JP2008210571A - Aberration correcting lens for charged particle beams - Google Patents
Aberration correcting lens for charged particle beams Download PDFInfo
- Publication number
- JP2008210571A JP2008210571A JP2007044273A JP2007044273A JP2008210571A JP 2008210571 A JP2008210571 A JP 2008210571A JP 2007044273 A JP2007044273 A JP 2007044273A JP 2007044273 A JP2007044273 A JP 2007044273A JP 2008210571 A JP2008210571 A JP 2008210571A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- aperture
- quadrupole
- concave
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Abstract
Description
本発明は、電子ビーム、イオンビーム等の荷電粒子線用の開口収差補正レンズに関するものである。 The present invention relates to an aperture aberration correction lens for charged particle beams such as an electron beam and an ion beam.
荷電粒子線装置で一般的に利用されている軸対称な荷電粒子線レンズである電界レンズ、磁界レンズでは、軸上収差として避けられない球面収差(軸非対称レンズの開口収差と同義)、色収差を補正することはできない。光軸をZ軸とするとXY面に対を成す複数の電極または磁極から構成される軸非対称な四極子レンズ、六極子レンズ、八極子レンズ、十二極子レンズ等の多極子レンズを組み合わせることで球面収差や色収差の補正が可能である。 In an electric field lens and magnetic field lens, which are axially symmetric charged particle beam lenses generally used in charged particle beam devices, spherical aberration (which is synonymous with axial asymmetric lens aperture aberration) and chromatic aberration are inevitable as axial aberrations. It cannot be corrected. By combining a multipole lens such as an axially asymmetric quadrupole lens, hexapole lens, octupole lens, or twelve-pole lens composed of a plurality of electrodes or magnetic poles paired on the XY plane when the optical axis is the Z-axis. Spherical aberration and chromatic aberration can be corrected.
本発明で利用する四極子レンズの開口収差による焦点位置でのボケΔX(Zi)、ΔY(Zi)は、XZ面とYZ面でそれぞれ以下のように表現される。
ΔX(Zix)=CA30α3+CA12αβ2 (1)
ΔY(Ziy)=CA21α2β+CA03β3 (2)
上記の(1)、(2)数式において、CA30、CA12、CA21、CA03が開口収差係数である。Zix=Ziyの条件下で、軸対称性が得られる場合は、開口収差係数CA12とCA21の値は等しくなる。
The blurs ΔX (Zi) and ΔY (Zi) at the focal position due to the aperture aberration of the quadrupole lens used in the present invention are expressed as follows on the XZ plane and the YZ plane, respectively.
ΔX (Zix) = C A30 α 3 + C A12 αβ 2 (1)
ΔY (Ziy) = C A21 α 2 β + C A03 β 3 (2)
In the above formulas (1) and (2), C A30 , C A12 , C A21 , and C A03 are aperture aberration coefficients. When axial symmetry is obtained under the condition of Zix = Ziy, the values of the aperture aberration coefficients C A12 and C A21 are equal.
図1は、荷電粒子線を微細に集束させるための軸対称レンズのために収差補正レンズの利用法の一例を示したものである。補正レンズ系3の前段にあるコンデンサーレンズ1、後段にある対物レンズ2は単独では、球面収差、色収差補正が不可能な電界型または磁界型の軸対称レンズである。11と12は、XZ面とYZ面の荷電粒子線の軌道である。補正レンズ内の荷電粒子線軌道は省略してあるが、図2、図3、図4の荷電粒子線の軌道がこれに相当する。
FIG. 1 shows an example of how to use an aberration correction lens for an axisymmetric lens for finely focusing a charged particle beam. The condenser lens 1 at the front stage of the correction lens system 3 and the
軸対称レンズの球面収差補正系として、すでに提案されている四極子・八極子補正レンズは、4段の四極子レンズと3段の八極子レンズから構成されている。走査透過電子顕微鏡の磁界型対物レンズの前に配置する球面収差補正レンズとして磁界型の四極子レンズと八極子レンズを組み合わせた補正レンズ系が研究されているが(非特許文献1)、実用化システムでは、厳しい四極子レンズ間のアライメント精度と励起制御を実現するために、四極子レンズの代わりに十二極子を使い、十二極子の励起制御によって制御可能な双極子レンズ作用、六極子レンズ作用を調整することで、軸あわせ、機械的・電磁的な非対称性を補正することで、四極子・八極子補正系を構築している。 As a spherical aberration correction system for an axially symmetric lens, a quadrupole / octupole correction lens that has already been proposed includes a four-stage quadrupole lens and a three-stage octupole lens. A correction lens system combining a magnetic quadrupole lens and an octupole lens has been studied as a spherical aberration correction lens placed in front of a magnetic field type objective lens of a scanning transmission electron microscope (Non-patent Document 1), but has been put into practical use. The system uses a twelve-pole instead of a quadrupole lens to achieve strict alignment accuracy between quadrupole lenses and excitation control, and the dipole lens action and hexapole lens can be controlled by twelve-pole excitation control. A quadrupole / octupole correction system is constructed by adjusting the action to align the axes and correct mechanical and electromagnetic asymmetry.
4段の四極子レンズと3個の八極子レンズから構成される補正レンズ系では、開口収差補正のための開口電極励起前の四極子レンズによる開口収差係数を打ち消した上で、後段の軸対称レンズの球面収差を補正するために必要な荷電粒子軌道と負の開口収差係数を発生させるために、補正レンズを構成する個々のレンズの励起強度が強く、設定精度も必然的に厳しくなることが、高精度なアライメントを要する補正レンズの実用上の難しさであった。 In a correction lens system composed of a four-stage quadrupole lens and three octupole lenses, after canceling the aperture aberration coefficient of the quadrupole lens before the aperture electrode excitation for aperture aberration correction, the subsequent stage is axially symmetric. In order to generate the charged particle trajectory and the negative aperture aberration coefficient necessary for correcting the spherical aberration of the lens, the excitation intensity of the individual lenses constituting the correction lens is strong, and the setting accuracy is necessarily strict. This is a practical difficulty of a correction lens that requires high-precision alignment.
複雑で、厳しいアライメント精度を要する補正レンズの構造の改善策として、特許文献1にある四極子レンズと開口電極から構成される補正レンズ(非特許文献2)を利用することができる。この場合のXZ面とYZ面の荷電粒子線軌道と開口収差をシミュレーション計算した例を、図2に示す。Q1〜Q4は、電界型四極子レンズ、A1〜A3は開口電極である。四極子レンズの電極径φ8mm、長さ14 mm、四極子レンズと開口電極の開口径φ6.987mm、開口電極の厚さ2mm、四極子レンズと開口電極の距離は5mmである。 As a measure for improving the structure of a correction lens that is complicated and requires strict alignment accuracy, a correction lens (Non-Patent Document 2) that includes a quadrupole lens and an aperture electrode disclosed in Patent Document 1 can be used. FIG. 2 shows an example of simulation calculation of charged particle beam trajectories and aperture aberrations in the XZ plane and YZ plane in this case. Q1 to Q4 are electric field type quadrupole lenses, and A1 to A3 are aperture electrodes. The electrode diameter of the quadrupole lens is 8 mm, the length is 14 mm, the aperture diameter of the quadrupole lens and the aperture electrode is φ6.987 mm, the thickness of the aperture electrode is 2 mm, and the distance between the quadrupole lens and the aperture electrode is 5 mm.
電界型の四極子レンズはXZ面の電極にVQ[V]印加した場合、YZ面の電極には−VQ[V]印加する。加速電圧をVa[V]とすると、VQ/Vaが四極子レンズの励起強度に対応する。開口電極の励起強度はVA/Vaで表記する。4段の四極子レンズの励起強度は、XZ面の四極子レンズの励起は、+0.05864、−0.05859、+0.05859、−0.05864、YZ面の四極子レンズの励起は、−0.05864、+0.05859、−0.05859、+0.05864、開口電極に印加する電圧と加速電圧の比は、−0.2255、+0.0598、−0.2255である。 In the electric field type quadrupole lens, when V Q [V] is applied to the electrode on the XZ plane, −V Q [V] is applied to the electrode on the YZ plane. When the acceleration voltage is V a [V], V Q / V a corresponds to the excitation intensity of the quadrupole lens. The excitation intensity of the aperture electrode is expressed as V A / V a . The excitation intensity of the four-stage quadrupole lens is +0.05864, −0.05859, +0.05859, −0.05864 for the excitation of the quadrupole lens on the XZ plane, and −0.05864, +0 for the excitation of the quadrupole lens on the YZ plane. 05859, −0.05859, +0.05864, and the ratio of the voltage applied to the aperture electrode and the acceleration voltage is −0.2255, +0.0598, and −0.2255.
図1では、補正レンズの後段に配置した Cs=12mmの軸対称レンズの球面収差を補正するために、開口収差係数をCA30 = CA12 = CA21 = CA03 = −3mmの補正条件を実現したものである。開口電極を励起する前の4段四極子レンズ系の開口収差係数は、CA30 = CA03 = +300 mm、CA12 = CA21 = +38 mmである。
補正レンズの厳しいアライメント精度、励起強度を低減する改善策としては、四極子レンズ系の励起強度を低く抑えた条件下で、四極子レンズの凹レンズ作用によって引き起こされる荷電粒子線軌道の離軸距離を抑え、開口電極や八極子レンズを励起する前の四極子レンズ系による開口収差係数を低く抑えることが可能であれば、開口電極や八極子レンズの励起強度を低くできるばかりでなく、四極子レンズのアライメント、励起設定精度が緩和されるメリットが得られる。 As an improvement measure to reduce the strict alignment accuracy and excitation intensity of the correction lens, the off-axis distance of the charged particle beam orbit caused by the concave lens action of the quadrupole lens can be reduced under the condition that the excitation intensity of the quadrupole lens system is kept low. If the aperture aberration coefficient by the quadrupole lens system before exciting the aperture electrode and octupole lens can be suppressed, the excitation intensity of the aperture electrode and octupole lens can be lowered, and the quadrupole lens can be reduced. The advantage that the alignment accuracy and excitation setting accuracy are relaxed can be obtained.
解決しようとする問題点は、四極子レンズの段数と励起制御の設定によって、XZ面とYZ面の荷電粒子線軌道の形状を一致させて、軸対称性を確保すると共に、補正レンズ内の荷電粒子線の離軸距離の増大を極力抑えることによって、八極子レンズ励起前の開口収差、色収差を低くし、球面収差を補正するための補正レンズの励起強度の増大を抑えることである。 The problem to be solved is to match the shape of the charged particle beam trajectories on the XZ plane and YZ plane by setting the number of stages of the quadrupole lens and the excitation control, as well as ensuring axial symmetry and charging in the correction lens. By suppressing the increase in the off-axis distance of the particle beam as much as possible, the aperture aberration and chromatic aberration before octupole lens excitation are reduced, and the increase in excitation intensity of the correction lens for correcting spherical aberration is suppressed.
本発明は、補正レンズを構成する四極子レンズの幾何学的な寸法を同一とし、補正レンズ中心に対して、荷電粒子線の入射側と出射側の幾何学的な寸法を等しくし、入射側と出射側の励起強度を、極性は反対で、励起強度を等しくすることで、励起制御を容易にし、XZ面とYZ面の荷電粒子線軌道の形状を合わせることができる。さらに、四極子レンズの段数を増やすことによって、補正レンズ内の荷電粒子線の離軸距離の増大を極力抑えることによって、開口収差補正前の開口収差係数、色収差係数の増大を抑え、補正レンズの励起強度の増大を抑えた条件下で必要な球面収差補正効果を実現することを特徴とする。 In the present invention, the geometric dimensions of the quadrupole lens constituting the correction lens are made the same, and the geometric dimensions of the incident side and the emission side of the charged particle beam are made equal to the correction lens center. By making the excitation intensity on the emission side opposite in polarity and making the excitation intensity equal, excitation control can be facilitated and the shapes of the charged particle beam trajectories on the XZ plane and YZ plane can be matched. Furthermore, by increasing the number of steps of the quadrupole lens and suppressing the increase of the off-axis distance of the charged particle beam in the correction lens as much as possible, the increase of the aperture aberration coefficient and chromatic aberration coefficient before the aperture aberration correction is suppressed, and the correction lens The present invention is characterized in that a necessary spherical aberration correction effect is realized under a condition in which an increase in excitation intensity is suppressed.
本発明による補正レンズでは、補正レンズを構成する四極子レンズの励起強度、開口電極または八極子レンズの励起強度を、従来提案されている4段四極子レンズと3個の八極子レンズから構成される補正レンズの励起強度に比べ、低くできること。これによって、励起強度が増大するに従って厳しくなるアライメント精度を緩和することができる。また、開口収差を補正する前の四極子レンズによる開口収差係数を小さくすることができることで、厳しい設定精度を要する補正制御を緩和できる利点がある。 In the correction lens according to the present invention, the excitation intensity of the quadrupole lens constituting the correction lens and the excitation intensity of the aperture electrode or octupole lens are configured by a conventionally proposed four-stage quadrupole lens and three octupole lenses. It can be made lower than the excitation intensity of the correction lens. As a result, the alignment accuracy that becomes more severe as the excitation intensity increases can be relaxed. In addition, since the aperture aberration coefficient of the quadrupole lens before correcting the aperture aberration can be reduced, there is an advantage that correction control requiring strict setting accuracy can be relaxed.
本発明では、補正レンズ内のXZ面とYZ面の荷電粒子線軌道の離軸を低く抑えるために、四極子レンズの数を6段または8段と段数に増やすことにより実現し、補正レンズの中心面で対称構造を実現した場合、荷電粒子線の入射側と出射側の補正レンズを構成する個々のレンズの極性を反転して、強度を等しくする条件下で、XZ面とYZ面の荷電粒子線の軌道が入射側と出射側でそれぞれ線状集束するように四極子レンズを励起制御することで有効な補正作用を実現することができる。
本発明は、同一幾何学寸法を有する6段の四極子レンズと3個以上の開口電極から構成される開口収差補正レンズにおいて、Z軸を光軸として、四極子レンズをXZ面で凹凸凹凸凹凸レンズ作用、YZ面で凸凹凸凹凸凹レンズ作用を発現するように励起する。補正レンズ内でXZ面とYZ面でそれぞれ線状収束させることで、開口収差係数CA30とCA03の補正制御を効果的に実現し、補正レンズの中心位置付近で離軸距離が同程度となるように四極子レンズ励起強度を調整することで、開口収差係数CA12とCA21補正制御を効果的に実現する。そのために、これらの位置近傍で開口収差係数を補正するように、開口電極または八極子レンズの励起によって八極子レンズ作用を誘起する。(1)、(2)式の示した4項の開口収差係数CA30、CA03、CA12、CA21の補正が、幾何学的寸法のズレ等により、十分調整できない場合は、さらに3個以上の開口電極または八極子レンズを追加することが調整することも可能である。
また、本発明は、同一幾何学寸法を有する8段の四極子レンズと3個以上の開口電極から構成される開口収差補正レンズにおいて、Z軸を光軸として、四極子レンズをXZ面で凹凸凸凹凸凹凹凸レンズ作用、YZ面で凸凹凹凸凹凸凸凹レンズ作用を発現するように励起する。補正レンズ内でXZ面とYZ面でそれぞれ線状収束させると共に、補正レンズの中心位置付近で離軸距離が同程度となるように四極子レンズ励起強度を調整し、これらの位置近傍で開口収差係数を補正する。
また、四極子レンズの代わりに十二極子、開口電極の代わりに八極子レンズに置き換えることによって、6段の十二極子レンズと3個以上の八極子レンズから構成される開口収差補正レンズについて、開口収差係数を補正することができる。さらに、四極子レンズの代わりに十二極子、開口電極の代わりに八極子レンズに置き換えることによって、8段の十二極子レンズと3個以上の八極子レンズ構成される開口収差補正レンズについて、開口収差係数を補正することができる。
In the present invention, the number of quadrupole lenses is increased to six or eight in order to keep the defocusing of charged particle beam trajectories on the XZ plane and YZ plane in the correction lens low. When a symmetric structure is realized on the center plane, the charge on the XZ plane and the YZ plane is charged under the condition that the polarities of the individual lenses constituting the correction lens on the entrance side and exit side of the charged particle beam are reversed and the intensity is made equal. An effective correction action can be realized by exciting and controlling the quadrupole lens so that the particle beam trajectory is linearly focused on the incident side and the outgoing side, respectively.
The present invention relates to an aperture aberration correction lens composed of a six-stage quadrupole lens having the same geometric dimensions and three or more aperture electrodes, and the quadrupole lens is uneven on the XZ plane with the Z axis as the optical axis. Excited to exhibit lens action, convex / concave / concave / concave / concave lens action on the YZ plane. By converging linearly on the XZ plane and YZ plane in the correction lens, the correction control of the aperture aberration coefficients C A30 and C A03 is effectively realized, and the off-axis distance is almost the same near the center position of the correction lens. By adjusting the quadrupole lens excitation intensity as described above, aperture aberration coefficient CA12 and CA21 correction control is effectively realized. For this purpose, an octupole lens action is induced by excitation of the aperture electrode or octupole lens so as to correct the aperture aberration coefficient in the vicinity of these positions. If the correction of the aperture aberration coefficients C A30 , C A03 , C A12 , and C A21 in the four terms shown in Equations (1) and (2) cannot be adjusted sufficiently due to misalignment of geometric dimensions, three more It is also possible to adjust the addition of the above aperture electrode or octupole lens.
Further, according to the present invention, in an aperture aberration correction lens composed of an 8-stage quadrupole lens having the same geometric dimensions and three or more aperture electrodes, the quadrupole lens is uneven on the XZ plane with the Z axis as the optical axis. Excited to exhibit convex / concave / concave / concave lens action, and convex / concave / concave / concave / concave lens action on YZ plane. In the correction lens, the XZ and YZ planes are converged linearly, and the quadrupole lens excitation intensity is adjusted so that the off-axis distance is about the center position of the correction lens. Correct the coefficient.
In addition, an aperture aberration correction lens composed of a six-stage twelve-pole lens and three or more octupole lenses by replacing with a twelve-pole lens instead of a quadrupole lens and an octupole lens instead of an aperture electrode, The aperture aberration coefficient can be corrected. Further, an aperture aberration correction lens constituted by an 8-stage dodecapole lens and three or more octupole lenses by replacing with a twelve-pole lens instead of a quadrupole lens and an octupole lens instead of an aperture electrode. The aberration coefficient can be corrected.
図3は、本発明による補正レンズの1実施例である。Q1〜Q6は、電界型四極子レンズ、A1〜A3は開口電極である。Q1〜Q6の四極子レンズの励起強度は、XZ面では、+0.03421、−0.03982、+0.03421、−0.03421、+0.03982、−0.03421、YZ面では、逆極性となる。これらの励起は、図2の従来技術に比べ弱い励起で補正系が実現できることを示している。開口収差係数CA30 = CA12 = CA21 = CA03 = −3mmを得るためのA1〜A3の開口電極の励起強度は、−0.119、+0.177、−0.119である。図中の13、14はXZ面とYZ面での線状集束位置を示したものである。また、四極子レンズ、開口電極を励起する制御電源については省略している。 FIG. 3 shows an embodiment of a correction lens according to the present invention. Q1 to Q6 are electric field type quadrupole lenses, and A1 to A3 are aperture electrodes. The excitation intensity of the quadrupole lenses Q1 to Q6 has the opposite polarity in the + Z342 plane, +0.03421, −0.03982, +0.03421, −0.03421, +0.03982, −0.03421, and YZ plane. These excitations indicate that a correction system can be realized with weaker excitation than the prior art of FIG. The excitation intensity of the aperture electrodes A1 to A3 for obtaining the aperture aberration coefficient C A30 = C A12 = C A21 = C A03 = −3 mm is −0.119, +0.177, and −0.119. 13 and 14 in the figure indicate the linear focusing positions on the XZ plane and the YZ plane. Further, a control power source for exciting the quadrupole lens and the aperture electrode is omitted.
図4は、本発明による補正レンズの他の実施例である。Q1〜Q8は、電界型四極子レンズ、A1〜A3は開口電極、Q1〜Q6の四極子レンズの励起強度は、XZ面では、+0.02387、−0.014725、−0.014725、+0.02387、−0.02387、+0.014725、+0.014725、−0.02387、YZ面では、逆極性となる。これらの励起は、図3の実施例に比べ、さらに弱い励起で補正系が実現できる。開口収差係数CA30 = CA12 = CA21 = CA03 = −3mmを得るためのA1〜A3の開口電極の励起強度は、−0.0225、+0.02753、−0.0225と図3に比べてさらに弱い励起で補正系を実現できることを示している。 FIG. 4 shows another embodiment of the correction lens according to the present invention. Q1 to Q8 are electric field type quadrupole lenses, A1 to A3 are aperture electrodes, and Q1 to Q6 quadrupole lenses have excitation intensity of +0.02387, −0.014725, −0.014725, +0.02387, −0.02387 on the XZ plane. , +0.014725, +0.014725, -0.02387, YZ plane has reverse polarity. These excitations can realize a correction system with weaker excitation than the embodiment of FIG. Aperture aberration coefficient C A30 = C A12 = C A21 = C A03 = Excitation strength of aperture electrodes A1 to A3 to obtain −3 mm is −0.0225, +0.02753, −0.0225, which is even weaker than that in FIG. Shows that a correction system can be realized.
図4では、補正レンズを構成する電界型四極子レンズと開口電極が同一の幾何学的寸法で、補正レンズの中心で対称構造をとっているため、四極子レンズの励起強度の設定はVQ1 = VQ4 = −VQ5 = −VQ8、VQ2 = VQ3 = −VQ6 = −VQ7、開口電極の励起強度の設定はVA1 = VA3である。幾何学的な寸法に誤差が存在する場合は上記の関係式が成り立たなくなるため、四極子レンズ、開口電極の励起強度を調整する必要があることは自明である。 In FIG. 4, since the electric field type quadrupole lens and the aperture electrode constituting the correction lens have the same geometric dimensions and a symmetrical structure at the center of the correction lens, the excitation intensity of the quadrupole lens is set to V Q1 = V Q4 = −V Q5 = −V Q8 , V Q2 = V Q3 = −V Q6 = −V Q7 , and the setting of the excitation intensity of the aperture electrode is V A1 = V A3 . If there is an error in the geometric dimension, the above relational expression does not hold, so it is obvious that the excitation intensity of the quadrupole lens and the aperture electrode needs to be adjusted.
なお、図2、図3、図4において、電界型四極子の電極長、四極子間隔については、同一条件でシミュレーション計算した例を示してあるが、それぞれ補正レンズ系の全長が異なるため、表示する上で横方向(Z方向)の寸法を変えて表示してある。 2, 3, and 4, the electrode length and the quadrupole interval of the electric field type quadrupole are shown by simulation calculation under the same conditions. However, since the total length of the correction lens system is different, the display is shown. In doing so, the dimensions in the horizontal direction (Z direction) are changed.
図3のQ1〜Q6の電界型四極子レンズの代わりに磁界型の四極子レンズを利用することが可能である。但し、磁界型四極子レンズの場合は、四極子レンズの磁極は、電界型の電極に対してXY面で45度回転した位置に配置した場合に対応する。 A magnetic field type quadrupole lens can be used instead of the electric field type quadrupole lens of Q1 to Q6 in FIG. However, in the case of a magnetic field type quadrupole lens, this corresponds to the case where the magnetic pole of the quadrupole lens is arranged at a position rotated 45 degrees on the XY plane with respect to the electric field type electrode.
図4のQ1〜Q8の電界型四極子レンズの代わりに磁界型の四極子レンズを利用することが可能である。磁界型四極子レンズの磁極と電界型四極子レンズの電極の位置関係は上記と同様である。 A magnetic field type quadrupole lens can be used instead of the electric field type quadrupole lens of Q1 to Q8 in FIG. The positional relationship between the magnetic poles of the magnetic field type quadrupole lens and the electrodes of the electric field type quadrupole lens is the same as described above.
図3の実施例で、Q1〜Q6の電界型四極子レンズの代わりに軸あわせ機能、非対称性補正が可能な十二極子レンズと、A1〜A3の開口電極の代わりに八極子レンズを利用することで、同様の補正レンズを実現することができる。 In the embodiment of FIG. 3, a twelve-pole lens capable of adjusting an axis and correcting asymmetry is used instead of the electric field type quadrupole lenses Q1 to Q6, and an octupole lens is used instead of the aperture electrodes A1 to A3. Thus, a similar correction lens can be realized.
図4の実施例で、Q1〜Q8の電界型四極子レンズの代わりに軸あわせ機能、非対称性補正が可能な十二極子レンズ、A1〜A3の開口電極の代わりに八極子レンズを利用することで、同様の補正レンズを実現することができる。 In the embodiment of FIG. 4, a dodecapole lens capable of correcting the asymmetry and correcting the asymmetry is used instead of the electric field type quadrupole lenses Q1 to Q8, and an octupole lens is used instead of the aperture electrodes A1 to A3. Thus, a similar correction lens can be realized.
四極子レンズの代わりに、十二極子を利用した場合は、十二極子と開口電極の組み合わせでは八極子レンズ作用を誘起することができないため、開口電極を利用することはできない。そこで、6段または、8段の十二極子レンズ系では、八極子レンズとの組み合わせが不可欠である。 When a twelve pole is used instead of the quadrupole lens, the combination of the twelve pole and the aperture electrode cannot induce the octupole lens action, and thus the aperture electrode cannot be used. Therefore, in a six-stage or eight-stage twelve-pole lens system, a combination with an octupole lens is indispensable.
図4の実施例では、四極子レンズの励起は加速電圧値の2.4%以下、開口電極の励起は2.8%以下であるため、加速電圧200KV程度までの電子顕微鏡、電子ビーム描画装置等への利用も可能である。また、軸対称の磁界レンズの利用が不可能な1MeVレベルのPIXE (Particle Induced X-ray Emission)等への高性能化にも適用できる。 In the embodiment of FIG. 4, the excitation of the quadrupole lens is 2.4% or less of the acceleration voltage value and the excitation of the aperture electrode is 2.8% or less, so that it can be used for an electron microscope, an electron beam drawing apparatus or the like up to an acceleration voltage of about 200 KV. Is also possible. It can also be applied to high performance for 1 MeV level PIXE (Particle Induced X-ray Emission), etc., where an axially symmetric magnetic lens cannot be used.
1 軸対称コンデンサーレンズ
2 軸対称対物レンズ
3 補正レンズ系
11 XZ面の荷電粒子線軌道
12 YZ面の荷電粒子線の軌道
13 XZ面の線状集束位置
14 YZ面の線状集束位置
Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8 電界型四極子レンズ
A1,A2,A3 開口電極
1 Axisymmetric condenser lens
2 Axisymmetric objective lens
3 Correction lens system
11 XZ-plane charged particle beam trajectory
12 YZ-plane charged particle beam trajectory
13 Linear focusing position on XZ plane
14 Linear focusing position on YZ plane
Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 Electric field type quadrupole lens
A1, A2, A3 Aperture electrode
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044273A JP4899158B2 (en) | 2007-02-23 | 2007-02-23 | Aberration correction lens for charged particle beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044273A JP4899158B2 (en) | 2007-02-23 | 2007-02-23 | Aberration correction lens for charged particle beam |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008210571A true JP2008210571A (en) | 2008-09-11 |
JP4899158B2 JP4899158B2 (en) | 2012-03-21 |
Family
ID=39786718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007044273A Expired - Fee Related JP4899158B2 (en) | 2007-02-23 | 2007-02-23 | Aberration correction lens for charged particle beam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4899158B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012129208A (en) * | 2010-12-15 | 2012-07-05 | Ceos Corrected Electron Optical Systems Gmbh | Corrector |
CN112782940A (en) * | 2019-11-08 | 2021-05-11 | 佳能株式会社 | Aberration measuring method, article manufacturing method, and exposure apparatus |
JP2023518758A (en) * | 2020-03-20 | 2023-05-08 | カール ツァイス マルチセム ゲーエムベーハー | Particle beam system having a multipole lens array for independently focusing multiple individual particle beams, uses thereof, and related methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639340B2 (en) * | 1981-08-28 | 1988-02-27 | Kogyo Gijutsuin | |
JP2003187731A (en) * | 2001-12-04 | 2003-07-04 | Leo Elektronenmikroskopie Gmbh | Correction device for correcting first-floor primary chromatic aberration |
JP2004228309A (en) * | 2003-01-22 | 2004-08-12 | Toshiba Corp | Method of controlling charged particle beam, method of manufacturing semiconductor device using the same, and charged particle beam exposure system using the same |
JP2004303547A (en) * | 2003-03-31 | 2004-10-28 | Hitachi High-Technologies Corp | Electron beam device with aberration corrector |
JP2005353429A (en) * | 2004-06-11 | 2005-12-22 | Hitachi Ltd | Charged-particle beam chromatic aberration correction device |
JP2006294609A (en) * | 2005-04-05 | 2006-10-26 | Fei Co | Corpuscular optical device equipped with aberration correcting means |
-
2007
- 2007-02-23 JP JP2007044273A patent/JP4899158B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS639340B2 (en) * | 1981-08-28 | 1988-02-27 | Kogyo Gijutsuin | |
JP2003187731A (en) * | 2001-12-04 | 2003-07-04 | Leo Elektronenmikroskopie Gmbh | Correction device for correcting first-floor primary chromatic aberration |
JP2004228309A (en) * | 2003-01-22 | 2004-08-12 | Toshiba Corp | Method of controlling charged particle beam, method of manufacturing semiconductor device using the same, and charged particle beam exposure system using the same |
JP2004303547A (en) * | 2003-03-31 | 2004-10-28 | Hitachi High-Technologies Corp | Electron beam device with aberration corrector |
JP2005353429A (en) * | 2004-06-11 | 2005-12-22 | Hitachi Ltd | Charged-particle beam chromatic aberration correction device |
JP2006294609A (en) * | 2005-04-05 | 2006-10-26 | Fei Co | Corpuscular optical device equipped with aberration correcting means |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012129208A (en) * | 2010-12-15 | 2012-07-05 | Ceos Corrected Electron Optical Systems Gmbh | Corrector |
CN112782940A (en) * | 2019-11-08 | 2021-05-11 | 佳能株式会社 | Aberration measuring method, article manufacturing method, and exposure apparatus |
JP2023518758A (en) * | 2020-03-20 | 2023-05-08 | カール ツァイス マルチセム ゲーエムベーハー | Particle beam system having a multipole lens array for independently focusing multiple individual particle beams, uses thereof, and related methods |
Also Published As
Publication number | Publication date |
---|---|
JP4899158B2 (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7723683B2 (en) | Aberration correction system | |
EP2325863B1 (en) | Corrector for axial aberrations of a particle-optical lens | |
US9793088B2 (en) | Two-stage dodecapole aberration corrector for charged-particle beam | |
JP2004303547A (en) | Electron beam device with aberration corrector | |
US8847172B2 (en) | Method for axial alignment of charged particle beam and charged particle beam system | |
US8785880B2 (en) | Chromatic aberration corrector and electron microscope | |
US6930312B2 (en) | Charged-particle beam instrument and method of correcting aberration therein | |
US10720301B2 (en) | Aberration corrector and electron microscope | |
US7800074B2 (en) | Electron-optical corrector for an aplanatic imaging system | |
JP4291827B2 (en) | Method for adjusting scanning electron microscope or length measuring SEM | |
US20150029593A1 (en) | Spherical Aberration Corrector, Method of Spherical Aberration Correction, and Charged Particle Beam Instrument | |
US8723134B2 (en) | Electrostatic corrector | |
US8314402B2 (en) | Corrector | |
US5298757A (en) | Lens for charged particle beam | |
EP1914785B1 (en) | Aberration corrector and method of aberration correction | |
JP4899158B2 (en) | Aberration correction lens for charged particle beam | |
JP4705812B2 (en) | Charged particle beam device with aberration correction device | |
JP2006216299A (en) | Charged particle beam device, and axis adjusting method of aberration correction device of the same | |
US8791423B2 (en) | Aberration correction device and charged particle beam device employing same | |
JP5071792B2 (en) | Aperture correction lens | |
JP3950769B2 (en) | Aberration correction apparatus in charged particle beam apparatus | |
JP2004265864A (en) | Charged particle optical device | |
JP2013175329A (en) | Color aberration correction device and method of controlling the same | |
JP2004199912A (en) | Aberration correcting device for electrically-charged particle beam device | |
Mandal et al. | An einzel lens with a diagonal-slit central electrode to combine steering and focusing of a low energy ion beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111213 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4899158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |