JP2008214728A - Manufacturing method of ceramic film - Google Patents
Manufacturing method of ceramic film Download PDFInfo
- Publication number
- JP2008214728A JP2008214728A JP2007056916A JP2007056916A JP2008214728A JP 2008214728 A JP2008214728 A JP 2008214728A JP 2007056916 A JP2007056916 A JP 2007056916A JP 2007056916 A JP2007056916 A JP 2007056916A JP 2008214728 A JP2008214728 A JP 2008214728A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- ceramic film
- columnar
- producing
- film according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 85
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 40
- 239000013078 crystal Substances 0.000 claims abstract description 31
- 238000007747 plating Methods 0.000 claims abstract description 23
- 238000010899 nucleation Methods 0.000 claims abstract description 17
- 230000006911 nucleation Effects 0.000 claims abstract description 16
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 15
- 239000012298 atmosphere Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 70
- 239000011787 zinc oxide Substances 0.000 description 35
- 239000002245 particle Substances 0.000 description 18
- 239000011347 resin Substances 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 239000002131 composite material Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 230000017525 heat dissipation Effects 0.000 description 9
- 239000011701 zinc Substances 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 6
- 238000007772 electroless plating Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000006200 vaporizer Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 125000005595 acetylacetonate group Chemical group 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- RJTANRZEWTUVMA-UHFFFAOYSA-N boron;n-methylmethanamine Chemical compound [B].CNC RJTANRZEWTUVMA-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000013527 degreasing agent Substances 0.000 description 1
- 238000005237 degreasing agent Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
【課題】結晶性の高い柱状セラミックスを短時間で効率よく作製することが可能な製造方法を提供することを目的とする。
【解決手段】基板表面に複数のセラミックスの結晶核を形成する初期核形成工程と該基板表面にめっき法を用いて柱状セラミックス結晶を成長させる工程とを有することを特徴とするセラミックス膜の製造方法である。また前記初期核形成工程を大気開放型CVD法で行うことが好ましい。さらに前記セラミックス膜が、多孔質膜であることが好ましい。
【選択図】図2An object of the present invention is to provide a production method capable of efficiently producing columnar ceramics with high crystallinity in a short time.
A method of manufacturing a ceramic film comprising: an initial nucleus forming step of forming a plurality of ceramic crystal nuclei on a substrate surface; and a step of growing columnar ceramic crystals on the substrate surface using a plating method. It is. Moreover, it is preferable that the initial nucleation step is performed by an open-air CVD method. Furthermore, the ceramic film is preferably a porous film.
[Selection] Figure 2
Description
本発明はセラミックス膜の製造方法に関し、より詳しくは結晶性の高い柱状セラミックスを短時間で効率よく製造する方法に関する。 The present invention relates to a method for manufacturing a ceramic film, and more particularly to a method for efficiently manufacturing a columnar ceramic with high crystallinity in a short time.
パーソナルコンピュータやモバイル電子機器の高機能化に伴い、CPU等の発熱源の発熱量が飛躍的に増大しており、放熱デバイスの高性能化が求められている。その放熱手法の一つとして簡易かつ効果的な方法として、発熱源の表面に放熱シートや接着剤を貼り付けて放熱する方法が挙げられる。そして、多くの電子機器の放熱においては、放熱シートや接着剤に非導電性が要求される場合が多い。 As the functions of personal computers and mobile electronic devices become higher, the amount of heat generated by a heat source such as a CPU has increased dramatically, and there is a need for higher performance heat dissipation devices. As one of the heat dissipation methods, a simple and effective method is a method of dissipating heat by attaching a heat dissipation sheet or an adhesive to the surface of the heat generation source. And in heat dissipation of many electronic devices, non-conductivity is often required for the heat dissipation sheet and the adhesive.
これらの放熱材料は、一般的には樹脂中に高熱伝導率粒子を分散した材料である。高熱伝導率粒子としては、熱伝導率が400W/mK程度あるAgやCuなどの金属粒子分散型(特許文献1)や、Al2O3やAlNなどのセラミックス粒子分散型複合材料が用いられることが多い(特許文献2)。
従来の高熱伝導率粒子には次のような問題があった。すなわち、一般に、樹脂中に粒子が分散された組織を有する複合材料は、粒子が孤立して存在するために、粒子と樹脂との界面における熱伝導の損失が大きく、熱伝導率は非常に低いものとなっていた。これに対して市販されている放熱シートなどは、粒子の体積含有率を高く設定し、ある程度、分散粒子がお互いに接触するようにし、見かけ上は分散粒子のネットワークが形成されるようになっていた。
These heat dissipation materials are generally materials in which high thermal conductivity particles are dispersed in a resin. As the high thermal conductivity particles, a metal particle dispersion type such as Ag or Cu having a thermal conductivity of about 400 W / mK (Patent Document 1) or a ceramic particle dispersion type composite material such as Al 2 O 3 or AlN is used. There are many (patent document 2).
Conventional high thermal conductivity particles have the following problems. That is, in general, a composite material having a structure in which particles are dispersed in a resin has a large loss of heat conduction at the interface between the particles and the resin because the particles are isolated, and the heat conductivity is very low. It was a thing. In contrast, commercially available heat-dissipating sheets and the like have a high volume content of particles so that the dispersed particles come into contact with each other to some extent, and a network of dispersed particles is formed in appearance. It was.
例えば、Ag粒子を分散した場合は9W/mK程度が得られる。しかし、粒子同士は単に接触しているだけであり。また接触面積も小さいので熱伝導率は満足できるレベルにない。
一方、セラミックス粒子分散型複合材料の場合は、セラミックス粒子自体の熱伝導率が低いという問題がある。例えば、絶縁性材料である焼結Al2O3、AlNセラミックスの熱伝導率は、それぞれ50、170W/mK程度である。これらの値は、あくまで十分に焼結させて結晶性を高くし、かつ結晶中の不純物を減らした焼結体での値であり、これらのセラミックスを粒子にした場合の熱伝導率はこれらの値よりも遥かに低い。従って、上記金属粒子分散型複合材料と同様の構造体を作製した場合には熱伝導率はずっと低いという問題がある。
For example, when Ag particles are dispersed, about 9 W / mK is obtained. However, the particles are simply in contact. Further, since the contact area is small, the thermal conductivity is not at a satisfactory level.
On the other hand, in the case of a ceramic particle dispersion type composite material, there is a problem that the thermal conductivity of the ceramic particle itself is low. For example, the thermal conductivity of sintered Al 2 O 3 and AlN ceramics, which are insulating materials, is about 50 and 170 W / mK, respectively. These values are values for sintered bodies that have been sufficiently sintered to increase crystallinity and reduce impurities in the crystals, and the thermal conductivity when these ceramics are made into particles is these values. Much lower than the value. Accordingly, when a structure similar to the metal particle-dispersed composite material is produced, there is a problem that the thermal conductivity is much lower.
本発明者は、セラミックス−樹脂複合材料において、セラミックス粒子を用いる代わりに、柱状セラミックスの連続体の長さ方向を、熱伝導率が要求される方向にほぼ平行に配向させることにより、高い熱伝導率を持つ放熱用材料が得られることを見出した。例えば、放熱シートの片面から、反対側の面まで、特定の体積分率を有し熱伝導率の高いZnOの柱状連続体をシート面に垂直に配向させることで粒子分散化組織を持つ複合材料とは異なる高い熱伝導率を発現させることができる。 In the ceramic-resin composite material, the present inventor, instead of using ceramic particles, orients the length direction of a continuous body of columnar ceramics in a direction substantially parallel to the direction in which thermal conductivity is required, thereby achieving high heat conduction. It has been found that a heat-dissipating material having a rate can be obtained. For example, a composite material having a particle-dispersed structure by orienting a columnar continuum of ZnO having a specific volume fraction and high thermal conductivity perpendicularly to the sheet surface from one side of the heat dissipation sheet to the opposite surface High thermal conductivity different from that can be developed.
上記のような構造を持つ複合材料は、例えば、基板表面に、基板面に垂直に成長した柱状セラミックスからなる多孔質層を形成した後、その隙間に樹脂を充填して複合層を形成するなどの方法で作製することができる。
例えば柱状のZnOセラミックスを基板面に垂直に成長させる方法としては、大気開放型CVD法がある。これは、気化させた原料をキャリヤーガスとともに大気開放下に室温〜数百℃程度に加熱された基材表面に吹付けることで、基材表面に対して垂直方向に柱状セラミックスを成長させるものである。この膜は一般には多孔質膜であり、成長させる柱
状セラミックス毎の間隔(ピッチ)を制御することで、多孔質層の気孔率を制御することができる。
The composite material having the structure as described above is formed, for example, by forming a porous layer made of columnar ceramics grown perpendicular to the substrate surface on the substrate surface, and then filling the gap with resin to form a composite layer. It can produce by this method.
For example, as a method of growing columnar ZnO ceramics perpendicularly to the substrate surface, there is an atmospheric open type CVD method. This is because columnar ceramics are grown in a direction perpendicular to the surface of the substrate by spraying the vaporized raw material together with the carrier gas onto the surface of the substrate heated to room temperature to several hundreds of degrees Celsius in the open atmosphere. is there. This film is generally a porous film, and the porosity of the porous layer can be controlled by controlling the interval (pitch) for each columnar ceramic to be grown.
大気開放型CVD法によって作製された柱状セラミックス粒子は、結晶性が高く、高温で焼結されたセラミックス焼結体に匹敵する高熱伝導率を持つので、該多孔質層の隙間に樹脂を含浸させることにより極めて熱伝導率の高いセラミックス−樹脂系複合材料が得られる。
しかし、大気開放型CVD法での成長速度は大きくないため、大面積に成長させる場合、非常に長時間を要し、製造コスト増となる問題を有していた。
The columnar ceramic particles produced by the open-air CVD method have high crystallinity and high thermal conductivity comparable to a ceramic sintered body sintered at a high temperature, so that the gap between the porous layers is impregnated with a resin. Thus, a ceramic-resin composite material having extremely high thermal conductivity can be obtained.
However, since the growth rate in the open-air CVD method is not large, when growing in a large area, it takes a very long time and has a problem of increasing the manufacturing cost.
本発明は上記問題点を解決すべく、結晶性の高い柱状セラミックスを短時間で効率よく、かつ安価に作製する製造方法を提供することを課題とする。 In order to solve the above problems, an object of the present invention is to provide a production method for producing a columnar ceramic with high crystallinity efficiently in a short time and at a low cost.
本発明者は、上記課題を解決すべく、柱状セラミックス結晶を効率よく成長させる方法について鋭意探求を重ねた。その結果、柱状セラミックスの成長工程を、初期核形成工程と成長工程に分けて考え、それぞれの工程を最適な方法で処理することで、成長速度を向上させることができることを見いだし、本発明を完成させた。すなわち、本発明は以下の特徴を持つ。 In order to solve the above-mentioned problems, the present inventor has eagerly searched for a method for efficiently growing columnar ceramic crystals. As a result, the growth process of the columnar ceramics is considered to be divided into the initial nucleation process and the growth process, and it has been found that the growth rate can be improved by processing each process by an optimal method, and the present invention is completed I let you. That is, the present invention has the following features.
(1)基板表面に複数のセラミックスの結晶核を形成する初期核形成工程と、該基板表面にめっき法を用いて柱状セラミックス結晶を成長させる工程とを有することを特徴とするセラミックス膜の製造方法である。
(2)前記初期核形成工程を、大気開放型CVD法で行うことを特徴とする上記(1)に記載のセラミックス膜の製造方法である。
(3)前記セラミックス膜が、多孔質膜であることを特徴とする上記(1)又は(2)に記載のセラミックス膜の製造方法である。
(4)前記柱状セラミックス結晶が、酸化物であることを特徴とする上記(1)〜(3)のいずれか一に記載のセラミックス膜の製造方法である。
(1) A method for producing a ceramic film, comprising: an initial nucleus forming step of forming a plurality of ceramic crystal nuclei on a substrate surface; and a step of growing columnar ceramic crystals on the substrate surface using a plating method. It is.
(2) The method for producing a ceramic film according to (1), wherein the initial nucleation step is performed by an open-air CVD method.
(3) The method for producing a ceramic film according to (1) or (2), wherein the ceramic film is a porous film.
(4) The method for producing a ceramic film according to any one of (1) to (3), wherein the columnar ceramic crystal is an oxide.
(5)前記柱状セラミックス結晶が、ZnOであることを特徴とする上記(1)〜(4)のいずれか一に記載のセラミックス膜の製造方法である。
(6)前記めっき法により柱状セラミックス結晶を成長させる工程において、Liを含むめっき溶液を用いることを特徴とする上記(1)〜(5)のいずれか一に記載のセラミックス膜の製造方法である。
(7)前記基板が金属であることを特徴とする上記(1)〜(6)のいずれか一に記載のセラミックス膜の製造方法である。
(8)前記基板が、絶縁体または導電体表面に導電性セラミックスをコーティングしたものであることを特徴とする上記(1)〜(7)のいずれか一に記載のセラミックス膜の製造方法である。
(9)前記導電性セラミックスが、ITOまたはZnOであることを特徴とする上記(8)に記載のセラミックス膜の製造方法である。
(10)柱状セラミックスの成長後、酸素を含む雰囲気中、300℃以上で熱処理することを特徴とする上記(1)〜(9)のいずれか一に記載のセラミックス膜の製造方法である。
(5) The method for producing a ceramic film according to any one of (1) to (4), wherein the columnar ceramic crystal is ZnO.
(6) The method for producing a ceramic film according to any one of (1) to (5), wherein a plating solution containing Li is used in the step of growing columnar ceramic crystals by the plating method. .
(7) The method for producing a ceramic film according to any one of (1) to (6), wherein the substrate is a metal.
(8) The method for producing a ceramic film according to any one of (1) to (7) above, wherein the substrate is obtained by coating a conductive ceramic on an insulator or a conductor surface. .
(9) The method for producing a ceramic film according to (8), wherein the conductive ceramic is ITO or ZnO.
(10) The method for producing a ceramic film according to any one of (1) to (9) above, wherein after the growth of the columnar ceramic, heat treatment is performed at 300 ° C. or higher in an atmosphere containing oxygen.
基板上にセラミックス結晶核形成後にめっきすることで、熱伝導率の高い柱状セラミックスが特定方向に配向してなる大面積の多孔質セラミックス膜を効率よく、かつ安価に提供することができる。 By plating on the substrate after the formation of the ceramic crystal nuclei, a large-area porous ceramic film in which columnar ceramics with high thermal conductivity are oriented in a specific direction can be provided efficiently and inexpensively.
以下に、本発明を詳細に説明する。
まず、初期核形成工程は、結晶性の高いセラミックスの結晶核を種付けすることができる方法を使用する。大気開放型CVD法は、比較的低温で結晶性の高い種結晶を形成することができるので好ましい。
The present invention is described in detail below.
First, the initial nucleation step uses a method that can seed crystal nuclei of ceramics with high crystallinity. The open-air CVD method is preferable because a seed crystal having high crystallinity can be formed at a relatively low temperature.
次に、この種付けした結晶核を起点として、セラミックスの結晶を柱状に成長させる。この成長工程においては、めっき法を用いる。通常はめっき法を用いると、例えばZnO膜を大面積で、かつ比較的大きな成長速度で形成することができるが、生成する膜組織は、緻密な平滑膜、柱状粒子、星状物の堆積等、多種多様な形態で析出してしまい、これらの析出が競合するため、柱状セラミックスのみを選択的に成長させることは極めて困難であった。すなわち、めっき法では初期核形成の制御が極めて困難であった。
しかしながら、本発明者は大気開放型CVD法で初期核形成を施した基板を、続いてめっき法で処理することによって、結晶性の高いZnOの柱状結晶を高速で形成することが可能であることを見いだした。このため、本発明に係る放熱材の製造方法によれば、柱状セラミックス結晶をめっき法によって大きな成長速度で効率よく作製することが可能となる。
ここで、めっき法としては、後述するように電解めっき法又は無電解めっき法が好ましい。
Next, using this seeded crystal nucleus as a starting point, a ceramic crystal is grown in a columnar shape. In this growth process, a plating method is used. Usually, when a plating method is used, for example, a ZnO film can be formed with a large area and a relatively high growth rate, but the film structure to be produced is a dense smooth film, columnar particles, deposition of stars, etc. However, it is difficult to selectively grow only columnar ceramics because they are precipitated in various forms and these precipitates compete with each other. That is, it is very difficult to control the initial nucleation by the plating method.
However, the present inventor is capable of forming ZnO columnar crystals with high crystallinity at high speed by processing the substrate on which initial nucleation has been performed by the open-air CVD method, followed by plating. I found. For this reason, according to the manufacturing method of the heat dissipation material which concerns on this invention, it becomes possible to produce a columnar ceramic crystal efficiently with a big growth rate by the plating method.
Here, as the plating method, an electrolytic plating method or an electroless plating method is preferable as described later.
以下に、本発明のセラミックス膜の製法を、ZnOを例として説明する。
まず、大気開放型CVD法で、気化させた原料をノズルからキャリヤーガスとともに大気開放下に600℃程度に加熱された基板表面に吹付ける。ノズルを移動させることで基板表面にZnOの結晶核を二次元的に付着させる。形成される結晶核のピッチは、ノズルの移動速度を変化させることで制御できる。ノズルの移動速度を小さくすると、結晶核形成密度が高くなり、これらの上に後工程のめっきで柱状ZnOを成長させると、ZnO柱間の隙間が小さく、気孔率が小さい膜、あるいはほとんど緻密な膜にもなる。本発明によるセラミックス膜に樹脂等を含浸させて放熱材として利用する場合には、多孔質セラミックス膜を作製することが好ましい。
放熱材を構成するセラミックス膜と樹脂の構成比率は、目的に応じて変えることができ、柔軟性を重視する場合には、セラミックス膜よりも樹脂の比率を大きくすることが好ましい。柔軟性により優れたセラミックス膜を得たい場合には、樹脂含浸後のセラミックス含有率を20〜50体積%とすることが好ましく、熱伝導率により優れたセラミックス膜を得たい場合には50〜80体積%とすることが好ましい。
Below, the manufacturing method of the ceramic film of this invention is demonstrated taking ZnO as an example.
First, the vaporized raw material is sprayed from a nozzle onto a substrate surface heated to about 600 ° C. while being opened to the atmosphere together with a carrier gas by an atmospheric open type CVD method. By moving the nozzle, ZnO crystal nuclei are two-dimensionally attached to the substrate surface. The pitch of the formed crystal nuclei can be controlled by changing the moving speed of the nozzle. When the moving speed of the nozzle is reduced, the crystal nucleation density increases, and when columnar ZnO is grown on these by plating in a later step, the gap between the ZnO columns is small and the film has a small porosity or is almost dense. It also becomes a film. When the ceramic film according to the present invention is impregnated with a resin or the like and used as a heat dissipation material, it is preferable to produce a porous ceramic film.
The composition ratio between the ceramic film and the resin constituting the heat dissipating material can be changed according to the purpose. When importance is attached to flexibility, the resin ratio is preferably larger than the ceramic film. When it is desired to obtain a ceramic film superior in flexibility, the ceramic content after the resin impregnation is preferably 20 to 50% by volume. When a ceramic film superior in thermal conductivity is desired to be obtained, 50 to 80% is preferable. It is preferable to set it as volume%.
次に、この基板をめっき法で処理してZnO結晶核を起点に柱状成長させる。めっきは、導電性基板の場合は電解めっきでよいし、絶縁性基板の場合は無電解めっきが適用できる。
無電解めっき液は公知のZnOを析出し得る無電解酸化亜鉛めっき液を用いることができる。かかるめっき液としては、硝酸亜鉛等の亜鉛塩0.01〜0.5mol/L、好ましくは0.05〜0.2mol/Lと、ジメチルアミンボラン等のボラン系還元剤、その他の還元剤を0.001〜0.5モル/L、好ましくは0.01〜0.2mol/L、特に0.03〜0.1mol/L含有するpH4〜9程度、特にpH6.5程度の処理液を好適に用いることができ、10〜80℃で5〜120分間浸漬処理する方法が採用し得る
。
最適な無電解めっき液としては、Zn(NO3)2 0.1mol/Lと、ジメチルアミンボラン0.03mol/Lを含有するpH6.5の処理液を用いることがよい。この組成から得られたZnOは特にC軸配向(001)しやすい。
Next, this substrate is processed by a plating method to grow in a columnar shape starting from the ZnO crystal nucleus. The plating may be electrolytic plating in the case of a conductive substrate, or electroless plating in the case of an insulating substrate.
As the electroless plating solution, a known electroless zinc oxide plating solution capable of depositing ZnO can be used. As such a plating solution, zinc salts such as zinc nitrate 0.01 to 0.5 mol / L, preferably 0.05 to 0.2 mol / L, borane-based reducing agents such as dimethylamine borane, and other reducing agents are used. A treatment liquid containing 0.001 to 0.5 mol / L, preferably 0.01 to 0.2 mol / L, particularly 0.03 to 0.1 mol / L, pH 4 to 9, especially pH 6.5 is suitable. A method of immersion treatment at 10 to 80 ° C. for 5 to 120 minutes can be adopted.
As an optimal electroless plating solution, it is preferable to use a pH 6.5 treatment solution containing Zn (NO 3 ) 2 0.1 mol / L and dimethylamine borane 0.03 mol / L. ZnO obtained from this composition is particularly easily C-axis oriented (001).
電解めっき法は下記工程で行うことができる。
(1)洗浄:公知の脱脂剤や有機溶媒を使用することができ、公知の処理条件で処理することができる。
(2)電解酸化亜鉛皮膜作製:基板に酸化亜鉛皮膜を析出させる。電解酸化亜鉛皮膜析出溶液としては、ZnOを析出させる液であればよく、特に制限されないが、ZnO等の亜鉛塩0.01〜0.5mol/L、好ましくは0.05〜0.2mol/Lを含有するpH4〜9程度、特にpH6.0の処理液を好適に用いることができ、陽極として亜鉛、カーボン、白金等を用いて導電性基板1cm2あたり0.1〜20クーロン、好ましくは1
〜10クーロン通電して酸化亜鉛皮膜を得ることができる。浴温度は10〜80℃の範囲で用いられる。
The electrolytic plating method can be performed in the following steps.
(1) Washing: A known degreasing agent or organic solvent can be used, and the treatment can be performed under known treatment conditions.
(2) Electrolytic zinc oxide film production: A zinc oxide film is deposited on a substrate. The electrolytic zinc oxide film deposition solution is not particularly limited as long as it is a solution for depositing ZnO, but zinc salt such as ZnO 0.01 to 0.5 mol / L, preferably 0.05 to 0.2 mol / L. A treatment solution having a pH of about 4 to 9, particularly pH 6.0, can be suitably used. Zinc, carbon, platinum or the like is used as the anode, and 0.1 to 20 coulombs per cm 2 of the conductive substrate, preferably 1
A zinc oxide film can be obtained by applying 10 to 10 coulombs. The bath temperature is used in the range of 10 to 80 ° C.
セラミックスとしては、高熱伝導材料であれば種類を問わず、SiCやAlNなどでもかまわないが、大気開放型CVD法を用いた核形成では、Al2O3、Y2O3、ZnO等の酸化物セラミックス結晶核に限定される。特に、ZnOは結晶性が高く、熱伝導率が高いので好ましい。 For ceramics, any material can be used as long as it has a high thermal conductivity, and SiC, AlN, etc. may be used. However, in nucleation using the open-air CVD method, oxidation of Al 2 O 3 , Y 2 O 3 , ZnO, etc. It is limited to ceramic nuclei. In particular, ZnO is preferable because of high crystallinity and high thermal conductivity.
電解めっき法で成長したZnOは一般に酸素欠損を持つことが多く、多くの場合は導電性であるので、絶縁性が必要な場合は、めっき後、大気中で加熱することで酸素が導入され導電性は低下する。また、ZnOは、種々の添加物をドープすることにより材料の比抵抗を変化させることができる。例えば、Alをドープすると10-4Ω・cmの値が得られ材料は導電性になり、Liをドープすると1010Ω・cmになり絶縁性になる。大気開放型CVD法の原料には、一般的なアルコキシドを原料として用いることができる。Liをドーピングするためには、例えば、めっき液中にLiを含有する有機物を添加しておき、該有機物をZnOと共析させた後、大気中で有機物を焼きとばしつつ、Liをドーピングする、などの方法を用いることができるが、この限りではない。Liドーピング後に、大気中等の酸素を含む雰囲気で加熱処理することにより、LiがZnOに拡散し、酸素欠損も低下することで絶縁性は高くなる。このときの熱処理は300℃以上で行なうことが好ましく、より好ましくは600℃以上である。 ZnO grown by electrolytic plating generally has oxygen vacancies in many cases and is conductive in many cases. When insulation is required, oxygen is introduced by conducting heating in the atmosphere after plating. Sex declines. ZnO can change the specific resistance of the material by doping various additives. For example, when Al is doped, a value of 10 −4 Ω · cm is obtained and the material becomes conductive, and when Li is doped, it becomes 10 10 Ω · cm and becomes insulating. A general alkoxide can be used as a raw material for the open-air CVD method. In order to dope Li, for example, an organic substance containing Li is added to the plating solution, and after the organic substance is eutectoid with ZnO, the organic substance is burned out in the atmosphere, and then Li is doped. However, the method is not limited to this. After Li doping, heat treatment is performed in an atmosphere containing oxygen such as in the air, whereby Li is diffused into ZnO and oxygen deficiency is reduced, so that the insulating property is increased. The heat treatment at this time is preferably performed at 300 ° C. or higher, more preferably 600 ° C. or higher.
基板は導電体、絶縁体を問わないのは前述した通りである。一般に、無電解めっき法よりも電解めっき法の方が析出速度が速く好ましいので、絶縁体の場合は、表面(少なくとも片面)に導電性セラミックス膜をコーティングするのもよい。
また、大気開放型CVD法では、種付け(結晶核成長)時に基板が酸化されるので、Cuなどの酸化されやすい基板を用いる場合には、導電体であっても導電性セラミックスをコーティングしておくとよい。導電性セラミックスとしては特に限定されないがITOまたはZnOなどがある。
As described above, the substrate may be a conductor or an insulator. In general, since the electroplating method is faster and preferable than the electroless plating method, in the case of an insulator, the surface (at least one surface) may be coated with a conductive ceramic film.
In addition, since the substrate is oxidized during seeding (crystal nucleus growth) in the open-air CVD method, when using a substrate that is easily oxidized, such as Cu, a conductive ceramic is coated even if it is a conductor. Good. The conductive ceramic is not particularly limited and includes ITO or ZnO.
<結晶核形成>
基板として、比抵抗が1×10-4ΩcmのITO(インジウム・スズ複合酸化物)膜、1×10-3ΩcmのZnOを0.2μmコーティングした30×30mmのCu箔基板またはポリイミド箔(厚さは共に35μm)を用いた。
図1に示す大気開放型CVD装置を使用した。気化器1にアセチルアセトナト亜鉛(Zn(C5H7O2)2)を装填し110℃で気化させた。加熱台を300〜600℃に加熱した。吹き出しスリットの下、20mmの位置に基板を置いた。気化器1に乾燥Arガスを
流量1.6 l/minで導入し、アセチルアセトナト亜鉛を大気圧雰囲気に放出し、基板表面に所定の長さになるまで吹き付けた。スリットを移動させながら基板全体に亘ってZnO結晶核を形成した。核生成間隔(ピッチ)は、スリットの移動速度を調整することで変化させた。アセチルアセトナト亜鉛は大気中で反応しZnOとなり、この微結晶(核)が基板上に堆積した。図2にZnO結晶核の一例を示す。
一部の試料では、気化器2を使用し、Li2(OC2H5)を原料として、89℃で気化
させた。気化器2に乾燥Arガスを流量0.04 l/minで導入し、途中でZn原料ガスと合流するようにした。
<Crystal nucleation>
As a substrate, an ITO (indium tin composite oxide) film having a specific resistance of 1 × 10 −4 Ωcm, a 30 × 30 mm Cu foil substrate coated with 0.2 μm of ZnO of 1 × 10 −3 Ωcm, or a polyimide foil (thickness) Both were 35 μm).
The atmospheric open type CVD apparatus shown in FIG. 1 was used. Vaporizer 1 was charged with acetylacetonato zinc (Zn (C 5 H 7 O 2 ) 2 ) and vaporized at 110 ° C. The heating table was heated to 300-600 ° C. The substrate was placed at a position of 20 mm under the blowing slit. Dry Ar gas was introduced into the vaporizer 1 at a flow rate of 1.6 l / min, and acetylacetonato zinc was discharged into an atmospheric pressure atmosphere and sprayed onto the substrate surface until a predetermined length was reached. ZnO crystal nuclei were formed over the entire substrate while moving the slit. The nucleation interval (pitch) was changed by adjusting the moving speed of the slit. The acetylacetonato zinc reacted in the atmosphere to become ZnO, and these microcrystals (nuclei) were deposited on the substrate. FIG. 2 shows an example of ZnO crystal nuclei.
In some samples, the vaporizer 2 was used and vaporized at 89 ° C. using Li 2 (OC 2 H 5 ) as a raw material. Dry Ar gas was introduced into the vaporizer 2 at a flow rate of 0.04 l / min so as to merge with the Zn raw material gas on the way.
<成長>
硝酸亜鉛を0.2mol/Lを含有するpH6処理液を温度80℃に保持したものを用いた。陽極として白金を用いて、基板7C/1cm2で通電してZnO膜を所定の時間成
長させた。
一部の試料は、成長後に大気中で熱処理した。
<Growth>
A solution in which a pH 6 treatment liquid containing 0.2 mol / L of zinc nitrate was maintained at a temperature of 80 ° C. was used. Using platinum as the anode, a ZnO film was grown for a predetermined time by energizing the substrate at 7 C / 1 cm 2 .
Some samples were heat treated in air after growth.
<樹脂の含浸>
昭和高分子製ビニルエステル樹脂の20%酢酸エチル希釈品(商品名:リポキシVR−77−80EAC)に微量の重合開始剤を添加した後、柱状セラミックスを成長させた基板表面に滴下した。これを真空オーブンに入れ、ロータリーポンプで真空にしながら室温で樹脂を含浸させた。その後、波長が364nmの紫外線を50mW/cm2の光強度で
照射して硬化させた。
複合材料のセラミックスの含有率は、基板から剥がした後、複合材料の比重から計算した。
<Resin impregnation>
A small amount of a polymerization initiator was added to a 20% ethyl acetate diluted product (trade name: Lipoxy VR-77-80EAC) of Showa Polymer vinyl ester resin, and then dropped onto the substrate surface on which columnar ceramics were grown. This was placed in a vacuum oven and impregnated with resin at room temperature while being evacuated with a rotary pump. Then, it was hardened by irradiating ultraviolet rays having a wavelength of 364 nm with a light intensity of 50 mW / cm 2 .
The ceramic content of the composite material was calculated from the specific gravity of the composite material after peeling from the substrate.
<熱伝導率測定>
樹脂含浸後の試料を基板から引き剥がし、直径10mmに加工し、周期加熱法により熱伝導率を測定した。
<Measurement of thermal conductivity>
The sample impregnated with the resin was peeled off from the substrate, processed to a diameter of 10 mm, and the thermal conductivity was measured by a periodic heating method.
<比抵抗測定>
熱伝導率測定要試料の表面にAu電極を形成して(片面は基板が電極となる)、両面間の比抵抗を測定した。
<Specific resistance measurement>
An Au electrode was formed on the surface of the sample requiring thermal conductivity measurement (the substrate serves as an electrode on one side), and the specific resistance between both sides was measured.
<膜形態・配向性評価>
ZnO膜をX線回折で成長方向を測定した。
柱状ZnO結晶の成長形態、長さを走査型電子顕微鏡(SEM)で観察した。
<Evaluation of film morphology and orientation>
The growth direction of the ZnO film was measured by X-ray diffraction.
The growth form and length of the columnar ZnO crystal were observed with a scanning electron microscope (SEM).
<比較例>
比較として、核形成処理しない基板を電解めっき法で成長させた試料、および通常の大気開放型CVD法で全工程処理した試料も作製した。
<Comparative example>
As a comparison, a sample in which a substrate not subjected to nucleation treatment was grown by an electrolytic plating method and a sample in which all processes were performed by a normal atmospheric open type CVD method were also produced.
結果を表1に示す。
初期核形成処理をしないでめっきした試料は膜が緻密で平滑であった。初期核形成と成長を共に大気開放型CVD法で作製した試料は成長速度が小さかった。これは、基板全体をスキャンしながら成長させるために、単位面積あたりの反応時間が小さいためと考えられる。
大気開放型CVD法で初期核形成後、めっき法で成長させると成長速度が大きい。スリット移動速度を大きくすると柱状セラミックス膜の気孔率が増大する。Liを添加し、かつ熱処理することで複合材料の比抵抗を大きくすることができる。
めっき法を用いると、基板面積が大きくなっても、成長速度はほとんど低下しなかった。
The sample plated without the initial nucleation treatment had a dense and smooth film. Samples prepared by the open-air CVD method for both initial nucleation and growth had a low growth rate. This is presumably because the reaction time per unit area is small in order to grow while scanning the entire substrate.
The growth rate is high when growth is performed by plating after initial nucleation by the open-air CVD method. Increasing the slit moving speed increases the porosity of the columnar ceramic film. The specific resistance of the composite material can be increased by adding Li and performing heat treatment.
When the plating method was used, the growth rate hardly decreased even when the substrate area was increased.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007056916A JP2008214728A (en) | 2007-03-07 | 2007-03-07 | Manufacturing method of ceramic film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007056916A JP2008214728A (en) | 2007-03-07 | 2007-03-07 | Manufacturing method of ceramic film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008214728A true JP2008214728A (en) | 2008-09-18 |
Family
ID=39835131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007056916A Pending JP2008214728A (en) | 2007-03-07 | 2007-03-07 | Manufacturing method of ceramic film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008214728A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011102059A1 (en) * | 2010-02-19 | 2011-08-25 | 住友電気工業株式会社 | Metal laminate structure and production method for same |
US9199433B2 (en) | 2009-06-30 | 2015-12-01 | Sumitomo Electric Industries, Ltd. | Metal laminated structure and method for producing the metal laminated structure |
WO2017145915A1 (en) * | 2016-02-25 | 2017-08-31 | 株式会社豊田中央研究所 | Metal oxide film and method for producing same |
JP7476667B2 (en) | 2020-05-26 | 2024-05-01 | 株式会社豊田中央研究所 | Composite Dielectric Thin Film |
-
2007
- 2007-03-07 JP JP2007056916A patent/JP2008214728A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9199433B2 (en) | 2009-06-30 | 2015-12-01 | Sumitomo Electric Industries, Ltd. | Metal laminated structure and method for producing the metal laminated structure |
WO2011102059A1 (en) * | 2010-02-19 | 2011-08-25 | 住友電気工業株式会社 | Metal laminate structure and production method for same |
JP2011171564A (en) * | 2010-02-19 | 2011-09-01 | Sumitomo Electric Ind Ltd | Metal laminate structure and method of manufacturing metal laminate structure |
US8993121B2 (en) | 2010-02-19 | 2015-03-31 | Sumitomo Electric Industries, Ltd. | Metal laminated structure and method for producing the same |
WO2017145915A1 (en) * | 2016-02-25 | 2017-08-31 | 株式会社豊田中央研究所 | Metal oxide film and method for producing same |
JPWO2017145915A1 (en) * | 2016-02-25 | 2018-08-09 | 株式会社豊田中央研究所 | Metal oxide film and manufacturing method thereof |
CN108699718A (en) * | 2016-02-25 | 2018-10-23 | 株式会社丰田中央研究所 | Metal oxide film and manufacturing method thereof |
JP7476667B2 (en) | 2020-05-26 | 2024-05-01 | 株式会社豊田中央研究所 | Composite Dielectric Thin Film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chou et al. | Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particlefilms by the spin coating method | |
CN102828244B (en) | Layer-number-controllable graphite film based on nickel-copper composite substrate and preparation method of film | |
CN105112958B (en) | A kind of method for going alloyage to obtain nano-porous silver loaded on base material | |
CN104843694A (en) | Preparation method for multilayered graphene film | |
CN110273170A (en) | A kind of metal nanometer line network and preparation method thereof of graphene or metal oxide cladding | |
CN108570710A (en) | The preparation method of copper whisker | |
JP2008214728A (en) | Manufacturing method of ceramic film | |
CN1223514C (en) | Flaky carbon nano tube, preparation method and special equipment | |
JP3531865B2 (en) | Ultra-flat transparent conductive film and manufacturing method thereof | |
CN1152439C (en) | Preparation method of lanthanum nickelate conductive metal oxide film material | |
KR101802946B1 (en) | Process for formation of metal oxide film on graphene | |
Fu et al. | Multiple morphologies of ZnO films synthesized on flexible poly (ethylene terephthalate) by electroless deposition | |
CN109264664B (en) | A kind of preparation method of Al2O3 hollow spherical shell array | |
CN108766630A (en) | A kind of flexible sensor based on metal nanometer line, and preparation method thereof | |
JP6689584B2 (en) | Transparent conductive laminate and method for producing transparent conductive laminate | |
CN111085416A (en) | Graphene composite metal foil and preparation method thereof | |
JP2009040640A (en) | Method for producing zinc oxide thin film | |
Sabli et al. | Effect of under nitrogen annealing on photo-electrochemical characteristics of films deposited from authentic Cu2SnSe3 sources by thermal vacuum under argon gas condensation | |
CN111499420A (en) | A kind of silver niobate-based lead-free antiferroelectric energy storage film and preparation method thereof | |
KR20130015910A (en) | Heat sink plate using carbon nanotubes and method of manufacturing the same | |
CN113579247B (en) | Preparation method of nano nickel powder | |
US20180105952A1 (en) | Method for controlling crystal plane of polycrystalline metal and metal-carbon material composite including metal where crystal plane is controlled by using the same | |
KR101898524B1 (en) | Methods of manufacturing metal-carbon lmaterial complexed films | |
CN111041542B (en) | Composite metal wire with composite electroplated nano carbon metal film and preparation method thereof | |
CN109913851B (en) | Method for preparing MWCNT @ XY by adopting co-sputtering of post-annealing treatment and MWCNT @ XY |