JP2008212863A - Coating apparatus - Google Patents

Coating apparatus Download PDF

Info

Publication number
JP2008212863A
JP2008212863A JP2007055356A JP2007055356A JP2008212863A JP 2008212863 A JP2008212863 A JP 2008212863A JP 2007055356 A JP2007055356 A JP 2007055356A JP 2007055356 A JP2007055356 A JP 2007055356A JP 2008212863 A JP2008212863 A JP 2008212863A
Authority
JP
Japan
Prior art keywords
coating
booth
air
air supply
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007055356A
Other languages
Japanese (ja)
Other versions
JP4988384B2 (en
Inventor
Hideaki Hara
秀 明 原
Takao Nomura
村 孝 夫 野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Original Assignee
Trinity Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp filed Critical Trinity Industrial Corp
Priority to JP2007055356A priority Critical patent/JP4988384B2/en
Publication of JP2008212863A publication Critical patent/JP2008212863A/en
Application granted granted Critical
Publication of JP4988384B2 publication Critical patent/JP4988384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating apparatus capable of forming a cylindrical swirling flow certainly enclosing coating material particles in a coating booth by a low flow rate of air, enhancing the coating efficiency thereby and preventing the coating material particles from sticking to the inner wall of the coating booth, reducing running costs, and improving a maintenance ability. <P>SOLUTION: An air feeding system (3S) forms a plurality of air feeding openings (6, ...) blowing air in a swirling direction of the swirling flow at predetermined intervals on a booth peripheral surface (2S) along its swirling direction and an air exhausting system (3E) forms an air exhausting opening exhausting air in the coating booth (2) to at least the bottom part (2B) of the coating booth (2), in the coating apparatus (1) provided with the air feeding system (3S) forming the swirling flow swirling air to the surrounding of a material to be coated (W) along the booth peripheral surface around the coating material sprayed (2S) from a coating machine (T) arranged above the inside of the coating booth (2) toward the material to be coated (W) therebelow and the air exhausting system (3E). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塗布ブース内上方に配された塗布機からその下方に配された被塗物に向かって噴霧される塗布材の周りに、ブース周壁面に沿って被塗物の周囲に空気を旋回させる旋回流を形成しながら塗布する塗布設備に関する。   In the present invention, air is applied around the coating material along the peripheral wall surface of the booth around the coating material sprayed from the coating machine disposed above the coating booth toward the coating material disposed below. The present invention relates to a coating facility for coating while forming a swirling flow to swirl.

塗装機(塗布機)から塗料(塗布材)を噴霧させて被塗物に塗着させる際に、オーバースプレーした塗料粒子が塗装ブース(塗布ブース)の周壁面に付着しないように、その天井から床に向って流下するダウンフローを形成したり、塗装機から噴霧された塗料粒子を囲うようにその先端からシェーピングエアを吹き出させて塗装パターンを規制したりしている。   When spraying paint (coating material) from a coating machine (coating machine) and applying it to an object to be coated, from the ceiling so that the oversprayed paint particles do not adhere to the peripheral wall of the painting booth (coating booth). A downflow that flows down toward the floor is formed, or a coating pattern is regulated by blowing shaping air from its tip so as to surround the paint particles sprayed from the coating machine.

ダウンフローについては、風量を減少させるとランニングコストを低減することができるが、塗料粒子が周囲に付着しやすくなって清掃コストが嵩み、風量を増大させると塗料粒子が周囲に付着しにくくなるが、同時に塗装機から噴霧された塗料粒子を強制的に排出させてしまうので塗着効率が低下するという問題がある。   For downflow, reducing the air volume can reduce the running cost, but the paint particles tend to adhere to the surroundings, increasing the cleaning cost, and increasing the air volume makes the paint particles less likely to adhere to the surroundings. However, at the same time, the coating particles sprayed from the coating machine are forcibly discharged, so that there is a problem that the coating efficiency is lowered.

また、シェーピングエアについては、風量を減少させるとランニングコストを低減することができるが、塗料粒子が周囲に広がってしまい塗着効率が低下し、風量を増大させると被塗物に当たったエアにより塗料粒子が舞い上がって、この場合も塗着効率が低下するという問題を生ずる。   As for shaping air, the running cost can be reduced by reducing the air volume, but the coating particles spread to the surroundings and the coating efficiency is lowered.If the air volume is increased, the air hitting the object to be coated The coating particles rise, and in this case as well, there arises a problem that the coating efficiency is lowered.

このため、本出願人は、シェーピンエアを低減したときでも塗料粒子が飛散して塗装ブースの内壁に付着しないように、被塗物の周りに空気を旋回して流下させながら塗装することのできる塗布設備を提案した。
特開2005−87960
For this reason, the present applicant can apply coating while swirling the air around the object to be coated so that the paint particles are not scattered and adhere to the inner wall of the painting booth even when the shaping air is reduced. Proposed equipment.
JP-A-2005-87960

これは、天井部に形成された給気口に旋回流形成用のファンを設けたり、床面に形成された円形排気口の接線方向に排気ダクトを接続したりすることにより、塗装ブース内に塗装機及び被塗物を包囲するような旋回流を形成するものである。   This can be done by installing a fan for swirling flow at the air supply port formed in the ceiling or by connecting an exhaust duct in the tangential direction of the circular exhaust port formed on the floor. A swirling flow that surrounds the coating machine and the object to be coated is formed.

しかしながら、実際にそのような塗装ブースを試作して実験してみたところ、給気口及び排気口近傍では旋回流が形成されているものの、給気口及び排気口から離れるに従って旋回性が弱くなり、塗装機や被塗物近傍では単に上から下へ流れるダウンフローとなっていること判明した。
また、それぞれのファンの風量を増大させて実験してみたところ、塗装ブース内に旋回流を形成することができたものの、中心部で旋回性が強く、周辺部で旋回性が弱い旋回流となってしまうため、塗装機と被塗物を包囲するような筒型の旋回流を形成することは困難であった。
However, when we actually prototyped and tested such a paint booth, a swirl flow was formed in the vicinity of the air supply and exhaust ports, but the swirlability became weaker as the distance from the air supply and exhaust ports was increased. In the vicinity of the coating machine and the object to be coated, it was found that the flow was simply downflowing from top to bottom.
In addition, when the experiment was carried out by increasing the air volume of each fan, a swirl flow could be formed in the paint booth, but the swirl flow was strong in the center and weak in the periphery. Therefore, it has been difficult to form a cylindrical swirl that surrounds the coating machine and the object to be coated.

そこで、本発明は、塗布ブース内に低風量のエアで塗布材粒子を確実に囲い込む筒型の旋回流を形成することができ、これによって塗布材粒子が塗布ブースの内壁に付着することを防止し、ランニングコスト及びメンテナンス性を向上させることができるようにすることを技術的課題としている。   Therefore, the present invention can form a cylindrical swirl flow that reliably encloses the coating material particles with a low air volume in the coating booth, whereby the coating material particles adhere to the inner wall of the coating booth. It is a technical problem to prevent and improve running costs and maintainability.

この課題を解決するために、本発明は、塗布ブース内上方に配された塗布機からその下方に配された被塗物に向かって噴霧される塗布材の周りに、ブース周壁面に沿って被塗物の周囲に空気を旋回させる旋回流を形成する給気系及び排気系を備えた塗布設備において、前記給気系は、旋回流の旋回方向に空気を吹き出させる複数の給気口がその旋回方向に沿ってブース周壁面に所定間隔で形成され、前記排気系は、塗布ブースの少なくとも底部に塗布ブース内の空気を排出する排気口が形成されたことを特徴としている。   In order to solve this problem, the present invention is arranged along a peripheral wall surface of a booth around a coating material sprayed from an applicator disposed in the upper part of the coating booth toward an object to be disposed in the lower part thereof. In a coating facility provided with an air supply system and an exhaust system that form a swirling flow for swirling air around an object to be coated, the air supply system has a plurality of air supply ports for blowing air in the swirling direction of the swirling flow. The exhaust system is formed at predetermined intervals on the peripheral wall surface of the booth along the turning direction, and the exhaust system is characterized in that an exhaust port for discharging the air in the coating booth is formed at least at the bottom of the coating booth.

本発明によれば、塗布ブース内上方に配された塗布機からその下方に配された被塗物に向かって塗布剤を噴霧する際に、塗布ブースの周壁面に沿って所定間隔で形成された複数の給気スリットから旋回方向に空気が吹き出され、床面に形成された排気口から排出しているので、塗布ブース内では、被塗物に向かって噴霧された塗布剤の周りに、ブースの周壁面に沿って旋回しながら下方に向かう筒型の旋回流が形成される。
このとき、旋回流は塗布ブースの中央部で旋回性が弱く旋回速度も遅いので、塗布機から噴霧された塗布材粒子が被塗物の周囲でゆっくり旋回し、被塗物と接触する時間及び機会が増え塗着効率が向上する。
また、塗布ブース周壁面は旋回する空気流で形成される空気層で覆われるので、塗布機から噴霧された塗料粒子が周壁面に向って飛散してきても、その旋回流により周壁面への付着が阻止されると同時に、その旋回流に乗って排気口から排出させることができる。
したがって、塗布ブース内に低風量のエアで塗布材粒子を確実に囲い込む筒型の旋回流を形成することができ、これによって塗布材粒子が塗布ブースの内壁に付着することを防止し、ランニングコスト及びメンテナンス性を向上させることができる。
According to the present invention, when the coating agent is sprayed from the coating machine disposed in the upper part of the coating booth toward the object to be coated in the lower part, the coating agent is formed at predetermined intervals along the peripheral wall surface of the coating booth. Since air is blown out in a swirling direction from a plurality of air supply slits and discharged from an exhaust port formed on the floor surface, in the coating booth, around the coating agent sprayed toward the object to be coated, A cylindrical swirling flow is formed while turning along the peripheral wall surface of the booth.
At this time, the swirl flow is weak in the central part of the coating booth and the swirl speed is slow, so that the coating material particles sprayed from the coating machine slowly swirls around the object to be coated, Opportunities increase and coating efficiency improves.
In addition, since the coating booth peripheral wall surface is covered with an air layer formed by a swirling air flow, even if paint particles sprayed from the coating machine are scattered toward the peripheral wall surface, the swirl flow adheres to the peripheral wall surface. At the same time, the swirl flow can be taken out and discharged from the exhaust port.
Therefore, it is possible to form a cylindrical swirl flow that reliably encloses the coating material particles in the coating booth with low air volume air, thereby preventing the coating material particles from adhering to the inner wall of the coating booth. Cost and maintainability can be improved.

本例では、塗布ブース内に低風量のエアで塗布材粒子を確実に囲い込む筒型の旋回流を形成することができ、これによって塗着効率を向上させると共に塗布材粒子が塗布ブースの内壁に付着することを防止し、ランニングコスト及びメンテナンス性を向上させるという課題を達成するために、塗布ブース内の上方に配された塗布機からその下方に配された被塗物に向かって噴霧される塗布材の周りに、ブース周壁面に沿って被塗物の周囲に空気を旋回させる旋回流を形成する給気系及び排気系を備えた塗布設備において、給気系として、旋回流の旋回方向に空気を吹き出させる複数の給気口がその旋回方向に沿ってブース周壁面に所定間隔で形成し、排気系として、塗布ブースの少なくとも底部に塗布ブース内の空気を排出する排気口を形成した。   In this example, it is possible to form a cylindrical swirl flow that reliably encloses the coating material particles with low air volume in the coating booth, thereby improving the coating efficiency and applying the coating material particles to the inner wall of the coating booth. In order to achieve the problem of improving the running cost and maintainability, the sprayer is sprayed from the coating machine disposed above the coating booth toward the object to be coated. In a coating facility equipped with an air supply system and an exhaust system that form a swirling flow that swirls air around the coating material around the booth peripheral wall surface, the swirling flow swirls as an air supply system. A plurality of air supply ports for blowing air in the direction are formed at predetermined intervals on the peripheral wall surface of the booth along the turning direction, and an exhaust port for discharging the air in the coating booth is formed at least at the bottom of the coating booth as an exhaust system It was.

図1は本発明に係る塗布設備の一例を示す概略説明図、図2は塗布ブースに形成された給気スリットを示す説明図、図3は天井部に形成された排気スリットを示す説明図、図4は給気スリットに配された整流板を示す説明図、図5は塗料粒子に作用する力を模式的に示す説明図、図6は塗布用ブースの他の実施形態を示す説明図、図7はその風量調節手段の具体例を示す説明図、図8は処理手順を示すフローチャートである。   FIG. 1 is a schematic explanatory view showing an example of a coating facility according to the present invention, FIG. 2 is an explanatory view showing an air supply slit formed in a coating booth, and FIG. 3 is an explanatory view showing an exhaust slit formed in a ceiling portion, FIG. 4 is an explanatory view showing a rectifying plate arranged in the air supply slit, FIG. 5 is an explanatory view schematically showing the force acting on the paint particles, and FIG. 6 is an explanatory view showing another embodiment of the coating booth. FIG. 7 is an explanatory view showing a specific example of the air volume adjusting means, and FIG. 8 is a flowchart showing a processing procedure.

本例は、塗布材として塗料を用いる場合を示し、塗布設備1は、塗布ブース2内上方に配された静電塗装機(塗布機)Tからその下方に配された被塗物Wに向かって噴霧された塗布材の周りに、ブース周壁面2Sに沿って被塗物Wの周囲に空気を旋回させる旋回流を形成する給気系3S及び排気系3Eを備えている。   This example shows the case where a coating material is used as the coating material, and the coating equipment 1 is directed from the electrostatic coating machine (coating machine) T disposed above the coating booth 2 to the workpiece W disposed below it. An air supply system 3S and an exhaust system 3E that form a swirling flow for swirling air around the article to be coated W along the booth peripheral wall surface 2S are provided around the sprayed coating material.

塗装ブース2は、周壁面2Sが円筒状に形成されると共に、天井部2Tがドーム状に形成され、天井部2Tの中央に塗装機Tの位置制御を行う塗装ロボットRが取り付けられ、そのウィービングアームの先端に静電塗装機Tが取り付けられている。
また、塗装ブース2の底部2Bは、下方に向かって縮径する漏斗状に形成され、底部2Bと周壁面2Sの間には絶縁体4が介装され、塗装機T及び周壁面2Sに高電圧(例えば−40〜60kV)が印加され、被塗物W及び底部2Bがアースに接続されている。
The painting booth 2 has a peripheral wall surface 2S formed in a cylindrical shape, a ceiling portion 2T formed in a dome shape, and a painting robot R for controlling the position of the painting machine T attached to the center of the ceiling portion 2T. An electrostatic coating machine T is attached to the tip of the arm.
The bottom 2B of the painting booth 2 is formed in a funnel shape with a diameter decreasing downward, and an insulator 4 is interposed between the bottom 2B and the peripheral wall surface 2S. A voltage (for example, −40 to 60 kV) is applied, and the workpiece W and the bottom 2B are connected to the ground.

排気系3Sは、空調装置(図示せず)から空調空気が供給される陽圧の給気室8が周壁面2Sの外周部に形成されると共に、該給気室5内の空調空気を塗装ブース2内に供給する複数の給気スリット(給気口)6…を備えている。
給気スリット6…は、旋回流の旋回方向に空気を吹き出すように、その旋回方向に沿ってブース周壁面2Sに所定間隔で形成されている。
本例では、円筒状の周壁面2Sに、上下方向に延びる四つの段差7…がその段差面7a…を旋回方向前向きにして周方向に沿って所定間隔(中心角90°の等間隔)で形成されている(図2参照)。
そして、各段差面7aには、旋回方向(図2で見て時計回り)に空気を吹き出す給気スリット5が形成されると共に、各給気スリット6には、旋回方向に沿って水平に空気を吹き出させる整流板8が配されている(図4参照)。
In the exhaust system 3S, a positive pressure air supply chamber 8 to which conditioned air is supplied from an air conditioner (not shown) is formed on the outer peripheral portion of the peripheral wall surface 2S, and the conditioned air in the air supply chamber 5 is painted. A plurality of air supply slits (air supply ports) 6 to be supplied into the booth 2 are provided.
The air supply slits 6 are formed at predetermined intervals on the booth peripheral wall surface 2S along the swirling direction so as to blow out air in the swirling direction of the swirling flow.
In this example, four steps 7 extending in the vertical direction are formed on the cylindrical peripheral wall surface 2S with the step surfaces 7a facing forward in the turning direction at predetermined intervals along the circumferential direction (equal intervals of 90 ° central angle). It is formed (see FIG. 2).
In addition, air supply slits 5 for blowing air in the turning direction (clockwise as viewed in FIG. 2) are formed on each stepped surface 7a, and each air supply slit 6 has air horizontally extending along the turning direction. Is arranged (see FIG. 4).

排気系3Eは、塗装ブース2の底部2Bの下方に形成された排気室9と、漏斗状に縮径する底部2Bの下端に形成された排気口10を備えている。
塗装ブース2の底部2Bには、その漏斗状傾斜面に落下する塗料ミストを確実に捕捉できるようにその上端縁側から水が流されて水膜が形成されている。
そして、その水が排気口10から排気室9に落とし込まれる際に排気口10のベンチュリ作用により塗料ミストと水が気液接触された後、排気室9で気液分離されるようになっている。
The exhaust system 3E includes an exhaust chamber 9 formed below the bottom 2B of the painting booth 2, and an exhaust port 10 formed at the lower end of the bottom 2B that is reduced in a funnel shape.
A water film is formed on the bottom 2B of the painting booth 2 by flowing water from the upper edge side so that the paint mist falling on the funnel-shaped inclined surface can be reliably captured.
When the water is dropped from the exhaust port 10 into the exhaust chamber 9, the paint mist and water are brought into gas-liquid contact by the venturi action of the exhaust port 10, and then the gas and liquid are separated in the exhaust chamber 9. Yes.

なお、天井部2Tにも、その外側にも排気室11が形成されると共に、前記給気スリット6…から吹き出されて塗装ブース2内に形成された旋回流のうち、ブース上方の旋回流を外部へ案内する複数の排気スリット12…が旋回方向に沿って所定間隔で形成されている。
本例では、天井部2Tに、上下方向に延びる段差13がその段差面13aを旋回方向後向きにして周方向に沿って所定間隔(中心角90°の等間隔)で形成され、各段差面13a…に反旋回方向(図2で見て反時計回り)に開口する排気スリット12…が形成されている。
An exhaust chamber 11 is formed on both the ceiling 2T and the outside thereof, and the swirl flow above the booth out of the swirl flow blown out of the supply slits 6 and formed in the painting booth 2 is shown. A plurality of exhaust slits 12 are guided at predetermined intervals along the turning direction.
In this example, a step 13 extending in the vertical direction is formed on the ceiling portion 2T at a predetermined interval (equal interval of a central angle of 90 °) along the circumferential direction with the step surface 13a facing backward in the turning direction, and each step surface 13a. Are formed with exhaust slits 12 that open in the anti-turning direction (counterclockwise as viewed in FIG. 2).

そして、各排気室9及び11が、排気ダクト14及び15を介して排気ファン16に接続されており、天井部2Tの排気室11に接続された排気ダクト15にはダンパ17が介装されている。   The exhaust chambers 9 and 11 are connected to an exhaust fan 16 via exhaust ducts 14 and 15, and a damper 17 is interposed in the exhaust duct 15 connected to the exhaust chamber 11 of the ceiling 2T. Yes.

以上が本発明の一構成例であって、次にその作用について説明する。
排気ファン16を起動すると、排気室9、11が陰圧となるため、塗装ブース2内の空気が排気スリット12…及び排気口10から排出されて塗装ブース2が陰圧となり、給気室5から周壁面2Sに形成された給気スリット6…を介して空調空気が塗装ブース2内に吸い込まれるように流入する。
The above is one configuration example of the present invention, and the operation thereof will be described next.
When the exhaust fan 16 is activated, the exhaust chambers 9 and 11 become negative pressure, so the air in the painting booth 2 is discharged from the exhaust slits 12 and the exhaust port 10, and the painting booth 2 becomes negative pressure and the air supply chamber 5. Through the supply slits 6 formed in the peripheral wall surface 2S, the conditioned air flows into the painting booth 2 so as to be sucked.

旋回方向を上方から見て(図2参照)で見て時計回りとすると、各給気スリット6…は時計回り前向きに形成された段差面7aに設けられて、時計回り前向きに開口されているので、給気室5から塗装ブース2内に流入する空気は、塗装ブース2内に向って時計回りに吹き出される。
また、給気スリット6には整流板8が配されているので、塗装ブース2内に向かって水平方向に空気が吹き出された後、旋回しながら底部2Bの排気口10又は天井部2Tの排気スリット12に向う流れが形成される。
When the turning direction is viewed from above (see FIG. 2) and clockwise, each air supply slit 6 is provided on a step surface 7a formed in a clockwise direction and is opened in a clockwise direction. Therefore, the air flowing into the painting booth 2 from the air supply chamber 5 is blown out clockwise toward the painting booth 2.
Further, since the air supply slit 6 is provided with the rectifying plate 8, after the air is blown horizontally toward the inside of the coating booth 2, the air is exhausted from the exhaust port 10 of the bottom 2B or the ceiling 2T while turning. A flow toward the slit 12 is formed.

このとき、上段の排気室12に接続された排気ダクト14に介装されたダンパ17を調整して、排気ダクト14及び15を介して排出される排気風量比を例えば1:10程度にすれば、給気スリット6から塗装ブース2に吹き出した空気のほとんどが旋回しながら底部2Bの排気口10から排出される。
また、天井部2T近傍の空気は、下方へ向かう空気流と同じ方向に旋回しながら、天井部2Tに形成された排気スリット9から排出される。
これにより、塗装ブース2の天井面2T、周壁面2S、底面2Bの全表面には、旋回して流れる空気層が形成されることとなる。
At this time, if the damper 17 interposed in the exhaust duct 14 connected to the upper exhaust chamber 12 is adjusted so that the exhaust air volume ratio discharged through the exhaust ducts 14 and 15 is, for example, about 1:10. Most of the air blown from the supply slit 6 to the painting booth 2 is discharged from the exhaust port 10 of the bottom 2B while turning.
Moreover, the air in the vicinity of the ceiling portion 2T is exhausted from the exhaust slit 9 formed in the ceiling portion 2T while turning in the same direction as the air flow directed downward.
Thus, an air layer that swirls and flows is formed on all surfaces of the ceiling surface 2T, the peripheral wall surface 2S, and the bottom surface 2B of the painting booth 2.

この状態で、塗装機T及び周壁面2Sに負の高電圧を印加し、被塗物W及び底部2Bをアース電位(反対極性)にして、塗装機Tから塗料を噴霧すると、塗料粒子はアース電位の被塗物Wに静電塗着される。
このとき、旋回する空気流は塗装機Tの中央部で旋回性が弱く旋回速度も遅いので、塗装機Tから噴霧された塗料粒子が被塗物Wの周囲でゆっくり旋回し、被塗物Wと接触する時間及び機会が増え塗着効率が大幅に向上する。
In this state, when a negative high voltage is applied to the coating machine T and the peripheral wall surface 2S, the coating object T and the bottom part 2B are set to the ground potential (opposite polarity), and the paint is sprayed from the coating machine T, the paint particles are grounded. Electrostatically applied to the workpiece W at the potential.
At this time, since the swirling air flow is weak in the central portion of the coating machine T and the turning speed is slow, the paint particles sprayed from the coating machine T slowly swirl around the coating object W, and the coating object W The time and opportunity for contact with the coating increases, and the coating efficiency is greatly improved.

また、塗装ブース室2の周壁面2Sは塗料粒子と同極性に帯電されているので、静電反発して塗料粒子が付着し難くなっているが、電気的に中性の塗料粒子が飛散してくるようなことがあっても、旋回して流れる空気層が形成されているので、その空気流により周壁面2Sへ塗料粒子の付着を確実に阻止することができる。
また、天上部2Tも塗料粒子と同極性に維持すれば、底部2Bがアース電位(反対極性)に維持されているので、オーバースプレーされた塗料粒子が天井部2Tに向って舞い上がることはなく、引力及び静電気力によって底部2Bに向って落下し、水膜で捕捉され、あるいは、旋回しながら流下する空気流に乗って排気口10から塗装ブース2の外部へ排出される。
Further, since the peripheral wall surface 2S of the painting booth chamber 2 is charged with the same polarity as the paint particles, the paint particles are difficult to adhere due to electrostatic repulsion, but the electrically neutral paint particles are scattered. Even if this happens, an air layer that swirls and flows is formed, so that the air flow can reliably prevent the coating particles from adhering to the peripheral wall surface 2S.
Also, if the top 2T is also maintained in the same polarity as the paint particles, the bottom 2B is maintained at the ground potential (opposite polarity), so the oversprayed paint particles will not rise toward the ceiling 2T, It falls toward the bottom 2B due to attractive force and electrostatic force, and is captured by a water film or rides on an airflow that flows down while turning, and is discharged from the exhaust port 10 to the outside of the painting booth 2.

図5は塗料粒子に作用する力を模式的に示す。
塗装機Tから噴霧された塗料粒子Pが周壁面2S近傍に達すると、周壁面2Sに沿って旋回する流れの方向を円で表したときにその接線方向に向かう力fと、塗装ブース2の底部2B中心に開口された排気口10から吸引することにより生ずる斜め下向きの力fの合力Fが斜め内側下向きに作用する。
また、塗料粒子Pは旋回することにより周壁面に近づく方向の遠心力fが生ずるが、遠心力に影響を及ぼす塗料粒子の質量はきわめて小さいので、その遠心力fを考慮しても、塗料粒子Pには周壁面2Sから離れる方向の合力Fが作用することとなり、周壁面2Sを塗料粒子Pと同極性に帯電させなくても、塗料粒子Pは周壁面2Sに付着しにくいことがわかる。
FIG. 5 schematically shows the force acting on the paint particles.
When the paint particles P sprayed from the coating machine T reach the vicinity of the peripheral wall surface 2S, when the direction of the flow swirling along the peripheral wall surface 2S is represented by a circle, the force f 1 directed in the tangential direction, and the coating booth 2 resultant force F 0 for oblique downward force f 2 from the bottom 2B center opening an exhaust port 10 caused by suction is applied obliquely inward downward.
Although the paint particles P is the direction of the centrifugal force f 3 to approach the peripheral wall surface caused by turning, since the mass of the impact paint particles to the centrifugal force is very small, even considering its centrifugal force f 3, A resultant force F 1 in a direction away from the peripheral wall surface 2S acts on the paint particle P, and the paint particle P is unlikely to adhere to the peripheral wall surface 2S without charging the peripheral wall surface 2S to the same polarity as the paint particle P. I understand.

このように、本例によれば、排気ファン16を稼動させるだけで、塗装ブース2と給気室5の差圧により比較的低風量のエアで塗料粒子を確実に囲い込む筒型の旋回流を形成することができ、これによって塗料粒子が塗装ブース2の周壁面2Sに付着することを防止し、ランニングコスト及びメンテナンス性を向上させることができる。   Thus, according to this example, the cylindrical swirling flow that reliably encloses the paint particles with a relatively low air volume due to the differential pressure between the painting booth 2 and the air supply chamber 5 only by operating the exhaust fan 16. As a result, the coating particles can be prevented from adhering to the peripheral wall surface 2S of the painting booth 2, and the running cost and maintainability can be improved.

図6〜図8は本発明にかかる塗布設備の他の実施形態を示す。図1〜4と共通する部分は同一符号を付して詳細説明を省略する。
本例の塗布設備21は、塗装ブース2の周壁面2Sに中心角90°間隔で形成された段差面7aのコーナに給気スリット22…が形成され、各スリット22から半径方向に対して約45°の角度で旋回方向に向けて水平に空気の吹き出すようになされている。
FIGS. 6-8 shows other embodiment of the coating equipment concerning this invention. Portions common to FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
In the coating equipment 21 of this example, air supply slits 22 are formed at the corners of the stepped surface 7a formed on the peripheral wall surface 2S of the coating booth 2 at intervals of 90 °, and the slits 22 extend approximately in the radial direction. Air is blown horizontally toward the turning direction at an angle of 45 °.

また、給気スリット22…には、その開口面積を可変制御して流入速度を調整することにより旋回状態を安定させる風速調整手段23が配され、塗装ブース2及び給気室5内の圧力を検出する圧力センサ24A…及び24Bの検出信号に基づき制御装置25から風速調整手段23に制御信号が出力される。
風速調整手段23は、図7に示すように、例えばエアシリンダ26により進退されるシャッター板27からなり、給気スリット22の流入口22aの開口面積を無段階で調整し得るようになされている。
Further, the air supply slits 22 are provided with wind speed adjusting means 23 that stabilizes the swirl state by variably controlling the opening area thereof and adjusting the inflow speed to control the pressure in the painting booth 2 and the air supply chamber 5. A control signal is output from the control device 25 to the wind speed adjusting means 23 based on the detection signals of the pressure sensors 24A.
As shown in FIG. 7, the wind speed adjusting means 23 includes a shutter plate 27 that is advanced and retracted by an air cylinder 26, for example, and can adjust the opening area of the inlet 22 a of the air supply slit 22 in a stepless manner. .

図8は制御装置25の処理手順を示すフローチャートである。
処理が開始されると、ステップSTP1で各圧力センサ24A…からの検出信号を平均処理して塗装ブース2の圧力を算出すると共に、圧力センサ24Bにより給気室5の圧力を測定し、これに基づいて塗装ブース2と給気室5の差圧が測定される。
ステップSTP2で差圧−開口データ変換テーブル28を参照し、ステップSTP3で開口データに応じた制御信号を各エアシリンダ26の駆動装置(図示せず)に対して出力し、給気スリット22の流入口22aの開口面積を調整する。
差圧−開口データ変換テーブル28には、塗装ブース2と給気室5の差圧に応じて、給気スリット22から一定風速の空気が吹き出される開口データが予め設定されている。
次いで、ステップSTP4でタイマを起動し、タイムラグを考慮した所定時間経過後に、ステップSTP1に戻って上述の処理を繰り返す。
FIG. 8 is a flowchart showing a processing procedure of the control device 25.
When the process is started, the detection signals from the pressure sensors 24A... Are averaged in step STP1 to calculate the pressure of the painting booth 2, and the pressure of the supply chamber 5 is measured by the pressure sensor 24B. Based on this, the differential pressure between the painting booth 2 and the air supply chamber 5 is measured.
In step STP2, the differential pressure / opening data conversion table 28 is referred to, and in step STP3, a control signal corresponding to the opening data is output to a drive device (not shown) of each air cylinder 26 to The opening area of the inlet 22a is adjusted.
In the differential pressure-opening data conversion table 28, opening data is set in advance so that air at a constant wind speed is blown out from the supply slit 22 in accordance with the differential pressure between the painting booth 2 and the supply chamber 5.
Next, in step STP4, a timer is started, and after a predetermined time has elapsed in consideration of the time lag, the process returns to step STP1 and the above-described processing is repeated.

例えば、塗装ブース2に大きな被塗物Wが搬入されると、塗装ブース2内の圧力損失が大きくなるので、排気ファン16を一定回転速度で回転していると排気風量が減少し、塗装ブース2内の圧力がプラス側に変化して、給気室5との差圧が減少する。
これにより、給気スリット22から吹き出される空気の風速が低化して旋回流が弱くなり過ぎると、塗装品質に悪影響を及ぼすおそれがある。
この場合、差圧に応じた最適な開口データが出力されて給気スリット22の開口部23aが絞られるので、風速が一定に維持され、塗装ブース2内で旋回する空気流の勢いも一定に維持され、ひいては塗装品質が一定に維持される。
For example, when a large workpiece W is carried into the painting booth 2, the pressure loss in the painting booth 2 increases, so that if the exhaust fan 16 is rotated at a constant rotational speed, the exhaust air volume decreases, and the painting booth The pressure in 2 changes to the plus side, and the differential pressure from the air supply chamber 5 decreases.
Thereby, if the wind speed of the air blown out from the air supply slit 22 is lowered and the swirl flow becomes too weak, the coating quality may be adversely affected.
In this case, since the optimum opening data corresponding to the differential pressure is output and the opening 23a of the supply slit 22 is throttled, the wind speed is maintained constant, and the momentum of the air flow swirling in the painting booth 2 is also constant. Maintained, and thus the coating quality is maintained constant.

また、塗装ブース2に小さな被塗物Wが搬入されると、塗装ブース2内の圧力損失が小さくなるので、排気ファン16を一定回転速度で回転していると排気風量が増加し、塗装ブース2内の圧力がマイナス側に変化して、給気室5との差圧が増加する。
これにより、給気スリット22から吹き出される空気の風速が上昇して旋回流が強くなり過ぎると、塗装品質に悪影響を及ぼすおそれがある。
この場合、差圧に応じた最適な開口データが出力されて給気スリット22の開口部23aが広がるので、風速が一定に維持され、塗装ブース2内で旋回する空気流の勢いも一定に維持され、ひいては塗装品質が一定に維持される。
Further, when a small work W is loaded into the painting booth 2, the pressure loss in the painting booth 2 is reduced. Therefore, if the exhaust fan 16 is rotated at a constant rotational speed, the exhaust air volume increases and the painting booth is increased. The pressure in 2 changes to the minus side, and the differential pressure with the air supply chamber 5 increases.
As a result, if the wind speed of the air blown out from the air supply slit 22 increases and the swirl flow becomes too strong, the coating quality may be adversely affected.
In this case, optimum opening data corresponding to the differential pressure is output and the opening 23a of the supply slit 22 is widened, so that the wind speed is maintained constant and the momentum of the air flow swirling in the painting booth 2 is also maintained constant. As a result, the coating quality is kept constant.

なお上述の説明では、塗布材として塗料を用いる塗布設備に適用した場合について説明したが、本発明はこれに限らず、塗布材として塗油剤や接着剤を用いてこれらを被塗物に塗着させる塗布設備に適用することもできる。
また、方形の被塗物など、空気の旋回方向により塗膜厚さの偏りを生ずる場合は、旋回方向の異なる二つの塗装ブースを連続して設け、各塗装ブースで段階的に塗装することにより塗膜厚さの偏りを相殺することができる。
In the above description, the case where the present invention is applied to a coating facility using a paint as a coating material has been described. However, the present invention is not limited to this, and an oil coating agent or an adhesive is used as a coating material to apply them to an object. It can also be applied to coating equipment.
In addition, when the thickness of the coating film is uneven depending on the swirling direction of air, such as a rectangular object to be coated, two coating booths with different swirling directions are provided in succession, and coating is performed in stages at each coating booth. The uneven thickness of the coating film can be offset.

上述の説明では、塗装ブース2として、周壁面2Sが円筒状に形成されている場合について説明したが、本発明はこれに限らず、ブース周壁面に沿って被塗物の周囲に旋回流を形成し得る形状であれば、周壁面が略正多角形状の筒状体や、その頂点部分をR仕上げした形状など任意の形状に形成することができる。
また、給気口としてが給気スリット6に限らず、周壁面縦方向に沿って多数の給気ノズルを並説する場合でもよい。
In the above description, the case where the peripheral wall surface 2S is formed in a cylindrical shape as the coating booth 2 has been described. However, the present invention is not limited to this, and a swirling flow is generated around the object to be coated along the peripheral wall surface of the booth. As long as the shape can be formed, it can be formed into an arbitrary shape such as a cylindrical body having a substantially regular polygonal peripheral wall surface or an R-finished shape of the apex portion thereof.
Further, the air supply port is not limited to the air supply slit 6, and a number of air supply nozzles may be described in parallel along the circumferential wall longitudinal direction.

以上述べたように、本発明は、塗布ブース内で旋回する空気流を形成した状態で、被塗物に対して塗装を行う塗布用ブースの用途に適用することができる。   As described above, the present invention can be applied to the application of an application booth that performs coating on an object to be coated in a state in which a swirling air flow is formed in the application booth.

本発明に係る塗布用ブースの一例を示す概略説明図。Schematic explanatory drawing which shows an example of the booth for application | coating which concerns on this invention. 塗布ブースに形成された給気スリットを示す説明図。Explanatory drawing which shows the air supply slit formed in the application | coating booth. 天井部に形成された排気スリットを示す説明図。Explanatory drawing which shows the exhaust slit formed in the ceiling part. 給気スリットに配された整流板を示す説明図。Explanatory drawing which shows the baffle plate distribute | arranged to the air supply slit. 塗料粒子に作用する力を模式的に示す説明図。Explanatory drawing which shows typically the force which acts on coating-material particle | grains. 塗布用ブースの他の実施形態を示す説明図。Explanatory drawing which shows other embodiment of the booth for application | coating. その風量調節手段の具体例を示す説明図。Explanatory drawing which shows the specific example of the air volume adjustment means. 処理手順を示すフローチャート。The flowchart which shows a process sequence.

符号の説明Explanation of symbols

1 塗布設備
2 塗布ブース
2S ブース周壁面
2T 天井部
2B 底部
T 静電塗装機(塗布機)
W 被塗物
3S 給気系
3E 排気系
4 絶縁体
5 給気室
6 給気スリット(給気口)
8 整流板
9 排気室
10 排気口
11 排気室
12 排気スリット





1 coating equipment 2 coating booth 2S booth peripheral wall surface 2T ceiling 2B bottom T electrostatic coating machine (coating machine)
W
3S Air supply system 3E Exhaust system 4 Insulator 5 Air supply chamber 6 Air supply slit (Air supply port)
8 Rectification plate 9 Exhaust chamber 10 Exhaust port 11 Exhaust chamber 12 Exhaust slit





Claims (8)

塗布ブース内上方に配された塗布機からその下方に配された被塗物に向かって噴霧される塗布材の周りに、ブース周壁面に沿って被塗物の周囲に空気を旋回させる旋回流を形成する給気系及び排気系を備えた塗布設備において、
前記給気系は、旋回流の旋回方向に空気を吹き出させる複数の給気口がその旋回方向に沿ってブース周壁面に所定間隔で形成され、
前記排気系は、塗布ブースの少なくとも底部に塗布ブース内の空気を排出する排気口が形成されたことを特徴とする塗布設備。
A swirl flow that swirls air around the coating material around the coating material sprayed from the coating machine disposed above the coating booth toward the coating material disposed below the coating booth. In a coating facility equipped with an air supply system and an exhaust system to form
In the air supply system, a plurality of air supply ports for blowing air in the swirling direction of the swirling flow are formed at predetermined intervals on the peripheral wall surface of the booth along the swirling direction,
The exhaust system has an exhaust port for discharging air in the coating booth at least at the bottom of the coating booth.
前記塗布ブースの底部が下方に向かって縮径する漏斗状に形成され、その下端側に排気口が形成された請求項1記載の塗布設備。   The coating equipment according to claim 1, wherein a bottom portion of the coating booth is formed in a funnel shape having a diameter reduced downward, and an exhaust port is formed on a lower end side thereof. 前記給気口が、ブース周壁面に形成された上下方向に延びる給気スリットである請求項1記載の塗布設備。   The coating facility according to claim 1, wherein the air supply port is an air supply slit formed in a booth peripheral wall surface and extending in a vertical direction. 前記給気スリットに、旋回方向に沿って水平に空気を吹き出させる整流板が配された請求項3記載の塗布設備。   The coating equipment according to claim 3, wherein a rectifying plate that blows air horizontally along the swirl direction is arranged in the air supply slit. 前記塗布ブースの天井部に、前記給気口から吹き出されて形成された旋回流のうち、ブース上方の旋回流を外部へ案内する複数の排気スリットが旋回方向に沿って所定間隔で形成されてなる請求項1記載の塗布設備。   A plurality of exhaust slits for guiding the swirl flow above the booth to the outside of the swirl flow formed by blowing out from the air supply port are formed at predetermined intervals along the swirl direction in the ceiling portion of the coating booth. The coating equipment according to claim 1. 前記給気系には、塗布ブースの周壁面外側に空調空気が供給される給気室が形成されると共に、当該給気室は前記給気口を介してブース内に連通され、前記排気系には、排気口から塗布ブース内のエアを排気することにより塗布ブース内を給気室に比して陰圧に維持する排気ファンを備えた請求項1記載の塗布設備。   In the air supply system, an air supply chamber to which conditioned air is supplied is formed outside the peripheral wall surface of the coating booth, and the air supply chamber communicates with the booth through the air supply port. The coating equipment according to claim 1, further comprising an exhaust fan that exhausts the air in the coating booth from the exhaust port to maintain a negative pressure in the coating booth compared to the air supply chamber. 前記塗布機として静電塗布機が用いられ、前記塗布ブースの少なくとも周壁面が塗料粒子と同極性に帯電されて成る請求項1記載の塗布設備。   The coating equipment according to claim 1, wherein an electrostatic coating machine is used as the coating machine, and at least a peripheral wall surface of the coating booth is charged with the same polarity as the paint particles. 前記給気系に、給気口から吹き出される空気の風速調節器と、塗布ブース内の圧力を検出する圧力センサの検出信号に基づいて前記風速調節機をコントロールする制御装置を備えた請求項1記載の塗布設備。

The air supply system includes a wind speed controller for air blown from an air supply port, and a control device that controls the air speed controller based on a detection signal of a pressure sensor that detects a pressure in a coating booth. The coating equipment according to 1.

JP2007055356A 2007-03-06 2007-03-06 Application equipment Expired - Fee Related JP4988384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055356A JP4988384B2 (en) 2007-03-06 2007-03-06 Application equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055356A JP4988384B2 (en) 2007-03-06 2007-03-06 Application equipment

Publications (2)

Publication Number Publication Date
JP2008212863A true JP2008212863A (en) 2008-09-18
JP4988384B2 JP4988384B2 (en) 2012-08-01

Family

ID=39833542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055356A Expired - Fee Related JP4988384B2 (en) 2007-03-06 2007-03-06 Application equipment

Country Status (1)

Country Link
JP (1) JP4988384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031765A (en) * 2019-08-27 2021-03-01 杭州吉虹日用品有限公司 Automatic accommodation type preservation shelf for metal mold rust prevention

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077437A (en) * 1973-11-13 1975-06-24
JPS5128128A (en) * 1974-09-04 1976-03-09 Nippon Paint Co Ltd
JPS5169540A (en) * 1974-12-13 1976-06-16 Uesuton Kogyo Kk
JPH03178368A (en) * 1989-12-07 1991-08-02 Trinity Ind Corp Controlling method for airing of coating booth with air supply means
JPH04256458A (en) * 1991-02-12 1992-09-11 Taikisha Ltd Coating facility
JPH06126218A (en) * 1992-10-19 1994-05-10 Taikisha Ltd Coating booth
JPH11300248A (en) * 1998-04-27 1999-11-02 Trinity Ind Corp Apparatus for controlling gas discharge out of coating booth equipped with gas supply and program recording medium for controlling gas discharge
JP2002273286A (en) * 2001-03-22 2002-09-24 Nippon Paint Plant Engineering Co Ltd Coating booth for water soluble coating material which is provided with waste gas circulation passage
JP2003245336A (en) * 2002-02-26 2003-09-02 Nitta Ind Corp Trapping system for floating pathogenic germs room
JP2005087960A (en) * 2003-09-19 2005-04-07 Trinity Ind Corp Method and apparatus for coating
JP2008034648A (en) * 2006-07-28 2008-02-14 Dainippon Screen Mfg Co Ltd Substrate processing device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077437A (en) * 1973-11-13 1975-06-24
JPS5128128A (en) * 1974-09-04 1976-03-09 Nippon Paint Co Ltd
JPS5169540A (en) * 1974-12-13 1976-06-16 Uesuton Kogyo Kk
JPH03178368A (en) * 1989-12-07 1991-08-02 Trinity Ind Corp Controlling method for airing of coating booth with air supply means
JPH04256458A (en) * 1991-02-12 1992-09-11 Taikisha Ltd Coating facility
JPH06126218A (en) * 1992-10-19 1994-05-10 Taikisha Ltd Coating booth
JPH11300248A (en) * 1998-04-27 1999-11-02 Trinity Ind Corp Apparatus for controlling gas discharge out of coating booth equipped with gas supply and program recording medium for controlling gas discharge
JP2002273286A (en) * 2001-03-22 2002-09-24 Nippon Paint Plant Engineering Co Ltd Coating booth for water soluble coating material which is provided with waste gas circulation passage
JP2003245336A (en) * 2002-02-26 2003-09-02 Nitta Ind Corp Trapping system for floating pathogenic germs room
JP2005087960A (en) * 2003-09-19 2005-04-07 Trinity Ind Corp Method and apparatus for coating
JP2008034648A (en) * 2006-07-28 2008-02-14 Dainippon Screen Mfg Co Ltd Substrate processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031765A (en) * 2019-08-27 2021-03-01 杭州吉虹日用品有限公司 Automatic accommodation type preservation shelf for metal mold rust prevention

Also Published As

Publication number Publication date
JP4988384B2 (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US7971805B2 (en) Atomizer
JP5571385B2 (en) Operating method for sprayer and corresponding painting equipment
ES2424822T3 (en) Atomizer head for a spray gun
US20180021799A1 (en) Paint overspray removal shroud
JP4988384B2 (en) Application equipment
JP2015205228A (en) Coating booth apparatus
WO2007000853A1 (en) Bell type coating device
JP4194911B2 (en) Coating method and coating apparatus
US20210101171A1 (en) Coating booth and coating method
JP4727339B2 (en) Paint booth with air supply
JP6875700B2 (en) painting booth
JP6156062B2 (en) Powder coating apparatus and powder coating method
JP2009113019A (en) Rotary spray coating method and apparatus for liquid
JPH11221516A (en) Coating method
JPS62277173A (en) Painting booth
CN208131345U (en) A kind of unilateral side water curtain separate type water whirling paint-spraying equipment
JP2002219385A (en) Device and method for electrostatic coating
JP3790608B2 (en) Powder paint booth
JP2000070830A (en) Coating
JPS6143572Y2 (en)
JP2000102749A (en) Spray gun for electrostatic coating
JP2012232224A (en) Non-coated coating material recovery system, coating apparatus and method for recovering non-coated coating material
JP2001232274A (en) Method for forming coating film
JP2001046925A (en) Rotary bell type coating device
JPH08112560A (en) Coating method by mist of coating solution and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees