JP2008211093A - Laser annealing method or laser annealing device - Google Patents

Laser annealing method or laser annealing device Download PDF

Info

Publication number
JP2008211093A
JP2008211093A JP2007048071A JP2007048071A JP2008211093A JP 2008211093 A JP2008211093 A JP 2008211093A JP 2007048071 A JP2007048071 A JP 2007048071A JP 2007048071 A JP2007048071 A JP 2007048071A JP 2008211093 A JP2008211093 A JP 2008211093A
Authority
JP
Japan
Prior art keywords
laser beam
long
laser
optical system
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007048071A
Other languages
Japanese (ja)
Inventor
Masaki Sakamoto
正樹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2007048071A priority Critical patent/JP2008211093A/en
Publication of JP2008211093A publication Critical patent/JP2008211093A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser annealing method or a laser annealing device for realizing polycrystalline uniformly in a large area, by connecting an anneal region of semiconductor film, such as amorphous Si. <P>SOLUTION: The laser annealing method includes a step (a) of dividing a semiconductor film formed on a substrate virtually into two or more regions of predetermined width and melting and crystallizing the semiconductor film on the substrate, by scanning the each region with long-length laser beam in a width direction; and a step (b) of scanning a border region of adjoining regions in the lateral direction with a short-length laser beam shorter than that of long-length laser beam and performing re-crystallization by melting. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザアニール装置とレーザアニール方法に関し、特にアモルファスシリコン(Si)膜やグレインサイズの小さい多結晶Si膜等の半導体膜を結晶化できる、レーザアニール装置とレーザアニール方法に関する。   The present invention relates to a laser annealing apparatus and a laser annealing method, and more particularly to a laser annealing apparatus and a laser annealing method capable of crystallizing a semiconductor film such as an amorphous silicon (Si) film or a polycrystalline Si film having a small grain size.

液晶表示装置などにおいて、ガラス基板上に形成したアモルファスSi膜にレーザ光を照射して多結晶化することが行なわれている。アモルファスSi中の電子の移動度は高々1cm/Vsであるが、例えばエキシマレーザで結晶化した多結晶Si中の電子の移動度は100cm/Vs〜200cm/Vs程度にも達すると言われている。多結晶Si膜中の電荷担体の移動度は、多結晶中のグレインの大きさに依存する。グレインサイズの小さな多結晶Si膜にレーザアニールを行い、グレインサイズを大きくすると、電荷担体の移動度を向上できる。以下、制限的意味なく、アモルファスSi膜のレーザアニールを主に説明する。 In a liquid crystal display device or the like, polycrystallization is performed by irradiating an amorphous Si film formed on a glass substrate with laser light. Word when the electron mobility in the amorphous Si is at most 1 cm 2 / Vs, for example, the electron mobility in the polycrystalline Si crystallization in excimer laser also reaches about 100cm 2 / Vs~200cm 2 / Vs It has been broken. The mobility of charge carriers in the polycrystalline Si film depends on the size of the grains in the polycrystal. When laser annealing is performed on a polycrystalline Si film having a small grain size and the grain size is increased, the mobility of charge carriers can be improved. Hereinafter, laser annealing of the amorphous Si film will be mainly described without limiting meaning.

パルス発振エキシマレーザの出力は、例えば300W程度ある。エキシマレーザの出力光を、表示装置の寸法に合わせて、例えば長さ32cm〜37cm程度の長尺ビームに整形し、アモルファスSi膜上に照射する。エキシマレーザ光を照射されたアモルファスSi膜は溶融し、結晶化する。パルスレーザ光を次々に照射し、ビーム短尺方向に走査することにより、広い面積を結晶化できる。   The output of the pulsed excimer laser is about 300 W, for example. The output light of the excimer laser is shaped into a long beam having a length of about 32 cm to 37 cm, for example, in accordance with the dimensions of the display device, and irradiated onto the amorphous Si film. The amorphous Si film irradiated with the excimer laser beam melts and crystallizes. A wide area can be crystallized by irradiating pulsed laser light one after another and scanning in the beam short direction.

特表2000−505241号は、開口パターンを形成したマスクを用いてアモルファスシリコン膜の細条状領域にエキシマレーザ光を照射し、照射領域内を完全に溶融させ、再凝固させると、細条状領域の両境界部から中央部に向けて2個の粒子列が爆発的に(ラテラル)成長する、粒子列の幅未満照射領域をシフトして、次のエキシマレーザ光を照射して結晶化した粒子列の一方を部分的に溶融すると、再凝固に際し、先に成長した結晶粒子列が一層長くなると報告する。   JP-T-2000-505241 discloses that a strip-shaped region of an amorphous silicon film is irradiated with an excimer laser beam using a mask having an opening pattern to completely melt and re-solidify the irradiated region. Two particle trains grow explosively (laterally) from both borders to the center of the region, shift the irradiation region below the width of the particle train, and crystallize by irradiating the next excimer laser light It is reported that when one of the grain rows is partially melted, the previously grown crystal grain rows become longer during re-solidification.

WO2004/040628号は、アモルファスシリコン膜に長尺状エキシマレーザビームを照射すると、長尺レーザビーム照射領域の幅方向端縁からある程度内側に比較的大きな結晶粒が成長し、それより内側の領域には小さな微結晶粒が成長し、外側には中間の大きさの結晶粒がランダムに分布する、長尺状エキシマレーザビームを順次、結晶粒の幅未満、短尺方向に走査して照射することにより、走査方向に<110>方向が揃った大きなラテラル結晶粒を得られることを報告する。   In WO 2004/040628, when an amorphous silicon film is irradiated with a long excimer laser beam, a relatively large crystal grain grows to some extent from the width direction edge of the long laser beam irradiation region, and in an inner region thereof By irradiating with a long excimer laser beam that scans in the short direction, less than the width of the crystal grain, in which small microcrystal grains grow and medium size crystal grains are randomly distributed on the outside We report that large lateral crystal grains with the <110> direction aligned in the scanning direction can be obtained.

長尺状レーザビームを短尺方向に走査してストライプ状領域を結晶化しても、ストライプ状領域の幅(長尺レーザビームの長さ)には限界がある。広い面積を結晶化するには、ストライプ状領域の隣の領域をさらに結晶化する必要がある。   Even if the long laser beam is scanned in the short direction to crystallize the stripe region, the width of the stripe region (the length of the long laser beam) is limited. In order to crystallize a large area, it is necessary to further crystallize the region adjacent to the stripe region.

特開2002−43245号は、長尺状レーザビームは端部でエネルギが連続的に減少しスロープ部を形成する、1ショット目のスロープ部で結晶化された領域は2ショット目で中央部の高いエネルギを照射されても、1ショット目に高いエネルギで結晶化された領域より結晶性が悪く、キャリア移動度が小さくなると報告し、長尺状レーザビームの端部を遮光膜により遮光してスキャンアニールにより結晶化を行ない、その後遮光膜を除去し、未結晶化領域を結晶化する方法を提案する。   In Japanese Patent Laid-Open No. 2002-43245, the long laser beam continuously decreases in energy at the end portion to form a slope portion. The region crystallized in the slope portion of the first shot is the center portion in the second shot. Even when irradiated with high energy, it is reported that the crystallinity is worse than the region crystallized with high energy in the first shot and the carrier mobility is reduced, and the end of the long laser beam is shielded by a light shielding film. A method is proposed in which crystallization is performed by scan annealing, and then the light-shielding film is removed and the uncrystallized region is crystallized.

特表2000−505241号公報Special Table 2000-505241 WO2004/040628号公報WO 2004/040628 特開2002−43245号公報JP 2002-43245 A

本発明の目的は、半導体膜のアニール領域を接続して広い面積を均一に結晶化できるレーザアニール方法ないしレーザアニール装置を提供することである。   An object of the present invention is to provide a laser annealing method or a laser annealing apparatus capable of connecting a anneal region of a semiconductor film and crystallizing a wide area uniformly.

本発明の1観点によれば、
(a)基板上に形成した半導体膜を仮想的に所定幅の複数の領域に分割し、各領域で長尺レーザビームを幅方向に走査して基板上の半導体膜を溶融、結晶化する工程と、
(b)前記複数の領域の隣接する領域の境界領域を前記長尺ビームより短い短尺レーザビームを幅方向に走査して溶融、再結晶化する工程と、
を含むレーザアニール方法
が提供される。
According to one aspect of the present invention,
(A) A process of virtually dividing a semiconductor film formed on a substrate into a plurality of regions having a predetermined width, and scanning the long laser beam in the width direction in each region to melt and crystallize the semiconductor film on the substrate When,
(B) melting and recrystallizing a boundary region between adjacent regions of the plurality of regions by scanning a short laser beam shorter than the long beam in the width direction;
A laser annealing method is provided.

本発明の他の観点によれば、
半導体膜を形成した基板を載置し、並進駆動できるテーブルと、
前記テーブル上方に配置され、長尺レーザビームを基板上の半導体膜に照射できる長尺レーザビーム光学系と、
前記テーブル上方に配置され、前記長尺ビームより短い短尺レーザビームを基板上の半導体膜に照射できる短尺レーザビーム光学系と、
を有するレーザアニール装置
が提供される。
According to another aspect of the invention,
A table on which a substrate on which a semiconductor film is formed can be mounted and driven in translation;
A long laser beam optical system disposed above the table and capable of irradiating a semiconductor film on the substrate with a long laser beam;
A short laser beam optical system disposed above the table and capable of irradiating a semiconductor film on the substrate with a short laser beam shorter than the long beam;
A laser annealing apparatus is provided.

長尺レーザビームによる複数の結晶化領域の境界領域を長さ方向端部のスロープ部の幅が極めて狭い短尺レーザビームで再結晶化できる。短尺レーザビームは境界領域を再結晶化するのみなので、小さくすることができ、小型軽量の結像レンズを利用できる。   A boundary region between a plurality of crystallization regions by a long laser beam can be recrystallized by a short laser beam having a very narrow slope portion at the end in the length direction. Since the short laser beam only recrystallizes the boundary region, it can be made small, and a compact and lightweight imaging lens can be used.

エキシマレーザの出力は高いが、長尺状ビームにしてもその長さは高々40cm程度である。幅40cmより広い面積の半導体膜を結晶化するためには、半導体膜を仮想的に複数の領域に分割し、各領域で長尺状ビームを短尺方向に走査して結晶化する必要がある。例えば、730mm×920mmのガラス基板上にアモルファスシリコン膜を形成し、全面(多)結晶化するには、長さ365mmの長尺状レーザビームを形成し、730mm幅を2つの領域に分けてレーザアニールすることになる。長尺状レーザビームの長尺方向端部にはエネルギが減少するスロープ部が存在するので、複数の領域の境界領域の結晶性は悪くなる。液晶表示装置の大型化と共に、ガラス基板の大型化も進んでいる。境界領域も増加する傾向にある。レーザアニール領域の境界領域の結晶性改善の要求は今後ますます強くなるであろう。   Although the output of the excimer laser is high, the length of the long beam is about 40 cm at most. In order to crystallize a semiconductor film having an area larger than 40 cm in width, it is necessary to virtually divide the semiconductor film into a plurality of regions and crystallize by scanning a long beam in the short direction in each region. For example, in order to form an amorphous silicon film on a glass substrate of 730 mm × 920 mm and crystallize the entire surface (multiple), a long laser beam with a length of 365 mm is formed, and a laser with a 730 mm width divided into two regions. It will anneal. Since the slope portion where the energy decreases exists at the end portion in the longitudinal direction of the long laser beam, the crystallinity of the boundary region between the plurality of regions is deteriorated. With the increase in size of liquid crystal display devices, the size of glass substrates is also increasing. The boundary area also tends to increase. The demand for crystallinity improvement in the boundary region of the laser annealing region will become stronger in the future.

ラテラル成長のためにはレーザビームの縁部の強度変化が急峻であることが好ましいと言われている。ビーム強度の変化が緩やかであると、微結晶が発生してラテラル成長を阻害する。長尺レーザビームを結像する光学系は、短尺方向に結像作用を有するシリンドリカルレンズを用いている。開口ないしスリットを有するマスクの像を幅方向に縮小露光する方式で、短尺方向のスロープ部の幅は2μm程度にすることができる。基板平面内にXY軸を想定した場合、X方向に結像作用を有するシリンドリカルレンズはY方向には結像作用を有さない。たとえ開口を有するマスクを用いてもY方向の分解能は高くしにくい。Y方向端部にはビーム強度が減少するスロープ部が幅2mm程度形成されてしまう。今後技術が進歩しても、シリンドリカルレンズを用いる限り、スロープ部の幅を1mm未満以下にすることは不可能であろう。従って、長尺状レーザビームは長さ方向端部に、1mm以上のスロープ部を有することを前提にせねばならない。   It is said that for the lateral growth, it is preferable that the intensity change at the edge of the laser beam is steep. If the change in beam intensity is slow, microcrystals are generated and lateral growth is hindered. An optical system that forms an image of a long laser beam uses a cylindrical lens having an image forming action in the short direction. In this method, an image of a mask having openings or slits is reduced and exposed in the width direction, and the width of the slope portion in the short direction can be set to about 2 μm. When an XY axis is assumed in the substrate plane, a cylindrical lens having an imaging action in the X direction does not have an imaging action in the Y direction. Even if a mask having an opening is used, it is difficult to increase the resolution in the Y direction. At the end in the Y direction, a slope portion where the beam intensity decreases is formed with a width of about 2 mm. Even if the technology advances in the future, it will be impossible to make the width of the slope portion less than 1 mm or less as long as a cylindrical lens is used. Therefore, it is necessary to assume that the long laser beam has a slope portion of 1 mm or more at the end in the length direction.

レーザアニール領域を接続するためにはY(長さ)方向端部のスロープ部の幅を2μm程度以下にすることが望まれている。そこで、スロープ部の幅を2.2μm以下にすることを考察する。例えば、結像光学系が1/5の縮小露光を行なう場合、10μm×365mmの長尺状レーザビームを結像するには、マスクの開口は50μm×1825mmの大きさになってしまう。広い面積を効率的に結晶化するには、長尺状レーザビームの長さは少なくとも20cmは必要である。長さを20cmとしても、1/5縮小露光すると、マスク開口の長さは1mになる。結像レンズはこの開口サイズより大きくなければならない。X方向、Y方向共に2.2μm以下の分解能を有する球面レンズを作成しようとすると、極めて大きな高精度レンズとなり、技術的にもコスト的にも現実的ではない。現実的な長尺状レーザビームは、シリンドリカルレンズを利用せざるを得ない。このため、長尺方向端部にスロープ部が存在し、スロープ部の結晶性は劣ることになる。   In order to connect the laser annealing regions, it is desired that the width of the slope portion at the end in the Y (length) direction is about 2 μm or less. Considering that the width of the slope portion is 2.2 μm or less. For example, when the imaging optical system performs 1/5 reduction exposure, in order to form an image of a long laser beam of 10 μm × 365 mm, the opening of the mask becomes 50 μm × 1825 mm. In order to efficiently crystallize a large area, the length of the long laser beam is required to be at least 20 cm. Even if the length is 20 cm, the length of the mask opening is 1 m when the exposure is reduced by 1/5. The imaging lens must be larger than this aperture size. If a spherical lens having a resolution of 2.2 μm or less in both the X direction and the Y direction is to be produced, it becomes a very large high-precision lens, which is technically and cost impractical. A realistic long laser beam must use a cylindrical lens. For this reason, a slope part exists in an elongate direction edge part, and the crystallinity of a slope part is inferior.

なお、「球面レンズ」の用語は、1方向にしか焦点距離を有さないシリンドリカルレンズとの対比で用いているもので、XY両方向に焦点距離を有するレンズの意味である。非球面レンズも球面レンズと呼ぶ。   The term “spherical lens” is used in contrast to a cylindrical lens having a focal length only in one direction, and means a lens having a focal length in both XY directions. An aspheric lens is also called a spherical lens.

以下、本発明の実施例を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1A,1Bは、基本実施例によるレーザアニール方法を概略的に示すガラス基板の平面図である。図1C,1Dは、図1A,1Bに対応するガラス基板の断面図である。   1A and 1B are plan views of a glass substrate schematically showing a laser annealing method according to a basic embodiment. 1C and 1D are cross-sectional views of the glass substrate corresponding to FIGS. 1A and 1B.

図1A,1Cに示すように、例えば、X:920mm×Y:730mmのガラス基板1の上にはシリコン膜2が形成されている。低温で堆積したシリコン膜は、当初アモルファスである。図1Aに示すようにエキシマレーザの365mm長尺状ビームLBをY方向に平行にし、−X方向にレーザ走査S1を行い、基板の上半分の結晶化を行なう。次に、長尺状ビームを−Y方向に移動し、折り返してX方向にレーザ走査S2を行い、基板の下半分の結晶化を行なう。アモルファスシリコン膜2の大部分は一様に結晶化するが、長尺状ビームLB端部のスロープ部に対応して、結晶性の悪い細いストライプ状領域3が発生する。2本のストライプ状領域3をまとめて3tで示す。なお、1本の長尺状ビームを往復させて、シリコン膜を結晶化する場合を説明したが、図1AのS1,S2に示すように、複数の長尺状ビームを走査(X)方向に離して配置し、平行にX方向に走査してもよい。上側結晶化領域と下側結晶化領域とは接している場合を示したが、端部を重ねても、僅か離してもよい。アモルファスシリコン膜の代わりに、結晶粒の小さな多結晶シリコン膜をより大きな結晶粒に結晶化してもよい。   As shown in FIGS. 1A and 1C, for example, a silicon film 2 is formed on a glass substrate 1 of X: 920 mm × Y: 730 mm. The silicon film deposited at a low temperature is initially amorphous. As shown in FIG. 1A, a 365 mm long beam LB of an excimer laser is made parallel to the Y direction, laser scanning S1 is performed in the -X direction, and the upper half of the substrate is crystallized. Next, the long beam is moved in the -Y direction, turned back, and laser scanning S2 is performed in the X direction to crystallize the lower half of the substrate. Although most of the amorphous silicon film 2 is crystallized uniformly, a thin stripe region 3 with poor crystallinity is generated corresponding to the slope portion at the end of the long beam LB. Two stripe regions 3 are collectively indicated by 3t. In addition, although the case where one long beam was reciprocated and the silicon film was crystallized was explained, as shown in S1 and S2 in FIG. 1A, a plurality of long beams are scanned in the scanning (X) direction. They may be spaced apart and scanned in the X direction in parallel. Although the case where the upper crystallization region and the lower crystallization region are in contact with each other is shown, the end portions may be overlapped or slightly separated. Instead of the amorphous silicon film, a polycrystalline silicon film having small crystal grains may be crystallized into larger crystal grains.

図1Bに示すように、中央の結晶性の悪いストライプ状領域3tの幅を覆う短尺状レーザビームSBを用い、中央のストライプ状領域3tのレーザ走査S3を行う。結晶性の悪い領域3の幅が2mmとし、2つの領域が接して、幅4mmの領域3tとなっているとして、短尺状レーザビームは長さ5mmあれば十分である。例えば、長さ5mm、幅10μm程度のサイズでよい。1/5縮小露光する場合のマスクの開口サイズは、25mm×50μmである。結像レンズは径30mm程度のものを使用できる。この程度のレンズであれば高精度の球面レンズを比較的容易に作成できる。スロープ部の幅は長さ方向、幅方向共に2.2μm以下とする。結晶化により吸収係数が変化していても、照射領域を完全に溶融できるエネルギ強度でレーザ走査を行うことにより、結晶性の悪かった領域3を含めて、照射領域の半導体膜を完全に溶融し、再結晶化させる。   As shown in FIG. 1B, laser scanning S3 of the central stripe region 3t is performed using a short laser beam SB that covers the width of the stripe region 3t having poor crystallinity at the center. Assuming that the width of the region 3 having poor crystallinity is 2 mm and the two regions are in contact with each other to form the region 3t having a width of 4 mm, it is sufficient that the length of the short laser beam is 5 mm. For example, the size may be about 5 mm in length and about 10 μm in width. The mask opening size in the case of 1/5 reduction exposure is 25 mm × 50 μm. An imaging lens having a diameter of about 30 mm can be used. With such a lens, a highly accurate spherical lens can be made relatively easily. The width of the slope portion is 2.2 μm or less in both the length direction and the width direction. Even if the absorption coefficient has changed due to crystallization, the semiconductor film in the irradiated region, including the region 3 with poor crystallinity, is completely melted by performing laser scanning at an energy intensity that can completely melt the irradiated region. Recrystallize.

長尺状レーザビームのスロープ部の長さが長くなったり、隣接する結晶化領域が若干離れている場合にも対応できるように、短尺状レーザビームを10mmまで長くすることを考える。1/5縮小投影する場合、マスクの開口長さは50mmとなる。レンズの直径は55mm位あれば足りる。隣接する結晶化領域のスロープ部を重ねることを考える。スロープ部の幅は2mm程度まで減少できる。短尺状レーザビームの長さは、3mm程度で足りる。1/5縮小投影する場合、マスクの開口長さは15mmとなる。レンズの直径は20mm位あれば足りる。より高精度のレンズを容易に作成できる。このように、短尺状レーザビームの長さは、3mm〜10mm、高精度の球面レンズの直径は、20mm〜55mmの範囲であろう。   It is considered that the length of the short laser beam is increased to 10 mm so as to cope with the case where the length of the slope portion of the long laser beam is increased or the adjacent crystallized regions are slightly separated. In the case of 1/5 reduction projection, the opening length of the mask is 50 mm. A lens diameter of about 55 mm is sufficient. Consider overlapping slope portions of adjacent crystallization regions. The width of the slope portion can be reduced to about 2 mm. About 3 mm is sufficient for the length of the short laser beam. In the case of 1/5 reduction projection, the opening length of the mask is 15 mm. A lens diameter of about 20 mm is sufficient. A lens with higher accuracy can be easily created. Thus, the length of the short laser beam will be in the range of 3 mm to 10 mm, and the diameter of the high precision spherical lens will be in the range of 20 mm to 55 mm.

図1Dに示すように、スロープ部の幅が狭い短尺レーザビームLBで再結晶化され、中央部の結晶性の悪かった領域3tは消滅する。両側の領域3は基板縁部に位置するので液晶表示装置の表示領域には使用されず、そのまま残してよい。勿論、両端部の領域3も再結晶化してもかまわない。短尺状レーザビームSBは、面積が小さいので、必要なエネルギが低く、エキシマレーザで形成してもよいが、例えば、レーザダイオード励起のNd:YAG,Nd:YVO等の2次高調波(2ω)、波長527nm〜532nmの固体レーザを利用することもできる。 As shown in FIG. 1D, recrystallization is performed with a short laser beam LB having a narrow slope portion, and the region 3t having poor crystallinity in the center portion disappears. Since the regions 3 on both sides are located at the edge of the substrate, they are not used in the display region of the liquid crystal display device and may be left as they are. Of course, the regions 3 at both ends may be recrystallized. Short-length laser beam SB is, the area is small, low energy required, may be formed by excimer laser, for example, a laser diode pumped Nd: YAG, Nd: YVO 2 harmonic of such 4 (2 [omega ), A solid-state laser having a wavelength of 527 nm to 532 nm can also be used.

図2A,2Bは、長尺ビーム投影用光学系を示す。XeClエキシマ等のパルス発振エキシマレーザ光源11から出射するエキシマレーザ光は、ズームレンズ系12を介して、ホモジナイザ13に入射し、均一なエネルギ分布を形成する。エネルギ分布を均一化したエキシマレーザ光は、1方向ズームレンズ系14で短尺方向を縮小し、長尺方向は平行光線化し、短尺方向はマスク16の像を結像する結像光学系15によって、投影面17上に長尺ビーム18として投影される。長尺ビーム投影用光学系は、公知の物が利用でき、種々変更可能である。   2A and 2B show a long beam projection optical system. Excimer laser light emitted from a pulsed excimer laser light source 11 such as an XeCl excimer is incident on a homogenizer 13 via a zoom lens system 12 to form a uniform energy distribution. The excimer laser light having a uniform energy distribution is reduced in the short direction by a one-way zoom lens system 14, the long direction is converted into parallel rays, and the short direction is formed by an imaging optical system 15 that forms an image of the mask 16. A long beam 18 is projected on the projection surface 17. As the long beam projection optical system, a known one can be used, and various modifications can be made.

図2Cは、短尺ビーム投影用光学系を示す。例えば、パルス発振Nd:YAG高調波固体レーザ光源21から出射するレーザ光は、ズームレンズ系22を介して、ホモジナイザ23でエネルギ分布を均一化され、ズームレンズ系24を介してマスク26を照明する。マスク26の開口の像が球面レンズを用いた結像光学系25によって投影面17上に短尺ビーム28として縮小投影される。1/5縮小投影で長さ5mmの像を形成するとして、球面レンズで構成した結像光学系のレンズ径は約30mmである。マスク26は、例えば長さ25mm、幅50μmの開口を有する。   FIG. 2C shows a short beam projection optical system. For example, the laser light emitted from the pulse oscillation Nd: YAG harmonic solid-state laser light source 21 has its energy distribution made uniform by the homogenizer 23 via the zoom lens system 22 and illuminates the mask 26 via the zoom lens system 24. . The image of the aperture of the mask 26 is reduced and projected as a short beam 28 on the projection surface 17 by the imaging optical system 25 using a spherical lens. Assuming that an image having a length of 5 mm is formed by 1/5 reduction projection, the lens diameter of the imaging optical system constituted by a spherical lens is about 30 mm. The mask 26 has an opening having a length of 25 mm and a width of 50 μm, for example.

なお、長尺ビーム投影光学系、短尺ビーム投影光学系共に、光軸(Z軸)に垂直な面(XY面)内でビーム幅方向のX方向、ビーム長さ方向のY方向の強度分布をそれぞれ均一化するホモジナイザを供える構成を示したが、ビーム幅方向のX方向のホモジナイザは省略することもできる。   Note that, in both the long beam projection optical system and the short beam projection optical system, the intensity distribution in the X direction in the beam width direction and the Y direction in the beam length direction within a plane (XY plane) perpendicular to the optical axis (Z axis). Although a configuration in which a homogenizer for homogenizing each is provided is shown, the homogenizer in the X direction in the beam width direction can be omitted.

図2D,2Eは、長尺状レーザビーム18の幅方向、長さ方向のエネルギ分布を示す。図2Dに示すように、幅方向は約10μmの均一強度部分とその両側の約2μmのスロープ部を有する。図2Eに示すように、長さ方向は例えば365mmの均一強度部分とその両側の約2mmのスロープ部を有する。   2D and 2E show energy distributions in the width direction and the length direction of the long laser beam 18. As shown in FIG. 2D, the width direction has a uniform strength portion of about 10 μm and slope portions of about 2 μm on both sides thereof. As shown in FIG. 2E, the length direction has a uniform strength portion of, for example, 365 mm and slope portions of about 2 mm on both sides thereof.

図2F,2Gは、短尺状レーザビーム28の幅方向、長さ方向のエネルギ分布を示す。図2Fに示すように、幅方向は約10μmの均一強度部分とその両側の約2μmのスロープ部を有する。図2Gに示すように、長さ方向は例えば5mmの均一強度部分とその両側の約2μmのスロープ部を有する。   2F and 2G show energy distributions of the short laser beam 28 in the width direction and the length direction. As shown in FIG. 2F, the width direction has a uniform strength portion of about 10 μm and slope portions of about 2 μm on both sides thereof. As shown in FIG. 2G, the length direction has, for example, a uniform strength portion of 5 mm and slope portions of about 2 μm on both sides thereof.

なお、長尺レーザビームををエキシマレーザ光で構成し、短尺レーザビームをYAG高調波レーザなどの固体レーザ光で形成する場合を説明したが、長尺レーザビームを固体レーザビームで形成することもできる。固体レーザビームはエネルギを高くすることが難しいので、接続部の数はより多くなるであろう。長尺状レーザビームの接続部を短尺レーザビームで結晶性良く接続できれば、全固体レーザアニール装置も可能となる。   In addition, although the case where the long laser beam is configured by excimer laser light and the short laser beam is formed by solid laser light such as a YAG harmonic laser has been described, the long laser beam may be formed by solid laser beam. it can. Since solid laser beams are difficult to increase in energy, the number of connections will be higher. If the connection part of the long laser beam can be connected with a short laser beam with good crystallinity, an all-solid-state laser annealing apparatus is also possible.

図3Aは、レーザアニール装置の構成、アニール方法を概略的に示す斜視図、図3B、3Cは変形例を概略的に示す平面図である。   FIG. 3A is a perspective view schematically showing a configuration of a laser annealing apparatus and an annealing method, and FIGS. 3B and 3C are plan views schematically showing modifications.

図3Aに示すように、XYステージ30の上方に長尺ビーム光学系10、短尺ビーム光学系20が配置されている。長尺ビーム光学系10は、エキシマレーザ光源11、バリアブルアッテネータ19、均質光学系13、方向変換用ミラーM1,長尺ビーム投影光学系6を含む。均質光学系13は長尺ビームの長さ(Y)方向の均質化のみを行う構成で示すが、図2A,2Bに示したように光軸に直交する2方向の均質化を行うようにしてもよい。長尺ビーム投影光学系6は、シリンドリカルレンズで結像系を構成している。短尺ビーム光学系20は、LD励起固体レーザ光源21、バリアブルアッテネータ29、均質光学系23、方向変換用ミラーM2,短尺ビーム投影光学系7を含む。均質光学系23は短尺ビームの長さ(Y)方向の均質化のみを行う構成で示すが、図2Cに示したように光軸に直交する2方向の均質化を行うようにしてもよい。短尺ビーム投影光学系7は、球面レンズで結像系を構成している。短尺ビーム光学系20は、長尺ビーム光学系10の1端部から走査方向後方に一定距離離して配置される。   As shown in FIG. 3A, the long beam optical system 10 and the short beam optical system 20 are disposed above the XY stage 30. The long beam optical system 10 includes an excimer laser light source 11, a variable attenuator 19, a homogeneous optical system 13, a direction changing mirror M1, and a long beam projection optical system 6. The homogenous optical system 13 is shown in a configuration that only performs homogenization in the length (Y) direction of a long beam. However, as shown in FIGS. 2A and 2B, homogenization in two directions orthogonal to the optical axis is performed. Also good. The long beam projection optical system 6 constitutes an imaging system with a cylindrical lens. The short beam optical system 20 includes an LD-excited solid-state laser light source 21, a variable attenuator 29, a homogeneous optical system 23, a direction changing mirror M2, and a short beam projection optical system 7. Although the homogenous optical system 23 is shown with a configuration that performs homogenization only in the length (Y) direction of the short beam, homogenization in two directions orthogonal to the optical axis may be performed as shown in FIG. 2C. The short beam projection optical system 7 forms an imaging system with a spherical lens. The short beam optical system 20 is arranged at a certain distance from one end of the long beam optical system 10 in the scanning direction rearward.

XYテーブル30の上に、アモルファスシリコン膜を堆積したガラス基板31を載置し、長尺ビーム光学系10によってレーザアニールを行い、結晶化を行なう。最初の第1走査S1においては、短尺ビーム光学系20は駆動されない。第1走査を終え、折り返して第2走査S2を行なう際、第1走査による結晶化領域33と第2走査による結晶化領域34の境界領域ないし、隣接縁部を含む領域を短尺ビーム光学系20が後追い走査する。長尺ビームにより結晶化した領域縁部の結晶性の悪い領域を含んで、半導体膜は溶融し、再結晶化する。なお、長尺ビーム光学系10でレーザアニールしたストライプ状領域を接続する境界領域を短尺ビーム光学系20で再度レーザアニールする構成であれば種々の変形が可能である。長尺ビーム光学系10のレーザアニール走査は、基板全面をレーザアニールできればよい。   A glass substrate 31 on which an amorphous silicon film is deposited is placed on the XY table 30, and laser annealing is performed by the long beam optical system 10 to perform crystallization. In the first first scan S1, the short beam optical system 20 is not driven. When the second scan S2 is performed after finishing the first scan and turning back, the short beam optical system 20 defines a boundary region between the crystallized region 33 by the first scan and the crystallized region 34 by the second scan or a region including an adjacent edge. Will follow-up scanning. The semiconductor film is melted and recrystallized including the region having poor crystallinity at the edge of the region crystallized by the long beam. Various modifications are possible as long as the boundary region connecting the stripe-shaped regions laser-annealed by the long beam optical system 10 is laser-annealed again by the short beam optical system 20. Laser annealing scanning of the long beam optical system 10 may be performed as long as the entire surface of the substrate can be laser annealed.

図3Bは、基板下側から上側に折り返し走査をする変形例を示す。基板下部に第1走査S1を行い上側に折り返して第2走査S2を行なう。長尺ビーム走査領域端部を重ねる場合を示す。短尺ビーム光学系のレンズを小さくするには、長尺ビーム光学系の走査領域端部を重ね、結晶性の悪い領域の幅を小さくすることが好ましい。短尺ビーム光学系の結像レンズ系は、直径5mm以下の球面レンズで構成できる。   FIG. 3B shows a modification in which folding scanning is performed from the lower side to the upper side of the substrate. A first scan S1 is performed on the lower part of the substrate, and the second scan S2 is performed by folding back upward. A case where the end portions of the long beam scanning region are overlapped is shown. In order to make the lens of the short beam optical system small, it is preferable to overlap the scanning region end of the long beam optical system to reduce the width of the region having poor crystallinity. The imaging lens system of the short beam optical system can be constituted by a spherical lens having a diameter of 5 mm or less.

図3Cは、2つの長尺ビーム光学系10a、10bを走査方向にずらして配置し、端部を重ねて走査する場合を示す。短尺ビーム光学系20はさらに後方から結晶性の悪い境界領域上を後追い走査し、レーザアニールする。   FIG. 3C shows a case where the two long beam optical systems 10a and 10b are arranged while being shifted in the scanning direction and the end portions are overlapped for scanning. The short beam optical system 20 further scans the boundary region with poor crystallinity from the rear and laser anneals.

以上、実施例に沿って本発明を説明したが、本発明はこれらに限られない。例えば種々の変更、置換、改良、組み合わせなどが可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along the Example, this invention is not limited to these. It will be apparent to those skilled in the art that various modifications, substitutions, improvements, combinations, and the like can be made.

図1A,1Bは、基本実施例によるレーザアニール方法を概略的に示すガラス基板の平面図、図1C,1Dは、図1A,1Bに対応するガラス基板の断面図である。1A and 1B are plan views of a glass substrate schematically showing a laser annealing method according to a basic embodiment, and FIGS. 1C and 1D are cross-sectional views of the glass substrate corresponding to FIGS. 1A and 1B. 図2A,2Bは、長尺ビーム投影用光学系を示す2方向側面図、図2Cは、短尺ビーム投影用光学系を示す側面図、図2D,2Eは、長尺状レーザビーム18の幅方向、長さ方向のエネルギ分布を示すグラフ、図2F,2Gは、短尺状レーザビーム28の幅方向、長さ方向のエネルギ分布を示すグラフである。2A and 2B are two-way side views showing the long beam projection optical system, FIG. 2C is a side view showing the short beam projection optical system, and FIGS. 2D and 2E are width directions of the long laser beam 18. FIGS. 2F and 2G are graphs showing the energy distribution in the width direction and the length direction of the short laser beam 28. FIG. 図3Aは、レーザアニール装置の構成、アニール方法を概略的に示す斜視図、図3B、3Cは変形例のレーザアニール方法を概略的に示す平面図である。FIG. 3A is a perspective view schematically showing a configuration of a laser annealing apparatus and an annealing method, and FIGS. 3B and 3C are plan views schematically showing a laser annealing method of a modification.

符号の説明Explanation of symbols

1 基板、
2 半導体膜、
3 結晶性の悪い領域、
6 長尺ビーム投影光学系、
7 短尺ビーム投影光学系
10 長尺ビーム光学系、
11 パルス発振エキシマレーザ光源、
12 ズームレンズ系、
13 ホモジナイザ、
14 1方向ズームレンズ系、
15 結像光学系、
16 マスク、
17 投影面、
18 長尺ビーム、
19 バリアブルアッテネータ、
20 短尺ビーム光学系、
21 LD励起固体レーザ光源、
22 ズームレンズ系、
23 ホモジナイザ、
24 ズームレンズ系、
25 結像光学系、
26 マスク26、
28 短尺ビーム、
29 バリアブルアッテネータ、
M ミラー、
1 substrate,
2 semiconductor film,
3 Regions with poor crystallinity,
6 Long beam projection optics,
7 Short beam projection optical system 10 Long beam optical system,
11 Pulsed excimer laser light source,
12 Zoom lens system,
13 Homogenizer,
14 one-direction zoom lens system,
15 imaging optical system,
16 mask,
17 Projection plane,
18 Long beam,
19 Variable attenuator,
20 Short beam optical system,
21 LD pumped solid state laser light source,
22 Zoom lens system,
23 Homogenizer,
24 Zoom lens system,
25 Imaging optics,
26 Mask 26,
28 Short beam,
29 Variable attenuator,
M mirror,

Claims (16)

(a)基板上に形成した半導体膜を仮想的に所定幅の複数の領域に分割し、各領域で長尺レーザビームを幅方向に走査して基板上の半導体膜を溶融、結晶化する工程と、
(b)前記複数の領域の隣接する領域の境界領域を前記長尺ビームより短い短尺レーザビームを幅方向に走査して溶融、再結晶化する工程と、
を含むレーザアニール方法。
(A) A process of virtually dividing a semiconductor film formed on a substrate into a plurality of regions having a predetermined width, and scanning the long laser beam in the width direction in each region to melt and crystallize the semiconductor film on the substrate When,
(B) melting and recrystallizing a boundary region between adjacent regions of the plurality of regions by scanning a short laser beam shorter than the long beam in the width direction;
A laser annealing method comprising:
前記長尺レーザビームがエキシマレーザビームまたは固体レーザビームであるである請求項1記載のレーザアニール方法。   2. The laser annealing method according to claim 1, wherein the long laser beam is an excimer laser beam or a solid laser beam. 前記短尺レーザビームが固体レーザビームである請求項1または2記載のレーザアニール方法。   3. The laser annealing method according to claim 1, wherein the short laser beam is a solid laser beam. 前記短尺レーザビームの長さが3mm〜10mmである請求項1〜3のいずれか1項記載のレーザアニール方法。   The laser annealing method according to claim 1, wherein a length of the short laser beam is 3 mm to 10 mm. 前記工程(a)が、
(a1)長尺レーザビームを幅方向に走査して、前記複数の領域の1つを結晶化するレーザアニール工程と、
(a2)前記長尺レーザビームの位置を隣接する領域の1つに移動し、折り返し走査する工程と、
を含む請求項1〜4のいずれか1項記載のレーザアニール方法。
The step (a)
(A1) a laser annealing step of scanning a long laser beam in the width direction to crystallize one of the plurality of regions;
(A2) a step of moving the position of the long laser beam to one of the adjacent regions and performing a return scanning;
The laser annealing method according to claim 1, comprising:
前記工程(a)が、
(a3)複数の長尺レーザビームを隣接する複数の領域上に長尺レーザビームの幅方向にずらして配置し、幅方向に走査して、複数の領域を結晶化するレーザアニール工程、
を含み、前記工程(b)が
(b−1)前記複数の領域の境界領域を、前記短尺レーザビームで後追い走査し、溶融、再結晶化する工程、
含む請求項1〜4のいずれか1項記載のレーザアニール方法。
The step (a)
(A3) a laser annealing step in which a plurality of long laser beams are arranged on a plurality of adjacent regions while being shifted in the width direction of the long laser beam and scanned in the width direction to crystallize the plurality of regions;
And (b-1) a step of scanning the boundary region of the plurality of regions with the short laser beam, melting, and recrystallizing,
The laser annealing method according to any one of claims 1 to 4, further comprising:
前記半導体膜がアモルファスシリコン膜である請求項1〜6のいずれか1項記載のレーザアニール方法。   The laser annealing method according to claim 1, wherein the semiconductor film is an amorphous silicon film. 半導体膜を形成した基板を載置し、並進駆動できるテーブルと、
前記テーブル上方に配置され、長尺レーザビームを基板上の半導体膜に照射できる長尺レーザビーム光学系と、
前記テーブル上方に配置され、前記長尺ビームより短い短尺レーザビームを基板上の半導体膜に照射できる短尺レーザビーム光学系と、
を有するレーザアニール装置。
A table on which a substrate on which a semiconductor film is formed can be mounted and driven in translation;
A long laser beam optical system disposed above the table and capable of irradiating a semiconductor film on the substrate with a long laser beam;
A short laser beam optical system disposed above the table and capable of irradiating a semiconductor film on the substrate with a short laser beam shorter than the long beam;
An apparatus for laser annealing.
前記長尺レーザビーム光学系がシリンドリカルレンズで構成された結像レンズ系を有し、前記短尺レーザビーム光学系が球面レンズで構成された結像光学系を有する請求項8記載のレーザアニール装置。   9. The laser annealing apparatus according to claim 8, wherein the long laser beam optical system has an imaging lens system composed of a cylindrical lens, and the short laser beam optical system has an imaging optical system composed of a spherical lens. 前記短尺レーザビーム光学系の結像レンズ系が直径20mm〜55mmの球面レンズで構成された請求項9記載のレーザアニール装置。   10. The laser annealing apparatus according to claim 9, wherein the imaging lens system of the short laser beam optical system is constituted by a spherical lens having a diameter of 20 mm to 55 mm. 前記長尺レーザビーム光学系が長さ方向端部のスロープ部が1mm以上の長尺レーザビームを投影する光学系であり、前記短尺レーザビーム光学系が長さ方向端部のスロープ部の幅が2.2μm以下の短尺レーザビームを投影する光学系である請求項8〜10のいずれか1項記載のレーザアニール装置。   The long laser beam optical system is an optical system that projects a long laser beam having a slope portion of 1 mm or more in a length direction end portion, and the short laser beam optical system has a width of a slope portion at a length direction end portion. The laser annealing apparatus according to any one of claims 8 to 10, which is an optical system that projects a short laser beam of 2.2 µm or less. 前記長尺レーザビームの長さが20cm以上であり、前記短尺レーザビームの長さが5mm以下である請求項8〜11のいずれか1項記載のレーザアニール装置。   The laser annealing apparatus according to any one of claims 8 to 11, wherein a length of the long laser beam is 20 cm or more and a length of the short laser beam is 5 mm or less. 前記長尺レーザビームがエキシマレーザビームまたは固体レーザビームである請求項8〜12のいずれか1項記載のレーザアニール装置。   The laser annealing apparatus according to any one of claims 8 to 12, wherein the long laser beam is an excimer laser beam or a solid laser beam. 前記短尺レーザビームが固体レーザビームである請求項8〜13のいずれか1項記載のレーザアニール装置。   The laser annealing apparatus according to any one of claims 8 to 13, wherein the short laser beam is a solid-state laser beam. 前記長尺レーザビーム光学系が複数の長尺レーザビーム照射系を含み、前記テーブルを並進駆動した時、隣接する領域上を前記複数の長尺レーザビーム照射系が出射する複数の長尺レーザビームを幅方向に走査できる光学系であり、前記短尺レーザビーム光学系が前記隣接する領域の境界領域を短尺レーザビームで後追い走査できる光学系である請求項8〜14のいずれか1項記載のレーザアニール装置。   The long laser beam optical system includes a plurality of long laser beam irradiation systems, and when the table is driven in translation, a plurality of long laser beams emitted from the plurality of long laser beam irradiation systems on adjacent areas. 15. The laser according to claim 8, wherein the short laser beam optical system is an optical system capable of following scanning a boundary region between the adjacent regions with a short laser beam. Annealing equipment. 前記複数の長尺レーザビーム照射系は、長尺レーザビームの幅方向にずらして配置されている請求項15記載のレーザアニール装置。   The laser annealing apparatus according to claim 15, wherein the plurality of long laser beam irradiation systems are arranged so as to be shifted in a width direction of the long laser beam.
JP2007048071A 2007-02-27 2007-02-27 Laser annealing method or laser annealing device Pending JP2008211093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048071A JP2008211093A (en) 2007-02-27 2007-02-27 Laser annealing method or laser annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048071A JP2008211093A (en) 2007-02-27 2007-02-27 Laser annealing method or laser annealing device

Publications (1)

Publication Number Publication Date
JP2008211093A true JP2008211093A (en) 2008-09-11

Family

ID=39787123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048071A Pending JP2008211093A (en) 2007-02-27 2007-02-27 Laser annealing method or laser annealing device

Country Status (1)

Country Link
JP (1) JP2008211093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209050B2 (en) 2010-11-01 2015-12-08 Samsung Display Co., Ltd. Laser crystallization system and method of manufacturing display apparatus using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284418A (en) * 1997-04-02 1998-10-23 Sharp Corp Thin-film semiconductor device and manufacture thereof
JP2001044133A (en) * 1999-08-02 2001-02-16 Sharp Corp Laser radiation method and manufacture of semiconductor device
JP2002016015A (en) * 2000-04-28 2002-01-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2002043245A (en) * 2000-07-31 2002-02-08 Fujitsu Ltd Method of forming crystalline semiconductor thin film
WO2002031871A1 (en) * 2000-10-06 2002-04-18 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for producing polysilicon film, semiconductor device, and method of manufacture thereof
JP2005243747A (en) * 2004-02-24 2005-09-08 Sharp Corp Semiconductor thin film, method and device for manufacturing the same, semiconductor device, and liquid crystal display device
JP2006029893A (en) * 2004-07-14 2006-02-02 Agilent Technol Inc Manufacturing system for display panel, manufacturing method used therefor, and inspection device therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284418A (en) * 1997-04-02 1998-10-23 Sharp Corp Thin-film semiconductor device and manufacture thereof
JP2001044133A (en) * 1999-08-02 2001-02-16 Sharp Corp Laser radiation method and manufacture of semiconductor device
JP2002016015A (en) * 2000-04-28 2002-01-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2002043245A (en) * 2000-07-31 2002-02-08 Fujitsu Ltd Method of forming crystalline semiconductor thin film
WO2002031871A1 (en) * 2000-10-06 2002-04-18 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for producing polysilicon film, semiconductor device, and method of manufacture thereof
JP2005243747A (en) * 2004-02-24 2005-09-08 Sharp Corp Semiconductor thin film, method and device for manufacturing the same, semiconductor device, and liquid crystal display device
JP2006029893A (en) * 2004-07-14 2006-02-02 Agilent Technol Inc Manufacturing system for display panel, manufacturing method used therefor, and inspection device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209050B2 (en) 2010-11-01 2015-12-08 Samsung Display Co., Ltd. Laser crystallization system and method of manufacturing display apparatus using the same

Similar Documents

Publication Publication Date Title
KR100873927B1 (en) Process and mask projection system for laser crystallization processing of semiconductor film regions on a substrate
US7759230B2 (en) System for providing a continuous motion sequential lateral solidification for reducing or eliminating artifacts in overlap regions, and a mask for facilitating such artifact reduction/elimination
US7364952B2 (en) Systems and methods for processing thin films
US7259081B2 (en) Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity, and a structure of such film regions
US8715412B2 (en) Laser-irradiated thin films having variable thickness
KR100894512B1 (en) Crystallization apparatus and crystallization method
JP2009518864A (en) System and method for processing membranes and thin films
JP2004119919A (en) Semiconductor thin film and method for manufacturing the same
KR101268107B1 (en) Laser irradiation apparatus, laser irradiation method, and method for manufacturing a semiconductor device
WO2005029551A2 (en) Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
JP2004311906A (en) Laser processing device and laser processing method
US20090038536A1 (en) Crystallization apparatus, crystallization method, device, optical modulation element, and display apparatus
JP4092414B2 (en) Laser annealing method
JP2006196539A (en) Method and device for manufacturing polycrystalline semiconductor thin film
JP2008211093A (en) Laser annealing method or laser annealing device
JP2006013050A (en) Laser beam projection mask, laser processing method using the same and laser processing system
JP2003243322A (en) Method of manufacturing semiconductor device
JP2006210789A (en) Method for manufacturing semiconductor crystal thin film, its manufacturing apparatus, photomask and semiconductor device
JP2007207896A (en) Laser beam projection mask, laser processing method using same, laser processing apparatus
US20070170426A1 (en) Silicon crystallizing mask, apparatus for crystallizing silicon having the mask and method for crystallizing silicon using the apparatus
JP2004103794A (en) Silicon crystallizing method and laser annealing apparatus
JP2004266022A (en) System and method of growing crystal for semiconductor thin film
JP4467276B2 (en) Method and apparatus for manufacturing semiconductor thin films
JP2007067020A (en) Projection mask, laser-machining method, laser machining apparatus, and thin-film transistor element
JP2008147236A (en) Crystallizing apparatus and laser processing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120125