JP2008211493A - Distributed pre-equalization optical communication system - Google Patents

Distributed pre-equalization optical communication system Download PDF

Info

Publication number
JP2008211493A
JP2008211493A JP2007045902A JP2007045902A JP2008211493A JP 2008211493 A JP2008211493 A JP 2008211493A JP 2007045902 A JP2007045902 A JP 2007045902A JP 2007045902 A JP2007045902 A JP 2007045902A JP 2008211493 A JP2008211493 A JP 2008211493A
Authority
JP
Japan
Prior art keywords
optical
communication system
equalization
modulation
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007045902A
Other languages
Japanese (ja)
Other versions
JP4855298B2 (en
Inventor
Takashi Sugihara
隆嗣 杉原
Takashi Mizuochi
隆司 水落
Katsuhiro Shimizu
克宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007045902A priority Critical patent/JP4855298B2/en
Publication of JP2008211493A publication Critical patent/JP2008211493A/en
Application granted granted Critical
Publication of JP4855298B2 publication Critical patent/JP4855298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a distributed pre-equalization optical communication system capable of more efficiently compensating the distortion of a wavelength distribution in a transmission line after suppressing the increase in an operational amount for generating distributed pre-equalization data. <P>SOLUTION: The distributed pre-equalization optical communication system includes: a distributed pre-equalization data generating means 12 for generating the reverse function operational result of the wavelength distribution in the transmission line as the distributed pre-equalization data, on the basis of transmission source data series; and an optical modulation means 11 for performing data modulation in an optical signal which is transmitted from an optical transmission means 10, and for transmitting the modulated optical signal to the transmission line 13. The distributed pre-equalization data generating means 12 generates the distributed pre-equalization data by calculation without considering RZ conversion. The optical modulation means 11 generates the modulated optical signal, thereby performing RZ pulse conversion. The system also includes an optical filter means 15 arranged at the reception side of the modulated optical signal in the transmission line 13 and extracting the optical signal close to the carrier frequency of signal light spectrum from the modulated optical signal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光通信システムに関し、特に、伝送路の有する波長分散の歪みを、より効率的に補償する分散予等化光通信システムに関する。   The present invention relates to an optical communication system, and more particularly, to a dispersion pre-equalization optical communication system that more efficiently compensates for chromatic dispersion distortion of a transmission line.

長距離光通信システムにおいて、システムの低コスト化ならびに伝送レート上昇によるシステムアップグレードを容易に行うためには、伝送路の有する波長分散を、より効率的に補償する技術が重要となる。たとえば、分散補償ファイバおよびその損失補償に使用する光増幅器を削減することで、システムの低コスト化を図ることが可能である。   In a long-distance optical communication system, a technique for more efficiently compensating for chromatic dispersion of a transmission line is important in order to easily reduce the cost of the system and easily upgrade the system by increasing the transmission rate. For example, it is possible to reduce the cost of the system by reducing the dispersion compensating fiber and the optical amplifier used for the loss compensation.

また、伝送レートや変調フォーマットに応じて、波長分散耐力は異なるが、いずれの伝送方式においても、分散補償ファイバを使用しない、または、少数の種別の分散補償ファイバのみを使用することで、伝送レートや変調フォーマットによらない伝送路構成をとることが可能となる。その結果、既存システムのアップグレードや、複数変調方式の混在するシステムの実現が容易となる。   In addition, although the chromatic dispersion tolerance varies depending on the transmission rate and modulation format, in either transmission system, the transmission rate can be reduced by using no dispersion compensation fiber or using only a few types of dispersion compensation fiber. It is possible to adopt a transmission path configuration that does not depend on the modulation format. As a result, it is easy to upgrade an existing system and realize a system in which a plurality of modulation methods are mixed.

以上の効果を得るための1つの方策として、伝送路の有する波長分散に対して、絶対値は同じで、符号が逆の波長分散の効果をあらかじめ付加した光信号を送信する分散予等化送信方式が活発に研究されている(例えば、非特許文献1、2、特許文献1参照)。   As one measure for obtaining the above effects, dispersion pre-equalization transmission that transmits an optical signal in which the effect of chromatic dispersion having the same absolute value and the opposite sign is added in advance with respect to the chromatic dispersion of the transmission line The system is actively studied (for example, see Non-Patent Documents 1 and 2 and Patent Document 1).

図2は、従来の分散予等化光通信システムの概略ブロック図である。図2の分散予等化光送信器は、CW光源20、光変調手段21、分散予等化データ生成手段22、光ファイバ伝送路23、および光受信器24で構成される(例えば、非特許文献1参照)。   FIG. 2 is a schematic block diagram of a conventional distributed pre-equalization optical communication system. The dispersion pre-equalization optical transmitter of FIG. 2 includes a CW light source 20, an optical modulation unit 21, a dispersion pre-equalization data generation unit 22, an optical fiber transmission line 23, and an optical receiver 24 (for example, non-patent). Reference 1).

また、図2中に示したグラフ(a)〜(e)は、RZパルスに対する分散予等化送信(シンボルレートfs)を構成した際の各部の光信号または光スペクトルを示している。より具体的には、(a)はCW光源20の出力信号、(b)は光変調手段21の出力信号、(c)は光変調手段21の出力信号の光スペクトル、(d)は光ファイバ伝送路23を介して光受信器24で受信される受信光信号、そして(e)は受信光信号の光スペクトルについて、それぞれの概略イメージを示したものである。   In addition, graphs (a) to (e) shown in FIG. 2 show optical signals or optical spectra of respective parts when the distributed pre-equalization transmission (symbol rate fs) for the RZ pulse is configured. More specifically, (a) is an output signal of the CW light source 20, (b) is an output signal of the light modulation means 21, (c) is an optical spectrum of the output signal of the light modulation means 21, and (d) is an optical fiber. The received optical signal received by the optical receiver 24 via the transmission line 23, and (e) show schematic images of the optical spectrum of the received optical signal.

次に、図2に沿って、従来の分散予等化光通信システムについて説明する。従来の分散予等化光通信システムにおける分散予等化データ生成手段22は、送信元データ系列に対して、光ファイバ伝送路23の波長分散の逆関数演算および光変調器伝達関数の逆関数演算を行う。そして、光変調手段21は、分散予等化データ生成手段22から得られる2系列のデータ(I−ch、Q−ch)を用いて、CW光源20の出力CW光に対して分散予等化用の変調を行う。   Next, a conventional distributed pre-equalization optical communication system will be described with reference to FIG. The dispersion pre-equalization data generation means 22 in the conventional dispersion pre-equalization optical communication system performs inverse function calculation of the chromatic dispersion of the optical fiber transmission line 23 and inverse function calculation of the optical modulator transfer function for the transmission source data series. I do. Then, the light modulation means 21 uses the two series of data (I-ch, Q-ch) obtained from the dispersion pre-equalization data generation means 22 to perform dispersion pre-equalization on the output CW light of the CW light source 20. Modulate for

光変調手段21としては、非特許文献1にあるように、I/Q変調器が一般的に使用される。光受信器24の入力では、分散予等化と光ファイバ伝送路23の波長分散とが打ち消し合うことで、波長分散による歪みを抑圧した光信号が得られる。   As the light modulation means 21, an I / Q modulator is generally used as described in Non-Patent Document 1. At the input of the optical receiver 24, the dispersion pre-equalization and the chromatic dispersion of the optical fiber transmission line 23 cancel each other, thereby obtaining an optical signal in which distortion due to chromatic dispersion is suppressed.

この際、光ファイバ伝送路23の波長分散の逆関数演算としては、伝送路の波長分散と絶対値は同じで、符号が逆の波長分散の伝達関数と、送信データ系列との掛け合わせ、もしくは、同伝達関数から求まるインパルス応答と、送信データ系列との畳み込みによって複素データ列を得る方法が一般的である。   At this time, as the inverse function calculation of the chromatic dispersion of the optical fiber transmission line 23, the chromatic dispersion of the transmission line has the same absolute value as that of the transmission line, and the chromatic dispersion transfer function having the opposite sign is multiplied by the transmission data series, or In general, a method of obtaining a complex data sequence by convolution of an impulse response obtained from the transfer function and a transmission data sequence is common.

また、図2中では記載を省略しているが、一般的に、電気・光変換の応答特性は、線形ではないため、理想的な光信号を生成するために、電気・光変換の応答特性を補正する演算が追加される。さらに、上述したような各種の演算をディジタル演算処理によって実施する場合には、D/Aコンバータと増幅器を通して光変調手段21の駆動用アナログ信号を得ることが一般的である。   Although not shown in FIG. 2, generally, the response characteristic of electrical / optical conversion is not linear, and therefore, the response characteristic of electrical / optical conversion is used to generate an ideal optical signal. An operation for correcting is added. Further, when various operations as described above are performed by digital operation processing, it is general to obtain an analog signal for driving the light modulation means 21 through a D / A converter and an amplifier.

D. McGhan、 et al.,“5120-km RZ-DPSK Transmission Over G.652 Fiber at 10Gb/s Without Optical Dispersion Compensation, ”IEEE Photon. Technol. Lett., vol. 18、 no. 2、 400, 2006.D. McGhan, et al., “5120-km RZ-DPSK Transmission Over G.652 Fiber at 10 Gb / s Without Optical Dispersion Compensation,” IEEE Photon. Technol. Lett., Vol. 18, no. 2, 400, 2006 . P. J. Winzer, et al., “Electronic pre-distortion for advanced modulation formats,” ECOC2005, Tu4.2.2, Glasgow, UK, Sep. 2005.P. J. Winzer, et al., “Electronic pre-distortion for advanced modulation formats,” ECOC2005, Tu4.2.2, Glasgow, UK, Sep. 2005. 特表2006−522508号公報JP 2006-522508 A

しかしながら、従来技術には次のような課題がある。
非特許文献1では、RZパルスをベースとした変調信号(RZ−DPSK)を元に、分散予等化光送信を行っている。したがって、分散予等化データ生成手段22は、一般的な送信元データ系列であるNRZデータ系列に対して、RZ化を考慮した演算を施すことにより2系列のデータ(I−ch、Q−ch)を生成し、光変調手段21を駆動することが必要となる。
However, the prior art has the following problems.
In Non-Patent Document 1, dispersion pre-equalized optical transmission is performed based on a modulated signal (RZ-DPSK) based on an RZ pulse. Therefore, the distributed pre-equalization data generation means 22 performs an operation in consideration of RZ on the NRZ data sequence that is a general transmission source data sequence to thereby obtain two sequences of data (I-ch, Q-ch). ) To drive the light modulation means 21.

一般に、光信号をRZ化した場合には、NRZ光信号に比べて光スペクトル幅が拡大するため、波長分散耐力は、劣化する。その結果、RZ用の分散予等化データ生成手段22では、同一波長分散値に対するNRZ光信号の予等化に比べて、演算規模が増大する(例えば、非特許文献2参照)。   In general, when an optical signal is converted to RZ, the optical spectrum width is expanded as compared with the NRZ optical signal, and therefore the chromatic dispersion tolerance is deteriorated. As a result, the RZ dispersion pre-equalization data generation means 22 has a larger calculation scale than the NRZ optical signal pre-equalization for the same chromatic dispersion value (see, for example, Non-Patent Document 2).

すなわち、RZパルスをベースとした変調信号に対する分散予等化を行う場合には、NRZデータをベースとした変調信号に対する分散予等化を行う場合に比べて、分散予等化データ生成手段22での演算量が増大するという課題がある。   That is, in the case of performing dispersion pre-equalization on the modulation signal based on the RZ pulse, the dispersion pre-equalization data generation means 22 is compared with the case of performing dispersion pre-equalization on the modulation signal based on the NRZ data. There is a problem that the amount of computation increases.

本発明は上述のような課題を解決するためになされたもので、分散予等化データ生成のための演算量の増大を抑えた上で、伝送路の有する波長分散の歪みを、より効率的に補償することのできる分散予等化光通信システムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and more effectively reduces distortion of chromatic dispersion in a transmission line while suppressing an increase in the amount of calculation for generating dispersion pre-equalization data. An object of the present invention is to obtain a dispersion pre-equalized optical communication system that can compensate for the above.

本発明に係る分散予等化光通信システムは、送信元データ系列に基づいて伝送路の波長分散の逆関数演算結果を分散予等化データとして生成する分散予等化データ生成手段と、変調のベースとなる光信号を送信する光送信手段と、生成された分散予等化データに基づいて、光送信手段から送信された光信号にデータ変調を施し、変調後の光信号を伝送路に伝送する光変調手段とを備えた分散予等化光通信システムにおいて、分散予等化データ生成手段は、RZ化を考慮しない演算により分散予等化データを生成し、光変調手段は、伝送路中に伝送させる信号がRZパルス化されるように変調後の光信号を生成し、伝送路上における変調後の光信号の受信側に設けられ、変調後の光信号から信号光スペクトルのキャリア周波数(f0Hz)近傍の光信号を抽出する光フィルタ手段をさらに備えたものである。   The dispersion pre-equalization optical communication system according to the present invention includes a dispersion pre-equalization data generation means for generating an inverse function calculation result of chromatic dispersion of a transmission line as dispersion pre-equalization data based on a transmission source data sequence, Based on the optical transmission means that transmits the base optical signal and the generated dispersion pre-equalization data, the optical signal transmitted from the optical transmission means is subjected to data modulation, and the modulated optical signal is transmitted to the transmission line. In the dispersion pre-equalization optical communication system including the optical modulation means, the dispersion pre-equalization data generation means generates dispersion pre-equalization data by an operation not considering RZ conversion, and the optical modulation means is in the transmission path An optical signal after modulation is generated so that the signal to be transmitted to RZ is converted into an RZ pulse, provided on the receiving side of the optical signal after modulation on the transmission path, and the carrier frequency (f0 Hz) of the signal light spectrum from the optical signal after modulation ) Neighborhood In which further comprising an optical filter for extracting an optical signal.

本発明によれば、NRZ用として生成された分散予等化データに基づいて、伝送路に送信される変調後の光信号がRZパルス列の光信号となるように変調処理を施し、伝送路を伝送された変調後の光信号の中から、伝送路の有する波長分散の歪みが低減された所望の周波数成分の光信号のみを光フィルタ手段を用いて抽出することにより、分散予等化データ生成のための演算量の増大を抑えた上で、伝送路の有する波長分散の歪みを、より効率的に補償することのできる分散予等化光通信システムを得ることができる。   According to the present invention, based on the dispersion pre-equalization data generated for NRZ, modulation processing is performed so that the modulated optical signal transmitted to the transmission line becomes the optical signal of the RZ pulse train, and the transmission line is Dispersion pre-equalization data generation by extracting only optical signals of desired frequency components with reduced distortion of chromatic dispersion in the transmission line from the optical signals after modulation using optical filter means Therefore, it is possible to obtain a dispersion pre-equalized optical communication system that can more efficiently compensate for distortion of chromatic dispersion of a transmission line while suppressing an increase in the amount of computation for the purpose.

以下、本発明の分散予等化光通信システムの好適な実施の形態につき図面を用いて説明する。
本発明の分散予等化光通信システムは、RZ化を考慮せずに、狭い光スペクトル幅を対象に演算処理を施して分散予等化データを算出することにより、演算量の削減を図ることができる点と、伝送路に伝送される変調後の光信号をパルス形状とし、信号光スペクトルのキャリア周波数近傍の光信号を光フィルタにより抽出することにより、干渉に強い伝送を行うとともに、伝送路の有する波長分散の歪みを、より効率的に補償することができる点とを技術的特徴として有している。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a distributed pre-equalization optical communication system of the invention will be described with reference to the drawings.
The dispersion pre-equalization optical communication system according to the present invention reduces the amount of calculation by calculating dispersion pre-equalization data by performing arithmetic processing on a narrow optical spectrum width without considering RZ. In addition to making the optical signal after modulation transmitted to the transmission line into a pulse shape and extracting the optical signal in the vicinity of the carrier frequency of the signal light spectrum with an optical filter, the transmission path is resistant to interference. As a technical feature, it is possible to more efficiently compensate for distortion of chromatic dispersion possessed by.

実施の形態1.
図1は、本発明の実施の形態1における分散予等化光通信システムの構成図である。図1の分散予等化光通信システムは、パルス光送信手段10、光変調手段11、分散予等化データ生成手段12、光ファイバ伝送路13、光受信器14、および光フィルタ手段15で構成される。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a distributed pre-equalization optical communication system according to Embodiment 1 of the present invention. The dispersion pre-equalization optical communication system shown in FIG. 1 includes a pulse light transmission unit 10, an optical modulation unit 11, a dispersion pre-equalization data generation unit 12, an optical fiber transmission line 13, an optical receiver 14, and an optical filter unit 15. Is done.

また、図1中に示したグラフ(a)〜(e)は、パルス光送信手段10を用いた分散予等化送信(シンボルレートfs、光パルス繰り返し周波数2fs)を構成する際の各部の光信号である。より具体的には、(a)はパルス光送信手段出力信号、(b)は光変調手段出力信号、(c)は光変調手段出力信号の光スペクトル、(d)は受信光信号、(e)は受信光信号の光スペクトルについて、それぞれの概略イメージを示したものである。   Also, the graphs (a) to (e) shown in FIG. 1 show the light of each part when configuring dispersion pre-equalization transmission (symbol rate fs, optical pulse repetition frequency 2 fs) using the pulsed light transmission means 10. Signal. More specifically, (a) is the output signal of the pulsed light transmission means, (b) is the output signal of the optical modulation means, (c) is the optical spectrum of the output signal of the optical modulation means, (d) is the received optical signal, (e ) Shows a schematic image of the optical spectrum of the received optical signal.

次に、このような構成を有する本実施の形態1における分散予等化光通信システムの動作について説明する。先の図2における従来の分散予等化光通信システムと比較すると、図1の分散予等化光通信システムは、CW光源20の代わりにパルス光送信手段10が用いられているとともに、新たに光フィルタ手段15を備えている点が異なっている。   Next, the operation of the distributed pre-equalization optical communication system according to the first embodiment having such a configuration will be described. Compared with the conventional dispersion pre-equalization optical communication system in FIG. 2, the dispersion pre-equalization optical communication system in FIG. 1 uses a pulsed light transmitting means 10 instead of the CW light source 20 and is newly added. The difference is that an optical filter means 15 is provided.

さらに、本実施の形態1の分散予等化光通信システムにおける分散予等化データ生成手段12は、従来の分散予等化光通信システムにおける分散予等化データ生成手段22と動作が異なっている。具体的には、図2中の分散予等化データ生成手段22は、送信元データ系列に対してRZ光パルスに対応した分散予等化処理を施すのに対し、図1中の分散予等化データ生成手段12は、RZ化を考慮せず、NRZ光パルスに対応した分散予等化処理を施す点が異なっている。   Further, the distributed pre-equalization data generation means 12 in the distributed pre-equalization optical communication system of the first embodiment is different in operation from the distributed pre-equalization data generation means 22 in the conventional distributed pre-equalization optical communication system. . Specifically, the distributed pre-equalization data generation means 22 in FIG. 2 performs a distributed pre-equalization process corresponding to the RZ optical pulse on the transmission source data series, whereas the distributed pre-equalization process in FIG. The difference data generation means 12 is different in that the dispersion pre-equalization processing corresponding to the NRZ optical pulse is performed without considering the RZ conversion.

なお、図1における光変調手段11と図2における光変調手段21とは、同一の機能を有し、また、図1における光受信器14と図2における光受信器24とも、同一の機能を有する。また、パルス光送信手段10は、光送信手段に相当し、光ファイバ伝送路13は、伝送路に相当する。   The optical modulation means 11 in FIG. 1 and the optical modulation means 21 in FIG. 2 have the same function, and the optical receiver 14 in FIG. 1 and the optical receiver 24 in FIG. 2 have the same function. Have. The pulsed light transmission unit 10 corresponds to an optical transmission unit, and the optical fiber transmission line 13 corresponds to a transmission line.

図1における光変調手段11は、分散予等化データ生成手段12によりNRZ光パルス用に分散予等化処理を施された2系列データ(I−ch、Q−ch)に基づいて、パルス光送信手段10からの入力光信号の変調を行う。このように、分散予等化データ生成手段12は、RZ化を考慮した演算を施さないことにより、RZ化に伴う演算量の増大を抑えている。   The optical modulation means 11 in FIG. 1 is based on the two-series data (I-ch, Q-ch) subjected to the dispersion pre-equalization process for the NRZ optical pulse by the dispersion pre-equalization data generation means 12. The input optical signal from the transmission means 10 is modulated. As described above, the distributed pre-equalization data generation unit 12 suppresses an increase in the amount of calculation due to the RZ conversion by not performing the calculation considering the RZ conversion.

このため、入力光信号が先の図2中のグラフ(a)のように、CW光源20の出力信号である場合には、光変調手段11の出力は、NRZ用分散予等化光信号として出力されることとなる。   For this reason, when the input optical signal is the output signal of the CW light source 20 as shown in the graph (a) of FIG. 2, the output of the optical modulation means 11 is used as the dispersion pre-equalized optical signal for NRZ. Will be output.

これに対して、本実施の形態1における図1の例では、図1中のグラフ(a)に示すように、パルス光送信手段10により出力されるパルス列を有した信号が、入力光信号として光変調手段11に入力される。この結果、光変調手段11の出力は、図1中のグラフ(b)に示すように、RZパルス列となり、光ファイバ伝送路13中は、RZパルスとして伝送されることとなり、符号間干渉耐力に強い信号となる。   On the other hand, in the example of FIG. 1 in the first embodiment, as shown in the graph (a) in FIG. 1, a signal having a pulse train output by the pulsed light transmitting means 10 is used as an input optical signal. Input to the light modulation means 11. As a result, the output of the light modulation means 11 becomes an RZ pulse train as shown in the graph (b) in FIG. 1 and is transmitted as an RZ pulse in the optical fiber transmission line 13, which increases the intersymbol interference tolerance. Strong signal.

このとき、図1の分散予等化データ生成手段12による分散予等化は、あくまでも、一般的な送信元データ系列であるNRZデータ系列に対して演算・最適化されたものである。このため、光ファイバ伝送路13の伝送後に対して分散予等化の効果があるのは、図1中のグラフ(c)で示されるスペクトル成分のうち、キャリアである中心波長(f0)近傍の概略f0−fs〜f0+fs内のベースバンド成分のみである。   At this time, the distributed pre-equalization by the distributed pre-equalization data generation means 12 in FIG. 1 is calculated and optimized for an NRZ data sequence that is a general transmission source data sequence. For this reason, the effect of the dispersion pre-equalization after the transmission through the optical fiber transmission line 13 is that of the spectral component shown by the graph (c) in FIG. 1 near the center wavelength (f0) as the carrier. Only the baseband components within the approximate f0-fs to f0 + fs.

したがって、光変調手段11と光受信器14とを結ぶ光ファイバ伝送路13上において、光受信器14の前段、もしくは分散予等化の対象とした光ファイバ伝送路13の後段に光フィルタ手段15を配置することにより、キャリア波長近傍で、分散予等化と光ファイバ伝送路13の波長分散とが打ち消し合う信号成分のみを抽出することができる。この結果、光ファイバ伝送路13の波長分散による波形歪みが抑圧された光信号(図1中のグラフ(d)(e)参照)を得ることが可能となる。   Therefore, on the optical fiber transmission line 13 connecting the optical modulation means 11 and the optical receiver 14, the optical filter means 15 is provided upstream of the optical receiver 14 or downstream of the optical fiber transmission line 13 subject to dispersion pre-equalization. By arranging, it is possible to extract only signal components in which dispersion pre-equalization and chromatic dispersion of the optical fiber transmission line 13 cancel each other in the vicinity of the carrier wavelength. As a result, it is possible to obtain an optical signal (see graphs (d) and (e) in FIG. 1) in which waveform distortion due to wavelength dispersion in the optical fiber transmission line 13 is suppressed.

以上のように、実施の形態1によれば、パルス光送信手段および光フィルタ手段を備えることにより、分散予等化データ生成手段としてはNRZ用の演算を行うだけで、光ファイバ中を伝送する光信号としてはRZパルスを送出することが可能となる。この結果、RZパルス伝送が有する符号間干渉耐力に優れるといった特徴を容易に得ることが可能となる。   As described above, according to the first embodiment, by providing the pulse light transmission unit and the optical filter unit, the dispersion pre-equalization data generation unit transmits the optical fiber only by performing the calculation for NRZ. As an optical signal, an RZ pulse can be transmitted. As a result, it is possible to easily obtain a feature that the RZ pulse transmission has excellent intersymbol interference tolerance.

さらに、分散予等化データ生成手段は、NRZ用としての演算を行えばよいので、RZパルス化による演算規模の増大をまねくことなく、容易にパルス化伝送を実現できる。さらに、光フィルタ手段の働きにより、キャリア波長近傍で、分散予等化と光ファイバ伝送路13の波長分散とが打ち消し合う信号成分のみを抽出することができ、波長分散による歪みを抑圧した光信号を得ることができる。   Furthermore, since the distributed pre-equalization data generation means only needs to perform the calculation for NRZ, it can easily realize pulsed transmission without increasing the calculation scale due to RZ pulsing. Furthermore, the optical filter means can extract only signal components in which dispersion pre-equalization and chromatic dispersion of the optical fiber transmission line 13 cancel each other in the vicinity of the carrier wavelength, and an optical signal in which distortion due to chromatic dispersion is suppressed. Can be obtained.

なお、図1では、パルス光送信手段10からの出力光パルスは、シンボルレートの2倍の繰り返し周波数としたが、2倍以上の周波数であれば同様の効果が得られることは言うまでもない。   In FIG. 1, the output light pulse from the pulse light transmitting means 10 has a repetition frequency that is twice the symbol rate, but it goes without saying that the same effect can be obtained if the frequency is twice or more.

また、パルス光送信手段10からの出力光パルスは、シンボルレートの2倍以上で、かつシンボルレートの整数倍とすることで、電気パルスの基準クロック信号などの電気駆動回路の共通化を図ることができる。   Further, the output optical pulse from the pulsed light transmitting means 10 is at least twice the symbol rate and an integral multiple of the symbol rate, so that the electric drive circuit such as the reference clock signal of the electric pulse can be shared. Can do.

さらに、より高いシンボルレートとすることで、キャリアとサイドバンドとの間の間隔が広くとれ、図1(c)の光スペクトルから図1(e)の光スペクトルを、光フィルタ手段15で容易に抽出することができる。   Furthermore, by setting a higher symbol rate, the interval between the carrier and the sideband can be widened, and the optical spectrum of FIG. 1E can be easily converted from the optical spectrum of FIG. Can be extracted.

また、上述の実施の形態では、光フィルタ手段15での光スペクトル抽出範囲は、f0−fs〜f0+fsとして説明したが、隣接するサイドバンドが十分離れている場合には、サイドバンドの影響を受けない程度に、より広い周波数範囲でフィルタリングしてもよい。   In the above-described embodiment, the optical spectrum extraction range in the optical filter unit 15 has been described as f0−fs to f0 + fs. However, when adjacent sidebands are sufficiently separated from each other, they are affected by the sidebands. Filtering over a wider frequency range may be performed to such an extent as possible.

さらに、送信するデータ信号成分の抽出では、例えば、NRZ符号だとf0−fs/2〜f0+fs/2の範囲をカバーしていればよいため、隣接サイドバンドの影響を極力抑圧するために、より狭い範囲の光スペクトル抽出としても問題ない。   Furthermore, in the extraction of the data signal component to be transmitted, for example, the NRZ code only needs to cover the range of f0−fs / 2 to f0 + fs / 2. There is no problem even if the light spectrum is extracted in a narrow range.

なお、パルス光送信手段10としては、通常のCW光源を出力パルス光信号(図1中のグラフ(a)に相当)に対応した電気パルス信号で駆動してもよく、また、CW光源+外部変調器の構成にて外部変調器を電気パルス信号で駆動する方式をとってもよい。   As the pulsed light transmitting means 10, a normal CW light source may be driven by an electric pulse signal corresponding to the output pulsed light signal (corresponding to the graph (a) in FIG. 1), or CW light source + external A system in which the external modulator is driven by an electric pulse signal may be adopted in the configuration of the modulator.

さらに加えて、上述の説明では、データ変調としてはNRZ符号を想定しているが、位相変調をベースとしたDPSK(Differential Phase Shift Keying)変調やDQPSK(Differential Quadrature Phase Shift Keying)変調の場合でも、本実施の形態の分散予等化処理を同様に適用可能であることはいうまでもない。   In addition, in the above description, the NRZ code is assumed as the data modulation. However, even in the case of DPSK (Differential Phase Shift Keying) modulation or DQPSK (Differential Quadrature Phase Keying) modulation based on phase modulation. Needless to say, the distributed pre-equalization processing of the present embodiment can be similarly applied.

本発明の実施の形態1における分散予等化光通信システムの構成図である。It is a block diagram of the dispersion | distribution pre-equalization optical communication system in Embodiment 1 of this invention. 従来の分散予等化光通信システムの概略ブロック図である。It is a schematic block diagram of the conventional dispersion | distribution pre-equalization optical communication system.

符号の説明Explanation of symbols

10 パルス光送信手段(光送信手段)、11 光変調手段、12 分散予等化データ生成手段、13 光ファイバ伝送路(伝送路)、14 光受信器、15 光フィルタ手段。   DESCRIPTION OF SYMBOLS 10 Pulse light transmission means (light transmission means), 11 Optical modulation means, 12 Dispersion pre-equalization data generation means, 13 Optical fiber transmission line (transmission path), 14 Optical receiver, 15 Optical filter means

Claims (11)

送信元データ系列に基づいて伝送路の波長分散の逆関数演算結果を分散予等化データとして生成する分散予等化データ生成手段と、
変調のベースとなる光信号を送信する光送信手段と、
生成された前記分散予等化データに基づいて、前記光送信手段から送信された前記光信号にデータ変調を施し、変調後の光信号を前記伝送路に伝送する光変調手段と
を備えた分散予等化光通信システムにおいて、
前記分散予等化データ生成手段は、RZ化を考慮しない演算により前記分散予等化データを生成し、
前記光変調手段は、前記伝送路中に伝送させる信号がRZパルス化されるように前記変調後の光信号を生成し、
前記伝送路上における前記変調後の光信号の受信側に設けられ、前記変調後の光信号から信号光スペクトルのキャリア周波数(f0Hz)近傍の光信号を抽出する光フィルタ手段をさらに備えた
ことを特徴とする分散予等化光通信システム。
Dispersion pre-equalization data generation means for generating an inverse function calculation result of chromatic dispersion of the transmission line as dispersion pre-equalization data based on the transmission source data series;
An optical transmission means for transmitting an optical signal as a base of modulation;
Dispersion means comprising: optical modulation means for performing data modulation on the optical signal transmitted from the optical transmission means based on the generated dispersion pre-equalization data and transmitting the modulated optical signal to the transmission path In the pre-equalized optical communication system,
The distributed pre-equalization data generating means generates the distributed pre-equalization data by an operation not considering RZ conversion,
The optical modulation means generates the modulated optical signal so that the signal to be transmitted in the transmission path is RZ-pulsed,
An optical filter means provided on the receiving side of the modulated optical signal on the transmission line, further extracting an optical signal in the vicinity of the carrier frequency (f0 Hz) of the signal light spectrum from the modulated optical signal. A distributed pre-equalization optical communication system.
請求項1に記載の分散予等化光通信システムにおいて、
前記分散予等化データ生成手段は、前記送信元データ系列としてNRZデータ系列を用いることを特徴とする分散予等化光通信システム。
The distributed pre-equalized optical communication system according to claim 1,
The distributed pre-equalization optical communication system, wherein the distributed pre-equalization data generation means uses an NRZ data sequence as the transmission source data sequence.
請求項1または2に記載の分散予等化光通信システムにおいて、
前記光送信手段は、送信する光信号として繰り返し光パルス信号を生成し、
前記光変調手段は、前記分散予等化データに基づいて、前記光送信手段から送信された前記繰り返し光パルス信号にデータ変調を施してRZパルス化された変調後の光信号を生成する
ことを特徴とする分散予等化光通信システム。
The distributed pre-equalized optical communication system according to claim 1 or 2,
The optical transmission means repeatedly generates an optical pulse signal as an optical signal to be transmitted,
The optical modulation unit performs data modulation on the repetitive optical pulse signal transmitted from the optical transmission unit based on the dispersion pre-equalization data, and generates an optical signal after modulation that is RZ-pulsed. A distributed pre-equalized optical communication system.
請求項3に記載の分散予等化光通信システムにおいて、
前記光送信手段は、前記繰り返し光パルス信号の繰り返し周期を、前記伝送路を伝送される前記変調後の光信号のシンボルレート(fsHz)の2倍以上とすることを特徴とする分散予等化光通信システム。
The distributed pre-equalized optical communication system according to claim 3,
The optical transmission means sets the repetition period of the repetitive optical pulse signal to at least twice the symbol rate (fsHz) of the modulated optical signal transmitted through the transmission path. Optical communication system.
請求項3に記載の分散予等化光通信システムにおいて、
前記光送信手段は、前記繰り返し光パルス信号の繰り返し周期を、前記伝送路を伝送される前記変調後の光信号のシンボルレート(fsHz)の2倍以上で、かつシンボルレートの整数倍とすることを特徴とする分散予等化光通信システム。
The distributed pre-equalized optical communication system according to claim 3,
The optical transmission means sets the repetition period of the repetitive optical pulse signal to be not less than twice the symbol rate (fsHz) of the modulated optical signal transmitted through the transmission path and an integral multiple of the symbol rate. A distributed pre-equalized optical communication system.
請求項3ないし5のいずれか1項に記載の分散予等化光通信システムにおいて、
前記光送信手段は、無変調のCW光源および電気パルス信号源を有し、前記無変調のCW光源からのCW光を前記電気パルス信号源からの電気パルス信号で駆動することにより前記繰り返し光パルス信号を生成することを特徴とする分散予等化光通信システム。
The dispersion pre-equalized optical communication system according to any one of claims 3 to 5,
The optical transmission means has an unmodulated CW light source and an electric pulse signal source, and drives the CW light from the unmodulated CW light source with an electric pulse signal from the electric pulse signal source, thereby repeating the repetitive optical pulse. A distributed pre-equalized optical communication system characterized by generating a signal.
請求項1ないし6のいずれか1項に記載の分散予等化光通信システムにおいて、
前記光フィルタ手段は、フィルタ通過帯域が隣接サイドバンドの影響を受けない概略f0−m×fs(Hz)〜f0+m×fs(Hz)(ただし、mは1以上の整数)を超えない範囲内で、かつ分散予等化の効果と前記伝送路の波長分散とが打ち消し合う信号帯域のみを主成分として抽出することを特徴とする分散予等化光通信システム
The dispersion pre-equalized optical communication system according to any one of claims 1 to 6,
The optical filter means is within a range in which the filter pass band is not affected by the adjacent sidebands but does not exceed approximately f0−m × fs (Hz) to f0 + m × fs (Hz) (where m is an integer of 1 or more). And only a signal band in which the effect of dispersion pre-equalization and chromatic dispersion of the transmission line cancel each other is extracted as a main component.
請求項1ないし6のいずれか1項に記載の分散予等化光通信システムにおいて、
前記光フィルタ手段は、フィルタ通過帯域が概略f0−fs(Hz)〜f0+fs(Hz)の範囲内で、かつ概略f0−fs/2(Hz)〜f0+fs/2(Hz)以上の範囲の分散予等化の効果と前記伝送路の波長分散とが打ち消し合う信号帯域のみを主成分として抽出することを特徴とする分散予等化光通信システム
The dispersion pre-equalized optical communication system according to any one of claims 1 to 6,
The optical filter means has a pre-dispersion with a filter pass band in a range of approximately f0-fs (Hz) to f0 + fs (Hz) and in a range of approximately f0-fs / 2 (Hz) to f0 + fs / 2 (Hz) or more. A dispersion pre-equalization optical communication system characterized in that only a signal band in which the effect of equalization and chromatic dispersion of the transmission line cancel each other is extracted as a main component
請求項1ないし8のいずれか1項に記載の分散予等化光通信システムにおいて、
前記光変調手段は、光の強度に情報を付与する変調方式により前記データ変調を施すことを特徴とする分散予等化光通信システム。
The dispersion pre-equalized optical communication system according to any one of claims 1 to 8,
The dispersion pre-equalization optical communication system, wherein the light modulation means performs the data modulation by a modulation method that gives information to light intensity.
請求項1ないし8のいずれか1項に記載の分散予等化光通信システムにおいて、
前記光変調手段は、光の位相に情報を付与する変調方式により前記データ変調を施すことを特徴とする分散予等化光通信システム。
The dispersion pre-equalized optical communication system according to any one of claims 1 to 8,
The dispersion pre-equalization optical communication system, wherein the optical modulation means performs the data modulation by a modulation scheme that gives information to the phase of light.
請求項1ないし8のいずれか1項に記載の分散予等化光通信システムにおいて、
前記光変調手段は、NRZ変調、DPSK変調、またはDQPSK変調により前記データ変調を施すことを特徴とする分散予等化光通信システム。
The dispersion pre-equalized optical communication system according to any one of claims 1 to 8,
The distributed pre-equalization optical communication system, wherein the optical modulation means performs the data modulation by NRZ modulation, DPSK modulation, or DQPSK modulation.
JP2007045902A 2007-02-26 2007-02-26 Distributed pre-equalization optical communication system Active JP4855298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045902A JP4855298B2 (en) 2007-02-26 2007-02-26 Distributed pre-equalization optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045902A JP4855298B2 (en) 2007-02-26 2007-02-26 Distributed pre-equalization optical communication system

Publications (2)

Publication Number Publication Date
JP2008211493A true JP2008211493A (en) 2008-09-11
JP4855298B2 JP4855298B2 (en) 2012-01-18

Family

ID=39787427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045902A Active JP4855298B2 (en) 2007-02-26 2007-02-26 Distributed pre-equalization optical communication system

Country Status (1)

Country Link
JP (1) JP4855298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188788A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Transmission/reception system
WO2011052423A1 (en) * 2009-10-29 2011-05-05 三菱電機株式会社 Pre-equalisation optical transmitter and pre-equalisation optical fibre transmission system
JP2011097253A (en) * 2009-10-28 2011-05-12 Fujitsu Ltd Optical transmitter, optical transmission/reception system, optical transmission method and optical transmission/reception method
EP2852076A1 (en) 2013-09-11 2015-03-25 Fujitsu Limited Non-linear distortion compensator, method of compensating non-linear distortion, and communication apparatus
EP2858272A1 (en) 2013-09-11 2015-04-08 Fujitsu Limited Non-linear distortion compensator, method of compensating non-linear distortion, and optical receiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110517A (en) * 1991-10-21 1993-04-30 Nec Corp Optical repeater transmission system
JP2001094535A (en) * 1999-09-24 2001-04-06 Kdd Submarine Cable Systems Inc Optical transmission system
JP2006522508A (en) * 2003-04-03 2006-09-28 ノーテル・ネットワークス・リミテッド Electrical domain compensation of nonlinear effects in optical communication systems.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110517A (en) * 1991-10-21 1993-04-30 Nec Corp Optical repeater transmission system
JP2001094535A (en) * 1999-09-24 2001-04-06 Kdd Submarine Cable Systems Inc Optical transmission system
JP2006522508A (en) * 2003-04-03 2006-09-28 ノーテル・ネットワークス・リミテッド Electrical domain compensation of nonlinear effects in optical communication systems.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188788A (en) * 2008-02-07 2009-08-20 Mitsubishi Electric Corp Transmission/reception system
JP2011097253A (en) * 2009-10-28 2011-05-12 Fujitsu Ltd Optical transmitter, optical transmission/reception system, optical transmission method and optical transmission/reception method
WO2011052423A1 (en) * 2009-10-29 2011-05-05 三菱電機株式会社 Pre-equalisation optical transmitter and pre-equalisation optical fibre transmission system
CN102598541A (en) * 2009-10-29 2012-07-18 三菱电机株式会社 Pre-equalisation optical transmitter and pre-equalisation optical fibre transmission system
JPWO2011052423A1 (en) * 2009-10-29 2013-03-21 三菱電機株式会社 Pre-equalized optical transmitter and pre-equalized optical fiber transmission system
EP2852076A1 (en) 2013-09-11 2015-03-25 Fujitsu Limited Non-linear distortion compensator, method of compensating non-linear distortion, and communication apparatus
EP2858272A1 (en) 2013-09-11 2015-04-08 Fujitsu Limited Non-linear distortion compensator, method of compensating non-linear distortion, and optical receiver
US9363014B2 (en) 2013-09-11 2016-06-07 Fujitsu Limited Non-linear distortion compensator, method of compensating non-linear distortion, and optical receiver
US9667347B2 (en) 2013-09-11 2017-05-30 Fujitsu Limited Optical transmitter, optical receiver, method of compensating non-linear distortion, and communication apparatus

Also Published As

Publication number Publication date
JP4855298B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
Peng et al. Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique
JP6229795B2 (en) Signal generation apparatus and signal generation method
WO2018168061A1 (en) Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system and optical transmission characteristic compensation system
WO2011052423A1 (en) Pre-equalisation optical transmitter and pre-equalisation optical fibre transmission system
EP2738956B1 (en) Optical multilevel signal pre-equalization circuit, optical multilevel signal pre-equalization transmitter, and polarization-multiplexed pre-equalization transmitter
EP3096470B1 (en) Method and system for nonlinear interference mitigation
US8989599B2 (en) Optical communication system with monitor functions and monitoring method therefor
US8837947B2 (en) Apparatus for pseudo-return-to-zero modulation
JP2008066849A (en) Optical transmitter and its driving method
US9294190B2 (en) Low cost direct modulation and coherent detection optical OFDM
Napoli et al. Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders
US10014954B2 (en) Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation
US20080019703A1 (en) Optical Transmitter Using Nyquist Pulse Shaping
JP4855298B2 (en) Distributed pre-equalization optical communication system
Gaiarin et al. Experimental demonstration of dual polarization nonlinear frequency division multiplexed optical transmission system
JP5088174B2 (en) Demodulator circuit
JP2008236512A (en) Dispersion pre-equalizing optical transmitter
CN109804574B (en) Coding for optical transmission
JP5645632B2 (en) Optical transceiver and optical transmission / reception method
JP5116573B2 (en) Distributed pre-equalization optical transmitter
JPWO2013140970A1 (en) Optical communication system and optical communication method having high phase noise tolerance
US11283527B2 (en) Optical transmitting system, optical transmitting apparatus, optical receiving apparatus and transfer function estimating method
EP1716650B1 (en) System for generating optical return-to-zero signals with alternating bi-phase shift
JP6116001B2 (en) Optical transmitter and optical receiver
EP2903183A1 (en) Pulse-shaping filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250