JP2008211018A - Sample holder, inspecting apparatus using the same, and sample treatment method - Google Patents

Sample holder, inspecting apparatus using the same, and sample treatment method Download PDF

Info

Publication number
JP2008211018A
JP2008211018A JP2007046854A JP2007046854A JP2008211018A JP 2008211018 A JP2008211018 A JP 2008211018A JP 2007046854 A JP2007046854 A JP 2007046854A JP 2007046854 A JP2007046854 A JP 2007046854A JP 2008211018 A JP2008211018 A JP 2008211018A
Authority
JP
Japan
Prior art keywords
electrode
sample
voltage
sample holder
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007046854A
Other languages
Japanese (ja)
Other versions
JP4959372B2 (en
Inventor
Takeshi Muneishi
猛 宗石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007046854A priority Critical patent/JP4959372B2/en
Publication of JP2008211018A publication Critical patent/JP2008211018A/en
Application granted granted Critical
Publication of JP4959372B2 publication Critical patent/JP4959372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a particle floating toward a sample cannot be removed and damage such as a shortage between circuit patterns is easily given to an electric circuit in a particle removing method using electrostatic adsorption. <P>SOLUTION: A sample holder comprises a mounting portion 12 having a region to which a sample 11 is mounted, a sample electrode 13 for applying to the sample a positive voltage or a negative voltage relative to ground potential, a first electrode 14 to which a voltage opposite to the application voltage of the sample electrode 13 in terms of positive and negative properties is applied and which is arranged separately from the sample electrode 13 on the periphery of the sample mounting region, and a second electrode 15 to which a voltage the value of which is different from that of the application voltage of the first electrode 14 is applied and which is arranged separately from the first electrode 14 on the periphery of the sample mounting region. The sample holder comprises a resistive element 16 which is arranged between the first electrode 14 and the second electrode 15 and which is electrically conducted to the first electrode 14 and the second electrode 15. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子ビームやイオンビーム等を利用して半導体ウエハやマスク等の各種試料を検査または観察等を行う際に用いる走査型電子顕微鏡(SEM)、走査型イオン顕微鏡等の検査装置に用いられる試料ホルダに関し、特に、装置内部に浮遊する塵や埃が試料に飛散することを防止する構造を有する試料ホルダであり、さらにはこの試料ホルダ用いた検査装置および試料に荷電粒子を用いて処理する試料処理方法に関する。   The present invention is used for an inspection apparatus such as a scanning electron microscope (SEM) or a scanning ion microscope used when inspecting or observing various samples such as a semiconductor wafer or a mask using an electron beam, an ion beam, or the like. In particular, it is a sample holder having a structure that prevents dust and dust floating inside the apparatus from scattering to the sample. Further, the inspection apparatus using the sample holder and the sample are processed using charged particles. The present invention relates to a sample processing method.

従来より、半導体製造工程において、ウエハやマスク等を高分解能で観察、検査する際に、走査型電子線顕微鏡(以下、SEMと称す)等の荷電粒子を利用した検査装置が用いられている。図4は、SEMの構造を模式的に示す分解斜視図である。SEMは、電子銃51から電子の束からなる、いわゆる電子ビーム140を引き出し電極52を用い放出させ、電子ビーム140を加速電極53により加速、偏向電極54により偏向走査しながら、観察用の試料131の所定の位置に照射させ、その電子の衝突により試料131から放出される2次電子や反射電子等を検出器56により検出して、試料131の表面の形状等を観察することができる。電子ビーム140は、その性質上、真空環境下で使用される上、数mmというような大きな偏向走査が困難ため、試料131は、試料131を保持する試料ホルダ130を具備したXYステージ等の移動手段を用い、真空容器である試料室内で所定の座標に自由に移動できる必要がある。   2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, an inspection apparatus using charged particles such as a scanning electron beam microscope (hereinafter referred to as SEM) is used when observing and inspecting a wafer, a mask, and the like with high resolution. FIG. 4 is an exploded perspective view schematically showing the structure of the SEM. The SEM emits a so-called electron beam 140 consisting of a bundle of electrons from the electron gun 51 using the extraction electrode 52, accelerates the electron beam 140 by the acceleration electrode 53, and deflects and scans by the deflection electrode 54. It is possible to observe the shape and the like of the surface of the sample 131 by irradiating the predetermined position and detecting the secondary electrons and reflected electrons emitted from the sample 131 by the collision of the electrons with the detector 56. Since the electron beam 140 is used in a vacuum environment due to its nature, and it is difficult to perform a large deflection scanning such as several millimeters, the sample 131 is moved by an XY stage equipped with a sample holder 130 for holding the sample 131. It is necessary to freely move to a predetermined coordinate in the sample chamber, which is a vacuum container.

近年、半導体素子の高集積化に伴い、半導体ウエハに形成される回路パターンの線幅は数十nmと細くなり、回路パターンに影響を与える塵や埃(以下、パーティクル)の大きさ又は粒径も非常に小さくなってきており、試料上へのパーティクル付着の低減への要求はより高くなっている。   In recent years, with the high integration of semiconductor elements, the line width of a circuit pattern formed on a semiconductor wafer has been reduced to several tens of nanometers, and the size or particle size of dust and dust (hereinafter referred to as particles) affecting the circuit pattern. However, the demand for reducing the adhesion of particles on the sample is increasing.

SEMに備えられた試料を保持するための試料ホルダについて、図5(a)〜(c)を用いて説明する。図5(a)は斜視図、(b)は、同図(a)におけるB−B線における断面図、(c)は同図(b)の一部を拡大した断面図である。   A sample holder for holding a sample provided in the SEM will be described with reference to FIGS. 5A is a perspective view, FIG. 5B is a cross-sectional view taken along the line BB in FIG. 5A, and FIG. 5C is an enlarged cross-sectional view of a part of FIG.

特許文献1に示される一般的な試料ホルダ130は、半導体ウエハ等の試料131を載置する載置部132と、試料131を固定し、同時に試料131に電圧印加可能な試料用電極133とを備え、試料131には電子銃(不図示)から放出された電子ビーム140を照射して、試料131を検査できるようになっている。   A general sample holder 130 shown in Patent Document 1 includes a mounting portion 132 for mounting a sample 131 such as a semiconductor wafer, and a sample electrode 133 that fixes the sample 131 and can apply a voltage to the sample 131 at the same time. The sample 131 can be inspected by irradiating the sample 131 with an electron beam 140 emitted from an electron gun (not shown).

半導体回路パターンの微細化に伴い、試料に照射した高速度の電子ビームにより放出される二次電子などの反面散乱電子の放出効率の向上や回路パターンの損傷防止を目的として、電子ビーム140を試料131に照射する直前に減速させるため、試料131には試料用電極133を介して負の電圧が印加される。   With the miniaturization of the semiconductor circuit pattern, the electron beam 140 is used as a sample for the purpose of improving the emission efficiency of counter-scattered electrons such as secondary electrons emitted by the high-speed electron beam irradiated on the sample and preventing damage to the circuit pattern. In order to decelerate immediately before irradiating 131, a negative voltage is applied to sample 131 via sample electrode 133.

