JP2008211165A - Composition appropriate for photoelectromotive element, and the photoelectromotive element - Google Patents

Composition appropriate for photoelectromotive element, and the photoelectromotive element Download PDF

Info

Publication number
JP2008211165A
JP2008211165A JP2007265227A JP2007265227A JP2008211165A JP 2008211165 A JP2008211165 A JP 2008211165A JP 2007265227 A JP2007265227 A JP 2007265227A JP 2007265227 A JP2007265227 A JP 2007265227A JP 2008211165 A JP2008211165 A JP 2008211165A
Authority
JP
Japan
Prior art keywords
component
group
solution
electron
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007265227A
Other languages
Japanese (ja)
Other versions
JP4983524B2 (en
Inventor
Nobuhiko Shirasawa
信彦 白沢
Daisuke Kitazawa
大輔 北澤
Jun Tsukamoto
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007265227A priority Critical patent/JP4983524B2/en
Publication of JP2008211165A publication Critical patent/JP2008211165A/en
Application granted granted Critical
Publication of JP4983524B2 publication Critical patent/JP4983524B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectromotive element which has high photoelectric conversion efficiency. <P>SOLUTION: A composition contains a component A which is an electron-donor conjugated polymer compound, a component B which is an electron-acceptor organic semiconductor, a component C which is a good solvent for the components A and B, and a component D which is an amide-based solvent having a specific inductive capacity of 33 or higher at 25°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は光起電力素子の活性層の形成に好適に用いることができる組成物、およびこれを用いた光起電力素子に関する。   The present invention relates to a composition that can be suitably used for forming an active layer of a photovoltaic device, and a photovoltaic device using the composition.

太陽電池は環境に優しい電気エネルギー源として、現在深刻さを増すエネルギー問題に対して有力なエネルギー源と注目されている。現在、太陽電池の光起電力素子の半導体材料としては単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機物が使用されている。しかし、無機半導体を用いて製造される太陽電池は、火力発電や原子力発電などの発電方式と比べてコストが高いために、一般家庭に広く普及するには至っていない。コスト高の要因は主として、真空かつ高温下で半導体薄膜を製造しなくてはならないというプロセスにある。そこで、製造プロセスの簡略化が期待される半導体材料として、共役系重合体や有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。このような有機太陽電池においては、半導体材料を塗布法で作製することが可能なため、製造プロセスを簡単化することができる。   Solar cells are attracting attention as an environmentally friendly electrical energy source and an influential energy source for increasing energy problems. Currently, inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductor are used as semiconductor materials for photovoltaic elements of solar cells. However, solar cells manufactured using inorganic semiconductors have not been widely used in ordinary households because of high costs compared with power generation methods such as thermal power generation and nuclear power generation. The main reason for the high cost is the process in which the semiconductor thin film must be manufactured under vacuum and high temperature. Therefore, organic semiconductor cells using organic semiconductors such as conjugated polymers and organic crystals and organic dyes are being studied as semiconductor materials that are expected to simplify the manufacturing process. In such an organic solar cell, since a semiconductor material can be produced by a coating method, the manufacturing process can be simplified.

しかし、共役系重合体に代表される従来の有機太陽電池では、従来の無機半導体を用いた太陽電池と比べて光電変換効率が低いために、まだ実用化には至っていない。これは、主として入射光によって生成された電子と正孔が分離しにくいエキシトンと呼ばれる束縛状態が形成されやすいことと、生成したキャリアがトラップに捕獲されやすく、キャリアの移動度が低いことによる。   However, conventional organic solar cells typified by conjugated polymers have not yet been put into practical use because of lower photoelectric conversion efficiency than conventional solar cells using inorganic semiconductors. This is mainly due to the fact that a bound state called exciton, in which electrons and holes generated by incident light are difficult to separate, is easily formed, and the generated carriers are easily trapped in the trap, resulting in low carrier mobility.

このため、生成した電子と正孔をエキシトンからうまく分離する手段と、共役系重合体の非晶領域や共役系重合体鎖間でのキャリアの散乱やトラップによるキャリアの捕捉を抑制して移動度を向上できる手段を見出すことが、有機半導体材料による太陽電池を実用化するための鍵となる。   For this reason, mobility is achieved by means of successfully separating generated electrons and holes from excitons, and suppressing carrier scattering and trapping of carriers between amorphous regions and conjugated polymer chains of conjugated polymers. Finding a means that can improve the power is the key to putting solar cells made of organic semiconductor materials into practical use.

これまでの有機半導体による光起電力素子としては、次のような素子構成が知られている。すなわち、電子供与性有機材料(p型有機半導体)と仕事関数の小さい金属を接合させるショットキー型、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を接合させるヘテロ接合型などである。これらの光起電力素子は、接合部の有機層(数分子層程度)のみが光電流生成に寄与するだけなので光電変換効率が低い。   The following element structure is known as a conventional photovoltaic element using an organic semiconductor. That is, a Schottky type, an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor) for joining an electron-donating organic material (p-type organic semiconductor) and a metal having a small work function. Heterojunction type to be joined. These photovoltaic elements have low photoelectric conversion efficiency because only the organic layer (about several molecular layers) at the junction contributes to photocurrent generation.

そこで、光電変換効率向上の一つの方法として、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を混合し、光電変換を生じるpn−接合面の面積を増加させたバルクヘテロ接合型(例えば、非特許文献1参照)が提案されている。例えば、共役系重合体を電子供与性有機材料(p型有機半導体)として用い、電子受容性有機材料としてn型の半導体特性をもつ導電性高分子のほかC60などのフラーレンやカーボンナノチューブを用いた光電変換材料が知られている(例えば、非特許文献2、特許文献1、2参照)。
ネイチャー(Nature)376号、498−500ページ、(1995) アプライド フィジクス レターズ(Applied Physics Letters)(米国)、80巻、112−114ページ、(2002) 特開2003−347565号公報(請求項1、3) 特開2004−165474号公報(請求項1、3)
Therefore, as one method for improving photoelectric conversion efficiency, an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor) are mixed, and the area of the pn-junction surface that causes photoelectric conversion is reduced. An increased bulk heterojunction type (for example, see Non-Patent Document 1) has been proposed. Use for example, using a conjugated polymer as an electron donating organic material (p-type organic semiconductor), a fullerene or a carbon nanotube, such as other C 60 of the conductive polymer having the semiconductor characteristics of the n-type as the electron accepting organic material Known photoelectric conversion materials are known (see, for example, Non-Patent Document 2, Patent Documents 1 and 2).
Nature 376, pages 498-500, (1995) Applied Physics Letters (USA), 80, 112-114, (2002) JP 2003-347565 A (Claims 1 and 3) JP 2004-165474 A (Claims 1 and 3)

バルクへテロ接合型素子の活性層は、クロロベンゼンやジクロロベンゼンやクロロホルムなどを溶媒としてコーティング法で形成できることが知られている。一方、本発明者らの知見によれば、該活性層の光電変換効率は半導体材料だけでなく溶媒系にも依存する。しかし、従来知られた溶媒系で光電変換効率が十分なものは見いだされていない。そこで、本発明は光電変換効率の高い活性層を与える組成物を提供することを目的とする。   It is known that an active layer of a bulk heterojunction element can be formed by a coating method using chlorobenzene, dichlorobenzene, chloroform, or the like as a solvent. On the other hand, according to the knowledge of the present inventors, the photoelectric conversion efficiency of the active layer depends not only on the semiconductor material but also on the solvent system. However, no conventionally known solvent system having sufficient photoelectric conversion efficiency has been found. Then, an object of this invention is to provide the composition which gives the active layer with high photoelectric conversion efficiency.

かかる課題を解決すべく本発明者らは溶媒系について鋭意検討を重ね、光電変換効率向上のための因子である短絡電流値とフィルファクター(FF)に着眼し、これを向上した組成物を見出し、本発明を完成するに至った。   In order to solve such problems, the present inventors have made extensive studies on solvent systems, and have focused on short-circuit current values and fill factors (FF), which are factors for improving photoelectric conversion efficiency, and have found compositions that have improved these. The present invention has been completed.

即ち本発明は、電子供与性共役系化合物、電子受容性有機半導体、前記材料についての良溶媒からなる活性層を形成するための組成物(コーティング液)に、25℃における比誘電率が33以上のアミド系溶媒を加えた組成物であることを本旨とし、かかる組成物を用いて活性層を形成した光起電力素子を提供するものである。   That is, the present invention provides a composition (coating solution) for forming an active layer comprising an electron-donating conjugated compound, an electron-accepting organic semiconductor, and a good solvent for the material, having a relative dielectric constant of 33 or more at 25 ° C. The present invention provides a photovoltaic device in which an active layer is formed using such a composition.

本発明によれば、光電変換効率の高い光起電力素子を提供することができる。   According to the present invention, a photovoltaic device with high photoelectric conversion efficiency can be provided.


本発明の組成物は
A成分 電子供与性共役系化合物
B成分 電子受容性有機半導体
C成分 前記A成分、B成分についての良溶媒、および
D成分 25℃における比誘電率が33以上のアミド系溶媒
を含む。

The composition of the present invention comprises an A component, an electron donating conjugated compound, a B component, an electron accepting organic semiconductor C component, a good solvent for the A component, the B component, and a D component. An amide solvent having a relative dielectric constant of 33 or more at 25 ° C including.

本発明で用いるA成分の電子供与性共役系化合物は、p型半導体特性を示す共役系化合物であれば特に限定されないが、例えば、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体、ベンゾチアジアゾールを含む化合物などが挙げられる。ここで○○系重合体とは、○○構造の骨格を持つ重合体を示し、その少なくとも一部が置換された重合体や、側鎖を有する重合体も含む。例えばポリ−p−フェニレンビニレン系重合体としては、ポリ−p−フェニレンビニレンや、これに側鎖を有する重合体を挙げることができる。これらを2種以上用いてもよい。なお、前記電子供与性共役系重合体の重合度は特に限定されないが、溶媒に対する溶解性の点から5以上500以下が好ましい。   The electron donating conjugated compound of component A used in the present invention is not particularly limited as long as it is a conjugated compound exhibiting p-type semiconductor characteristics. For example, polythiophene polymer, poly-p-phenylene vinylene polymer, poly -Conjugated polymers such as p-phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers, polythienylene vinylene polymers, compounds containing benzothiadiazole, etc. Can be mentioned. Here, the XX polymer indicates a polymer having a XX structure skeleton, and includes a polymer in which at least a part thereof is substituted and a polymer having a side chain. For example, examples of the poly-p-phenylene vinylene polymer include poly-p-phenylene vinylene and a polymer having a side chain on the poly-p-phenylene vinylene. Two or more of these may be used. The degree of polymerization of the electron donating conjugated polymer is not particularly limited, but is preferably 5 or more and 500 or less from the viewpoint of solubility in a solvent.

前記電子供与性共役系化合物のなかでもポリチオフェン系重合体やベンゾチアジアゾールを含む化合物は、長波長の光を光電変換に利用することができる点で好ましい。   Among the electron donating conjugated compounds, a compound containing a polythiophene polymer or benzothiadiazole is preferable in that light having a long wavelength can be used for photoelectric conversion.

ポリチオフェン系重合体とは、ポリチオフェン構造の骨格を持つ共役系重合体あるいはそれに側鎖が付いた構造を有するものである。具体的にはポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−デシルチオフェンなどのポリ−3−アルキルチオフェン、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェンなどのポリ−3−アルコキシチオフェン、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェンなどのポリ−3−アルコキシ−4−アルキルチオフェンなどが挙げられる。これらの中でも、ポリ−3−ヘキシルチオフェンがより好ましい。ポリ−3−ヘキシルチオフェンは均質な膜を得るのに適しているうえ、長波長の光を光電変換に利用することができる。   The polythiophene polymer is a conjugated polymer having a polythiophene structure skeleton or a structure having a side chain attached thereto. Specifically, poly-3-alkylthiophene such as poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, poly-3-decylthiophene, and poly-3 -Methoxythiophene, poly-3-ethoxythiophene, poly-3-alkoxythiophene such as poly-3-dodecyloxythiophene, poly-3-methoxy-4-methylthiophene, poly-3-dodecyloxy-4-methylthiophene, etc. Of poly-3-alkoxy-4-alkylthiophene. Among these, poly-3-hexylthiophene is more preferable. Poly-3-hexylthiophene is suitable for obtaining a homogeneous film and can use long-wavelength light for photoelectric conversion.

ベンゾチアジアゾールを含む化合物の中でも、下記一般式(1)で表される化合物がより好ましい。かかる化合物は均質な膜を得るのに適しているうえ、長波長の光を光電変換に利用することができる。   Among the compounds containing benzothiadiazole, a compound represented by the following general formula (1) is more preferable. Such a compound is suitable for obtaining a homogeneous film, and long wavelength light can be used for photoelectric conversion.

Figure 2008211165
Figure 2008211165

〜R12は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基、アリール基またはヘテロアリール基を表す。mは各々独立に1または2であり、nは1以上1000以下の範囲を表す。ここで、アルキル基とは例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基のような飽和脂肪族炭化水素基であり、直鎖状であっても分岐状であってもよい。また、アルコキシ基とは例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。また、アリール基とは例えばフェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントリル基、ターフェニル基、ピレニル基、フルオレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、ヘテロアリール基とは例えば、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリニル基、イソキノリル基、キノキサリル基、アクリジニル基、カルバゾリル基などの炭素以外の原子を有する複素芳香環基を示し、これは無置換でも置換されていてもかまわない。 R 1 to R 12 may be the same or different and each represents hydrogen, an alkyl group, an alkoxy group, an aryl group, or a heteroaryl group. Each m is independently 1 or 2, and n represents a range of 1 or more and 1000 or less. Here, the alkyl group is, for example, a saturated aliphatic carbonization such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group. It is a hydrogen group and may be linear or branched. Further, the alkoxy group represents an aliphatic hydrocarbon group via an ether bond such as a methoxy group, an ethoxy group, a propoxy group, or a butoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. The aryl group refers to an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, an anthryl group, a terphenyl group, a pyrenyl group, or a fluorenyl group, which is unsubstituted or substituted. It doesn't matter. The heteroaryl group includes, for example, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolinyl group, isoquinolyl group, quinoxalyl group, acridinyl group, carbazolyl group. Heteroaromatic groups having atoms other than carbon, such as, may be unsubstituted or substituted.

本発明で用いるB成分の電子受容性有機半導体は、n型半導体特性を示す有機材料であれば特に限定されないが、例えば1,4,5,8−ナフタレンテトラカルボキシリックジアンハイドライド、3,4,9,10−ペリレンテトラカルボキシリックジアンハイドライド、N,N'−ジオクチル−3,4,9,10−ナフチルテトラカルボキシジイミド、オキサゾール誘導体(2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ジ(1−ナフチル)−1,3,4−オキサジアゾール等)、トリアゾール誘導体(3−(4−ビフェニリル)−4−フェニル−5−(4−t−ブチルフェニル)−1,2,4−トリアゾール等)、フェナントロリン誘導体、フラーレン誘導体、カーボンナノチューブ、ポリ−p−フェニレンビニレン系重合体にシアノ基を導入した誘導体(CN−PPV)などが挙げられる。これらを2種以上用いてもよい。安定でキャリア移動度の高いn型半導体であることからフラーレン誘導体が好ましく用いられる。   The electron-accepting organic semiconductor of component B used in the present invention is not particularly limited as long as it is an organic material exhibiting n-type semiconductor characteristics. For example, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4, 9,10-perylenetetracarboxylic dianhydride, N, N′-dioctyl-3,4,9,10-naphthyltetracarboxydiimide, oxazole derivative (2- (4-biphenylyl) -5- (4-t-butyl) Phenyl) -1,3,4-oxadiazole, 2,5-di (1-naphthyl) -1,3,4-oxadiazole, etc.), triazole derivatives (3- (4-biphenylyl) -4-phenyl -5- (4-t-butylphenyl) -1,2,4-triazole, etc.), phenanthroline derivatives, fullerene derivatives, carbon nanotu And a derivative (CN-PPV) in which a cyano group is introduced into a poly-p-phenylene vinylene polymer. Two or more of these may be used. A fullerene derivative is preferably used because it is an n-type semiconductor that is stable and has high carrier mobility.

上記フラーレン誘導体の具体例として、C60、C70、C76、C78、C82、C84、C90、C94を始めとする無置換のものと、[6,6]−フェニル C61 ブチリックアシッドメチルエステル([6,6]−C61−PCBM)、[5,6]−フェニル C61 ブチリックアシッドメチルエステル、[6,6]−フェニル C61 ブチリックアシッドヘキシルエステル、[6,6]−フェニル C61 ブチリックアシッドドデシルエステル、[6,6]−フェニル C71 ブチリックアシッドメチルエステルを始めとする置換誘導体などが挙げられる。 Specific examples of the fullerene derivative include unsubstituted ones such as C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , and C 94 , and [6,6] -phenyl C61 Rick acid methyl ester ([6,6] -C61-PCBM), [5,6] -phenyl C61 butyric acid methyl ester, [6,6] -phenyl C61 butyric acid hexyl ester, [6,6]- Examples thereof include substituted derivatives such as phenyl C61 butyric acid dodecyl ester and [6,6] -phenyl C71 butyric acid methyl ester.

本発明では上記フラーレン誘導体のいずれも用いることができるが、有機溶媒に対する溶解性の点から[6,6]−C61−PCBMを用いるのがより好ましい。   In the present invention, any of the above fullerene derivatives can be used, but [6,6] -C61-PCBM is more preferably used from the viewpoint of solubility in an organic solvent.

A成分の電子供与性共役系化合物およびB成分の電子受容性有機半導体の含有量は、本発明にかかる組成物中においてA成分、B成分共に溶解していれば、特に限定されないが、A成分とB成分の重量分率として、A成分:B成分=1〜99:99〜1の範囲であることが好ましく、より好ましくは20〜80:80〜20の範囲である。ただし、いずれの重量分率であってもA成分とB成分の重量の和は後述するC成分とD成分の和100重量部に対して0.1〜3.0重量部であることが好ましく、0.5〜2.0重量部であることがより好ましい。   The contents of the electron donating conjugated compound of component A and the electron accepting organic semiconductor of component B are not particularly limited as long as both component A and component B are dissolved in the composition according to the present invention. The weight fraction of the B component is preferably in the range of A component: B component = 1 to 99:99 to 1, more preferably in the range of 20 to 80:80 to 20. However, at any weight fraction, the sum of the weights of the A component and the B component is preferably 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the sum of the C and D components described later. More preferably, it is 0.5 to 2.0 parts by weight.

本発明においてC成分に用いる、前記A成分、B成分についての良溶媒は、本発明の組成物として均一な溶液を与えるものであれば特に限定されない(但し、後述するD成分のアミド系溶媒はこのC成分には該当しない)が、前記A成分、B成分のそれぞれについて、25℃における溶解度が5mg/mL以上であるものを用いることが望ましい。例えばトルエン、キシレン、アセトン、酢酸エチル、テトラヒドロフラン、ジクロロメタン、クロロホルム、ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどが挙げられる。これらを2種以上用いてもよい。上記良溶媒の中でもA成分、B成分の溶解度がより高いクロロベンゼン、ジクロロベンゼン、クロロホルムが好ましく用いられる。A成分、B成分の溶解度が最も高いクロロベンゼン、ジクロロベンゼンがより好ましく用いられる。C成分としてこれらの溶媒を用いる場合、後述するD成分の含有量を増やしても均一なコーティング液を得ることができるためである。   The good solvent for the A component and B component used for the C component in the present invention is not particularly limited as long as it provides a uniform solution as the composition of the present invention (however, the amide solvent of the D component described later is Although it does not correspond to this C component, it is desirable to use those having a solubility at 25 ° C. of 5 mg / mL or more for each of the A component and the B component. Examples thereof include toluene, xylene, acetone, ethyl acetate, tetrahydrofuran, dichloromethane, chloroform, dichloroethane, chlorobenzene, dichlorobenzene, and trichlorobenzene. Two or more of these may be used. Among the good solvents, chlorobenzene, dichlorobenzene, and chloroform having higher solubility of the A component and the B component are preferably used. Chlorobenzene and dichlorobenzene having the highest solubility of the A component and the B component are more preferably used. This is because when these solvents are used as the C component, a uniform coating solution can be obtained even if the content of the D component described later is increased.

本発明の組成物は、D成分 25℃における比誘電率が33以上のアミド系溶媒を含むことを特徴とする。かかる成分を含有することにより、光起電力素子の短絡電流値やFF値を向上させることができる。アミド系溶媒は、活性層の構造を電荷輸送に適した層分離構造とすることに寄与するものと考えられる。さらに、比誘電率を33以上とすることにより、短絡電流値やFF値を向上させることができる。比誘電率が33未満であると、このような効果は得られない。これは活性層が上述した層分離構造となりにくいためであると考えられる。好ましくは33以上40以下である。   The composition of the present invention is characterized by containing an amide solvent having a relative dielectric constant of 33 or more at 25 ° C. for the D component. By containing such a component, the short circuit current value and FF value of the photovoltaic element can be improved. It is considered that the amide solvent contributes to making the structure of the active layer a layer separation structure suitable for charge transport. Furthermore, the short-circuit current value and the FF value can be improved by setting the relative dielectric constant to 33 or more. If the relative dielectric constant is less than 33, such an effect cannot be obtained. This is presumably because the active layer is unlikely to have the layer separation structure described above. Preferably they are 33 or more and 40 or less.

本発明に用いるD成分の25℃における比誘電率が33以上のアミド系溶媒は、例えばアセトアミド、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルイミダゾリジノンなどが挙げられる。これらを2種以上用いてもよい。好ましくは比誘電率が33以上40以下のアミド系溶媒であるジメチルホルムアミド、ジメチルイミダゾリジノンが用いられる。D成分の含有量は本発明の組成物として均一な溶液を与えるものであれば特に限定されないが、好ましくはC成分とD成分の和100体積部に対して0.1〜20体積部であり、より好ましくは3〜10体積部である。0.1体積部以上であれば前記の効果が充分に得られる。一方、20体積部以下であれば、均一な組成物を容易に作製することができる。   Examples of the amide solvent having a relative dielectric constant at 25 ° C. of D component used in the present invention of 33 or more include acetamide, dimethylacetamide, dimethylformamide, dimethylimidazolidinone and the like. Two or more of these may be used. Preferably, dimethylformamide and dimethylimidazolidinone, which are amide solvents having a relative dielectric constant of 33 to 40, are used. Although content of D component will not be specifically limited if a uniform solution is given as a composition of this invention, Preferably it is 0.1-20 volume parts with respect to 100 volume parts of the sum of C component and D component. More preferably, it is 3 to 10 parts by volume. If it is 0.1 volume part or more, the said effect is fully acquired. On the other hand, if it is 20 volume parts or less, a uniform composition can be produced easily.

本発明の組成物は上記のA成分からD成分のほか、本発明の目的を阻害しない範囲において、界面活性剤やバインダー樹脂、フィラー等の他の成分を含んでいても良い。   The composition of the present invention may contain other components such as a surfactant, a binder resin, and a filler, in addition to the above components A to D, as long as the object of the present invention is not impaired.

次に、本発明の光起電力素子について例を挙げて説明する。   Next, the photovoltaic element of the present invention will be described with an example.

光起電力素子は、少なくとも一方が光透過性を有する第1の電極および第2の電極(つまり、正極と陰極)間に挟持された活性層を有する。   The photovoltaic element has an active layer sandwiched between a first electrode and a second electrode (that is, a positive electrode and a cathode), at least one of which is light transmissive.

図1は本発明における光起電力素子の一態様を示した断面図である。基板1上に正極2、活性層3、負極をこの順に有する。活性層3は、本発明の組成物を塗布、乾燥して得られる層である。   FIG. 1 is a cross-sectional view showing one embodiment of a photovoltaic element in the present invention. On the substrate 1, a positive electrode 2, an active layer 3, and a negative electrode are provided in this order. The active layer 3 is a layer obtained by applying and drying the composition of the present invention.

図1に示す基板1は、光電変換材料の種類や用途に応じて、電極材料や有機半導体層が積層できる基板、例えば、無アルカリガラス、石英ガラス等の無機材料、ポリエステル、ポリカーボネート、ポリオレフィン、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリパラキシレン、エポキシ樹脂やフッ素系樹脂等の有機材料から任意の方法によって作製されたフィルムや板が使用可能である。また基板1側から光を入射して用いる場合は、基板の光透過率は60−100%であることが好ましい。ここで、本発明において光透過率とは、
[透過光強度(W/m)/入射光強度(W/m)]×100(%)
で与えられる値である。
A substrate 1 shown in FIG. 1 is a substrate on which an electrode material and an organic semiconductor layer can be laminated, for example, an inorganic material such as alkali-free glass or quartz glass, polyester, polycarbonate, polyolefin, polyamide, depending on the type and application of the photoelectric conversion material. Films and plates produced by an arbitrary method from organic materials such as polyimide, polyphenylene sulfide, polyparaxylene, epoxy resin and fluorine resin can be used. When light is incident from the substrate 1 side and used, the light transmittance of the substrate is preferably 60 to 100%. Here, in the present invention, the light transmittance is
[Transmission light intensity (W / m 2 ) / incident light intensity (W / m 2 )] × 100 (%)
The value given by.

また、正極2と活性層3の間に正孔輸送層を設けても良い。正孔輸送層を形成する材料としては、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体などのp型半導体特性を示す低分子有機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたものが好ましく用いられる。正孔輸送層は5nmから600nmの厚さが好ましく、より好ましくは30nmから600nmである。 Further, a hole transport layer may be provided between the positive electrode 2 and the active layer 3. As a material for forming the hole transport layer, conductive polymers such as polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.) ), Low molecular organic compounds exhibiting p-type semiconductor properties such as porphyrin derivatives are preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, or PEDOT to which polystyrene sulfonate (PSS) is added is preferably used. The thickness of the hole transport layer is preferably 5 nm to 600 nm, more preferably 30 nm to 600 nm.

本発明の光起電力素子は、第1の電極および第2の電極、すなわち図1の場合では正極2および負極4、のいずれかは光透過性を有する。ここで光透過性があるとは、活性層3に入射光が到達して起電力が発生する程度の光透過性を有することをいう。すなわち、光透過率として0%を超える値を有する場合、光透過性はあるという。この光透過性を有する電極は、60−100%の光透過率を有することが好ましい。ここで、光透過率は白色光に対する透過率をいう。また、光透過性を有する電極の厚さは十分な導電性が得られればよく、材料によって異なるが20nmから300nmが好ましい。なお、光透過性を有さない電極においては、導電性があれば十分であり、厚さも特に限定されない。   In the photovoltaic device of the present invention, the first electrode and the second electrode, that is, either the positive electrode 2 or the negative electrode 4 in the case of FIG. Here, the phrase “being light transmissive” means that the light has such light transmittance that incident light reaches the active layer 3 and an electromotive force is generated. That is, when the light transmittance exceeds 0%, it is said that there is light transmittance. The electrode having light transmittance preferably has a light transmittance of 60 to 100%. Here, the light transmittance refers to the transmittance for white light. Further, the thickness of the light-transmitting electrode is not limited as long as sufficient conductivity is obtained and varies depending on the material, but is preferably 20 nm to 300 nm. In addition, in the electrode which does not have a light transmittance, it is enough if there is electroconductivity, and thickness is not specifically limited, either.

電極に用いる材料としては、一方の電極には仕事関数の大きな導電性材料、もう一方の電極には仕事関数の小さな導電性材料を使用することが好ましい。この場合、仕事関数の大きな導電性材料を用いた電極は正極となる。この仕事関数の大きな導電性材料としては金、白金、クロム、ニッケルなどの金属のほか、透明性を有するインジウム、スズなどの金属酸化物、複合金属酸化物(インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)など)が好ましく用いられる。ここで、正極2に用いられる導電性材料は、活性層3とオーミック接合するものであることが好ましい。さらに、正孔輸送層を用いた場合においては、正極2に用いられる導電性材料は活性層3または正孔輸送層(正孔輸送層を設ける場合)とオーミック接合するものであることが好ましい。   As materials used for the electrodes, it is preferable to use a conductive material having a high work function for one electrode and a conductive material having a low work function for the other electrode. In this case, an electrode using a conductive material having a large work function is a positive electrode. In addition to metals such as gold, platinum, chromium and nickel, conductive materials having a large work function include transparent metal oxides such as indium and tin, composite metal oxides (indium tin oxide (ITO), indium Zinc oxide (IZO) or the like is preferably used. Here, the conductive material used for the positive electrode 2 is preferably one that is in ohmic contact with the active layer 3. Furthermore, when a hole transport layer is used, it is preferable that the conductive material used for the positive electrode 2 is in ohmic contact with the active layer 3 or the hole transport layer (when a hole transport layer is provided).

仕事関数の小さな導電性材料を用いた電極は負極4となるが、この仕事関数の小さな導電性材料としては、アルカリ金属やアルカリ土類金属、具体的にはリチウム、マグネシウム、カルシウムが使用される。また、錫や銀、アルミニウムも好ましく用いられる。さらに、上記の金属からなる合金や上記の金属の積層体からなる電極も好ましく用いられる。また、負極4と活性層3間に電子輸送層を設けることや、電子輸送層と負極4との界面に金属フッ化物などを導入することで、取り出し電流を向上させることも可能である。ここで、負極4に用いられる導電性材料は、活性層3または電子輸送層(電子輸送層を設ける場合)とオーミック接合するものであることが好ましい。   An electrode using a conductive material having a low work function is the negative electrode 4, and as the conductive material having a low work function, an alkali metal or alkaline earth metal, specifically lithium, magnesium, or calcium is used. . Tin, silver, and aluminum are also preferably used. Furthermore, an electrode made of an alloy made of the above metal or a laminate of the above metal is also preferably used. Further, it is possible to improve the extraction current by providing an electron transport layer between the negative electrode 4 and the active layer 3 or introducing a metal fluoride or the like at the interface between the electron transport layer and the negative electrode 4. Here, the conductive material used for the negative electrode 4 is preferably an ohmic junction with the active layer 3 or the electron transport layer (when an electron transport layer is provided).

次に本発明の光起電力素子の製造工程について例を挙げて説明する。基板上にITOなどの透明電極(この場合正極に相当)をスパッタリング法などにより形成する。次に、本発明にかかる組成物を該透明電極上に塗布・乾燥し活性層を形成する。   Next, an example is given and demonstrated about the manufacturing process of the photovoltaic device of this invention. A transparent electrode such as ITO (corresponding to a positive electrode in this case) is formed on the substrate by sputtering or the like. Next, the composition concerning this invention is apply | coated and dried on this transparent electrode, and an active layer is formed.

本発明の組成物は、例えば、A成分の電子供与性共役系化合物およびB成分の電子受容性有機半導体をC成分の良溶媒に添加し、加熱、攪拌、超音波照射などの方法を用いて溶解させ溶液を作り、次いで、D成分のアミド系溶媒を添加することで得られる。   In the composition of the present invention, for example, an electron donating conjugated compound of component A and an electron accepting organic semiconductor of component B are added to a good solvent of component C, and a method such as heating, stirring, or ultrasonic irradiation is used. It is obtained by dissolving to make a solution, and then adding an amide solvent of component D.

活性層の形成には、スピンコート塗布、ブレードコート塗布、スリットダイコート塗布、スクリーン印刷塗布、バーコーター塗布、鋳型塗布、印刷転写法、浸漬引き上げ法、インクジェット法、スプレー法など何れの方法を用いることができ、塗膜厚さ制御や配向制御など、得ようとする塗膜特性に応じて塗布方法を選択すればよい。例えば、厚さ5〜200nmの均質な塗膜を得るためには、前記A成分とB成分の重量の和が良溶媒100重量部に対して0.5〜3重量部のコーティング液をスピンコート法により作製すれば良い。次いで、形成した塗膜から溶媒を除去するために、減圧下または不活性ガス雰囲気下(窒素やアルゴン雰囲気下)で乾燥する。さらに減圧下または不活性ガス雰囲気下、アニーリング処理を行ってもよい。アニーリング処理の好ましい温度は50℃〜300℃、より好ましくは70℃〜200℃である。また、アニーリング処理を行うことで、積層した層が界面で互いに浸透して接触する実効面積が増加し、短絡電流を増大させることができる。このアニーリング処理は、負極の形成後に行ってもよい。   For the formation of the active layer, any method such as spin coating, blade coating, slit die coating, screen printing coating, bar coater coating, mold coating, printing transfer method, dip-up method, ink jet method, spray method, etc. should be used. The coating method may be selected according to the properties of the coating film to be obtained, such as coating thickness control and orientation control. For example, in order to obtain a uniform coating film having a thickness of 5 to 200 nm, spin coating is performed with a coating solution in which the sum of the weights of the component A and component B is 0.5 to 3 parts by weight with respect to 100 parts by weight of a good solvent. What is necessary is just to produce by a method. Next, in order to remove the solvent from the formed coating film, the film is dried under reduced pressure or under an inert gas atmosphere (nitrogen or argon atmosphere). Further, the annealing treatment may be performed under reduced pressure or in an inert gas atmosphere. A preferable temperature for the annealing treatment is 50 ° C to 300 ° C, more preferably 70 ° C to 200 ° C. Further, by performing the annealing treatment, the effective area where the stacked layers permeate and contact each other at the interface increases, and the short-circuit current can be increased. This annealing treatment may be performed after the formation of the negative electrode.

次に、活性層上にAlなどの金属電極(この場合負極に相当)を蒸着法やスパッタ法により形成する。   Next, a metal electrode such as Al (corresponding to a negative electrode in this case) is formed on the active layer by vapor deposition or sputtering.

正極と活性層の間に正孔輸送層を設ける場合には、所望のp−型有機半導体材料(PEDOTなど)を正極上にスピンコート法、バーコーティング法、ブレードによるキャスト法等で塗布した後、真空恒温槽やホットプレートなどを用いて溶媒を除去し、正孔輸送層を形成する。フタロシアニン誘導体やポルフィリン誘導体などの低分子有機材料を使用する場合には、真空蒸着機を用いた蒸着法を適用することも可能である。電子輸送層についても同様にして設けることができる。   When a hole transport layer is provided between the positive electrode and the active layer, a desired p-type organic semiconductor material (such as PEDOT) is applied on the positive electrode by spin coating, bar coating, blade casting, or the like. Then, the solvent is removed using a vacuum thermostat or a hot plate to form a hole transport layer. In the case of using a low molecular organic material such as a phthalocyanine derivative or a porphyrin derivative, a vapor deposition method using a vacuum vapor deposition machine can be applied. The electron transport layer can be provided in the same manner.

本発明の光起電力素子は、光電変換機能、光整流機能などを利用した種々の光電変換デバイスへの応用が可能である。例えば、光電池(太陽電池など)、光起電力素子、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などに有用である。   The photovoltaic element of the present invention can be applied to various photoelectric conversion devices using a photoelectric conversion function, an optical rectification function, and the like. For example, it is useful for photovoltaic cells (such as solar cells), photovoltaic elements, electronic elements (such as optical sensors, optical switches, phototransistors), optical recording materials (such as optical memories), and the like.

以下、本発明を実施例に基づいてさらに具体的に説明する。なお、本発明は下記実施例に限定されるものではない。また実施例等で用いた化合物のうち、略語を使用しているものについて、以下に示す。
ITO:インジウム錫酸化物
PEDOT:ポリエチレンジオキシチオフェン
PSS:ポリスチレンスルホネート
P3HT:ポリ(3−ヘキシルチオフェン)
C60−PCBM:[6,6]−フェニル C61 ブチリックアシッドメチルエステル
C70−PCBM:[6,6]−フェニル C71 ブチリックアシッドメチルエステル
DMF:ジメチルホルムアミド(比誘電率37)
NMP:N−メチルピロリドン(比誘電率32)
DMI:ジメチルイミダゾリジノン(比誘電率38)
GBL:γ−ブチロラクトン(比誘電率42) 。
Hereinafter, the present invention will be described more specifically based on examples. In addition, this invention is not limited to the following Example. Of the compounds used in the examples and the like, those using abbreviations are shown below.
ITO: Indium tin oxide PEDOT: Polyethylenedioxythiophene PSS: Polystyrene sulfonate P3HT: Poly (3-hexylthiophene)
C60-PCBM: [6,6] -phenyl C61 butyric acid methyl ester C70-PCBM: [6,6] -phenyl C71 butyric acid methyl ester DMF: dimethylformamide (dielectric constant 37)
NMP: N-methylpyrrolidone (dielectric constant 32)
DMI: Dimethylimidazolidinone (dielectric constant 38)
GBL: γ-butyrolactone (relative permittivity 42).

比較例1
P3HT(アルドリッチ社製、レジオレギュラー、重合度120)1.5mg、C60−PCBM(アメリカン・ダイ・ソース社製)1.5mgをクロロベンゼン0.2mLの入ったサンプル瓶の中に加え、超音波洗浄機(井内盛栄堂(株)製US−2、出力120W)中で30分間超音波照射することにより均一な溶液Aを調製した。すなわち、クロロベンゼンはP3HTおよびC60−PCBMについての良溶媒である。なお、以下に述べる実施例と比較例においてもすべて均一な溶液を得た。
Comparative Example 1
Add 1.5 mg of P3HT (Aldrich, regioregular, polymerization degree 120) and 1.5 mg of C60-PCBM (American Dye Source) into a sample bottle containing 0.2 mL of chlorobenzene, and perform ultrasonic cleaning. A uniform solution A was prepared by irradiating with ultrasonic waves for 30 minutes in a machine (US-2 manufactured by Iuchi Seieido Co., Ltd., output 120 W). That is, chlorobenzene is a good solvent for P3HT and C60-PCBM. In all of the examples and comparative examples described below, uniform solutions were obtained.

スパッタリング法により正極となるITO透明導電層を120nm堆積させたガラス基板を38mm×46mmに切断した後、ITOをフォトリソグラフィー法により38mm×13mmの長方形状にパターニングした。得られた基板の白色光を用いて測定した光透過率は85%であった。この基板をアルカリ洗浄液(フルウチ化学(株)製、“セミコクリーン”EL56)で10分間超音波洗浄した後、超純水で洗浄した。この基板を30分間UV/オゾン処理した後に、基板上に正孔輸送層となるPEDOT:PSS水溶液(PEDOT0.8重量%、PSS0.5重量%)をスピンコート法により100nmの厚さに成膜した。ホットプレートにより200℃で5分間加熱乾燥した後、上記の溶液AをPEDOT:PSS層上に滴下し、スピンコート法により膜厚100nmの活性層を形成した。その後、基板と陰極用マスクを真空蒸着装置内に設置して、装置内の真空度を1×10−3Pa以下になるまで排気し、抵抗加熱法によって、負極となるアルミニウム層を80nmの厚さに蒸着した。作製した素子の上下の電極から引き出し電極を取り出し、帯状のITO層とアルミニウム層が重なり合う部分の面積が5mm×5mmである光起電力素子を作製した。   A glass substrate on which an ITO transparent conductive layer serving as a positive electrode having a thickness of 120 nm was deposited by sputtering was cut into 38 mm × 46 mm, and then ITO was patterned into a 38 mm × 13 mm rectangular shape by photolithography. The light transmittance of the obtained substrate measured using white light was 85%. The substrate was subjected to ultrasonic cleaning with an alkali cleaning solution (“Semico Clean” EL56, manufactured by Furuuchi Chemical Co., Ltd.) for 10 minutes, and then cleaned with ultrapure water. After this substrate was UV / ozone treated for 30 minutes, a PEDOT: PSS aqueous solution (PEDOT 0.8 wt%, PSS 0.5 wt%) serving as a hole transport layer was formed on the substrate to a thickness of 100 nm by spin coating. did. After heating and drying at 200 ° C. for 5 minutes using a hot plate, the above solution A was dropped on the PEDOT: PSS layer, and an active layer having a thickness of 100 nm was formed by spin coating. Thereafter, the substrate and the mask for the cathode are placed in a vacuum deposition apparatus, and the degree of vacuum in the apparatus is evacuated to 1 × 10 −3 Pa or less. Vapor deposited. The extraction electrodes were taken out from the upper and lower electrodes of the produced device, and a photovoltaic device having an area where the band-like ITO layer and the aluminum layer overlap each other was 5 mm × 5 mm was produced.

このようにして作製された光起電力素子をシールドボックス中に置き、上下の電極をヒューレット・パッカード社製ピコアンメーター/ボルテージソース4140Bに接続して、減圧下(100Pa)で印加電圧を−2Vから+2Vまで変化させたときの暗電流値を測定した。次にITO層側から白色光(100mW/cm)を照射し、印加電圧を−2Vから+2Vまで変化させたときの電流値を測定した。この時の素子特性を基準として実施例1および2と比較例2の評価を行った。 The photovoltaic element thus fabricated was placed in a shield box, and the upper and lower electrodes were connected to a Hewlett-Packard Picoammeter / Voltage source 4140B, and the applied voltage was -2V under reduced pressure (100 Pa). The dark current value was measured when the voltage was changed from +2 to + 2V. Next, white light (100 mW / cm 2 ) was irradiated from the ITO layer side, and the current value when the applied voltage was changed from −2 V to +2 V was measured. Examples 1 and 2 and Comparative Example 2 were evaluated based on the element characteristics at this time.

ここで、FFは次式により求められる。なお、以下の実施例と比較例におけるFFも全て同方法により算出した。
FF=JVmax/(短絡電流密度×開放電圧)
ただし、JVmaxは、印加電圧が0Vから開放電圧までの間で電流密度と印加電圧の積が最大となる点における電流密度と印加電圧の積の値である。
Here, FF is obtained by the following equation. All FFs in the following examples and comparative examples were calculated by the same method.
FF = JVmax / (short circuit current density × open voltage)
However, JVmax is a value of the product of the current density and the applied voltage at the point where the product of the current density and the applied voltage becomes maximum when the applied voltage is from 0 V to the open circuit voltage.

実施例1
溶液AにDMFを30体積パーセント含むクロロベンゼン溶液0.1mLを加え10分間超音波照射することで均一な溶液Bを調整した。溶液Aに代えて溶液Bを用いて活性層を形成した他は比較例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時、短絡電流値(印加電圧が0Vのときの電流密度の値)とフィルファクター(FF)値は比較例1に対してそれぞれ1.9倍、1.4倍に増大した。また0.7Vにおける暗電流値は比較例1に対して220倍に増大した。
Example 1
A uniform solution B was prepared by adding 0.1 mL of a chlorobenzene solution containing 30 volume percent of DMF to the solution A and irradiating with ultrasonic waves for 10 minutes. A photoelectric conversion element was produced in the same manner as in Comparative Example 1 except that the active layer was formed using the solution B instead of the solution A, and current-voltage characteristics were measured. At this time, the short-circuit current value (the value of the current density when the applied voltage was 0 V) and the fill factor (FF) value increased by 1.9 times and 1.4 times, respectively, as compared with Comparative Example 1. The dark current value at 0.7 V increased 220 times that of Comparative Example 1.

比較例2
DMFに代えてNMPを用いた他は実施例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この場合、光起電力は観測されなかった。
Comparative Example 2
A photoelectric conversion element was produced in the same manner as in Example 1 except that NMP was used instead of DMF, and current-voltage characteristics were measured. In this case, no photovoltaic was observed.

実施例2
DMFに代えてDMIを用いた他は実施例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時、短絡電流値とFF値は比較例1に対してそれぞれ1.7倍、1.1倍に増大した。また0.7Vにおける暗電流値は640倍に増大した。
Example 2
A photoelectric conversion element was produced in the same manner as in Example 1 except that DMI was used instead of DMF, and current-voltage characteristics were measured. At this time, the short circuit current value and the FF value increased 1.7 times and 1.1 times, respectively, as compared with Comparative Example 1. The dark current value at 0.7 V increased 640 times.

比較例3
クロロベンゼンに代えてクロロホルムを用いて溶液Aを調整した他は比較例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時の素子特性を基準として実施例3と比較例4および5の評価を行った。
Comparative Example 3
A photoelectric conversion element was produced in the same manner as in Comparative Example 1 except that the solution A was prepared using chloroform instead of chlorobenzene, and current-voltage characteristics were measured. Example 3 and Comparative Examples 4 and 5 were evaluated based on the element characteristics at this time.

実施例3
クロロベンゼン0.2mLに代えてクロロホルム0.1mLをC成分として用いて溶液Aを調整し、DMFに代えてDMIをD成分として用い、D成分を5体積パーセント含むクロロホルム溶液0.15mLを溶液Aに混ぜて溶液Bを調整した他は実施例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。尚、D成分の含有量はC成分100体積部に対して3体積部であったこの時、短絡電流値とFF値は比較例3に対してそれぞれ1.02倍、1.3倍に増大した。また0.7Vにおける暗電流値は21倍に増大した。
Example 3
Solution A was prepared using 0.1 mL of chloroform as C component instead of 0.2 mL of chlorobenzene, and DMI was used as D component instead of DMF, and 0.15 mL of chloroform solution containing 5 volume percent of D component was added to Solution A. A photoelectric conversion element was produced in the same manner as in Example 1 except that the solution B was mixed to prepare a current-voltage characteristic. Incidentally, the content of the D component was 3 parts by volume with respect to 100 parts by volume of the C component. At this time, the short circuit current value and the FF value increased by 1.02 times and 1.3 times, respectively, with respect to Comparative Example 3. did. The dark current value at 0.7 V increased 21 times.

比較例4
DMIに代えてNMPを用いた他は実施例3と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時、短絡電流値とFF値は比較例3に対してそれぞれ0.008倍、0.5倍に減少した。
Comparative Example 4
A photoelectric conversion element was produced in the same manner as in Example 3 except that NMP was used instead of DMI, and current-voltage characteristics were measured. At this time, the short-circuit current value and the FF value decreased by 0.008 times and 0.5 times, respectively, as compared with Comparative Example 3.

比較例5
DMIに代えてGBLを用いた他は実施例3と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時、短絡電流値とFF値は比較例3に対してそれぞれ0.001倍、0.38倍に減少した。
Comparative Example 5
A photoelectric conversion element was produced in the same manner as in Example 3 except that GBL was used in place of DMI, and current-voltage characteristics were measured. At this time, the short-circuit current value and the FF value decreased by 0.001 times and 0.38 times as compared with Comparative Example 3, respectively.

比較例6
P3HT 1.5mgに代えてBT 0.8mg、C60−PCBM 1.5mgに代えてC70−PCBM 3.2mgを用いて活性層を形成したこと、PEDOT:PSS水溶液に2−プロパノールを40体積パーセント加えた溶液を用いて60nmのPEDOT:PSS層を製膜したこと以外は比較例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時の素子特性を基準として実施例4の評価を行った。なお、BTは以下に示す方法で合成した。
Comparative Example 6
An active layer was formed using 0.8 mg of BT instead of 1.5 mg of P3HT and 3.2 mg of C70-PCBM instead of 1.5 mg of C60-PCBM, and 40 volume percent of 2-propanol was added to the PEDOT: PSS aqueous solution. A photoelectric conversion element was produced in the same manner as in Comparative Example 1 except that a 60 nm PEDOT: PSS layer was formed using the prepared solution, and current-voltage characteristics were measured. Example 4 was evaluated based on the element characteristics at this time. BT was synthesized by the following method.

3−n−ヘキシルチオフェン((株)東京化成製)5.2gをジメチルホルムアミド((株)和光純薬製)50mlに溶解し、N−ブロモスクシンイミド((株)和光純薬工業製)6.5gを加え、窒素雰囲気下、室温で3時間撹拌した。得られた溶液に水100ml、酢酸エチル100mlを加え、有機層を分取し、水100mlで3回洗浄後、硫酸マグネシウムで乾燥した。得られた溶液からロータリーエバポレーターを用いて溶媒を減圧留去し、2−ブロモ−3−n−ヘキシルチオフェン7.9gを得た。   5. Dissolve 5.2 g of 3-n-hexylthiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) in 50 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.), and N-bromosuccinimide (manufactured by Wako Pure Chemical Industries, Ltd.) 5 g was added, and the mixture was stirred at room temperature for 3 hours under a nitrogen atmosphere. 100 ml of water and 100 ml of ethyl acetate were added to the resulting solution, and the organic layer was separated, washed 3 times with 100 ml of water, and dried over magnesium sulfate. From the obtained solution, the solvent was distilled off under reduced pressure using a rotary evaporator to obtain 7.9 g of 2-bromo-3-n-hexylthiophene.

上記の2−ブロモ−3−n−ヘキシルチオフェン7.9gをテトラヒドロフラン((株)和光純薬製)50mlに溶解し、−80℃に冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬製)22mlを加えて2時間撹拌し、−50℃に昇温してジメチルホルムアミド((株)和光純薬製)3.3mlを加えた。室温まで昇温し、窒素雰囲気下5時間撹拌した。得られた溶液に酢酸エチル100mlと飽和塩化アンモニウム水溶液100mlを加えて有機層を分取し、水100mlで3回洗浄後、硫酸マグネシウムで乾燥した。得られた溶液からロータリーエバポレーターを用いて溶媒を減圧留去し、2−ホルミル−3−n−ヘキシルチオフェン6.3gを得た。   7.9 g of the above 2-bromo-3-n-hexylthiophene was dissolved in 50 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) and cooled to -80 ° C. Add 22 ml of n-butyllithium 1.6M hexane solution (manufactured by Wako Pure Chemical Industries, Ltd.), stir for 2 hours, raise the temperature to −50 ° C., and add 3.3 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.). added. The mixture was warmed to room temperature and stirred for 5 hours under a nitrogen atmosphere. To the obtained solution, 100 ml of ethyl acetate and 100 ml of saturated aqueous ammonium chloride solution were added, and the organic layer was separated, washed three times with 100 ml of water, and dried over magnesium sulfate. From the obtained solution, the solvent was distilled off under reduced pressure using a rotary evaporator to obtain 6.3 g of 2-formyl-3-n-hexylthiophene.

上記の2−ホルミル−3−n−ヘキシルチオフェン6.3gと1,4−ビス(ジエチルホスフィノイルメチル)ベンゼン((株)東京化成工業製)3.8gをテトラヒドロフラン((株)和光純薬製)100mlに溶解した。t−ブトキシカリウム((株)東京化成工業製)6.0gをテトラヒドロフラン((株)和光純薬製)100mlに懸濁させた懸濁液を滴下し、窒素雰囲気下、70℃で9時間撹拌した。得られた溶液にジクロロメタン100mlと飽和食塩水100mlを加えて有機層を分取した。有機層を水100mlで3回洗浄し、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、2gの1,4−ビス(1−(3−n−ヘキシル−2−チエニル)エテン−2−イル)ベンゼンを得た。   6.3 g of the above 2-formyl-3-n-hexylthiophene and 3.8 g of 1,4-bis (diethylphosphinoylmethyl) benzene (Tokyo Chemical Industry Co., Ltd.) were added to tetrahydrofuran (Wako Pure Chemical Industries, Ltd.). Manufactured) and dissolved in 100 ml. A suspension obtained by suspending 6.0 g of t-butoxy potassium (manufactured by Tokyo Chemical Industry Co., Ltd.) in 100 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped, and the mixture was stirred at 70 ° C. for 9 hours in a nitrogen atmosphere. did. To the resulting solution were added 100 ml of dichloromethane and 100 ml of saturated brine, and the organic layer was separated. The organic layer was washed 3 times with 100 ml of water and dried over magnesium sulfate. The resulting solution was purified by column chromatography (filler: silica gel, eluent: dichloromethane / hexane) and 2 g of 1,4-bis (1- (3-n-hexyl-2-thienyl) ethene-2- Il) benzene was obtained.

上記の2gのチエニレンビニレンをテトラヒドロフラン((株)和光純薬製)30mlに溶解し、−80℃まで冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬製)22mlを加えて4時間撹拌し、−50℃に昇温して2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン((株)和光純薬工業製)1.7gを加えた。室温まで昇温し、窒素雰囲気下12時間撹拌した。得られた溶液にジクロロメタン200mlと水100mlを加えて有機層を分取した。有機層を水100mlで3回洗浄し、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、1−(1−(3−n−ヘキシル−5−ピナコラトボロニル−2−チエニル)エテン−2−イル)−4−(1−(3−n−ヘキシル−2−チエニル)エテン−2−イル)ベンゼン1.3gを得た。   The above 2 g of thienylene vinylene was dissolved in 30 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) and cooled to -80 ° C. 22 ml of n-butyllithium 1.6M hexane solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, stirred for 4 hours, heated to −50 ° C. and 2-isopropoxy-4,4,5,5-tetramethyl 1.7 g of -1,3,2-dioxaborolane (manufactured by Wako Pure Chemical Industries, Ltd.) was added. The mixture was warmed to room temperature and stirred for 12 hours under a nitrogen atmosphere. To the resulting solution, 200 ml of dichloromethane and 100 ml of water were added, and the organic layer was separated. The organic layer was washed 3 times with 100 ml of water and dried over magnesium sulfate. The resulting solution was purified by column chromatography (filler: silica gel, eluent: dichloromethane / hexane) to give 1- (1- (3-n-hexyl-5-pinacolatoboronyl-2-thienyl) ethene- There were obtained 1.3 g of 2-yl) -4- (1- (3-n-hexyl-2-thienyl) ethen-2-yl) benzene.

3−n−ヘキシルチオフェン((株)東京化成製)3gをテトラヒドロフラン((株)和光純薬製)40mlに溶解し、−80℃まで冷却した。n−ブチルリチウム1.6Mヘキサン溶液((株)和光純薬製)12mlを加えて2時間撹拌し、−60℃に昇温して2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン((株)和光純薬工業製)5.5gを加えた。室温まで昇温し、窒素雰囲気下4時間撹拌した。得られた溶液にジクロロメタン100mlと飽和食塩水100mlを加えて有機層を分取した。有機層を水100mlで3回洗浄し、硫酸マグネシウムで乾燥した。得られた溶液からロータリーエバポレーターを用いて溶媒を減圧留去し、5−ピナコラトボロニル−3−n−ヘキシルチオフェン4.6gを得た。   3 g of 3-n-hexylthiophene (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 40 ml of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) and cooled to -80 ° C. Add 12 ml of n-butyllithium 1.6M hexane solution (manufactured by Wako Pure Chemical Industries, Ltd.), stir for 2 hours, raise the temperature to −60 ° C., and 2-isopropoxy-4,4,5,5-tetramethyl. 5.5 g of -1,3,2-dioxaborolane (manufactured by Wako Pure Chemical Industries, Ltd.) was added. The mixture was warmed to room temperature and stirred for 4 hours under a nitrogen atmosphere. To the resulting solution were added 100 ml of dichloromethane and 100 ml of saturated brine, and the organic layer was separated. The organic layer was washed 3 times with 100 ml of water and dried over magnesium sulfate. From the obtained solution, the solvent was distilled off under reduced pressure using a rotary evaporator to obtain 4.6 g of 5-pinacolatoboronyl-3-n-hexylthiophene.

上記の5−ピナコラトボロニル−3−n−ヘキシルチオフェン6.4gと合成例1の4,7−ジブロモ−2,1,3−ベンゾチアジアゾール2.1gをトルエン100mlに溶解した。ここにエタノール30ml、2M炭酸ナトリウム水溶液30ml、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)0.15gを加え、窒素雰囲気下、110℃にて13時間撹拌した。得られた溶液に酢酸エチル100ml、水100mlを加え、有機層を分取した。得られた溶液からロータリーエバポレーターを用いて溶媒を減圧留去し、5.8gの4,7−ビス(4−n−ヘキシルチエニル)−2,1,3−ベンゾチアジアゾールを得た。   6.4 g of the above 5-pinacolatoboronyl-3-n-hexylthiophene and 2.1 g of 4,7-dibromo-2,1,3-benzothiadiazole of Synthesis Example 1 were dissolved in 100 ml of toluene. 30 ml of ethanol, 30 ml of 2M aqueous sodium carbonate solution and 0.15 g of tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) were added thereto, and the mixture was stirred at 110 ° C. for 13 hours in a nitrogen atmosphere. 100 ml of ethyl acetate and 100 ml of water were added to the resulting solution, and the organic layer was separated. From the obtained solution, the solvent was distilled off under reduced pressure using a rotary evaporator to obtain 5.8 g of 4,7-bis (4-n-hexylthienyl) -2,1,3-benzothiadiazole.

上記の4,7−ビス(4−n−ヘキシルチエニル)−2,1,3−ベンゾチアジアゾール5.8gをジメチルホルムアミド((株)和光純薬製)3mlに溶解し、N−ブロモスクシンイミド((株)和光純薬工業製)3.5gを加え、窒素雰囲気下、室温で2時間撹拌した。得られた溶液に水100ml、酢酸エチル100mlを加え、有機層を分取した。有機層を水100mlで3回洗浄後、硫酸マグネシウムで乾燥した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、4,7−ビス((4−n−ヘキシル−5−ブロモ)−チエニル)−2,1,3−ベンゾチアジアゾールを1.6g得た。   5.8 g of the above 4,7-bis (4-n-hexylthienyl) -2,1,3-benzothiadiazole is dissolved in 3 ml of dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.), and N-bromosuccinimide (( 3.5 g of Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 2 hours under a nitrogen atmosphere. 100 ml of water and 100 ml of ethyl acetate were added to the resulting solution, and the organic layer was separated. The organic layer was washed 3 times with 100 ml of water and then dried over magnesium sulfate. The resulting solution was purified by column chromatography (filler: silica gel, eluent: dichloromethane / hexane), and 4,7-bis ((4-n-hexyl-5-bromo) -thienyl) -2,1, 1.6 g of 3-benzothiadiazole was obtained.

上記の1−(1−(3−n−ヘキシル−5−ピナコラトボロニル−2−チエニル)エテン−2−イル)−4−(1−(3−n−ヘキシル−2−チエニル)エテン−2−イル)ベンゼン0.25gと上記の4,7−ビス((4−n−ヘキシル−5−ブロモ)2−チエニル)−2,1,3−ベンゾチアジアゾール0.11gをトルエン20mlに溶解した。ここにエタノール10ml、2M炭酸ナトリウム水溶液15ml、テトラキス(トリフェニルホスフィン)パラジウム(0)((株)東京化成工業製)11mgを加え、窒素雰囲気下、110℃にて12時間撹拌した。得られた溶液に酢酸エチル100ml、水100mlを加え、有機層を分取した。得られた溶液をカラムクロマトグラフィー(充填材:シリカゲル、溶離液:ジクロロメタン/ヘキサン)で精製し、下記式に示すBTを0.17g得た。
H−NMR(CDCl,ppm):7.93(s,2H)、7.75(s,2H)、7.44(m,8H)、7.28(d,2H)、7.22(d,2H)、7.10(d,2H)、7.00(m,2H)、6.83(m,6H)2.86(m,4H)2.69(m,8H)1.73(m,4H)、1.63(m,8H)、1.34(m,36H)、0.93(m,18H) 。
1- (1- (3-n-hexyl-5-pinacolatoboronyl-2-thienyl) ethen-2-yl) -4- (1- (3-n-hexyl-2-thienyl) ethene- 2-yl) benzene (0.25 g) and the above 4,7-bis ((4-n-hexyl-5-bromo) 2-thienyl) -2,1,3-benzothiadiazole (0.11 g) were dissolved in 20 ml of toluene. . 10 ml of ethanol, 15 ml of 2M aqueous sodium carbonate solution, and 11 mg of tetrakis (triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) were added thereto, followed by stirring at 110 ° C. for 12 hours in a nitrogen atmosphere. 100 ml of ethyl acetate and 100 ml of water were added to the resulting solution, and the organic layer was separated. The resulting solution was purified by column chromatography (filler: silica gel, eluent: dichloromethane / hexane) to obtain 0.17 g of BT represented by the following formula.
1 H-NMR (CDCl 2 , ppm): 7.93 (s, 2H), 7.75 (s, 2H), 7.44 (m, 8H), 7.28 (d, 2H), 7.22 (D, 2H), 7.10 (d, 2H), 7.00 (m, 2H), 6.83 (m, 6H) 2.86 (m, 4H) 2.69 (m, 8H) 73 (m, 4H), 1.63 (m, 8H), 1.34 (m, 36H), 0.93 (m, 18H).

Figure 2008211165
Figure 2008211165

実施例4
P3HT 1.5mgに代えてBT 0.8mg、C60−PCBM 1.5mgに代えてC70−PCBM 3.2mgを用い、これらをDMFを1体積パーセント含むクロロホルム溶液0.2mLに溶解して溶液Bを調整し、さらにPEDOT:PSS水溶液に2−プロパノールを40体積パーセント加えた溶液を用いて60nmのPEDOT:PSS層を製膜した他は実施例1と全く同様にして光電変換素子を作製し、電流−電圧特性を測定した。この時、短絡電流値とFF値はそれぞれ1.1倍、1.1倍に増大した。また1.5Vにおける暗電流値は1.7倍に増大した。
Example 4
In place of P3HT 1.5 mg, BT 0.8 mg and C60-PCBM 1.5 mg are replaced with C70-PCBM 3.2 mg. These are dissolved in 0.2 mL of a chloroform solution containing 1 volume percent of DMF, and Solution B is dissolved. A photoelectric conversion element was prepared in exactly the same manner as in Example 1 except that a 60 nm PEDOT: PSS layer was formed using a solution obtained by adding 40 volume percent of 2-propanol to a PEDOT: PSS aqueous solution. -Voltage characteristics were measured. At this time, the short circuit current value and the FF value increased 1.1 times and 1.1 times, respectively. The dark current value at 1.5V increased 1.7 times.

上記実施例および比較例の結果を表1に示す。   The results of the above examples and comparative examples are shown in Table 1.

Figure 2008211165
Figure 2008211165

実施例および比較例に示したとおり、D成分を含む場合は短絡電流値やFFが増加することから、本発明の効果は明かである。これはD成分の添加によって活性層が電荷輸送に適した層分離構造となったためと考えられる。   As shown in the examples and comparative examples, when the D component is included, the short circuit current value and the FF increase, so the effect of the present invention is clear. This is considered to be because the active layer has a layer separation structure suitable for charge transport by the addition of the D component.

本発明の光起電力素子の一態様を示した断面図。Sectional drawing which showed the one aspect | mode of the photovoltaic device of this invention.

符号の説明Explanation of symbols

1 基板
2 正極
3 活性層
4 負極
1 Substrate 2 Positive electrode 3 Active layer 4 Negative electrode

Claims (6)

A成分 電子供与性共役系化合物
B成分 電子受容性有機半導体
C成分 前記A成分、B成分についての良溶媒、および
D成分 25℃における比誘電率が33以上のアミド系溶媒
を含む組成物。
A component Electron-donating conjugated compound B component Electron-accepting organic semiconductor C component A composition comprising the A component, a good solvent for the B component, and a D component, an amide solvent having a relative dielectric constant of 33 or more at 25 ° C.
前記A成分がポリチオフェン系重合体またはベンゾチアジアゾールを含む化合物である請求項1記載の組成物。 The composition according to claim 1, wherein the component A is a compound containing a polythiophene polymer or benzothiadiazole. 前記A成分が下記一般式(1)で表される化合物を含む請求項2記載の組成物。
Figure 2008211165
(R〜R12は同じでも異なっていてもよく、水素、アルキル基、アルコキシ基またはアリール基を表す。mは各々独立に1または2であり、nは1以上1000以下の範囲を表す。)
The composition of Claim 2 in which the said A component contains the compound represented by following General formula (1).
Figure 2008211165
(R 1 to R 12 may be the same or different and each represents hydrogen, an alkyl group, an alkoxy group, or an aryl group. M is each independently 1 or 2, and n represents a range of 1 or more and 1000 or less. )
前記B成分がフラーレン誘導体である請求項1〜3いずれか記載の組成物。 The composition according to any one of claims 1 to 3, wherein the component B is a fullerene derivative. 前記C成分がクロロベンゼン、ジクロロベンゼンおよびクロロホルムからなる群から選ばれる少なくとも1種である請求項1〜4いずれか記載の組成物。 The composition according to any one of claims 1 to 4, wherein the component C is at least one selected from the group consisting of chlorobenzene, dichlorobenzene, and chloroform. 請求項1〜5いずれかに記載の組成物を塗布、乾燥して得られた活性層が、少なくともいずれか一方が光透過性を有する第1の電極および第2の電極に挟持された構造を有する光起電力素子。 An active layer obtained by applying and drying the composition according to any one of claims 1 to 5 has a structure in which at least one of the active layers is sandwiched between a first electrode and a second electrode having light transmittance. Photovoltaic element having.
JP2007265227A 2007-01-29 2007-10-11 Composition suitable for photovoltaic device and photovoltaic device Expired - Fee Related JP4983524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265227A JP4983524B2 (en) 2007-01-29 2007-10-11 Composition suitable for photovoltaic device and photovoltaic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007017500 2007-01-29
JP2007017500 2007-01-29
JP2007265227A JP4983524B2 (en) 2007-01-29 2007-10-11 Composition suitable for photovoltaic device and photovoltaic device

Publications (2)

Publication Number Publication Date
JP2008211165A true JP2008211165A (en) 2008-09-11
JP4983524B2 JP4983524B2 (en) 2012-07-25

Family

ID=39787181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265227A Expired - Fee Related JP4983524B2 (en) 2007-01-29 2007-10-11 Composition suitable for photovoltaic device and photovoltaic device

Country Status (1)

Country Link
JP (1) JP4983524B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093098A (en) * 2008-10-09 2010-04-22 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell, and optical sensor array
JP2010192891A (en) * 2009-01-23 2010-09-02 Mitsubishi Chemicals Corp Method for producing semiconductor device and solar cell
JP2010254587A (en) * 2009-04-22 2010-11-11 Sumitomo Chemical Co Ltd Fullerene derivative, composition and organic photoelectric transfer element
JP2013506283A (en) * 2009-09-25 2013-02-21 ロディア オペレーションズ Organic photovoltaic coatings with controlled morphology
JP2013175752A (en) * 2008-10-30 2013-09-05 Idemitsu Kosan Co Ltd Organic solar cell
JP5930038B2 (en) * 2012-07-20 2016-06-08 旭化成株式会社 Solar cell and method for manufacturing solar cell
US9660193B2 (en) 2011-01-25 2017-05-23 Konica Minolta, Inc. Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285365A (en) * 1990-04-02 1991-12-16 Matsushita Electric Ind Co Ltd Solar cell
JP2003519266A (en) * 2000-01-05 2003-06-17 ケンブリッジ ディスプレイ テクノロジー リミテッド Polymers for luminescence
JP2005272834A (en) * 2004-02-26 2005-10-06 Sumitomo Chemical Co Ltd Polymer compound and polymer light-emitting device using the same
JP2006222429A (en) * 2005-02-09 2006-08-24 Hewlett-Packard Development Co Lp High-performance organic material for solar cell
JP2006270061A (en) * 2005-02-25 2006-10-05 Toray Ind Inc Photovoltaic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285365A (en) * 1990-04-02 1991-12-16 Matsushita Electric Ind Co Ltd Solar cell
JP2003519266A (en) * 2000-01-05 2003-06-17 ケンブリッジ ディスプレイ テクノロジー リミテッド Polymers for luminescence
JP2005272834A (en) * 2004-02-26 2005-10-06 Sumitomo Chemical Co Ltd Polymer compound and polymer light-emitting device using the same
JP2006222429A (en) * 2005-02-09 2006-08-24 Hewlett-Packard Development Co Lp High-performance organic material for solar cell
JP2006270061A (en) * 2005-02-25 2006-10-05 Toray Ind Inc Photovoltaic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093098A (en) * 2008-10-09 2010-04-22 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell, and optical sensor array
JP2013175752A (en) * 2008-10-30 2013-09-05 Idemitsu Kosan Co Ltd Organic solar cell
JP2010192891A (en) * 2009-01-23 2010-09-02 Mitsubishi Chemicals Corp Method for producing semiconductor device and solar cell
JP2010254587A (en) * 2009-04-22 2010-11-11 Sumitomo Chemical Co Ltd Fullerene derivative, composition and organic photoelectric transfer element
JP2013506283A (en) * 2009-09-25 2013-02-21 ロディア オペレーションズ Organic photovoltaic coatings with controlled morphology
US9660193B2 (en) 2011-01-25 2017-05-23 Konica Minolta, Inc. Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
JP5930038B2 (en) * 2012-07-20 2016-06-08 旭化成株式会社 Solar cell and method for manufacturing solar cell

Also Published As

Publication number Publication date
JP4983524B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5359173B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP5309566B2 (en) Electron donating organic material for photovoltaic element, photovoltaic element material and photovoltaic element
JP5533646B2 (en) Material for photovoltaic element and photovoltaic element
JP5299023B2 (en) Material for photovoltaic element and photovoltaic element
JP2008109097A (en) Material for photovolatic element and the photovolatic element
JP5655267B2 (en) Quinoxaline compound, electron donating organic material using the same, photovoltaic device material and photovoltaic device
JP6544235B2 (en) Method of manufacturing photovoltaic device
JP4983524B2 (en) Composition suitable for photovoltaic device and photovoltaic device
WO2014042091A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
WO2016059972A1 (en) Organic semiconductor composition, photovoltaic element, photoelectric conversion device, and method for manufacturing photovoltaic element
JP2016065218A (en) Conjugated compound, and electron-donating organic material, photovoltaic element material and photovoltaic element that use the same
JP2011144367A (en) Conjugated polymer, electron-donatable organic material employing the same, material for photovoltaic element and photovoltaic element
EP3432377A1 (en) Photovoltaic element
WO2009113450A1 (en) Photovoltaic device, active layer material, and manufacturing method for photovoltaic device
JP5691628B2 (en) Material for photovoltaic element and photovoltaic element
JP2008166339A (en) Material for photovoltaic element, and the photovoltaic element
JP6074996B2 (en) Material for photovoltaic element and photovoltaic element
JP2009267196A (en) Tandem photovoltaic device
JP2008147544A (en) Material for photoelectromotive element and photoelectromotive element
WO2013176156A1 (en) Electron-donating organic material, material for photovoltaic power element using same, and photovoltaic power element using same
JP2012039097A (en) Photovoltaic device
JP2008091886A (en) Material for photovoltaic element, and photovoltaic element
JP2012241099A (en) Conjugated polymer, electron-releasing organic material employing the same, material for photovoltaic element and photovoltaic element
JP5428670B2 (en) Material for photovoltaic element and photovoltaic element
WO2013176180A1 (en) Photovoltaic power element and method for manufacturing photovoltaic power element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees