JP2008212022A - Device and method for separating stem cells originated from tissues - Google Patents

Device and method for separating stem cells originated from tissues Download PDF

Info

Publication number
JP2008212022A
JP2008212022A JP2007051609A JP2007051609A JP2008212022A JP 2008212022 A JP2008212022 A JP 2008212022A JP 2007051609 A JP2007051609 A JP 2007051609A JP 2007051609 A JP2007051609 A JP 2007051609A JP 2008212022 A JP2008212022 A JP 2008212022A
Authority
JP
Japan
Prior art keywords
tissue
derived stem
stem cells
red blood
cell suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007051609A
Other languages
Japanese (ja)
Inventor
Yoshinori Matsubara
吉紀 松原
Yoshiko Masuda
芳子 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007051609A priority Critical patent/JP2008212022A/en
Publication of JP2008212022A publication Critical patent/JP2008212022A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To readily and rapidly remove erythrocytes from cellular suspension containing stem cells that originates from a tissue and the erythrocytes. <P>SOLUTION: This device for separating the stem cells C that originate from the tissue is provided with a flow passage 3 for making the cellular suspension A flow that contains the stem cells C that originate from the tissues and erythrocytes B, and is installed with a multiple recessed parts 6, which are narrower than the particle diameter of the stem cells C that originate from the tissues and which are larger than the particle diameter of the erythrocytes B, at the bottom surface 3a of the flow passage 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、組織由来幹細胞の分離装置および分離方法に関するものである。   The present invention relates to an apparatus and method for separating tissue-derived stem cells.

従来、生体組織を分解して得られる組織由来幹細胞から赤血球を分離除去する装置として、赤血球より大きく組織由来幹細胞より小さい網目を有するフィルタを備えたものが知られている(例えば、特許文献1参照。)。   2. Description of the Related Art Conventionally, as an apparatus for separating and removing red blood cells from tissue-derived stem cells obtained by decomposing biological tissue, a device having a filter larger than red blood cells and smaller than tissue-derived stem cells is known (see, for example, Patent Document 1). .)

特開平4−6464号公報JP-A-4-6464

しかしながら、特許文献1の装置は、フィルタに細胞懸濁液を一方向に通過させることにより、細胞懸濁液内に含有される組織由来幹細胞をフィルタに捕捉させ、それより小さい赤血球を透過させるので、フィルタに捕捉された組織由来幹細胞を回収するには、フィルタに対して逆方向に洗浄液を流通させる工程を行う必要があり、手続きが煩雑であるという問題がある。   However, the device of Patent Document 1 allows the tissue-derived stem cells contained in the cell suspension to be captured by the filter by allowing the cell suspension to pass through the filter in one direction and allows smaller red blood cells to pass therethrough. In order to collect the tissue-derived stem cells captured by the filter, it is necessary to perform a process of flowing a washing solution in the reverse direction with respect to the filter, and there is a problem that the procedure is complicated.

本発明は上述した事情に鑑みてなされたものであって、組織由来幹細胞と赤血球とを含む細胞懸濁液から、簡易かつ迅速に赤血球を除去することができる組織由来幹細胞の分離装置および分離方法を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and is a tissue-derived stem cell separation device and method that can easily and quickly remove red blood cells from a cell suspension containing tissue-derived stem cells and red blood cells. The purpose is to provide.

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、組織由来幹細胞および赤血球を含む細胞懸濁液を流動させる流路を備え、該流路の底面に、組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな複数の凹部が設けられている組織由来幹細胞の分離装置を提供する。
本発明によれば、流路に沿って組織由来幹細胞および赤血球を含む細胞懸濁液を流動させると、流路の底面に設けられた複数の凹部内に赤血球が入り込んで捕捉され、凹部より粒径が大きな組織由来幹細胞は凹部に入ることなく流動し続ける。したがって、流路を流動する間に、細胞懸濁液内の赤血球を除外し、組織由来幹細胞のみを分離回収することが可能となる。
In order to achieve the above object, the present invention provides the following means.
The present invention comprises a channel for flowing a cell suspension containing tissue-derived stem cells and red blood cells, and a plurality of recesses that are narrower than the particle size of tissue-derived stem cells and larger than the particle size of red blood cells are provided on the bottom surface of the channel. An apparatus for separating tissue-derived stem cells is provided.
According to the present invention, when a cell suspension containing tissue-derived stem cells and red blood cells is flowed along a flow path, red blood cells enter and are captured in a plurality of concave portions provided on the bottom surface of the flow path, A tissue-derived stem cell having a large diameter continues to flow without entering the recess. Therefore, while flowing through the flow path, red blood cells in the cell suspension can be excluded, and only tissue-derived stem cells can be separated and recovered.

上記発明においては、前記凹部が、前記細胞懸濁液の流通方向に交差する方向に延び、組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな溝幅を有する溝であり、流通方向に間隔をあけて複数配置されている構成としてもよい。
このように構成することで、流動中の細胞懸濁液は流通方向に交差する方向に延びる溝からなる凹部を必ず横切ることとなるので、赤血球を効率よく捕捉することができる。また、溝を流通方向に間隔をあけて複数設けることにより、赤血球を捕捉する確率をさらに向上して、効率的に組織由来幹細胞を分離回収することができる。
In the above invention, the recess is a groove that extends in a direction intersecting the flow direction of the cell suspension, has a groove width that is narrower than the particle size of tissue-derived stem cells and larger than the particle size of red blood cells, It is good also as a structure arrange | positioned at intervals.
With this configuration, the flowing cell suspension always crosses the recess formed by a groove extending in the direction crossing the flow direction, so that red blood cells can be efficiently captured. In addition, by providing a plurality of grooves at intervals in the flow direction, the probability of capturing red blood cells can be further improved, and tissue-derived stem cells can be efficiently separated and recovered.

また、上記発明においては、前記溝の溝幅が、前記流路に面する開口部におけるより、深さ方向に進行した位置において広く形成されていてもよい。
このように構成することで、溝内に一旦捕捉された赤血球が溝外に流れ出にくくすることができ、組織由来幹細胞からより確実に赤血球を分離することができる。
Moreover, in the said invention, the groove width of the said groove | channel may be widely formed in the position which advanced in the depth direction rather than in the opening part which faces the said flow path.
By comprising in this way, the red blood cell once trapped in the groove can be made difficult to flow out of the groove, and the red blood cell can be more reliably separated from the tissue-derived stem cell.

また、上記発明においては、前記凹部が、多数の孔である構成としてもよい。
このように構成することで、凹部が溝である場合と同様に、流動中の細胞懸濁液内に含まれる赤血球が孔内にそれぞれ入り込んで捕捉され、孔より大きな粒径の組織由来幹細胞については捕捉されることなく流動し続ける。したがって、細胞懸濁液から赤血球を除去して組織由来幹細胞を分離回収することができる。
Moreover, in the said invention, it is good also as a structure where the said recessed part is many holes.
By configuring in this way, as in the case where the recess is a groove, the red blood cells contained in the flowing cell suspension enter and are respectively captured in the pores, and the tissue-derived stem cells having a particle size larger than the pores. Continues to flow without being trapped. Therefore, red blood cells can be removed from the cell suspension, and tissue-derived stem cells can be separated and recovered.

また、上記発明においては、前記孔が流通方向に交差する方向に間隔をあけて形成された孔列を流通方向に間隔をあけて複数配置され、各列の孔の位置が流通方向に交差する方向にずれて配置されている。
このように構成することで、流動する細胞懸濁液内の赤血球が孔に遭遇する確率を向上し、より確実に捕捉して分離除去することができる。流動方向から見て、単一の孔列においては孔と孔との間に隙間が存在するが、その隙間の延長線上に他の孔列の孔が存在していれば、隙間を通り抜けた赤血球を他の孔で捕捉することができる。例えば、孔が千鳥配列されていればよい。
Further, in the above invention, a plurality of hole rows formed at intervals in the direction in which the holes intersect the flow direction are arranged at intervals in the flow direction, and the positions of the holes in each row intersect the flow direction. They are displaced in the direction.
By comprising in this way, the probability that the erythrocytes in the flowing cell suspension will encounter the pores can be improved, and more reliably captured and separated and removed. When viewed from the flow direction, there is a gap between the holes in a single hole row, but if there are holes in other hole rows on the extended line of the gap, red blood cells that have passed through the gap Can be captured by other holes. For example, the holes may be arranged in a staggered manner.

また、上記発明においては、前記孔の口径が、前記流路に面する開口部におけるより、深さ方向に進行した位置において大きく形成されている構成としてもよい。
このように構成することで、孔内に一旦捕捉された赤血球が孔外に流れ出にくくすることができ、組織由来幹細胞からより確実に赤血球を分離することができる。
Moreover, in the said invention, it is good also as a structure by which the aperture diameter of the said hole is largely formed in the position which advanced in the depth direction rather than in the opening part which faces the said flow path.
By comprising in this way, the red blood cell once trapped in the hole can be made difficult to flow out of the hole, and the red blood cell can be more reliably separated from the tissue-derived stem cell.

また、本発明は、組織由来幹細胞および赤血球を含む細胞懸濁液を、底面に組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな複数の凹部が設けられている流路に流動させる組織由来幹細胞の分離方法を提供する。
本発明によれば、流路に沿って組織由来幹細胞および赤血球を含む細胞懸濁液を流動させると、流路の底面に設けられた複数の凹部内に赤血球が入り込んで捕捉され、凹部より粒径が大きな組織由来幹細胞は凹部に入ることなく流動し続ける。したがって、流路を流動する間に、細胞懸濁液内の赤血球を除外し、組織由来幹細胞のみを分離回収することが可能となる。
Further, the present invention provides a tissue in which a cell suspension containing tissue-derived stem cells and erythrocytes is flowed into a flow path having a plurality of recesses that are narrower than the particle size of tissue-derived stem cells and larger than the particle size of erythrocytes on the bottom surface. A method for isolating a stem cell is provided.
According to the present invention, when a cell suspension containing tissue-derived stem cells and red blood cells is flowed along a flow path, red blood cells enter and are captured in a plurality of concave portions provided on the bottom surface of the flow path, A tissue-derived stem cell having a large diameter continues to flow without entering the recess. Therefore, while flowing through the flow path, red blood cells in the cell suspension can be excluded, and only tissue-derived stem cells can be separated and recovered.

また、本発明は、組織由来幹細胞および赤血球を含む細胞懸濁液を、底面に組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな複数の凹部が設けられている容器内に貯留し、所定時間経過後に細胞懸濁液を流動させる組織由来幹細胞の分離方法を提供する。
本発明によれば、容器内に細胞懸濁液を貯留して静置することにより、細胞懸濁液に含まれる組織由来幹細胞および赤血球が沈降し、赤血球が容器の底面に設けられた凹部内に入り込む。一方、組織由来幹細胞は凹部より大きい粒径を有しているので、凹部内に入り込むことができず、凹部外に配置される。したがって、所定時間経過後に細胞懸濁液を流動させると、赤血球が凹部に捕捉された状態に維持され、凹部外に配されている組織由来幹細胞が、赤血球から分離されて回収されることになる。
In addition, the present invention stores a cell suspension containing tissue-derived stem cells and erythrocytes in a container having a plurality of recesses that are narrower than the particle size of tissue-derived stem cells on the bottom surface and larger than the particle size of erythrocytes, Provided is a method for separating tissue-derived stem cells in which a cell suspension is allowed to flow after a predetermined time has elapsed.
According to the present invention, by storing the cell suspension in the container and allowing it to stand, the tissue-derived stem cells and red blood cells contained in the cell suspension settle, and the red blood cells are in the recess provided on the bottom surface of the container. Get in. On the other hand, since the tissue-derived stem cells have a larger particle size than the recesses, they cannot enter the recesses and are disposed outside the recesses. Therefore, when the cell suspension is flowed after a predetermined time has elapsed, the red blood cells are maintained in a state where they are captured in the recesses, and the tissue-derived stem cells arranged outside the recesses are separated from the red blood cells and collected. .

本発明によれば、組織由来幹細胞と赤血球とを含む細胞懸濁液から、簡易かつ迅速に赤血球を除去することができるという効果を奏する。   According to the present invention, it is possible to easily and quickly remove red blood cells from a cell suspension containing tissue-derived stem cells and red blood cells.

以下、本発明の一実施形態に係る組織由来幹細胞の分離装置および分離方法について、図1〜図 を参照して説明する。
本実施形態に係る組織由来幹細胞の分離装置1は、図1に示されるように、組織由来幹細胞、例えば、脂肪由来幹細胞と赤血球とを含む細胞懸濁液Aを貯留する第1の容器2と、該第1の容器2に接続された流路部材3と、該流路部材3に接続された第2の容器4とを備えている。
Hereinafter, a tissue-derived stem cell separation device and separation method according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the tissue-derived stem cell separation device 1 according to this embodiment includes a first container 2 that stores a tissue-derived stem cell, for example, a cell suspension A containing fat-derived stem cells and red blood cells. The flow path member 3 connected to the first container 2 and the second container 4 connected to the flow path member 3 are provided.

第1の容器2と流路部材3との間には、バルブ5が設けられ、該バルブ5が開放されると、第1の容器2から細胞懸濁液Aが流路部材3に流入して流動し、バルブ5が閉じられることにより、細胞懸濁液Aの流動が停止するようになっている。   A valve 5 is provided between the first container 2 and the flow path member 3. When the valve 5 is opened, the cell suspension A flows into the flow path member 3 from the first container 2. When the valve 5 is closed, the flow of the cell suspension A is stopped.

流路部材3は、図2に示されるように、平坦な底面3aを有する管状の部材であって、第1の容器2側から第2の容器4側(流通方向)に向かって漸次下降して配置されている。前記底面3aには、流路部材の長手方向に間隔をあけて、該長手方向に直交する方向に延びる複数の溝6が形成されている。   As shown in FIG. 2, the flow path member 3 is a tubular member having a flat bottom surface 3 a and gradually descends from the first container 2 side toward the second container 4 side (circulation direction). Are arranged. A plurality of grooves 6 extending in a direction orthogonal to the longitudinal direction are formed in the bottom surface 3a with an interval in the longitudinal direction of the flow path member.

これらの溝6は、例えば、8μmの溝幅寸法を有している。
また、溝6の深さ寸法は、8μm以上に設定されている。
例えば、脂肪組織から分離した細胞の粒径分布を測定すると、8μm以下と、10〜15μmの間に特徴的にピークが得られる。血球系の細胞は8μm以下であり、幹細胞は10〜15μmのピークに存在しているため、8μm以下の細胞を除去することにより脂肪組織由来幹細胞を分離回収することができることになる。
These grooves 6 have a groove width dimension of 8 μm, for example.
The depth dimension of the groove 6 is set to 8 μm or more.
For example, when the particle size distribution of cells separated from adipose tissue is measured, a characteristic peak is obtained between 8 μm or less and 10 to 15 μm. Blood cells are 8 μm or less, and stem cells are present at a peak of 10 to 15 μm. Therefore, adipose tissue-derived stem cells can be separated and recovered by removing cells of 8 μm or less.

バルブ5を開くことにより、第1の容器2から流路部材3に流入して該流路部材3中を流動する細胞懸濁液Aの流速は、遅ければ遅いほど好ましい。例えば、流速0.1〜100mm/sec、好ましくは1から50mm/sec、より好ましくは10〜20mm/secで流動させるようになっている。   It is preferable that the flow rate of the cell suspension A flowing into the flow path member 3 from the first container 2 and flowing through the flow path member 3 by opening the valve 5 is slower. For example, it is made to flow at a flow rate of 0.1 to 100 mm / sec, preferably 1 to 50 mm / sec, more preferably 10 to 20 mm / sec.

このように構成された本実施形態に係る組織由来幹細胞の分離装置1を用いた分離方法について以下に説明する。
第1の容器2に細胞懸濁液Aを貯留し、バルブ5を開放することにより、流路部材3内に細胞懸濁液Aを流入させ、流路部材3の底面3a上において細胞懸濁液Aをゆっくりと流動させる。
The separation method using the tissue-derived stem cell separation device 1 according to the present embodiment configured as described above will be described below.
By storing the cell suspension A in the first container 2 and opening the valve 5, the cell suspension A is caused to flow into the flow path member 3, and the cell suspension is suspended on the bottom surface 3 a of the flow path member 3. Flow liquid A slowly.

細胞懸濁液Aに含まれている細胞群は細胞懸濁液Aが流路部材3の底面3a上をゆっくりと流動する間に沈降して、流路部材3の底面3aに接触しながら流動していく。流路部材3の底面3aには複数の溝6が形成され、各溝6の溝幅寸法が8μmに設定されているので、図3に示されるように、8μm以下の粒径を有する赤血球Bは溝6内に落下し、10μm以上の粒径を有する脂肪由来幹細胞Cは、溝6に落下することなく流動し続ける。   The cell group contained in the cell suspension A settles while the cell suspension A slowly flows on the bottom surface 3a of the flow path member 3, and flows while contacting the bottom surface 3a of the flow path member 3. I will do it. A plurality of grooves 6 are formed on the bottom surface 3a of the flow path member 3, and the groove width dimension of each groove 6 is set to 8 μm. Therefore, as shown in FIG. 3, red blood cells B having a particle size of 8 μm or less. Falls into the groove 6 and the fat-derived stem cells C having a particle size of 10 μm or more continue to flow without falling into the groove 6.

その結果、細胞懸濁液Aが流路部材3を流動している間に細胞懸濁液A内の赤血球Bが溝6に捕捉されて行き、残った脂肪由来幹細胞Cが溝6に捕捉されることなく第2の容器4まで流動していく。特に、流路部材3には、細胞懸濁液Aの流動方向に間隔をあけて複数の溝6が設けられているので、細胞懸濁液A内の赤血球Bは高い確率でいずれかの溝6に捕捉されて脂肪由来幹細胞Cから分離除去される。これによって、細胞懸濁液A中から脂肪由来幹細胞Cを高純度に分離回収することができる。   As a result, the red blood cells B in the cell suspension A are captured in the grooves 6 while the cell suspension A flows through the flow path member 3, and the remaining fat-derived stem cells C are captured in the grooves 6. It flows to the 2nd container 4 without it. In particular, since the flow path member 3 is provided with a plurality of grooves 6 at intervals in the flow direction of the cell suspension A, the red blood cells B in the cell suspension A are likely to be in any groove. 6 and separated and removed from the adipose-derived stem cells C. As a result, the fat-derived stem cells C can be separated and recovered from the cell suspension A with high purity.

なお、本実施形態においては、流動部材3の平坦な底面3aに、赤血球Bの粒径より広く脂肪由来幹細胞Cの粒径より狭い溝幅の複数の溝6を流動方向に間隔をあけて複数配列することにしたが、これに代えて、図4に示されるように、円管状の流路部材3の内面に周方向に延びる複数の溝6を長手方向に間隔をあけて複数設けることにしてもよい。   In the present embodiment, a plurality of grooves 6 having a groove width that is larger than the particle size of red blood cells B and narrower than the particle size of fat-derived stem cells C are formed on the flat bottom surface 3a of the flow member 3 at intervals in the flow direction. In place of this, instead of this, as shown in FIG. 4, a plurality of grooves 6 extending in the circumferential direction are provided on the inner surface of the circular channel member 3 at intervals in the longitudinal direction. May be.

また、流動方向に複数配列された溝6に代えて、図5に示されるように、8μm以下の直径および深さを有する複数の孔7を形成してもよい。この場合には、図5に示されるように複数の孔7を隙間なく配列することにしてもよいし、図6に示されるように、千鳥配置して、流動方向から見て隙間をなくすことにしてもよい。   Further, instead of the plurality of grooves 6 arranged in the flow direction, as shown in FIG. 5, a plurality of holes 7 having a diameter and depth of 8 μm or less may be formed. In this case, the plurality of holes 7 may be arranged without gaps as shown in FIG. 5, or arranged in a staggered manner as shown in FIG. 6 to eliminate gaps when viewed from the flow direction. It may be.

また、上記溝6または孔7からなる凹部(以下、凹部6,7という。)においては、図7および図8に示されるように、流路部材3の底面3aにおける開口部よりも内側に向かって広くなる形状を有していることが好ましい。このようにすることで、凹部6,7内に一旦捕捉された赤血球Bを凹部6,7から飛び出さないように捕捉することが可能となる。   Further, in the concave portion (hereinafter referred to as the concave portions 6 and 7) formed of the groove 6 or the hole 7, as shown in FIG. 7 and FIG. 8, the inner side of the opening portion in the bottom surface 3a of the flow path member 3 is directed. It is preferable to have a wide shape. By doing so, the red blood cells B once captured in the recesses 6 and 7 can be captured so as not to jump out of the recesses 6 and 7.

また、本実施形態においては、2つの容器2,4と、これらの容器2,4を接続する流路部材3とを有する構成を採用したが、図9に示されるように、遠心分離に使用される遠沈管10の内面に、周方向に沿って延びる複数の溝11を形成することにしてもよい。
このようにすることで、遠心分離により分離された細胞を含む細胞懸濁液Aを遠沈管10からその内面を伝って流動させつつ排出することにより、赤血球Bを溝11に捕捉分離して、高純度の脂肪由来幹細胞Cを流出させることができるという利点がある。
Moreover, in this embodiment, although the structure which has the two containers 2 and 4 and the flow-path member 3 which connects these containers 2 and 4 was employ | adopted, as FIG. 9 shows, it uses for centrifugation. A plurality of grooves 11 extending along the circumferential direction may be formed on the inner surface of the centrifuge tube 10 to be formed.
In this way, the cell suspension A containing the cells separated by centrifugation is discharged from the centrifuge tube 10 while flowing along the inner surface thereof, whereby the red blood cells B are captured and separated in the grooves 11, There is an advantage that high-purity adipose-derived stem cells C can be discharged.

また、本実施形態においては、凹部6,7を設けた流路部材3に沿って、細胞懸濁液Aを流動させることにより脂肪由来幹細胞Cを高純度に分離回収することとしたが、これに代えて、以下の分離方法を採用することにしてもよい。すなわち、底面に凹部6,7を有する任意の容器内に細胞懸濁液Aを貯留し、所定時間静置することにより、赤血球Bおよび脂肪由来幹細胞Cを沈降させた後、容器をゆっくりと傾けて、容器内から細胞懸濁液を流出させることにより、凹部6,7内に赤血球Bを捕捉し、脂肪由来幹細胞Cのみを分離回収することにしてもよい。   In the present embodiment, the fat-derived stem cells C are separated and recovered with high purity by flowing the cell suspension A along the flow path member 3 provided with the recesses 6 and 7. Instead of this, the following separation method may be adopted. That is, the cell suspension A is stored in an arbitrary container having the recesses 6 and 7 on the bottom, and left for a predetermined time to precipitate the red blood cells B and the adipose-derived stem cells C, and then the container is tilted slowly. Then, by discharging the cell suspension from the container, the red blood cells B may be captured in the recesses 6 and 7, and only the adipose-derived stem cells C may be separated and recovered.

また、本実施形態においては、脂肪組織由来の幹細胞Cを分離回収する場合を例示して説明したが、これに代えて、赤血球Bより大きい他の任意の組織由来幹細胞Cの分離回収に適用することにしてもよい。
また、溝6および孔7の形状は任意でよい。
Further, in the present embodiment, the case where the adipose tissue-derived stem cells C are separated and collected has been described as an example, but instead, this is applied to the separation and collection of any other tissue-derived stem cells C larger than the red blood cells B. You may decide.
Moreover, the shape of the groove | channel 6 and the hole 7 may be arbitrary.

本発明の一実施形態に係る組織由来幹細胞の分離装置を示す全体構成図である。1 is an overall configuration diagram showing a tissue-derived stem cell separation device according to an embodiment of the present invention. 図1の組織由来幹細胞の分離装置の流路部材を説明する斜視図である。It is a perspective view explaining the flow-path member of the separation apparatus of the tissue origin stem cell of FIG. 図1の組織由来幹細胞の分離装置の作用を説明する図である。It is a figure explaining the effect | action of the isolation | separation apparatus of the tissue origin stem cell of FIG. 図2の流路部材の第1の変形例を示す斜視図である。It is a perspective view which shows the 1st modification of the flow-path member of FIG. 図2の流路部材の第2の変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of the flow-path member of FIG. 図2の流路部材の第3の変形例を示す斜視図である。It is a perspective view which shows the 3rd modification of the flow-path member of FIG. 図2の流路部材の凹部の第1の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st modification of the recessed part of the flow-path member of FIG. 図2の流路部材の凹部の第2の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd modification of the recessed part of the flow-path member of FIG. 本発明の分離装置を適用した遠沈管を示す縦断面図である。It is a longitudinal cross-sectional view which shows the centrifuge tube to which the separation apparatus of this invention is applied.

符号の説明Explanation of symbols

A 細胞懸濁液
B 赤血球
C 脂肪由来幹細胞(組織由来幹細胞)
1 分離装置
3 流路部材(流路)
3a 底面
6 溝(凹部)
7 孔(凹部)
A cell suspension B red blood cell C fat-derived stem cell (tissue-derived stem cell)
1 Separator 3 Channel member (channel)
3a Bottom 6 Groove (concave)
7 holes (recesses)

Claims (8)

組織由来幹細胞および赤血球を含む細胞懸濁液を流動させる流路を備え、
該流路の底面に、組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな複数の凹部が設けられている組織由来幹細胞の分離装置。
A flow path for flowing a cell suspension containing tissue-derived stem cells and red blood cells,
An apparatus for separating tissue-derived stem cells, wherein a plurality of recesses that are narrower than the particle size of tissue-derived stem cells and larger than the particle size of red blood cells are provided on the bottom surface of the channel.
前記凹部が、前記細胞懸濁液の流通方向に交差する方向に延び、組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな溝幅を有する溝であり、流通方向に間隔をあけて複数配置されている請求項1に記載の組織由来幹細胞の分離装置。   The recess is a groove extending in a direction intersecting with the flow direction of the cell suspension, having a groove width that is narrower than the particle size of the tissue-derived stem cells and larger than the particle size of the red blood cells, and is spaced apart in the flow direction. The tissue-derived stem cell separation device according to claim 1, which is arranged. 前記溝の溝幅が、前記流路に面する開口部におけるより、深さ方向に進行した位置において広く形成されている請求項2に記載の組織由来幹細胞の分離装置。   The tissue-derived stem cell separation device according to claim 2, wherein the groove width of the groove is formed wider at a position advanced in the depth direction than in the opening facing the flow path. 前記凹部が、多数の孔である請求項1に記載の組織由来幹細胞の分離装置。   The apparatus for separating tissue-derived stem cells according to claim 1, wherein the recess is a plurality of holes. 前記孔が流通方向に交差する方向に間隔をあけて形成された孔列を流通方向に間隔をあけて複数配置され、
各列の孔の位置が流通方向に交差する方向にずれて配置されている請求項3に記載の組織由来幹細胞の分離装置。
A plurality of hole rows formed at intervals in the flow direction are arranged in the direction in which the holes intersect with the flow direction.
The apparatus for separating tissue-derived stem cells according to claim 3, wherein the positions of the holes in each row are shifted in a direction crossing the flow direction.
前記孔の口径が、前記流路に面する開口部におけるより、深さ方向に進行した位置において大きく形成されている請求項5または請求項5に記載の組織由来幹細胞の分離装置。   The tissue-derived stem cell separation device according to claim 5 or 5, wherein a diameter of the hole is formed larger at a position advanced in a depth direction than in an opening facing the flow path. 組織由来幹細胞および赤血球を含む細胞懸濁液を、底面に組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな複数の凹部が設けられている流路に流動させる組織由来幹細胞の分離方法。   A method for separating tissue-derived stem cells, wherein a cell suspension containing tissue-derived stem cells and erythrocytes is flowed into a flow path having a plurality of recesses that are narrower than the particle size of tissue-derived stem cells on the bottom surface and larger than the particle size of erythrocytes. 組織由来幹細胞および赤血球を含む細胞懸濁液を、底面に組織由来幹細胞の粒径より狭く、赤血球の粒径より大きな複数の凹部が設けられている容器内に貯留し、
所定時間経過後に細胞懸濁液を流動させる組織由来幹細胞の分離方法。
A cell suspension containing tissue-derived stem cells and red blood cells is stored in a container having a plurality of recesses on the bottom surface that are narrower than the particle size of tissue-derived stem cells and larger than the particle size of red blood cells,
A method for separating tissue-derived stem cells in which a cell suspension is allowed to flow after a predetermined time has elapsed.
JP2007051609A 2007-03-01 2007-03-01 Device and method for separating stem cells originated from tissues Withdrawn JP2008212022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051609A JP2008212022A (en) 2007-03-01 2007-03-01 Device and method for separating stem cells originated from tissues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051609A JP2008212022A (en) 2007-03-01 2007-03-01 Device and method for separating stem cells originated from tissues

Publications (1)

Publication Number Publication Date
JP2008212022A true JP2008212022A (en) 2008-09-18

Family

ID=39832850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051609A Withdrawn JP2008212022A (en) 2007-03-01 2007-03-01 Device and method for separating stem cells originated from tissues

Country Status (1)

Country Link
JP (1) JP2008212022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024817A1 (en) * 2011-08-18 2013-02-21 コニカミノルタホールディングス株式会社 Two-dimensional cell spreading device and cell spreading method using same
JP2013081438A (en) * 2011-10-12 2013-05-09 Konica Minolta Holdings Inc Device and method of cell development, and cell observation system
JP2015514416A (en) * 2012-04-18 2015-05-21 ケー−ステムセル カンパニー リミテッドK−Stemcell Co., Ltd. Method for producing stem cells having a size suitable for intravascular administration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024817A1 (en) * 2011-08-18 2013-02-21 コニカミノルタホールディングス株式会社 Two-dimensional cell spreading device and cell spreading method using same
JPWO2013024817A1 (en) * 2011-08-18 2015-03-05 コニカミノルタ株式会社 Cell plane deployment device and cell deployment method using the same
JP2013081438A (en) * 2011-10-12 2013-05-09 Konica Minolta Holdings Inc Device and method of cell development, and cell observation system
JP2015514416A (en) * 2012-04-18 2015-05-21 ケー−ステムセル カンパニー リミテッドK−Stemcell Co., Ltd. Method for producing stem cells having a size suitable for intravascular administration
US10815459B2 (en) 2012-04-18 2020-10-27 Jeong Chan Ra Method for manufacturing stem cell having appropriate size for intravascular administration

Similar Documents

Publication Publication Date Title
EP2634245B1 (en) Cell collection device
AU2015206243B2 (en) Separation and concentration of particles
EP2139600A1 (en) Apparatus and method for recovering fluid from a fluid absorbing element
EP2146794A1 (en) Buoy suspension fractionation system
WO2016035799A1 (en) Motile sperm separation method and separation device, and sperm liquid for insemination
JP2017531440A (en) Tissue sample processing system and related method
EP2427568A2 (en) Methods and apparatus for segregation of particles
JP2017507335A5 (en)
JP2008212022A (en) Device and method for separating stem cells originated from tissues
JP2018088831A (en) Cell separation devices and cell separation systems
JP2012065590A (en) Cell treatment apparatus
CN110468042B (en) CTC cell separation microfluidic device and separation method
KR101892380B1 (en) Three-dimensional microparticle separator and method of separating particles using it
US8342041B2 (en) Tube for separating portions of a sample
WO2016208752A1 (en) Filtration device and filtration method
KR101955330B1 (en) Reagent storage device for analysis of nucleic acid
JP2012213395A (en) Device for sampling sperm having good mobility
CN106536060A (en) Single-cell pipette assembly comprising single-cell pipette handle and single-cell pipette tip
JP2013141456A (en) Cell strainer
US11446666B2 (en) Fluid handling device
KR101700228B1 (en) Cell separation chip and its separaion method of cell
JP2012101138A (en) Centrifugal separation vessel
US10232104B2 (en) Cell filter separation system
KR101594539B1 (en) Concentration tube for aggregating motile cells
JP2008245778A (en) Vacuum blood collecting tube

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511