JP2008214732A - Inorganic el element, and sputtering target for forming inorganic el luminescent layer - Google Patents

Inorganic el element, and sputtering target for forming inorganic el luminescent layer Download PDF

Info

Publication number
JP2008214732A
JP2008214732A JP2007057712A JP2007057712A JP2008214732A JP 2008214732 A JP2008214732 A JP 2008214732A JP 2007057712 A JP2007057712 A JP 2007057712A JP 2007057712 A JP2007057712 A JP 2007057712A JP 2008214732 A JP2008214732 A JP 2008214732A
Authority
JP
Japan
Prior art keywords
inorganic
sputtering target
sputtering
emitting layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007057712A
Other languages
Japanese (ja)
Inventor
Yuji Takatsuka
裕二 高塚
Iwao Sato
巌 佐藤
Toshiyuki Osako
敏行 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007057712A priority Critical patent/JP2008214732A/en
Publication of JP2008214732A publication Critical patent/JP2008214732A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic EL element having high luminescence strength. <P>SOLUTION: The sputtering target is composed of a Ba-containing alloy, and each content of Sr, Ca and Mg contained as impurities is ≤0.1 mass%, respectively. Using the sputtering target, a fluorescent film can be obtained in the coexistence of gaseous H<SB>2</SB>S by a sputtering process, and the fluorescent film is suitable for forming an inorganic EL luminescent layer of an inorganic EL element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電界発光(Electro Luminescence、以下「EL」と記す)素子の無機EL素子、および該無機EL素子における無機EL発光層を形成するためのスパッタリングターゲットに関する。   The present invention relates to an inorganic EL element of an electroluminescent (hereinafter referred to as “EL”) element, and a sputtering target for forming an inorganic EL light emitting layer in the inorganic EL element.

従来、無機EL素子の無機EL発光層を形成するための青色発光用の蛍光体材料として、BaAl24:Euなどのチオアルミネート系の金属硫化物材料が知られている(例えば、特許文献1参照)。このような蛍光体材料を用いて、無機EL発光層を基板上に形成するためには、通常、電子ビーム蒸着法やスパッタリング法が用いられる。 Conventionally, thioaluminate-based metal sulfide materials such as BaAl 2 S 4 : Eu are known as phosphor materials for blue light emission for forming an inorganic EL light-emitting layer of an inorganic EL element (for example, patents). Reference 1). In order to form an inorganic EL light emitting layer on a substrate using such a phosphor material, an electron beam evaporation method or a sputtering method is usually used.

スパッタリング法は、電子ビーム蒸着法と比較して生産効率が高く、安定性および再現性がよい。このため、EL発光層の量産性という観点からは、スパッタリング法を用いることが好ましい。   The sputtering method has higher production efficiency and better stability and reproducibility than the electron beam evaporation method. For this reason, it is preferable to use the sputtering method from the viewpoint of mass productivity of the EL light emitting layer.

無機EL発光層を、スパッタリング法により蛍光体膜として形成する方法では、通常、蛍光体と同じ組成を有するスパッタリングターゲットの表面に、プラズマ状態にしたイオンを叩きつけ、スパッタリングターゲットの表面から分子あるいは原子を飛び出させ、これらの分子あるいは原子を基板上に堆積させることにより、成膜が行われる。   In the method of forming an inorganic EL light emitting layer as a phosphor film by a sputtering method, normally, ions in a plasma state are struck against the surface of a sputtering target having the same composition as the phosphor, and molecules or atoms are struck from the surface of the sputtering target. The film is formed by jumping out and depositing these molecules or atoms on the substrate.

ところで、蛍光体材料として前述の金属硫化物材料を用いて、スパッタリング法により無機EL発光層を形成すると、得られる無機EL発光層に含有されるSの割合が、スパッタリングターゲットに含有されるSの割合に比較して少なくなる。すなわち、無機EL発光層の組成がスパッタリングターゲットの組成と異なる結果となる。このため、所望の無機EL発光層の組成と同じ組成のスパッタリングターゲットを用いた場合、無機EL発光層において所望の組成が得られず、Sの割合の乏しい無機EL発光層、すなわち、Sの不足した無機EL発光層が形成される。このようなSの不足は、無機EL素子の発光寿命や発光強度などの各種発光特性に悪影響を及ぼすため好ましくない。   By the way, when the above-described metal sulfide material is used as the phosphor material and an inorganic EL light emitting layer is formed by sputtering, the ratio of S contained in the obtained inorganic EL light emitting layer is the amount of S contained in the sputtering target. Less than the proportion. That is, the composition of the inorganic EL light emitting layer is different from the composition of the sputtering target. For this reason, when a sputtering target having the same composition as the composition of the desired inorganic EL light emitting layer is used, the inorganic EL light emitting layer does not provide the desired composition, and the inorganic EL light emitting layer with a low S ratio, that is, the lack of S An inorganic EL light emitting layer is formed. Such a shortage of S is not preferable because it adversely affects various emission characteristics such as emission lifetime and emission intensity of the inorganic EL element.

Sの不足を解消するための方法として、例えば、非特許文献1には、H2Sガス共存下でスパッタリングを行う方法が記載されている。また、特許文献2には、スパッタリングターゲットにSを含有しないBaAl:Euターゲットを用いて、他のSを含有するターゲットやSを含有する処理ガスにより、膜中の組成を制御する反応性スパッタリング法が記載されている。 As a method for eliminating the shortage of S, for example, Non-Patent Document 1 describes a method of performing sputtering in the presence of H 2 S gas. Further, Patent Document 2 discloses a reactive sputtering method in which a BaAl: Eu target that does not contain S is used as a sputtering target, and the composition in the film is controlled by another S-containing target or a processing gas containing S. Is described.

特許文献2に記載されているBaAl:Euターゲットは、一般的に、原料となるBaAl4 金属間化合物、金属Baおよび金属Euを混合溶解し、冷却して合金化した後、切削加工して作製される。しかし、通常、工業原料として入手することができる金属Baには、不可避不純物としてアルカリ土類金属、主にSr、CaおよびMgが含まれているため、特許文献3に記載されているように、BaAl:Euターゲットおよびこのターゲットを用いて得られる蛍光体膜においても、これらの不純物元素が不可避的に存在することとなる。 The BaAl: Eu target described in Patent Document 2 is generally manufactured by mixing and dissolving BaAl 4 intermetallic compound, metal Ba and metal Eu as raw materials, cooling and alloying, and then cutting. Is done. However, usually, the metal Ba that can be obtained as an industrial raw material contains alkaline earth metals, mainly Sr, Ca, and Mg as unavoidable impurities, so as described in Patent Document 3, In the BaAl: Eu target and the phosphor film obtained using this target, these impurity elements are unavoidably present.

しかしながら、従来のBaAl:Euターゲットを用いて、H2Sガス共存下でスパッタリングを行い蛍光体膜を形成した場合でも、該蛍光体膜を無機EL発光層として用いた無機EL素子において、十分な発光強度が未だ得られていない。
特開平8−134440号公報 国際公開2005/085493号公報 特開2006−342420号公報 SID 94 DIGEST p.129
However, even when a phosphor film is formed by sputtering in the presence of H 2 S gas using a conventional BaAl: Eu target, an inorganic EL element using the phosphor film as an inorganic EL light emitting layer is sufficient. The emission intensity has not been obtained yet.
JP-A-8-134440 International Publication No. 2005/085493 JP 2006-342420 A SID 94 DIGEST p. 129

本発明は、このような事情に鑑みてなされたものであり、高い発光強度を有する無機EL素子を提供することにある。   This invention is made | formed in view of such a situation, and it is providing the inorganic EL element which has high luminescent intensity | strength.

本発明に係る無機EL発光層形成用のスパッタリングターゲットは、Baを含む合金からなるスパッタリングターゲットであり、不純物として含まれるSr、CaおよびMgの含有量がいずれも0.1質量%以下であることを特徴とする。   The sputtering target for forming an inorganic EL light emitting layer according to the present invention is a sputtering target made of an alloy containing Ba, and the contents of Sr, Ca and Mg contained as impurities are all 0.1% by mass or less. It is characterized by.

本発明に係る無機EL発光層形成用のスパッタリングターゲットを用いて、H2Sガス共存下でスパッタリング法により成膜を行うことにより、発光強度の高い蛍光体膜が得られる。当該蛍光体膜を、無機EL素子の無機EL発光層に用いることにより、発光強度の高い無機EL素子が得られる。 By using the sputtering target for forming an inorganic EL light emitting layer according to the present invention, film formation is performed by sputtering in the presence of H 2 S gas, thereby obtaining a phosphor film having high emission intensity. By using the phosphor film for an inorganic EL light emitting layer of an inorganic EL element, an inorganic EL element with high emission intensity can be obtained.

本発明により、従来より高い発光強度を有する無機EL素子が提供される。   According to the present invention, an inorganic EL element having higher emission intensity than conventional ones is provided.

本発明者は、無機EL素子の発光強度について、鋭意研究を重ねた結果、スパッタリングターゲットに含まれるSr、CaおよびMgが発光強度に影響しているとの知見を得た。   As a result of intensive studies on the emission intensity of the inorganic EL element, the present inventor has obtained the knowledge that Sr, Ca and Mg contained in the sputtering target have an influence on the emission intensity.

通常、金属Baは、炭酸Baを原料とした還元精製法により製造されるが、得られる炭酸Baには、不純物としてSr、CaおよびMgが炭酸塩として0.1〜0.9質量%以上、2質量%以下、含まれているため、通常、市販されている金属Baには、Sr、CaおよびMgが、0.1〜0.9質量%以上、2質量%以下、含まれる。このため、これらの不純物を含んだ金属Baを原料に用い、AlおよびEuと合金化したスパッタリングターゲットを用いて、H2S中で反応性スパッタリング法により蛍光体膜を形成した場合、得られる蛍光体膜にも、これらの不純物が含まれるため、発光強度は低くなる。 Usually, metal Ba is produced by a reductive purification method using carbonic acid Ba as a raw material. In the obtained carbonic acid Ba, Sr, Ca and Mg as impurities are 0.1 to 0.9% by mass or more as carbonates, Since it is contained in an amount of 2% by mass or less, the commercially available metal Ba usually contains 0.1 to 0.9% by mass or more and 2% by mass or less of Sr, Ca and Mg. Therefore, when a phosphor film is formed by reactive sputtering in H 2 S using a metal Ba containing these impurities as a raw material and using a sputtering target alloyed with Al and Eu, the resulting fluorescence Since these impurities are also contained in the body film, the emission intensity is lowered.

本発明においては、Sr、CaおよびMgの炭酸塩の含有量が、いずれも0.1質量%以下である市販の高純度の炭酸Baを、炉中でグラファイト粉末と共に加熱することにより、BaOを得て、得られたBaOを、Al粉末と混合し、真空中で1200℃に加熱することにより、BaOを還元させ、Ba蒸気とし、得られたBa蒸気を冷却および濃縮し、さらにAr雰囲気中で再溶解することにより、高純度の金属Baを得る。   In the present invention, commercially available high-purity carbonic acid Ba, in which the contents of carbonates of Sr, Ca, and Mg are all 0.1% by mass or less, is heated together with graphite powder in a furnace, so that BaO is obtained. The obtained BaO is mixed with Al powder and heated to 1200 ° C. in vacuum to reduce BaO to Ba vapor, and the obtained Ba vapor is cooled and concentrated, and further in an Ar atmosphere. High-purity metal Ba is obtained by redissolving with

得られた高純度の金属Baと、純度99.99%のAlと、純度99.9%のEuとを溶解して合金化をすることにより、高純度のBaAlEu合金が得られる。この合金を得るためには、高純度金属の溶解に使用されているコールドクルーシブル高周波熔解炉が適している。得られた高純度のBaAlEu合金は、Euを含む金属間化合物の混合組織となっており脆性が高く、鋳塊に切削加工を施してスパッタリングターゲットの形状に加工することが困難である。そのため、得られた合金鋳塊を粉砕して粉末としてから、ホットプレス法などにより焼結体とした上で、切削加工を行いスパッタリングターゲットを作製する。   A high-purity BaAlEu alloy is obtained by melting and alloying the obtained high-purity metal Ba, Al having a purity of 99.99%, and Eu having a purity of 99.9%. In order to obtain this alloy, a cold crucible high-frequency melting furnace used for melting high-purity metals is suitable. The obtained high-purity BaAlEu alloy has a mixed structure of an intermetallic compound containing Eu, has high brittleness, and it is difficult to cut the ingot into the shape of a sputtering target. For this reason, the obtained alloy ingot is pulverized to form a powder, which is then made into a sintered body by a hot press method or the like, and then cut to produce a sputtering target.

また、得られた高純度のBaAlEu合金は酸化しやすいため、鋳塊を粉砕する場合には不活性ガス雰囲気中で粉砕する必要がある。また、ホットプレスの際には、Baの蒸発を抑制するために、装置内をいったん真空引きした後に、Arなどの不活性ガスで置換する。さらに、焼結体の切削加工においても、表面酸化を抑えるために、非水溶性切削油中で加工することが好ましい。そして、得られた焼結体の表面を研摩し、Niメッキされた基板である銅製バッキングプレート上にロウ材(In)を介して張り付ける。   Further, since the obtained high-purity BaAlEu alloy is easily oxidized, it is necessary to pulverize the ingot in an inert gas atmosphere. In hot pressing, the inside of the apparatus is once evacuated and then replaced with an inert gas such as Ar in order to suppress evaporation of Ba. Furthermore, it is preferable to process in a water-insoluble cutting oil in order to suppress surface oxidation also in the cutting process of a sintered compact. Then, the surface of the obtained sintered body is polished and pasted on a copper backing plate which is a Ni-plated substrate via a brazing material (In).

このようにして得られたスパッタリングターゲットでは、不純物として含まれるSr、CaおよびMgの含有量がいずれも0.1質量%以下となる。これら不純物のうち、Sr、CaおよびMgのいずれかが0.1質量%を超えると、得られる蛍光体膜における発光強度が低下してしまう。なお、Sr、CaおよびMgの含有量の合計が、スパッタリングターゲットの0.1質量%以下となることが好ましい。   In the sputtering target thus obtained, the contents of Sr, Ca and Mg contained as impurities are all 0.1% by mass or less. Among these impurities, if any of Sr, Ca, and Mg exceeds 0.1% by mass, the emission intensity in the obtained phosphor film decreases. In addition, it is preferable that the sum total of content of Sr, Ca, and Mg becomes 0.1 mass% or less of a sputtering target.

該スパッタリングターゲットを用いて、従来と同様の条件において、H2Sガス共存下でスパッタリングを行い蛍光体膜を形成することにより、該蛍光体膜におけるこれらの不純物の影響を排除することができる。 By using the sputtering target and performing sputtering in the presence of H 2 S gas under the same conditions as in the prior art to form a phosphor film, the influence of these impurities in the phosphor film can be eliminated.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
<高純度金属Baの作製>
高純度炭酸バリウムBa(日本化学工業株式会社製、FH1)を用いて、還元炉中でグライファイト粉末と共に加熱し、酸化Baを得た。得られた酸化Baを、Alと混合し、真空中で1200℃に加熱し、酸化Baを還元させ、Ba蒸気とし、冷却および濃縮し、さらにAr雰囲気中で再溶解することにより、高純度の金属Baを得た。得られた高純度の金属Ba中のSr、CaおよびMgの含有量を、ICP発光分光分析法により分析したところ、それぞれ0.08質量%、0.013質量%および0.001質量%であった。
(Example 1)
<Preparation of high purity metal Ba>
Using high-purity barium carbonate Ba (Nihon Kagaku Kogyo Co., Ltd., FH1), it was heated together with the griffite powder in a reduction furnace to obtain oxidized Ba. The obtained oxidized Ba is mixed with Al, heated to 1200 ° C. in a vacuum, the oxidized Ba is reduced, converted into Ba vapor, cooled and concentrated, and re-dissolved in an Ar atmosphere. Metal Ba was obtained. When the contents of Sr, Ca and Mg in the obtained high-purity metal Ba were analyzed by ICP emission spectroscopy, they were 0.08% by mass, 0.013% by mass and 0.001% by mass, respectively. It was.

<スパッタリングターゲットの作製>
得られた高純度の金属Baと、高純度Al(住友化学株式会社製)と、高純度Eu(日本イットリウム株式会社製)を、モル比でBa:Al:Euが0.95:2:0.05となるように、Ba:68.1質量%、Al:28.1質量%、Eu:3.8質量%の割合で、コールドクルーシブル高周波誘導加熱炉(富士電機サーモシステムズ株式会社製)の中に1.5kg入れ、拡散ポンプを用いて炉内を5×10-2Paまで真空引きし、予備加熱を行った後、炉内に高純度Arガスを導入して、溶解した。溶解後、5分間、炉内に保持して、溶体の合金化を行った。その後、坩堝内で放冷して、溶体を凝固させた。
<Production of sputtering target>
The obtained high-purity metal Ba, high-purity Al (manufactured by Sumitomo Chemical Co., Ltd.), and high-purity Eu (manufactured by Japan Yttrium Co., Ltd.) were used in a molar ratio of Ba: Al: Eu of 0.95: 2: 0. .05 so that Ba: 68.1% by mass, Al: 28.1% by mass, Eu: 3.8% by mass, a cold-crucible high-frequency induction heating furnace (manufactured by Fuji Electric Thermo Systems Co., Ltd.) 1.5 kg was put inside, the inside of the furnace was evacuated to 5 × 10 −2 Pa using a diffusion pump, and after preheating, high purity Ar gas was introduced into the furnace and dissolved. After melting, the solution was held in a furnace for 5 minutes to alloy the solution. Thereafter, the solution was allowed to cool in the crucible to solidify the solution.

得られた合金を、Arガス中で粉砕機を用いて粉砕し、分級して、50〜200μmの粉末を回収した。   The obtained alloy was pulverized in Ar gas using a pulverizer and classified to recover a powder of 50 to 200 μm.

得られた粉末を、真空ホットプレス装置(大亜真空株式会社製、最高温度2300℃)を用いて、温度850℃、圧力25MPa、保持時間1時間という条件で、熱間プレスして、直径50mm、厚さ5mmの焼結体を得た。得られた焼結体の両面を研摩し、この焼結体を銅製のバッキングプレートにロウ材(In)を介して張り付け、スパッタリングターゲットを得た。   The obtained powder was hot-pressed using a vacuum hot press apparatus (manufactured by Daia Vacuum Co., Ltd., maximum temperature 2300 ° C.) under the conditions of a temperature of 850 ° C., a pressure of 25 MPa, and a holding time of 1 hour, and a diameter of 50 mm. A sintered body having a thickness of 5 mm was obtained. Both surfaces of the obtained sintered body were polished, and this sintered body was attached to a copper backing plate via a brazing material (In) to obtain a sputtering target.

同様にして、焼結体をもう1枚、作製し、Sr、CaおよびMgの含有量を、ICP発光分光分析法により分析したところ、それぞれ0.05%、0.007%および0.001%であった。また、粉砕時のコンタミネーションとしてFeの存在が懸念されたので、同様に分析したところ、Feの含有量は0.003%であり、鋳塊と同じ値であった。   Similarly, another sintered body was produced, and the contents of Sr, Ca, and Mg were analyzed by ICP emission spectroscopic analysis. The results were 0.05%, 0.007%, and 0.001%, respectively. Met. Further, since there was concern about the presence of Fe as a contamination during pulverization, the same analysis was performed. As a result, the Fe content was 0.003%, which was the same value as that of the ingot.

また、得られた焼結体の密度を、鉱物油中、アルキメデス法により測定したところ、3.6g/cm3であった。 Further, the density of the obtained sintered body was 3.6 g / cm 3 when measured by the Archimedes method in mineral oil.

<蛍光体膜の作製>
基板材料として石英ガラスを用い、作製したスパッタリングターゲットを、スパッタリング装置(株式会社アルバック製、型式MNS−2000−C3)に装着し、基板温度を500℃とし、Ar/H2Sの混合比を10/1としたガス中で、RFマグネトロンスパッタリング法により厚さ500nmの薄膜を形成した。次に、H2Sガス、1.0Paの雰囲気において、700℃で30分間のアニール処理を行い、蛍光体膜を得た。
<Preparation of phosphor film>
Using quartz glass as the substrate material, the produced sputtering target was mounted on a sputtering apparatus (model MNS-2000-C3, manufactured by ULVAC, Inc.), the substrate temperature was set to 500 ° C., and the Ar / H 2 S mixing ratio was 10 A thin film having a thickness of 500 nm was formed by an RF magnetron sputtering method in a gas having a gas density of / 1. Next, annealing was performed at 700 ° C. for 30 minutes in an atmosphere of H 2 S gas and 1.0 Pa to obtain a phosphor film.

<蛍光体膜の評価>
蛍光体膜の蛍光輝度を評価する手段として、フォトルミネッセンス(PL)特性を以下のように測定した。
<Evaluation of phosphor film>
As a means for evaluating the fluorescence brightness of the phosphor film, photoluminescence (PL) characteristics were measured as follows.

作製した蛍光体膜を、分光蛍光光度計(日本分光株式会社製、型式FP−6500)にて、励起波長350nmとし、470nmでの蛍光強度を測定した。本実施例の蛍光体膜の蛍光強度は、後述する比較例1の蛍光体膜の蛍光強度を1とした場合、1.3という値になった。   The produced fluorescent substance film was made into excitation wavelength 350nm with the spectrofluorophotometer (the JASCO Corporation make, type FP-6500), and the fluorescence intensity in 470 nm was measured. The fluorescence intensity of the phosphor film of this example was 1.3 when the fluorescence intensity of the phosphor film of Comparative Example 1 described later was 1.

また、本実施例の蛍光体膜の成分分析を、電子線マイクロアナライザ(EPMA)を用いて行ったところ、主成分であるBa、Al、EuおよびSのモル比は、ほぼBa0.95Al24:Eu0.05となっており、不純物であるSr、CaおよびMgは、EPMA法では検出されなかった。 Further, when the component analysis of the phosphor film of this example was performed using an electron beam microanalyzer (EPMA), the molar ratio of the main components Ba, Al, Eu and S was approximately Ba 0.95 Al 2 S. 4 : Eu 0.05, and impurities Sr, Ca and Mg were not detected by the EPMA method.

(比較例1)
市販品の金属Ba(日本高純度化学株式会社製、純度99%)を用いた点を除いて、実施例1と同様にしてスパッタリングターゲットを作製した。
(Comparative Example 1)
A sputtering target was produced in the same manner as in Example 1, except that a commercially available metal Ba (manufactured by Japan High-Purity Chemical Co., Ltd., purity 99%) was used.

得られたスパッタリングターゲットのSr、CaおよびMgの含有量を、ICP発光分光分析法により分析したところ、それぞれ、0.61%、0.02%および0.01%であった。また、得られた焼結体の密度を、鉱物油中、アルキメデス法により測定したところ、実施例1と同じ3.6g/cm3であった。 When the contents of Sr, Ca and Mg of the obtained sputtering target were analyzed by ICP emission spectroscopy, they were 0.61%, 0.02% and 0.01%, respectively. Moreover, when the density of the obtained sintered compact was measured by the Archimedes method in mineral oil, it was 3.6 g / cm 3 as in Example 1.

得られたスパッタリングターゲットを用いて、実施例1と同様に蛍光体膜を作製し、蛍光強度の評価を行った。   Using the obtained sputtering target, a phosphor film was produced in the same manner as in Example 1, and the fluorescence intensity was evaluated.

また、本比較例の蛍光体膜の成分分析を、EPMA法にて行ったところ、主成分であるBa、Al、EuおよびSのモル比は、実施例1と同様であり、ほぼBa0.95Al24:Eu0.05となっていて、不純物であるSr、CaおよびMgのうち、Srのみが検出され、濃度は0.5%であった。 Further, when the component analysis of the phosphor film of this comparative example was performed by the EPMA method, the molar ratios of the main components Ba, Al, Eu and S were the same as those in Example 1, and almost Ba 0.95 Al. 2 S 4 : Eu 0.05. Of the impurities Sr, Ca and Mg, only Sr was detected, and the concentration was 0.5%.

Claims (3)

Baを含む合金からなるスパッタリングターゲットであり、不純物として含まれるSr、CaおよびMgの含有量がいずれも0.1質量%以下であることを特徴とする無機EL発光層形成用のスパッタリングターゲット。   A sputtering target for forming an inorganic EL light-emitting layer, which is a sputtering target made of an alloy containing Ba, and the contents of Sr, Ca and Mg contained as impurities are all 0.1% by mass or less. 請求項1に記載の無機EL発光層形成用のスパッタリングターゲットを用いて、H2Sガス共存下でスパッタリング法により得られる蛍光体膜。 A phosphor film obtained by sputtering using the sputtering target for forming an inorganic EL light emitting layer according to claim 1 in the presence of H 2 S gas. 無機EL発光層を含み、該無機EL発光層が請求項2に記載の蛍光体膜により形成されている無機EL素子。   An inorganic EL device comprising an inorganic EL light emitting layer, wherein the inorganic EL light emitting layer is formed of the phosphor film according to claim 2.
JP2007057712A 2007-03-07 2007-03-07 Inorganic el element, and sputtering target for forming inorganic el luminescent layer Pending JP2008214732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057712A JP2008214732A (en) 2007-03-07 2007-03-07 Inorganic el element, and sputtering target for forming inorganic el luminescent layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057712A JP2008214732A (en) 2007-03-07 2007-03-07 Inorganic el element, and sputtering target for forming inorganic el luminescent layer

Publications (1)

Publication Number Publication Date
JP2008214732A true JP2008214732A (en) 2008-09-18

Family

ID=39835135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057712A Pending JP2008214732A (en) 2007-03-07 2007-03-07 Inorganic el element, and sputtering target for forming inorganic el luminescent layer

Country Status (1)

Country Link
JP (1) JP2008214732A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319982A (en) * 1992-03-26 1993-12-03 Mitsubishi Kasei Corp Production of sequential vacuum deposition film
JP2000015478A (en) * 1998-06-30 2000-01-18 Toshiba Corp Soldering material
JP2001335862A (en) * 2000-03-23 2001-12-04 Ishifuku Metal Ind Co Ltd Platinum material excellent in heat resisting characteristic
JP2006342420A (en) * 2005-05-09 2006-12-21 Mitsubishi Materials Corp High strength sputtering target for forming phosphor film in electroluminescence element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319982A (en) * 1992-03-26 1993-12-03 Mitsubishi Kasei Corp Production of sequential vacuum deposition film
JP2000015478A (en) * 1998-06-30 2000-01-18 Toshiba Corp Soldering material
JP2001335862A (en) * 2000-03-23 2001-12-04 Ishifuku Metal Ind Co Ltd Platinum material excellent in heat resisting characteristic
JP2006342420A (en) * 2005-05-09 2006-12-21 Mitsubishi Materials Corp High strength sputtering target for forming phosphor film in electroluminescence element

Similar Documents

Publication Publication Date Title
TWI649402B (en) Nitride-based red phosphors
TWI375710B (en)
JP5224439B2 (en) Phosphor and light emitting device using the same
WO2005033247A1 (en) Oxynitride phosphor and light-emitting device
JPWO2006025259A1 (en) Phosphor, method for producing the same, and light emitting device using the same
JP2008303331A (en) Phosphor, light-emitting apparatus and image display apparatus
JP2007262417A (en) Fluorescent substance
JP2012046625A (en) Method of manufacturing phosphor
CN106574181B (en) Phosphor, light emitting device, image display device, and illumination device
CN104080885B (en) Fluorophor, Its Preparation Method And Use
JP4747751B2 (en) High intensity sputtering target for forming phosphor film in electroluminescence device
JP2007063365A (en) Yellow fluorophor and method for producing the same, and yellow light-emitting device
JP2009096823A (en) Phosphor and light emitting tool
JP2008214732A (en) Inorganic el element, and sputtering target for forming inorganic el luminescent layer
JP5028962B2 (en) Sputtering target for forming EL light emitting layer and manufacturing method thereof
JP4978846B2 (en) Light emitting device
JP4994678B2 (en) Green phosphor and method for producing the same
JP2008214461A (en) Phosphor film and phosphor film production method
JP2006199876A (en) Aluminum nitride-based fluorescent substance
JP2009293105A (en) High-strength barium-aluminum-alloy-based sputtering target for inorganic el device, and manufacturing method therefor
JP5099820B2 (en) Red light emitting phosphor, FED device and ELD device
JP2018109075A (en) Green phosphor, method for producing the same, light emitting element and light emitting device
JP2007146034A (en) Thin film of fluorescent substance and method for forming film thereof
TWI408992B (en) High-strength sputtering target for forming fluorescent film in electroluminescent element
JP2018109083A (en) Green phosphor, light emitting element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110