ここで、図5(c)を用いて試料用電極133の構造を説明すると、コイルバネ等からなる弾性部141と、試料131に接触して電圧を印加する先端部142と、弾性部141にて発生した力を先端部142に伝達する電極本体143と、ベース134に固定され、弾性部141と電極本体143を囲い保持する枠144とからなり、電極本体143は、ツバ143aと枠144の上蓋144a間に挟まれた弾性部141により、試料131を押さえる方向の力を受け、先端部142により試料131を押さえることができる。そして、電極本体143に電圧を印加すると先端部142より試料131に電圧が印加できる。また、試料131を取り外す際は、電極本体143を上方へ持ち上げるとともに、電極本体143の支柱143bの外径と枠144の上蓋144aの内径部を回転/摺動させることができ、試料131の脱着を可能とする。試料用電極133とベース134は電気的に絶縁されている。   Here, the structure of the sample electrode 133 will be described with reference to FIG. 5C. An elastic portion 141 made of a coil spring or the like, a tip portion 142 that contacts the sample 131 and applies a voltage, and an elastic portion 141 are used. The electrode main body 143 that transmits the generated force to the distal end portion 142 and the frame 144 that is fixed to the base 134 and surrounds and holds the elastic portion 141 and the electrode main body 143 are formed. The electrode main body 143 includes an upper lid of the flange 143a and the frame 144 The elastic portion 141 sandwiched between 144 a receives a force in the direction of pressing the sample 131, and the sample 131 can be pressed by the tip portion 142. When a voltage is applied to the electrode body 143, a voltage can be applied to the sample 131 from the tip end portion 142. Further, when removing the sample 131, the electrode body 143 is lifted upward, and the outer diameter of the column 143b of the electrode body 143 and the inner diameter portion of the upper lid 144a of the frame 144 can be rotated / slid. Is possible. The sample electrode 133 and the base 134 are electrically insulated.

しかし、負の電圧を試料131に印加すると、SEM内部で浮遊している塵や埃等の正に帯電したパーティクルが静電吸着力により試料131に引き寄せられるという問題が発生する。パーティクルが試料131に付着した場合、回路パターン間の短絡等、完成した電気回路に致命的なダメージを与えることとなる。特に、正に帯電したパーティクルは試料131に引き寄せられ易く大量のパーティクルが試料131に吸着されることとなり、試料131に電圧を印加しない場合に比較し歩留まりが大幅に悪化するという問題を有していた。   However, when a negative voltage is applied to the sample 131, there arises a problem that positively charged particles such as dust and dirt floating inside the SEM are attracted to the sample 131 by electrostatic attraction force. When the particles adhere to the sample 131, the completed electric circuit such as a short circuit between the circuit patterns will be fatally damaged. In particular, positively charged particles are easily attracted to the sample 131, and a large amount of particles are adsorbed to the sample 131, and the yield is greatly deteriorated as compared with the case where no voltage is applied to the sample 131. It was.

この問題を解決する方法として、特許文献2および特許文献3では静電力を利用したパーティクル除去方法が提案されている。   As a method for solving this problem, Patent Literature 2 and Patent Literature 3 propose a particle removal method using electrostatic force.

特許文献2の構造を図6(a)、(b)に示す。試料131の載置部132の周囲に試料用電極133と離間して吸着電極136を配置する。図6(b)に示すように、吸着電極136は、絶縁体135と、絶縁体135の底面から電圧を印加する吸着電極部136a,136bとから構成され、SEM内を浮遊する帯電したパーティクルを静電吸着力により絶縁体135で吸着する仕組みである。   The structure of Patent Document 2 is shown in FIGS. An adsorption electrode 136 is disposed around the placement portion 132 of the sample 131 so as to be separated from the sample electrode 133. As shown in FIG. 6B, the adsorption electrode 136 is composed of an insulator 135 and adsorption electrode portions 136a and 136b for applying a voltage from the bottom surface of the insulator 135, and charged particles floating in the SEM. In this mechanism, the insulator 135 is attracted by an electrostatic attraction force.

特許文献3の構造を図7(a)〜(c)に示す。特許文献3による除去方法では、試料に電圧が印加される場合、試料表面に飛散するパーティクルが、その試料電位により吸着されて試料表面に付着する点に着目し、試料周辺に試料に印加する電圧と正負が逆で、かつ、試料の印加電圧の値とその絶対値が同等の電圧を有する電極部を有し、静電的な反発力をもって試料表面にパーティクルが付着することを抑制している。例えば、図7(a)に示すように試料131に電圧を印加する試料用電極133を有する試料載置部132に対し、試料131の周辺に反発電極137を配置し、試料131に印加された電圧と正負が逆で、かつ、絶対値が同等の電圧を印加し、試料131へ吸着されるパーティクルとの間に静電力を発生させて、反発電極137の反発力により外部にパーティクルを除去している。
特開2004−319840号公報 特許第3348223号公報 特開2006−332505号公報
The structure of Patent Document 3 is shown in FIGS. In the removal method according to Patent Document 3, when a voltage is applied to the sample, attention is paid to the point that particles scattered on the sample surface are adsorbed by the sample potential and adhere to the sample surface, and the voltage applied to the sample around the sample It has an electrode part that is opposite to the positive and negative and has a voltage that is equal to the absolute value of the applied voltage of the sample, and suppresses particles from adhering to the sample surface with electrostatic repulsion. . For example, as shown in FIG. 7A, a repulsive electrode 137 is arranged around the sample 131 with respect to the sample mounting part 132 having the sample electrode 133 that applies a voltage to the sample 131 and applied to the sample 131. Applying a voltage that is opposite in polarity to the voltage and having the same absolute value, an electrostatic force is generated between the particles adsorbed to the sample 131, and the particles are removed to the outside by the repulsive force of the repulsive electrode 137. ing.
JP 2004-31840 A Japanese Patent No. 3348223 JP 2006-332505 A

帯電しているパーティクルは、ステージを駆動させるための摺動部や案内部での摩擦摩耗やケーブル被覆の擦れ等により多く発生すると考えられているため、パーティクルの発生を完全に無くすことは困難である。また、正負どちらに帯電するかは発生源である摩擦部材の材質にも左右されるが、その他、周辺環境にも左右されやすく、また、電子等荷電粒子の衝突等、摩擦以外の原因により帯電することもあるので、パーティクルの帯電する正負を完全に推測することは困難である。そのため、特許文献2による除去方法では、静電吸着部材の電圧と正負が逆に帯電しているパーティクルは静電吸着できない上、一度吸着されたパーティクルも静電吸着部材より電荷の移動により帯電が中和されれば、静電吸着力を失い再度浮遊することとなり、この電気的に中和されたパーティクルが試料上へ飛散することを回避することが非常に困難であるという課題を有している。   It is thought that a lot of charged particles are generated due to frictional wear at the sliding part and guide part for driving the stage and rubbing of the cable cover, so it is difficult to completely eliminate the generation of particles. is there. Whether it is positively or negatively charged depends on the material of the friction member that is the source of generation, but is also easily influenced by the surrounding environment, and charged by causes other than friction such as collision of charged particles such as electrons. Therefore, it is difficult to completely estimate whether the particles are charged positively or negatively. For this reason, in the removal method disclosed in Patent Document 2, particles that are electrostatically charged with the opposite polarity of the electrostatic adsorption member cannot be electrostatically adsorbed, and the particles once adsorbed are also charged by the movement of charge from the electrostatic adsorption member. If neutralized, the electrostatic adsorption force will be lost and it will float again, and it is very difficult to avoid scattering of the electrically neutralized particles onto the sample. Yes.

特許文献3の除去方法では、反発電極137周辺に存在するグランド等の他の電圧と反発電極137の位置関係が反発電極137により等電位線の形成に大きな影響を与えてしまう。つまり、帯電しているパーティクルが受ける静電気的な反発力は、等電位線に対し垂直方向に力を受けるので、パーティクル移動方向と形成される等電位線が平行に近づくほど、パーティクルの除去効果が減少するという課題を有している。   In the removal method of Patent Document 3, the positional relationship between the repulsive electrode 137 and another voltage such as the ground existing around the repellent electrode 137 greatly affects the formation of equipotential lines. In other words, the electrostatic repulsive force received by the charged particles receives a force in a direction perpendicular to the equipotential lines, so the closer to the parallel the formed equipotential lines are, the more effective the particle removal effect is. It has the problem of decreasing.

例えば、図7(b)に示すように、電子線を用いた検査装置などに試料ホルダが用いられる場合は、試料上面近くに金属製の真空容器の壁面が存在し、真空容器の多くはグランドに接地されており、図7(b)に示すように等電位線が形成されるので、真空容器の壁面近くを試料131方向に移動するパーティクルは、移動方向に反発力を受けにくいことになる。   For example, as shown in FIG. 7B, when a sample holder is used in an inspection apparatus using an electron beam, the wall surface of a metal vacuum vessel exists near the upper surface of the sample, and most of the vacuum vessels are grounded. Since an equipotential line is formed as shown in FIG. 7B, particles moving in the direction of the sample 131 near the wall surface of the vacuum vessel are less likely to receive a repulsive force in the moving direction. .

パーティクルの正負の帯電極性は、帯電列によって決定される。例えば、パーティクルが、ガラス、セラミックス、ナイロン、レーヨン、アルミニウム等の微粉である場合、正に帯電しやすく、パーティクルがアクリル、ポリエチレン、ポリスチレン、ポリテトラフルオロエチレン、ポリエステル、アクリル、塩化ビニル、ステンレス等の微粉である場合、負に帯電しやすいことが報告されている。   The positive and negative charge polarity of the particles is determined by the charge train. For example, when the particles are fine powders such as glass, ceramics, nylon, rayon, aluminum, etc., they are easily charged positively, and the particles are made of acrylic, polyethylene, polystyrene, polytetrafluoroethylene, polyester, acrylic, vinyl chloride, stainless steel, etc. It has been reported that in the case of fine powder, it tends to be negatively charged.

上記課題を解決するため、本発明は、試料を載置する領域を備えた載置部と、グランド電位に対し正または負の電圧を試料に印加する試料用電極と、該試料用電極の印加電圧と正負が逆の電圧が印加され、前記試料用電極より離間して前記試料の載置領域の周囲に配置された第1電極と、該第1電極の印加電圧と異なる値の電圧が印加され、前記第1電極より離間して前記試料の載置領域の周囲に配置された第2電極とを有し、前記第1電極および第2電極との間に配置され、前記第1電極および第2電極それぞれに電気的に導通する抵抗体を備えたことを特徴とするものである。   In order to solve the above-described problems, the present invention provides a mounting portion having a region for mounting a sample, a sample electrode for applying a positive or negative voltage to the sample with respect to the ground potential, and application of the sample electrode A voltage that is opposite in polarity to the voltage is applied, a first electrode that is spaced from the sample electrode and is disposed around the sample mounting region, and a voltage that is different from the voltage applied to the first electrode is applied. And a second electrode disposed around the sample mounting region at a distance from the first electrode, and is disposed between the first electrode and the second electrode, and the first electrode and Each of the second electrodes is provided with a resistor that is electrically conductive.

前記第2電極は、前記第1電極の印加電圧と正負が同一で、且つ、絶対値が小さい電圧が印加されることを特徴とするものである。   The second electrode is applied with a voltage having the same positive and negative voltage as the applied voltage of the first electrode and a small absolute value.

前記第2電極は、グランドに接地されていることを特徴とするものである。   The second electrode is grounded to the ground.

前記第1電極は、前記試料用電極の印加電圧と正負が逆で、且つ絶対値が同等又はそれ以上の電圧が印加されることを特徴とするものである。   The first electrode is applied with a voltage that is opposite in polarity to the applied voltage of the sample electrode and that has an absolute value equal to or greater than that.

前記第1電極、第2電極および抵抗体は、前記試料載置領域の周囲に環状に配置されることを特徴とするものである。   The first electrode, the second electrode, and the resistor are annularly arranged around the sample mounting area.

前記第1電極、第2電極および抵抗体は、その各主面が前記載置部に載置される試料の主面と平行に配置されることを特徴とするものである。   Each of the first electrode, the second electrode, and the resistor is arranged in parallel with the main surface of the sample placed on the mounting portion.

本発明の試料ホルダによれば、試料を載置する領域を備えた載置部と、試料にグランド電位に対し正または負の電圧を印加する試料用電極と、該試料用電極の印加電圧と正負が逆の電圧が印加され、前記試料用電極より離間して前記試料の載置領域の周囲に配置された第1電極と、該第1電極の印加電圧と異なる値の電圧が印加され、前記第1電極より離間して前記試料の載置領域の周囲に配置された第2電極とを有し、前記第1電極および第2電極との間に配置され、前記第1電極および第2電極それぞれに電気的に導通する抵抗体を備えたことから、抵抗体により第2電極から試料の方向に対して等電位線をほぼ垂直方向に走らせることができ、試料の電圧により試料側に移動、吸着しようとするパーティクルは、第2電極から試料の方向に形成された等電位線により移動方向と逆方向に静電力を与えられ、試料上へのパーティクルの付着を低減することができる。   According to the sample holder of the present invention, a mounting portion having a region for mounting the sample, a sample electrode for applying a positive or negative voltage to the ground potential to the sample, and an applied voltage of the sample electrode, A positive and negative voltage is applied, a first electrode that is spaced from the sample electrode and disposed around the sample mounting region, and a voltage that is different from the applied voltage of the first electrode is applied, A second electrode disposed around the sample mounting area and spaced apart from the first electrode, disposed between the first electrode and the second electrode, and the first electrode and the second electrode. Since each electrode has a resistor that is electrically conductive, the resistor allows the equipotential line to run in a direction substantially perpendicular to the direction of the sample from the second electrode. The particles to be moved and adsorbed are moved from the second electrode to the sample. Given electrostatic in a direction opposite to the movement direction by equipotential lines formed in, it is possible to reduce the adhesion of particles onto the specimen.

