JP2008212882A - Micromixer - Google Patents

Micromixer Download PDF

Info

Publication number
JP2008212882A
JP2008212882A JP2007056475A JP2007056475A JP2008212882A JP 2008212882 A JP2008212882 A JP 2008212882A JP 2007056475 A JP2007056475 A JP 2007056475A JP 2007056475 A JP2007056475 A JP 2007056475A JP 2008212882 A JP2008212882 A JP 2008212882A
Authority
JP
Japan
Prior art keywords
flow channel
channel
mixing
flow
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007056475A
Other languages
Japanese (ja)
Inventor
Hideki Morimoto
英樹 森本
Noritaka Kawaseki
宣隆 川堰
Masanobu Shima
将伸 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Cosel Co Ltd
Original Assignee
Toyama Prefecture
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, Cosel Co Ltd filed Critical Toyama Prefecture
Priority to JP2007056475A priority Critical patent/JP2008212882A/en
Publication of JP2008212882A publication Critical patent/JP2008212882A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow-channel structure of a static micromixer which makes efficient mixing proceed only with a flow channel form, without the arrangement of a specific stirrer, concerning a fluid-mixing operation for microfluid elements represented by a μTAS (MicroTotal Analysis System), and to provide a manufacturing method thereof. <P>SOLUTION: Either the left side of a posterior-to-confluence flow channel (a main flow channel 1) or its right side is dug deeper than the bottom part of the main flow channel, and a flow channel (a tributary flow channel 2), which is diagonally dug toward the downstream up to the left and right sides of the main flow channel, respectively, is formed to have an adequate form and size. By this, the effect is generated, which makes the fluid section of a fluid, which flows through a flow channel-forming area, elastic, rotatable and overlappable. By repeatedly generating this effect toward the downstream of a mixing flow channel, a layer-to-layer distance between fluid elements is decreased to accelerate the mixing. This is shown in Fig.2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロ流体(数μm 〜数100μmオーダーの流路寸法を流れる流体)の混合操作(マイクロミキシング)において、その混合操作部の構造およびその製造方法に関する。 The present invention relates to a structure of a mixing operation unit and a manufacturing method thereof in a mixing operation (micromixing) of a microfluid (fluid flowing in a flow path dimension on the order of several μm to several 100 μm).

近年、化学分析装置、生化学分析装置等の小型化を目的としたμTAS(μ Total Analysis System)が注目され、遺伝子分析チップ、化学合成チップ、生化学合成チップ、環境分析チップ等への応用が期待されている。これらの小型化が実現すると、従来の分析装置と比較して試料、試薬、廃液等の少量化、測定時間の短縮、システム全体の消費電力の低減、低コスト化、携帯性等の有益性が期待されることから、多種多様な研究が行われている。これらの分析システムの構成要素の一つに、微小領域で混合を行うためのマイクロミキサーがある。一方、マイクロ流路(マイクロチャネル)では、チャネルの寸法、流速が共に小さいことから、レイノルズ数が200以下程度である事例が多い。レイノルズ数が小さい場合、マイクロチャネル内において乱流が起こりにくく、層流が支配的となる。したがって、流体の混合は、流体同士の接触界面による拡散混合が主となり、単に合流させるだけでは、効率的な混合ができない。 In recent years, μTAS (μ Total Analysis System) aimed at miniaturization of chemical analyzers, biochemical analyzers, etc. has attracted attention, and its application to gene analysis chips, chemical synthesis chips, biochemical synthesis chips, environmental analysis chips, etc. Expected. When these miniaturizations are realized, the benefits of reducing the amount of samples, reagents, waste liquid, etc., shortening measurement time, reducing power consumption of the entire system, reducing costs, and portability compared to conventional analyzers. A wide variety of research has been conducted because of expectations. One of the components of these analysis systems is a micromixer for performing mixing in a micro area. On the other hand, there are many cases where the Reynolds number is about 200 or less in the micro flow channel (micro channel) because the channel size and flow velocity are both small. When the Reynolds number is small, turbulence hardly occurs in the microchannel, and laminar flow becomes dominant. Therefore, the mixing of the fluid is mainly diffusion mixing at the contact interface between the fluids, and efficient mixing cannot be performed simply by joining them.

この混合を効率的に行うために、たとえば、特許文献1では、マイクロ流路の底面・側面に斜めの凹凸を配置した流路によって、また特許文献2では、流路内部に螺旋の突起(または凸凹状螺旋)をつけた流路によって、ともに流体の螺旋流れを生み出し混合効率を上げる方法が提案されている。また特許文献3では、主流とは別に製作された支流から流体を流入させカオス混合による混合効率の向上が述べられている。
特開2005-199245 特開2006-142210 特許第3629575
In order to perform this mixing efficiently, for example, in Patent Document 1, a spiral protrusion (or in the interior of the flow path is used in the flow path in which oblique irregularities are arranged on the bottom and side surfaces of the micro flow path. A method has been proposed in which a spiral flow of fluids is produced by using a flow path having a convex-concave spiral to increase mixing efficiency. Further, Patent Document 3 describes an improvement in mixing efficiency by introducing fluid from a tributary manufactured separately from the main flow and mixing the chaos.
JP2005-199245 JP 2006-142210 Patent No. 3629575

従来提案されてきた文献1に示される断続的に形成された凹凸溝や、文献2に示される主流内部につけられた凹凸状の螺旋溝のみでは、螺旋流れが起こるが、混合効率が小さいという問題がある。また文献3の方法では、複数の支流流路と流体制御のためのポンプが必要になり、分析機器に求められる小型化・低コスト化とはならない問題がある。 Only the intermittently formed concave and convex grooves shown in Literature 1 and the concave and convex spiral grooves provided in the main flow shown in Literature 2 cause spiral flow, but the problem of low mixing efficiency There is. Further, the method of Document 3 requires a plurality of tributary flow paths and a fluid control pump, and there is a problem that the size reduction and cost reduction required for an analytical instrument are not achieved.

本発明は、上記問題点に鑑みてなされたものであり、安価で混合効率が大きいマイクロミキサーおよびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a micromixer that is inexpensive and has high mixing efficiency and a method for manufacturing the micromixer.

上記目的を達成するために、本発明は、マイクロ流路の主流流路から分岐した別の連続的な支流流路を主流流路の下部に形成することで、主流と支流が流れ方向に大きく交互に流体移動を繰り返す手段を提案する。この手段によれば、流動方向の流動断面の引きのばしと折りたたみが繰り返し起こり、流体層間の距離が指数関数的に減少する。図2は層間距離の減少の様子を示したものである。すなわち、同図の1〜7の順番に断面の伸縮と回転重ね合わせの操作を繰り返す場合を考える。支流流路の効果はどの場合も同じであるので、1→2と同じ回転操作を繰り返すこととみなせる。ここで、1→2の操作は、1の着色領域を縦に伸ばし横に縮小し、2の着色領域に並行に移り、また1の白領域は、縦に伸びて横に縮小させた白領域を180°回転させて着色領域の右に合わせる操作である。以上のように、一回の操作で、層間距離は1/2となるので、n番目には層間距離はもとの(1/2)n-1となる。n=7では、(1/2)6=1/64となる。 In order to achieve the above object, the present invention forms another continuous tributary flow channel branched from the main flow channel of the micro flow channel at the lower part of the main flow channel, so that the main flow and the tributary flow are greatly increased in the flow direction. A means for repeating fluid movement alternately is proposed. According to this means, stretching and folding of the flow cross section in the flow direction occur repeatedly, and the distance between the fluid layers decreases exponentially. FIG. 2 shows how the interlayer distance decreases. That is, consider a case where the operations of cross-sectional expansion and contraction and rotation superposition are repeated in the order of 1 to 7 in FIG. Since the effect of the tributary flow path is the same in all cases, it can be considered that the same rotation operation as 1 → 2 is repeated. Here, the operation of 1 → 2 extends 1 colored area vertically and horizontally reduces it, moves to 2 colored areas in parallel, and 1 white area extends vertically and horizontally reduced. Is rotated 180 ° to match the right side of the colored area. As described above, since the interlayer distance becomes 1/2 in one operation, the interlayer distance becomes the original (1/2) n-1 in the nth . When n = 7, (1/2) 6 = 1/64.

また、本発明においては、主流と支流を機械的加工手段(除去加工または成形加工)によって製作することから、深さ方向に変化をもたせた3次元流路構造を、簡単に短時間に作ることができる。また構造変化も簡単に変更でき、特許文献1に提示された半導体露光プロセスを応用した製造方法に比べ、製作コストを小さくできる。 In the present invention, since the main flow and the tributary flow are manufactured by mechanical processing means (removal processing or molding processing), a three-dimensional flow path structure with a change in the depth direction can be easily formed in a short time. Can do. Further, the structural change can be easily changed, and the manufacturing cost can be reduced as compared with the manufacturing method using the semiconductor exposure process presented in Patent Document 1.

本発明においては、主流から分岐する別の支流流路によって、主流の流体要素の引き伸ばしと折りたたみが起こり、この操作を繰り返すことで、流体要素の層間距離を減少させ、短時間に拡散が促進される。その結果、マイクロミキサーの小型化を図ることが可能である。   In the present invention, the mainstream fluid element is stretched and folded by another branch flow channel branched from the mainstream. By repeating this operation, the interlayer distance of the fluid element is reduced and diffusion is promoted in a short time. The As a result, it is possible to reduce the size of the micromixer.

以下、本発明について実施例および比較例を用いて具体的に説明する。
混合操作の実施には、Y字ミキサーと呼ばれる混合流路を基準とし、Y字ミキサーの主流流路1から分流する形で支流流路3を主流流路の下部に形成した。ここでY字ミキサーとは、2種類の液体を2本の入り口から流入させ、1本に合流させて混合し、所定長さの混合部を経て、排出するものである。図1。
Hereinafter, the present invention will be specifically described using examples and comparative examples.
In carrying out the mixing operation, the branch flow channel 3 was formed in the lower part of the main flow channel so as to be diverted from the main flow flow channel 1 of the Y mixer with reference to a mixing flow channel called a Y-shaped mixer. Here, the Y-shaped mixer is one in which two types of liquids are introduced from two inlets, merged into one, mixed, and discharged through a mixing portion having a predetermined length. FIG.

ミキサーの性能評価は、異なる色のついた2種類の液体(赤色と白色)を2本の入口にシリンジポンプで流入させ、混合部を通過中の色の入れ替わり(回転)を調べる方法(特許文献1)と、混合程度を画像数値データ(RGB数値)により定量化する方法で行った。画像数値データの定量化の方法は、混合部以前の色データを0,1の数値に規格化し、混合後の画像数値データの標準偏差を計算して行った。完全な分離であれば標準偏差s=0.5であり、完全混合の場合、標準偏差s=0である。なお色のついた溶液は、水溶性絵の具の赤と白を純水9ccに1g添加して作成した。溶液の動粘性係数νをオストワルド相対粘度計で測定したところ、白溶液は1.64 mm2/sであり、赤溶液では1.43 mm2/sであった(レイノルズ数計算には、平均1.50 mm/sを動粘性係数として用いた)。 The performance evaluation of the mixer is a method in which two types of liquids with different colors (red and white) are made to flow into the two inlets with a syringe pump and the change (rotation) of the color passing through the mixing section is examined (Patent Document) 1) and a method of quantifying the degree of mixing using image numerical data (RGB numerical values). The method of quantifying the numerical image data was performed by normalizing the color data before the mixing portion to values of 0 and 1, and calculating the standard deviation of the image numerical data after mixing. For complete separation, the standard deviation s = 0.5, and for complete mixing, the standard deviation s = 0. The colored solution was prepared by adding 1 g of red and white water-soluble paint to 9 cc of pure water. When the kinematic viscosity coefficient ν of the solution was measured with an Ostwald relative viscometer, it was 1.64 mm 2 / s for the white solution and 1.43 mm 2 / s for the red solution (average of 1.50 mm 2 / s for the Reynolds number calculation). s was used as the kinematic viscosity coefficient).

これらの溶液をマイクロシリンジポンプで使用し、流体流入路2の各々に流量13mm/minの流体を流入させ、主流流路1を流れる流体流量の合計が26mm/minになるようにした。この流量をマイクロミキサーの流路寸法から平均流速を計算すると、幅200μm深さ50μmでは、約43mm/sであり、幅200μm深さ100μmの流路では流速21.6mm/sである。また、この場合のレイノルズ数は、それぞれ3.9と3.2となる。ただし、チャネル代表寸法はそれぞれ133μm、80μmである。 These solutions were used with a microsyringe pump, and a fluid having a flow rate of 13 mm 3 / min was introduced into each of the fluid inflow channels 2 so that the total flow rate of fluid flowing through the main flow channel 1 was 26 mm 3 / min. When this flow rate is calculated from the flow path dimensions of the micromixer, the average flow velocity is about 43 mm / s at a width of 200 μm and a depth of 50 μm, and is 21.6 mm / s at a flow path of 200 μm width and 100 μm depth. In this case, the Reynolds numbers are 3.9 and 3.2, respectively. However, the representative channel dimensions are 133 μm and 80 μm, respectively.

主流流路1から分流した支流流路3の混合効果(色混合の定量化と回転程度)を調べた。支流流路は主流の下部位置に切削加工により形成し、Y字ミキサーの合流点から2mmの位置から10mmの間に20本(ピッチは0.5mm)支流流路を形成した。このミキサーに、流量26mm/min一定条件で前述した赤白の溶液を流した。また主流と支流、それぞれの流路深さの組合せ効果を調べた。表1は、主流流路の流路深さMdと支流流路の流路深さSdの組合せ実験を示す。
表1.主流流路の深さMdと支流流路の深さSdの組合せ実験表

Figure 2008212882
The mixing effect (quantification of color mixing and the degree of rotation) of the tributary channel 3 branched from the main channel 1 was examined. The tributary flow paths were formed by cutting at the lower part of the main flow, and 20 (pitch was 0.5 mm) tributary flow paths were formed between 2 mm from the junction of the Y-shaped mixer and 10 mm. The red and white solution described above was allowed to flow through this mixer at a constant flow rate of 26 mm 3 / min. In addition, the combined effect of the main flow and the tributary, and the respective channel depths was investigated. Table 1 shows a combination experiment of the channel depth Md of the main channel and the channel depth Sd of the branch channel.
Table 1. Combination experiment table of mainstream channel depth Md and tributary channel depth Sd
Figure 2008212882

図3は、主流流路深さと支流流路深さの組合せにおける混合程度を示す。図にみられるように、Md=50μm、Sd=100μmの組合せが最も混合している。さらに、主流流路幅200μm、支流流路幅100μmを考慮し、主流流路断面積Sm、支流流路断面積Ssで評価すると、Sm/Ss≦1で混合が適当である。 FIG. 3 shows the degree of mixing in the combination of the main flow channel depth and the tributary channel depth. As seen in the figure, the combination of Md = 50 μm and Sd = 100 μm is the most mixed. Furthermore, considering the main flow channel width of 200 μm and the tributary flow channel width of 100 μm, when the main flow channel cross-sectional area Sm and the tributary flow channel cross-sectional area Ss are evaluated, mixing is appropriate when Sm / Ss ≦ 1.

(比較例1)
比較例1では、支流流路を設けないY字ミキサーである。流路幅200μm、深さ50μmである。
(Comparative Example 1)
In the comparative example 1, it is a Y-shaped mixer which does not provide a tributary flow path. The channel width is 200 μm and the depth is 50 μm.

(比較例2)
比較例2は、特許文献1(実施例1)のマイクロミキサーである。
(Comparative Example 2)
Comparative Example 2 is a micromixer disclosed in Patent Document 1 (Example 1).

(評価)
図4は、Md=50μm Sd=100μm の条件における、混合状況を示す。またY字ミキサーも同様に示す。上下の入れ替わり(0.5回転)に要する流路長さは、1.0mmである。なお比較例1でのY字ミキサーでは、回転しない。
(Evaluation)
FIG. 4 shows the mixing state under the condition of Md = 50 μm Sd = 100 μm. The Y-shaped mixer is also shown. The flow path length required for the upper and lower interchange (0.5 rotation) is 1.0 mm. Note that the Y-shaped mixer in Comparative Example 1 does not rotate.

比較例2では、14mmで2回転であること(特許文献1の実施例1)から、0.5回転に要する長さは、3.5mmと計算できる。これは、本発明の1.0mmの3.5倍の長さを要することが分かる。 In Comparative Example 2, since the rotation is 14 mm and 2 rotations (Example 1 of Patent Document 1), the length required for 0.5 rotation can be calculated as 3.5 mm. It can be seen that this requires 3.5 times as long as 1.0 mm of the present invention.

以上のことから、主流流路とは別に形成された支流流路が、マイクロ流体の混合に有効であることがわかる。 From the above, it can be seen that the tributary flow channel formed separately from the main flow flow channel is effective for mixing the microfluids.

本発明は、混合効率が大きいという基本性能に加え、構造が簡単で安価に製造が可能であるということから、医療診断用分析機器、医薬用製造装置、化学分析機器への広い応用が可能である。 In addition to the basic performance of high mixing efficiency, the present invention has a simple structure and can be manufactured at low cost, so it can be widely applied to medical diagnostic analyzers, pharmaceutical manufacturing equipment, and chemical analyzers. is there.

本発明のマイクロミキサー(Y字ミキサーに支流流路を付与したもの)の一例を示す概略平面図および支流流路の概略構造図である。It is the schematic plan view which shows an example of the micromixer (what provided the branch flow path to the Y-shaped mixer) of this invention, and the schematic structure figure of a branch flow path. 流動断面の変換の繰り返しによる混合メカニズムを示す図である。It is a figure which shows the mixing mechanism by repetition of conversion of a flow cross section. 実施例1における混合程度(標準偏差)を示す図である。FIG. 3 is a diagram showing the degree of mixing (standard deviation) in Example 1. 実施例1および比較例1(支流流路を設けないY字ミキサー)における流動状況を示す図である。It is a figure which shows the flow condition in Example 1 and Comparative Example 1 (Y-shaped mixer which does not provide a tributary flow path).

符号の説明Explanation of symbols

1.主流流路
2.入口流路
3.支流流路
4.角取り部
1. 1. Main flow path 2. Inlet channel 3. Tributary flow path Chamfered part

Claims (4)

平板上に製作した複数の流路を合流させ混合させる凹状流路において、合流後の流路(主流流路 1)の左右一方の側を主流流路の底部よりさらに深く掘りこみ、下流にむけて、主流流路の左右別の側まで斜めに掘り込む流路(支流流路 2)を形成したことを特徴とするマイクロミキサー。 In a concave channel that joins and mixes a plurality of channels manufactured on a flat plate, dig deeper into the left and right sides of the channel after the merge (mainstream channel 1) deeper than the bottom of the mainstream channel. The micromixer is characterized in that a flow channel (branch flow channel 2) is formed by digging obliquely to the left and right sides of the main flow channel. 前記平板上に形成された流路断面について、主流流路断面積Sm、支流流路断面積Ssとするとき、Sm/Ss≦1であることを特徴とするマイクロミキサー。 A micromixer characterized in that Sm / Ss ≦ 1 when the cross section of the flow path formed on the flat plate is a main flow path cross section Sm and a tributary flow path cross section Ss. 前記主流流路から支流流路への分岐領域および支流流路から主流への合流領域にそれぞれ流動抵抗をより小さくするための角取り領域を設けたことを特徴とするマイクロミキサー。 A micromixer characterized in that a chamfering region for reducing flow resistance is provided in each of a branch region from the main flow channel to a branch flow channel and a merge region from the branch flow channel to the main flow. これら主流流路、支流流路、分岐領域と合流領域の角取り部を、機械的除去加工(切削加工、研作加工)あるいは工具・型プレスによる成形加工あるいは金型射出成形あるいは、これら加工の組合せによって製作することを特徴とするマイクロミキサーの製造方法。 These corners of the main flow channel, tributary flow channel, branch region and merge region are mechanically removed (cutting, grinding), molding by tool / die press, mold injection molding, or a combination of these processes. The manufacturing method of the micromixer characterized by the above-mentioned.
JP2007056475A 2007-03-07 2007-03-07 Micromixer Pending JP2008212882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007056475A JP2008212882A (en) 2007-03-07 2007-03-07 Micromixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007056475A JP2008212882A (en) 2007-03-07 2007-03-07 Micromixer

Publications (1)

Publication Number Publication Date
JP2008212882A true JP2008212882A (en) 2008-09-18

Family

ID=39833561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007056475A Pending JP2008212882A (en) 2007-03-07 2007-03-07 Micromixer

Country Status (1)

Country Link
JP (1) JP2008212882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243419A (en) * 2009-04-09 2010-10-28 Konica Minolta Holdings Inc Test device, reaction apparatus, and method of testing reaction
JP2014077810A (en) * 2014-02-06 2014-05-01 Konica Minolta Inc Test device and reaction device
US11249076B2 (en) 2011-01-20 2022-02-15 Otsuka Pharmaceutical Co., Ltd. Test device, reaction apparatus and reactive test method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243419A (en) * 2009-04-09 2010-10-28 Konica Minolta Holdings Inc Test device, reaction apparatus, and method of testing reaction
US11249076B2 (en) 2011-01-20 2022-02-15 Otsuka Pharmaceutical Co., Ltd. Test device, reaction apparatus and reactive test method
JP2014077810A (en) * 2014-02-06 2014-05-01 Konica Minolta Inc Test device and reaction device

Similar Documents

Publication Publication Date Title
Beebe et al. Passive mixing in microchannels: Fabrication and flow experiments
Chen et al. Numerical analysis of mixing behaviors of two types of E-shape micromixers
Hardt et al. Passive micro mixers for applications in the micro reactor and µTAS field
Ansari et al. A novel passive micromixer based on unbalanced splits and collisions of fluid streams
Stroock et al. Investigation of the staggered herringbone mixer with a simple analytical model
Le The et al. An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range
Du et al. A simplified design of the staggered herringbone micromixer for practical applications
Nimafar et al. Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers
JP2004093553A (en) Cascaded hydrodynamic focusing method and apparatus for microfluidic channels
Liao et al. A millisecond passive micromixer with low flow rate, low sample consumption and easy fabrication
JP2013040776A (en) Fluidic channel device, and method for mixing fluids
Chen et al. Evaluation of passive mixing behaviors in a pillar obstruction poly (dimethylsiloxane) microfluidic mixer using fluorescence microscopy
Cosentino et al. An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application
Sato et al. PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow
Farshchian et al. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls
Akgönül et al. The effect of asymmetry on micromixing in curvilinear microchannels
JP2008212882A (en) Micromixer
Zeraatkar et al. Exploiting limitations of fused deposition modeling to enhance mixing in 3D printed microfluidic devices
Oevreeide et al. Curved passive mixing structures: a robust design to obtain efficient mixing and mass transfer in microfluidic channels
JP2005118634A (en) Micro-mixing device
Yakhshi-Tafti et al. Diffusive mixing through velocity profile variation in microchannels
Mehta et al. Reaction characteristics of non-Newtonian species in a microreactor: The role of electroosmotic vortices
Mortazavi et al. Efficient batch-mode mixing and flow patterns in a microfluidic centrifugal platform: a numerical and experimental study
KR101515403B1 (en) Microfluidic Channel Using Hook-Shaped Structures, Manufacturing Method Thereof, and Analysis System Having the Same
KR100523983B1 (en) Kenics micromixer embedded barrier