2004108340A (en) Starting method and starting device for internal combustion engine, and method and device for estimating start energy used therefor
JP2010159770A (en) Engine start control device, method of the same, and vehicle equipped with of the same
JP6237667B2 (en) Engine starter
JP2008215192A (en) Start controller of internal combustion engine
JP2006183467A (en) Control device of vehicle
JP2010185433A (en) Catalyst warming-up control device for internal combustion engine
JP6863216B2 (en) Internal combustion engine control device
JP5381733B2 (en) Control device for internal combustion engine
JP2007107405A (en) Fuel injection control device for internal combustion engine
JP5141673B2 (en) Idle stop control device for internal combustion engine
JP2007064124A (en) Control device for internal combustion engine
JP6024603B2 (en) Control device for internal combustion engine
JP6049870B2 (en) Automatic stop / restart device for internal combustion engine
JP3865132B2 (en) Control device for internal combustion engine
JP2007092548A (en) Stop control device of internal combustion engine
JP4305444B2 (en) Fuel injection amount control device for internal combustion engine
JP2017145743A (en) Internal combustion engine control device
JP6881239B2 (en) Internal combustion engine control device
JP4082581B2 (en) Control device for internal combustion engine
JP2024000899A (en) engine control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623