また、第1電極と第2電極間の抵抗体の抵抗値を所定の値にすることで、抵抗体に流れる電流を小さくして、その電流が電子ビームやイオンビームに与える影響を低減でき、電子ビームやイオンビームの直進性を確保することができる。   In addition, by setting the resistance value of the resistor between the first electrode and the second electrode to a predetermined value, the current flowing through the resistor can be reduced, and the influence of the current on the electron beam and ion beam can be reduced. The straightness of the electron beam or ion beam can be ensured.

本発明の試料ホルダおよび検査装置の実施形態について図面に基づいて説明する。   Embodiments of a sample holder and an inspection apparatus according to the present invention will be described with reference to the drawings.

以下、本発明に係る試料ホルダ10の一実施形態を図1(a)、(b)を用いて説明する。   Hereinafter, an embodiment of a sample holder 10 according to the present invention will be described with reference to FIGS.

図1(a)は、前記検査装置内部に配置される試料ホルダ10の斜視図、(b)はそのA−A線断面図を示す。   FIG. 1A is a perspective view of a sample holder 10 disposed inside the inspection apparatus, and FIG. 1B is a sectional view taken along line AA.

本発明の試料ホルダ10は、半導体用ウエハやマスク等の各種試料11を載置する領域を備える載置部12と、前記試料11にグランド電位に対して所定の電圧を印加するための試料用電極13と、前記試料11の載置領域の周囲に配置された第1電極14および第2電極15と、前記第1電極14および第2電極15との間に配置され、前記第1電極14および第2電極15のそれぞれに電気的に導通する抵抗体16とを有するものである。   The sample holder 10 according to the present invention includes a mounting portion 12 having a region for mounting various samples 11 such as semiconductor wafers and masks, and a sample for applying a predetermined voltage to the sample 11 with respect to the ground potential. The first electrode 14 is disposed between the electrode 13, the first electrode 14 and the second electrode 15 disposed around the mounting region of the sample 11, and the first electrode 14 and the second electrode 15. And a resistor 16 that is electrically connected to each of the second electrodes 15.

ここで、試料11は、真空環境下にある試料室内で超音波モータ等を駆動源とするXYステージ等の移動手段上に搭載された試料ホルダ10により保持されている。   Here, the sample 11 is held by a sample holder 10 mounted on a moving means such as an XY stage using an ultrasonic motor or the like as a drive source in a sample chamber in a vacuum environment.

試料用電極13は、試料11に照射する電子ビーム20を構成する電子を照射する直前に減速させる作用をなし、試料11が半導体ウエハの場合は、試料11に形成された回路パターンの損傷を防止するものである。   The sample electrode 13 acts to decelerate immediately before irradiating the electrons constituting the electron beam 20 that irradiates the sample 11. When the sample 11 is a semiconductor wafer, the circuit pattern formed on the sample 11 is prevented from being damaged. To do.

試料用電極13は、電子を減速させるため、試料11が負の電圧となるように電圧が印加される。また、電圧は、電子を加速した電圧に依存するため、数kV〜数十kVとする。また、試料11は表面の電圧を均一とした方が望ましいため、体積固有抵抗値の低い導電性の材料にて製作されるか、これに類する材料をCVD等により膜付けされている。このため、試料11は試料用電極13に印加された電圧とほぼ同等の電圧をもつことになる。 A voltage is applied to the sample electrode 13 so that the sample 11 has a negative voltage in order to decelerate electrons. Moreover, since the voltage depends on the voltage at which electrons are accelerated, it is set to several kV to several tens kV. Further, since it is desirable that the sample 11 has a uniform surface voltage, the sample 11 is manufactured from a conductive material having a low volume resistivity, or a similar material is formed by CVD or the like. For this reason, the sample 11 has a voltage substantially equal to the voltage applied to the sample electrode 13.

図1(b)に示すように、試料用電極13は、コイルバネ等よりなる弾性部41と、試料11に接触して電圧を印加する先端部42と、弾性部41にて発生した力を先端部42に伝達する電極本体43と、ベース19に固定され弾性部41と電極本体42を囲い保持する枠44とからなり、電極本体43は、ツバ43aと枠44の上蓋44a間に挟まれた弾性部41により、試料31を押さえる方向の力を受け、先端部42により試料31を押さえることができる。そして、電極本体43に電圧を印加すると先端部42より試料31に電圧が印加できる。また、試料31を取り外す際は、電極本体43を上方へ持ち上げるとともに、電極本体43の支柱43bの外径と枠44の上蓋44aの内径部を回転/摺動させることができ、試料31の脱着を可能とする構造となっている。   As shown in FIG. 1B, the sample electrode 13 includes an elastic part 41 made of a coil spring or the like, a tip part 42 that applies a voltage in contact with the sample 11, and a force generated by the elastic part 41. The electrode body 43 is transmitted to the portion 42, and the frame 44 is fixed to the base 19 and surrounds and holds the elastic portion 41 and the electrode body 42. The electrode body 43 is sandwiched between the flange 43a and the upper lid 44a of the frame 44. The elastic part 41 receives a force in the direction of pressing the sample 31, and the sample 31 can be pressed by the tip part 42. When a voltage is applied to the electrode body 43, a voltage can be applied to the sample 31 from the tip end portion 42. When removing the sample 31, the electrode body 43 can be lifted upward, and the outer diameter of the column 43b of the electrode body 43 and the inner diameter portion of the upper lid 44a of the frame 44 can be rotated / slid. It has a structure that enables.

試料11の載置領域の周囲には第1電極14が配置され、この第1電極14は、試料用電極13の印加電圧と正負が逆の電圧が印加される。印加電圧は試料用電極13の印加電圧の絶対値と同等又はそれ以上であることが好ましい。   A first electrode 14 is disposed around the mounting region of the sample 11, and a voltage whose polarity is opposite to that of the sample electrode 13 is applied to the first electrode 14. The applied voltage is preferably equal to or greater than the absolute value of the applied voltage of the sample electrode 13.

第1電極14と抵抗体16を介して載置部12の周囲に配置される第2電極15は、第1電極14の印加電圧と異なる値の電圧が印加される。第1電極14と第2電極15の間にはそれぞれに電気的に導通する抵抗体16を備えることから、抵抗体16により第2電極15から試料11の方向に対して等電位線をほぼ垂直方向に走らせることができる。試料11の電圧により試料11側に移動、吸着しようとするパーティクルは、第2電極15から試料11の方向に形成された等電位線により移動方向と逆方向に静電力を与えられるため、試料11上へのパーティクルの付着を低減することができる。   A voltage having a value different from the voltage applied to the first electrode 14 is applied to the second electrode 15 disposed around the mounting portion 12 via the first electrode 14 and the resistor 16. Since the resistors 16 are provided between the first electrode 14 and the second electrode 15, respectively, the equipotential lines are substantially perpendicular to the direction from the second electrode 15 to the sample 11 by the resistor 16. You can run in the direction. The particles to be moved and adsorbed to the sample 11 side by the voltage of the sample 11 are given an electrostatic force in the direction opposite to the moving direction by an equipotential line formed in the direction of the sample 11 from the second electrode 15. Particle adhesion on the top can be reduced.

特に、第2電極15は、第1電極14の印加電圧と正負が同一であって、第2電極15の印加電圧の絶対値が第1電極14の印加電圧の絶対値より小さい電圧が印加されることが好ましく、これにより試料電極13の有する電圧と異符号に帯電したパーティクルが第1電極14や抵抗体16から受ける吸着力を低減させることができる。   In particular, the voltage applied to the second electrode 15 is the same as the voltage applied to the first electrode 14, and the absolute value of the voltage applied to the second electrode 15 is smaller than the voltage applied to the first electrode 14. Accordingly, it is possible to reduce the attractive force that the particles charged with a different sign from the voltage of the sample electrode 13 receive from the first electrode 14 and the resistor 16.

上述の場合、第2電極15には電圧が印加されているが、第2電極15の電圧が0Vとなるように、グランドに接地されていてもよい。この場合、第1電極14や抵抗体16のもつ電圧と正負が逆に帯電したパーティクルが、第1電極14や抵抗体16に引き寄せられることを有効に防ぐことができる。   In the case described above, a voltage is applied to the second electrode 15, but it may be grounded so that the voltage of the second electrode 15 is 0V. In this case, it is possible to effectively prevent the particles having the first electrode 14 and the resistor 16 charged oppositely to the positive and negative voltages from being attracted to the first electrode 14 and the resistor 16.

これら第1電極14および第2電極15は、アルミニウム、銅、チタンおよびそれらを主体とした合金等、磁性の低いものから構成することにより電子ビームに与える磁場の影響を低減できる。   The first electrode 14 and the second electrode 15 can be made of a material having low magnetism such as aluminum, copper, titanium, and an alloy mainly composed of aluminum, copper, titanium, and the like, thereby reducing the influence of the magnetic field on the electron beam.

載置部12、試料用電極13、第1電極14および第2電極15は、体積固有抵抗値が低い銅、銀、金およびそれらを主体とした合金で製作され、図1(b)に示すように各電極はアルミナ、コージライト、窒化珪素、炭化珪素等のセラミックスからなる電極ベース17上にネジ締結や接着または、化学的気相成膜(CVD)法等の膜付け技術により配置することが可能である。   The mounting portion 12, the sample electrode 13, the first electrode 14, and the second electrode 15 are made of copper, silver, gold, or an alloy mainly composed of them having a low volume resistivity, as shown in FIG. Thus, each electrode is disposed on the electrode base 17 made of ceramics such as alumina, cordierite, silicon nitride, silicon carbide, etc. by screw fastening or adhesion, or by a film deposition technique such as chemical vapor deposition (CVD). Is possible.

第1電極14および第2電極15の間に配置された抵抗体16は、第1電極14および第2電極15に配線18を介して電気的に導通し、第1電極14から第2電極15に上述のような電圧を印加すると、抵抗体16に両電極間の電位差に応じた電位を等配的に与えることができる。   The resistor 16 disposed between the first electrode 14 and the second electrode 15 is electrically connected to the first electrode 14 and the second electrode 15 via the wiring 18, and the first electrode 14 to the second electrode 15 are electrically connected. When a voltage as described above is applied to the resistor 16, a potential corresponding to the potential difference between both electrodes can be equally applied to the resistor 16.

抵抗体16は、厚み50μm以下の薄膜にて形成することにより、抵抗体16が荷電粒子の近傍を移動する際に発生する渦電流を抑制し、渦電流が荷電粒子に与える電磁力を抑制することができる。   The resistor 16 is formed of a thin film having a thickness of 50 μm or less, thereby suppressing the eddy current generated when the resistor 16 moves in the vicinity of the charged particle and suppressing the electromagnetic force that the eddy current gives to the charged particle. be able to.

試料ホルダ10が搭載されるSEMは、真空チャンバ内で使用され、図2(a)に示すように試料ホルダ10の上面近くに真空チャンバの壁面が存在し、この壁面は鉄やアルミニウム等の合金にて製作されており、真空チャンバ壁面のグランド21に接地される。   The SEM on which the sample holder 10 is mounted is used in a vacuum chamber. As shown in FIG. 2A, the wall surface of the vacuum chamber exists near the upper surface of the sample holder 10, and this wall surface is an alloy such as iron or aluminum. And is grounded to the ground 21 on the wall surface of the vacuum chamber.

その結果、第1電極14、第2電極15および抵抗体16のそれぞれに存在する電圧とチャンバ壁面のグランド21により作成される等電位線は図2(a)に示すように、第1電極14と真空チャンバ壁面のグランド21間にできる電圧と抵抗体16上に発生する電圧により描かれる。ここで、第1電極14と第2電極15間の距離を第1電極14とグランド21間距離に比べ、著しく短く設定することにより、図2(b)に示すように、パーティクル22の試料11への移動経路に対し、略垂直方向に等電位線を形成させることが可能となり、パーティクル22が試料11へ接近する方向の反対方向への静電気力をより大きく与えることができる。   As a result, the equipotential lines created by the voltage existing in each of the first electrode 14, the second electrode 15, and the resistor 16 and the ground 21 on the chamber wall surface are as shown in FIG. And the voltage generated on the resistor 16 and the voltage generated between the ground 21 on the wall of the vacuum chamber. Here, by setting the distance between the first electrode 14 and the second electrode 15 to be remarkably shorter than the distance between the first electrode 14 and the ground 21, as shown in FIG. It is possible to form an equipotential line in a substantially vertical direction with respect to the movement path to, and to apply a larger electrostatic force in the direction opposite to the direction in which the particle 22 approaches the sample 11.

第1電極14および第2電極15に印加する電圧および各電極間距離は、試料11に印加される電圧と、試料11、第1電極14、第2電極15および真空チャンバ壁面等の周辺電極の相対的な位置関係より適宜設定される。   The voltage applied to the first electrode 14 and the second electrode 15 and the distance between the electrodes are the voltage applied to the sample 11, and the peripheral electrodes such as the sample 11, the first electrode 14, the second electrode 15 and the vacuum chamber wall surface. It is set as appropriate based on the relative positional relationship.

抵抗体16は、体積固有抵抗値は1×10〜1×1012Ω・cmの範囲であれば、荷電粒子が抵抗体16側に浮遊した場合の抵抗体16への帯電を有効に防止することができる。体積固有抵抗値は1×10Ω・cm以上であることがより好ましく、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素等を主成分とする各種セラミックスにより形成する。上述のような体積固有抵抗値の材料を使用することで、第1電極14と第2電極15間距離を第1電極14とチャンバ壁面のグランド21間距離に比べ、著しく短く設定することができ、抵抗体16に流れる電流による周辺の磁場変動が電子ビーム20に影響を与えないレベルに低減することもできる。 The resistor 16 has a volume specific resistance value in the range of 1 × 10 6 to 1 × 10 12 Ω · cm, and effectively prevents the resistor 16 from being charged when charged particles float on the resistor 16 side. can do. The volume specific resistance value is more preferably 1 × 10 8 Ω · cm or more, and it is formed of various ceramics mainly composed of alumina, aluminum nitride, silicon nitride, silicon carbide, or the like. By using the material having the volume resistivity as described above, the distance between the first electrode 14 and the second electrode 15 can be set to be significantly shorter than the distance between the first electrode 14 and the ground 21 on the chamber wall surface. The surrounding magnetic field fluctuation due to the current flowing through the resistor 16 can be reduced to a level that does not affect the electron beam 20.

一般的には、電子ビーム20が+20kVの電圧にて加速され試料11に照射される際、試料用電極13により試料11に印加される負の電圧は−20kV前後に設定される。例えば、試料用電極13および試料11の電圧を−20kVとすると、第1電極14の電圧を+20kV以上、第2電極15をグランドに接地するように設定する。また、抵抗体16にも電圧が発生し、負に帯電したパーティクルは第1電極14、第2電極15、抵抗体16およびチャンバ壁面グランドにより発生する等電位線又は電気力線により第2電極15の外側に戻される静電気力を受ける。   In general, when the electron beam 20 is accelerated at a voltage of +20 kV and applied to the sample 11, the negative voltage applied to the sample 11 by the sample electrode 13 is set to about −20 kV. For example, when the voltage of the sample electrode 13 and the sample 11 is −20 kV, the voltage of the first electrode 14 is set to +20 kV or more, and the second electrode 15 is set to be grounded. Further, a voltage is also generated in the resistor 16, and the negatively charged particles are generated by the second electrode 15 by an equipotential line or electric lines of force generated by the first electrode 14, the second electrode 15, the resistor 16, and the chamber wall surface ground. It receives electrostatic force that is returned to the outside.

第1電極14、第2電極15および抵抗体16は、試料11の載置領域の周囲に環状に配置されていることが好ましい。試料11が半導体ウエハ等の円板形状である場合、試料11の載置領域を囲うように環状に形成することで、試料11側に吸着しようとするパーティクルを試料11の周囲全体にわたって第2電極15の外側へ戻すことができ、さらに省スペース化を図ることができる。   It is preferable that the first electrode 14, the second electrode 15, and the resistor 16 are arranged in a ring around the mounting area of the sample 11. When the sample 11 is in the shape of a disk such as a semiconductor wafer, the second electrode is formed over the entire periphery of the sample 11 by forming an annular shape so as to surround the mounting region of the sample 11, so 15 can be returned to the outside, and further space saving can be achieved.

なお、第1電極14、第2電極15および抵抗体16は、試料11へのパーティクルの吸着が防げるものであれば、試料11を完全に囲繞する必要はなく、第1電極14、第2電極15および抵抗体16が試料11の周囲を一部周回していない箇所を有する形状でも良い。例えば、第1電極14、第2電極15および抵抗体16が繋がったものを、複数個それぞれ離間して配置してもよい。   Note that the first electrode 14, the second electrode 15, and the resistor 16 do not have to completely surround the sample 11 as long as the adsorption of particles to the sample 11 can be prevented. 15 and the resistor 16 may have a shape that does not partially circulate around the sample 11. For example, a plurality of connected first electrodes 14, second electrodes 15 and resistors 16 may be arranged separately from each other.

第1電極14、第2電極15および抵抗体16は、周知の物理的気相成膜(PVD)法やCVD法を用いて、絶縁性材料からなる絶縁体に膜付けすることにより作成してもよい。   The first electrode 14, the second electrode 15, and the resistor 16 are formed by forming a film on an insulator made of an insulating material using a well-known physical vapor deposition (PVD) method or a CVD method. Also good.

また、試料11が載置される載置部12は、試料ホルダ10がSEMに搭載された場合は真空チャンバ内で用いられること、試料11が半導体ウエハの場合には、その回路パターンの微細化に伴って、試料11の平面度を強制的に修正する必要があることから、試料11と同形状のアルミナ、窒化アルミニウム、窒化珪素および炭化珪素を主成分とするセラミックスからなる静電チャック等が用いられることが多い。   The mounting unit 12 on which the sample 11 is mounted is used in a vacuum chamber when the sample holder 10 is mounted on the SEM, and when the sample 11 is a semiconductor wafer, the circuit pattern is made finer. Accordingly, the flatness of the sample 11 needs to be forcibly corrected. Therefore, an electrostatic chuck made of a ceramic mainly composed of alumina, aluminum nitride, silicon nitride, and silicon carbide having the same shape as the sample 11 is available. Often used.

ここで、載置部12として静電チャックを用いた試料ホルダについて図2(c)を用いて説明する。静電チャックは、載置部12の下方に、表面に静電チャック用電極23を備えた絶縁体21と、絶縁体21の裏面から各電極にそれぞれの電圧を印加するための引き出し部24とを備えてなる。試料11に電圧を印加すると、載置部12上に載置された試料11と載置部12間に静電力を発生させて、試料を静電気力にて吸着するものである。特に、静電チャック用電極23を2分割とし、双方の電極に異なる電位を印加することで、試料11に電圧を印加せずとも、試料11には電位が現れ、載置部12に静電力により吸着される。   Here, a sample holder using an electrostatic chuck as the mounting portion 12 will be described with reference to FIG. The electrostatic chuck includes an insulator 21 having an electrostatic chuck electrode 23 on the surface below the mounting portion 12, and a lead portion 24 for applying a voltage to each electrode from the back surface of the insulator 21. It is equipped with. When a voltage is applied to the sample 11, an electrostatic force is generated between the sample 11 placed on the placement unit 12 and the placement unit 12, and the sample is adsorbed by electrostatic force. In particular, by dividing the electrostatic chuck electrode 23 into two parts and applying different potentials to both electrodes, the potential appears in the sample 11 without applying a voltage to the sample 11, and the electrostatic force is applied to the mounting portion 12. It is adsorbed by.

次いで、本発明の試料ホルダの製造方法について説明する。ここでは、載置部12に静電チャックを備えた試料ホルダについて説明する。   Next, a method for manufacturing the sample holder of the present invention will be described. Here, a sample holder provided with an electrostatic chuck on the mounting portion 12 will be described.

先ず、第1電極14、第2電極15および静電チャック電極23は、アルミナ、窒化アルミニウム等の絶縁性セラミックスからなるベースの上に、チタン等の非磁性材料をCVD等の手法を用いて成膜して形成し、各々の電極に別々の電圧を印加できるように引き出し部24と導通を確保しておく。その後、載置部12と抵抗体16部分をアルミナ、窒化アルミニウム、窒化珪素および炭化珪素をCVD等の手法を用いて成膜形成することにより、試料ホルダ10の配線18が不要になり、容易に製作可能となる。   First, the first electrode 14, the second electrode 15, and the electrostatic chuck electrode 23 are made of a nonmagnetic material such as titanium on a base made of an insulating ceramic such as alumina or aluminum nitride, using a technique such as CVD. It is formed as a film, and electrical continuity with the lead portion 24 is ensured so that different voltages can be applied to each electrode. Thereafter, the mounting portion 12 and the resistor 16 are formed by film formation of alumina, aluminum nitride, silicon nitride, and silicon carbide using a technique such as CVD, so that the wiring 18 of the sample holder 10 is not necessary and can be easily obtained. Can be produced.

このような試料ホルダ10は、検査装置内で図3に示されるようなXYステージ27上に設置して用いられる。   Such a sample holder 10 is installed and used on an XY stage 27 as shown in FIG. 3 in the inspection apparatus.

XYステージ25は、検査装置の試料室内部に設置され、超音波モータ26を駆動源として、クロスローラガイド等からなる案内部27に沿って、X方向、Y方向にそれぞれ200〜300mm程度の範囲で移動することができる。このXYステージ25上に試料ホルダ10を設置することで試料ホルダ10に載置される試料11の位置を調整することができる。   The XY stage 25 is installed in the sample chamber of the inspection apparatus, and has an ultrasonic motor 26 as a drive source, and a range of about 200 to 300 mm in the X direction and the Y direction, respectively, along a guide portion 27 made of a cross roller guide or the like. You can move with. By installing the sample holder 10 on the XY stage 25, the position of the sample 11 placed on the sample holder 10 can be adjusted.

試料ホルダ10を設置したXYステージ25は、上述のSEM等の検査装置内に配置され、電子ビーム等の荷電粒子を試料に照射させ、その電子の衝突により試料から放出される2次電子や反射電子を検出器により検出することで試料表面の形状等を観察することができる。この試料ホルダ10により、試料11の検査中に、試料11へのパーティクルの吸着が低減され、試料11へのパーティクルの吸着が低減され、回路パターン間の短絡等、電気回路に致命的なダメージを有効に防止することができる。   The XY stage 25 on which the sample holder 10 is installed is arranged in the inspection apparatus such as the above-described SEM, irradiates the sample with charged particles such as an electron beam, and secondary electrons and reflections emitted from the sample by the collision of the electrons. The shape of the sample surface and the like can be observed by detecting electrons with a detector. This sample holder 10 reduces the adsorption of particles to the sample 11 during the inspection of the sample 11, reduces the adsorption of particles to the sample 11, and causes fatal damage to the electric circuit such as a short circuit between circuit patterns. It can be effectively prevented.

本発明の試料ホルダの一実施形態を示し、(a)は斜視図、(b)は同図(a)のA−A線断面図である。One Embodiment of the sample holder of this invention is shown, (a) is a perspective view, (b) is the sectional view on the AA line of the same figure (a). (a)は本発明の試料ホルダによって形成される等電位線を模式的に表した部分断面図、(b)は同図(a)の拡大図であり、パーティクルの移動を模式的に表した模式図、(c)は本発明の試料ホルダに静電チャックを配置した際の断面図である。(A) is the fragmentary sectional view which typically represented the equipotential line formed with the sample holder of this invention, (b) is the enlarged view of the same figure (a), and represented the movement of the particle schematically Schematic (c) is a cross-sectional view when an electrostatic chuck is arranged on the sample holder of the present invention. 本発明の試料ホルダをXYステージに搭載した斜視図である。It is the perspective view which mounted the sample holder of this invention in the XY stage. 電子線走査型顕微鏡を用いた試料の検査方法を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the inspection method of the sample using an electron beam scanning microscope. 従来の試料ホルダを示し、(a)は斜視図、(b)は同図(a)のB−B線断面図、(c)は試料用電極を示す部分拡大断面図である。The conventional sample holder is shown, (a) is a perspective view, (b) is the BB sectional drawing of the figure (a), (c) is the elements on larger scale which show the electrode for samples. 従来の試料ホルダを示し、(a)は斜視図、(b)は同図(a)のC−C線断面図である。The conventional sample holder is shown, (a) is a perspective view, (b) is CC sectional view taken on the line of the figure (a). 従来の試料ホルダを示し、(a)は斜視図、(b)は同図(a)のD−D線断面図、(c)は試料ホルダにより形成される等電位線を説明する図である。A conventional sample holder is shown, (a) is a perspective view, (b) is a sectional view taken along the line DD of FIG. (A), and (c) is a diagram for explaining equipotential lines formed by the sample holder. .

符号の説明Explanation of symbols

10,130:試料ホルダ
11,131:試料
12,132:載置部
13,133:試料用電極
14 :第1電極
15 :第2電極
16 :抵抗体
17 :電極ベース
18 :配線
19,134:ベース
20,120:電子ビーム
21 :チャンバ壁面のグランド
22 :パーティクル
23 :静電チャック用電極
24 :引き出し部
25 :XYステージ
26 :超音波モータ
27 :案内部
41,141:弾性部
42,142:先端部
43,143:電極本体
44,144:枠
51 :電子銃
52 :加速電極
53 :アパーチャ
54 :偏光電極
56 :検出器
135 :絶縁体
136 :吸着電極
137 :反発電極
10, 130: Sample holder 11, 131: Sample 12, 132: Placement part 13, 133: Sample electrode 14: First electrode 15: Second electrode 16: Resistor 17: Electrode base 18: Wiring 19, 134: Base 20, 120: Electron beam 21: Ground of wall of chamber 22: Particle 23: Electrode for electrostatic chuck 24: Drawer 25: XY stage 26: Ultrasonic motor 27: Guide part 41, 141: Elastic part 42, 142: Tips 43, 143: Electrode body 44, 144: Frame 51: Electron gun 52: Accelerating electrode 53: Aperture 54: Polarizing electrode 56: Detector 135: Insulator 136: Adsorption electrode 137: Repelling electrode

Claims (8)

試料を載置する領域を備えた載置部と、グランド電位に対し正または負の電圧を試料に印加する試料用電極と、該試料用電極の印加電圧と正負が逆の電圧が印加され、前記試料用電極より離間して前記試料の載置領域の周囲に配置された第1電極と、該第1電極の印加電圧と異なる値の電圧が印加され、前記第1電極より離間して前記試料の載置領域の周囲に配置された第2電極とを有し、前記第1電極および第2電極との間に配置され、前記第1電極および第2電極それぞれに電気的に導通する抵抗体を備えたことを特徴とする試料ホルダ。 A mounting portion having a region for mounting the sample, a sample electrode for applying a positive or negative voltage to the sample with respect to the ground potential, and a voltage that is opposite to the applied voltage of the sample electrode is applied; A voltage different from the applied voltage of the first electrode and the first electrode disposed around the sample mounting area apart from the sample electrode is applied, and separated from the first electrode. And a second electrode disposed around the sample mounting region, disposed between the first electrode and the second electrode, and electrically conducting to the first electrode and the second electrode, respectively. A sample holder comprising a body. 前記第2電極は、前記第1電極の印加電圧と正負が同一で、且つ、絶対値が小さい電圧が印加されることを特徴とする請求項1に記載の試料ホルダ。 2. The sample holder according to claim 1, wherein the second electrode is applied with a voltage having the same positive and negative voltage as the application voltage of the first electrode and a small absolute value. 前記第2電極は、グランドに接地されていることを特徴とする請求項1に記載の試料ホルダ。 The sample holder according to claim 1, wherein the second electrode is grounded. 前記第1電極は、前記試料用電極の印加電圧と正負が逆で、且つ絶対値が同等又はそれ以上の電圧が印加されることを特徴とする1〜3の何れかに記載の試料ホルダ。 4. The sample holder according to any one of 1 to 3, wherein the first electrode is applied with a voltage whose polarity is opposite to that of the sample electrode and whose absolute value is equal to or greater than that. 前記第1電極、第2電極および抵抗体は、前記試料載置領域の周囲に環状に配置されることを特徴とする請求項1〜4の何れかに記載の試料ホルダ。 The sample holder according to any one of claims 1 to 4, wherein the first electrode, the second electrode, and the resistor are annularly arranged around the sample placement region. 前記第1電極、第2電極および抵抗体は、その各主面が前記載置部に載置される試料の主面と平行に配置されることを特徴とする請求項1〜5の何れかに記載の試料ホルダ。 Each of the first electrode, the second electrode, and the resistor is arranged in parallel with the main surface of the sample placed on the mounting portion. The sample holder described in 1. 請求項1〜6の何れかに記載の試料ホルダを備え、該試料ホルダにより保持される試料を荷電粒子を用いて検査することを特徴とする検査装置。 An inspection apparatus comprising the sample holder according to claim 1, wherein the sample held by the sample holder is inspected using charged particles. 請求項1〜6の何れかに記載の試料ホルダを備え、該試料ホルダにより保持される試料を荷電粒子を用いて処理することを特徴とする試料処理方法。 A sample processing method comprising the sample holder according to claim 1, wherein a sample held by the sample holder is processed using charged particles.
JP2007046854A 2007-02-27 2007-02-27 Sample holder, inspection apparatus using the same, and sample processing method Expired - Fee Related JP4959372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046854A JP4959372B2 (en) 2007-02-27 2007-02-27 Sample holder, inspection apparatus using the same, and sample processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046854A JP4959372B2 (en) 2007-02-27 2007-02-27 Sample holder, inspection apparatus using the same, and sample processing method

Publications (2)

Publication Number Publication Date
JP2008211018A true JP2008211018A (en) 2008-09-11
JP4959372B2 JP4959372B2 (en) 2012-06-20

Family

ID=39787063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046854A Expired - Fee Related JP4959372B2 (en) 2007-02-27 2007-02-27 Sample holder, inspection apparatus using the same, and sample processing method

Country Status (1)

Country Link
JP (1) JP4959372B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087592A (en) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp Sample holding mechanism used in electron beam application device
US20120074316A1 (en) * 2010-08-03 2012-03-29 Kenji Watanabe Electro-optical inspection apparatus and method with dust or particle collection function
WO2012176913A1 (en) * 2011-06-24 2012-12-27 東京エレクトロン株式会社 Electric actuator
JP2020522020A (en) * 2017-06-01 2020-07-27 エーエスエムエル ネザーランズ ビー.ブイ. Particle remover and related system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258048A (en) * 1989-03-31 1990-10-18 Hitachi Ltd Method and apparatus for vacuum treatment
JPH11121435A (en) * 1997-10-08 1999-04-30 Fujitsu Ltd Method and apparatus for processing substrate
JP3348223B2 (en) * 1993-09-10 2002-11-20 日本酸素株式会社 Substrate processing method and substrate processing apparatus
JP2004319840A (en) * 2003-04-17 2004-11-11 E-Beam Corp Apparatus and method for chucking wafer
JP2006332505A (en) * 2005-05-30 2006-12-07 Kyocera Corp Sample holder, inspection device and inspection method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258048A (en) * 1989-03-31 1990-10-18 Hitachi Ltd Method and apparatus for vacuum treatment
JP3348223B2 (en) * 1993-09-10 2002-11-20 日本酸素株式会社 Substrate processing method and substrate processing apparatus
JPH11121435A (en) * 1997-10-08 1999-04-30 Fujitsu Ltd Method and apparatus for processing substrate
JP2004319840A (en) * 2003-04-17 2004-11-11 E-Beam Corp Apparatus and method for chucking wafer
JP2006332505A (en) * 2005-05-30 2006-12-07 Kyocera Corp Sample holder, inspection device and inspection method using it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009087592A (en) * 2007-09-28 2009-04-23 Hitachi High-Technologies Corp Sample holding mechanism used in electron beam application device
US20120074316A1 (en) * 2010-08-03 2012-03-29 Kenji Watanabe Electro-optical inspection apparatus and method with dust or particle collection function
US8624182B2 (en) 2010-08-03 2014-01-07 Ebara Corporation Electro-optical inspection apparatus and method with dust or particle collection function
US20140091215A1 (en) * 2010-08-03 2014-04-03 Ebara Corporation Electro-optical inspection apparatus and method with dust or particle collection function
US9105444B2 (en) 2010-08-03 2015-08-11 Ebara Corporation Electro-optical inspection apparatus and method with dust or particle collection function
JP2016106374A (en) * 2010-08-03 2016-06-16 株式会社荏原製作所 Electron beam inspection apparatus and method with function of preventing adhesion of foreign matter
KR101842101B1 (en) 2010-08-03 2018-03-26 가부시키가이샤 에바라 세이사꾸쇼 Electron beam inspection device and method with foreign material anti-attaching function
WO2012176913A1 (en) * 2011-06-24 2012-12-27 東京エレクトロン株式会社 Electric actuator
US9096395B2 (en) 2011-06-24 2015-08-04 Tokyo Electron Limited Electric actuator
JP2020522020A (en) * 2017-06-01 2020-07-27 エーエスエムエル ネザーランズ ビー.ブイ. Particle remover and related system
JP7001715B2 (en) 2017-06-01 2022-01-20 エーエスエムエル ネザーランズ ビー.ブイ. Particle remover and related systems

Also Published As

Publication number Publication date
JP4959372B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
CN104241066B (en) Method for imaging a sample in a charged particle apparatus
JP2008311351A (en) Charged particle beam apparatus
US20050230621A1 (en) Apparatus and method for investigating or modifying a surface with a beam of charged particles
WO2005101451A1 (en) Apparatus and method for investigating or modifying a surface with beam of charged particles
CN110431649B (en) Charged particle beam device
JP4959372B2 (en) Sample holder, inspection apparatus using the same, and sample processing method
US10269531B2 (en) Scanning electron microscope
JP2022514078A (en) Object table
TW202006779A (en) High performance inspection scanning electron microscope device and method of operating the same
US20030085354A1 (en) Method of preventing charging, and apparatus for charged particle beam using the same
JP4663406B2 (en) Sample holder, inspection apparatus and inspection method using the same
US8957394B2 (en) Compact high-voltage electron gun
JP4654018B2 (en) Focused ion beam processing apparatus, sample stage, and sample observation method
JP2016139530A (en) Charged particle beam device
JP3123956B2 (en) Electrostatic suction device and electron beam lithography device using the same
TW202001248A (en) Metrology tool and using the same and charged particle detection system
JP4195632B2 (en) Electrostatic adsorption device and charged particle application device using the same
US20110180707A1 (en) Microsampling apparatus and sampling method thereof
KR102698723B1 (en) charged particle beam device
KR102685956B1 (en) Imaging device and deflector
JPH09246366A (en) Electrostatic clamping device and electron beam drawing device provided therewith
JP2003142568A (en) Substrate support device, scanning electronic microscope, and method support substrate
JPS61200865A (en) Specimen chamber for treating wafer
WO2023237277A1 (en) Charged-particle beam apparatus with fast focus correction and methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees