JP2008209637A - Multichannel signal encoding method, encoding device using it, and program by same method, and recording medium for same program - Google Patents

Multichannel signal encoding method, encoding device using it, and program by same method, and recording medium for same program Download PDF

Info

Publication number
JP2008209637A
JP2008209637A JP2007045982A JP2007045982A JP2008209637A JP 2008209637 A JP2008209637 A JP 2008209637A JP 2007045982 A JP2007045982 A JP 2007045982A JP 2007045982 A JP2007045982 A JP 2007045982A JP 2008209637 A JP2008209637 A JP 2008209637A
Authority
JP
Japan
Prior art keywords
channel
signal
code
residual
residual signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007045982A
Other languages
Japanese (ja)
Other versions
JP4914245B2 (en
Inventor
Masaru Kamamoto
優 鎌本
Noboru Harada
登 原田
Takehiro Moriya
健弘 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007045982A priority Critical patent/JP4914245B2/en
Publication of JP2008209637A publication Critical patent/JP2008209637A/en
Application granted granted Critical
Publication of JP4914245B2 publication Critical patent/JP4914245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve encoding efficiency. <P>SOLUTION: A PARCOR coefficient and a prediction residual signal are generated from a master channel signal by a linear prediction analysis means 10. The PARCOR coefficient for a slave-channel signal is determined so that a reference value of difference of the slave-channel residual signal and the master channel residual signal may become the smallest, by the linear prediction analysis means 40 using inter-channel correlation, and the residual signal of a slave-channel is generated based on the slave-channel PARCOR coefficient. A residual difference signal is generated by performing subtracting with weight between the master channel residual signal and the slave-channel residual signal by a subtraction processing means with weight 50. By encoding means 20 and 60, the master channel residual signal, the master channel PARCOR coefficient, the slave-channel PARCOR coefficient, the residual difference signal and a weight coefficient are encoded and output. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マルチチャネルオーディオ信号の圧縮符号化方法、その装置、その方法をコンピュータで実施するプログラムとその記録媒体に関するものである。   The present invention relates to a method for compressing and encoding a multi-channel audio signal, an apparatus therefor, a program for executing the method on a computer, and a recording medium therefor.

従来のマルチチャネル信号の圧縮符号化では非特許文献1に示されているように、それぞれのチャネルに閉じた線形予測残差信号の基準値(エネルギーなど)を最小化するように、例えばレビンソン・ダービン等により線形予測分析が行われ、分析により求められた線形予測係数aj(i=0, 1, …, P), (a0=1)を用いたフィルタを通して得られる残差信号に対して重み付き減算処理を行っていた。その符号化装置の概念を図1に示す。図1では左チャネル信号及び右チャネル信号がそれぞれ線形予測分析部10,30で線形予測分析されてそれぞれの残差信号が生成され、一方の残差信号を符号化部20で符号化すると共に、それら2つの残差信号を重み付き減算処理部50で重み付き減算し、減算結果の残差差分信号を符号化部60で符号化している。ただし、ここでの線形予測係数はPARCOR係数に変換されたり、量子化されたりしたものを、変換したものも含み、各チャネル毎にNサンプルのフレーム毎に処理されるとする。例えば、左チャネルの入力信号をxL(n)(n=1, 2, …, N)、残差信号をeL(n)(n=1, 2, …, N)、PL次の予測係数をai L(i=1, 2, …, PL)、右チャネルの入力信号をxR(n)(n=1, 2, …, N)、残差信号をeR(n)(n=1, 2, …, N)、PR次の予測係数をai R(i=1, 2, …, PR)とすると、それぞれのチャネルの残差信号は、 As shown in Non-Patent Document 1, in conventional compression coding of a multi-channel signal, for example, Levinson's signal is used so as to minimize a reference value (energy, etc.) of a linear prediction residual signal closed to each channel. Linear prediction analysis is performed by Durbin, etc., and the residual signal obtained through the filter using the linear prediction coefficients a j (i = 0, 1,…, P), (a 0 = 1) obtained by the analysis The weighted subtraction process was performed. The concept of the encoding device is shown in FIG. In FIG. 1, the left channel signal and the right channel signal are respectively subjected to linear prediction analysis by the linear prediction analysis units 10 and 30 to generate respective residual signals, and one of the residual signals is encoded by the encoding unit 20. The two residual signals are weighted and subtracted by the weighted subtraction processing unit 50, and the residual difference signal resulting from the subtraction is encoded by the encoding unit 60. However, it is assumed that the linear prediction coefficient here is converted into a PARCOR coefficient or quantized and includes a converted one, and is processed for each N-sample frame for each channel. For example, the left channel input signal is x L (n) (n = 1, 2,…, N), the residual signal is e L (n) (n = 1, 2,…, N), and the P L order The prediction coefficient is a i L (i = 1, 2,…, P L ), the right channel input signal is x R (n) (n = 1, 2,…, N), and the residual signal is e R (n ) (n = 1, 2, ..., n), P and R order prediction coefficients a i R (i = 1, 2, ..., when the P R), the residual signal of each channel,

Figure 2008209637
と表すことができる。ただし、a0 L=1, a0 R=1とする。前記非特許文献1では、各チャネルごとに、そのチャネルの基準値(前向き及び後ろ向き予測誤差のエネルギーなど)を最小化するようにPARCOR係数を求め、そのPARCOR係数を線形予測係数ai L, ai Rに変換して予測残差信号を求めていた。ここで求められた基準値の小さいチャネルを親チャネル(引くチャネル)、大きいチャネルを子チャネル(引かれるチャネル)として重みつき減算処理
Figure 2008209637
It can be expressed as. However, it is assumed that a 0 L = 1 and a 0 R = 1. In Non-Patent Document 1, for each channel, a PARCOR coefficient is obtained so as to minimize a reference value (such as forward and backward prediction error energy) of the channel, and the PARCOR coefficient is calculated as a linear prediction coefficient a i L , a It is converted to i R had sought prediction residual signal. Weighted subtraction processing with the channel with the smaller reference value determined here as the parent channel (subtracted channel) and the larger channel as the child channel (channel to be subtracted)

Figure 2008209637
を行って重み付き差分信号を求め、これを子チャネルの残差信号の代わりに符号化対象とする。この方法によって、残差信号そのものを符号化の対象とする場合よりも、子チャネルの基準値を減少させることにより、符号量を減少させていた。重み係数γは、例えば、減算処理後のエネルギー
Figure 2008209637
として求める。
Figure 2008209637
To obtain a weighted difference signal, which is used as an encoding target instead of the residual signal of the child channel. With this method, the code amount is reduced by reducing the reference value of the child channel, compared to the case where the residual signal itself is the target of encoding. The weighting factor γ is, for example, energy after subtraction processing
Figure 2008209637
Asking.

各チャネルの基準値を最小化するPARCOR係数を求めるには、これまでは何れのチャネルも同様に例えば図2に示す周知の格子型フィルタを用いた処理が行なわれていた。図2ではマルチチャネルの任意の1つの入力信号を代表してX(n)と表し、P次までの係数を得るP段ST1, ST2, …, STPの格子型フィルタを示している。第i次のPARCOR係数kiを計算する第i段目STi(i=1, 2, …, P)の処理は、乗算部6Fi-1, 6Bi-1と、加算部7Fi-1, 7Bi-1と、サンプル遅延部8i-1と、PARCOR係数計算部5とによって行なわれる。ただし、i=1段目ST1では、X(n)から直接PARCOR係数計算部5により係数k1を計算する。以下にPARCOR係数算出処理の具体的な例を説明する。 In order to obtain a PARCOR coefficient that minimizes the reference value of each channel, processing using a well-known lattice filter as shown in FIG. In FIG. 2, an arbitrary multi-channel input signal is represented by X (n), and a P-stage ST 1 , ST 2 ,..., ST P lattice type filter that obtains coefficients up to the P order is shown. . The processing of the i-th stage ST i (i = 1, 2,..., P) for calculating the i-th order PARCOR coefficient k i is performed by multiplication units 6F i−1 , 6B i−1 and an addition unit 7F i−. 1 , 7B i-1 , the sample delay unit 8 i-1, and the PARCOR coefficient calculation unit 5 i . However, the i = 1 stage ST 1, to calculate the coefficients k 1 by PARCOR coefficient calculating unit 5 1 directly from X (n). A specific example of the PARCOR coefficient calculation process will be described below.

第1次のPARCOR係数k1の算出:
まず、入力信号X(n)そのものを前向き0次予測誤差F0(n)及び後向き0次予測誤差B0(n)とする。サンプル遅延部8では、入力された後向き0次予測誤差B0(n)(n=1, 2, …, N)を1サンプル遅延させB0(n-1)を出力する。PARCOR係数計算部5は、入力された前向き0次予測誤差F0(n) (n=1, 2, …, N)と後向き0次予測誤差B0(n-1) (n=1, 2, …, N)とを用いて後述の式(6)又は式(7)から第1次のPARCOR係数k1を計算して出力する。
First-order PARCOR coefficient k 1 calculation:
First, let the input signal X (n) itself be a forward 0th order prediction error F 0 (n) and a backward 0th order prediction error B 0 (n). The sample delay unit 8 0, backward 0-order prediction error B 0 input (n) (n = 1, 2, ..., N) is a one-sample delay and outputs the B 0 (n-1). PARCOR coefficient calculating unit 5 1, the inputted forward 0-order prediction error F 0 (n) (n = 1, 2, ..., N) and backward zero-order prediction error B 0 (n-1) ( n = 1, 2,..., N) is used to calculate and output the first-order PARCOR coefficient k 1 from Equation (6) or Equation (7) described later.

第2次のPARCOR係数k2の算出:
上記算出した第1次のPARCOR係数k1を用いて、前向き1次予測誤差
F1(n)=F0(n)+k1B0(n-1)
及び後向き1次予測誤差
B1(n)=k1F0(n)+B0(n-1)
を求める。
Calculation of second order PARCOR coefficient k 2 :
Using the calculated first-order PARCOR coefficient k 1 , forward-looking first order prediction error
F 1 (n) = F 0 (n) + k 1 B 0 (n-1)
And backward primary prediction error
B 1 (n) = k 1 F 0 (n) + B 0 (n-1)
Ask for.

上記と同様に、サンプル遅延部8では入力された後向き1次予測誤差B1(n) (n=1, 2, …, N)を1サンプル遅延させB1(n-1)を出力する。PARCOR係数算出部5は、入力された前向き1次予測誤差F1(n) (n=1, 2, …, N)と後向き1次予測誤差B1(n-1) (n=1, 2, …, N)とを用いて後述の式(6)又は式(7)から第2次のPARCOR係数k2を出力する。 Similar to the above, sample delay unit 8 1 In retrospective 1 input order prediction error B 1 (n) (n = 1, 2, ..., N) was delayed by one sample and outputs the B 1 (n-1) . PARCOR coefficient calculating unit 5 2 forward primary predicted inputted error F 1 (n) (n = 1, 2, ..., N) and backward primary prediction error B 1 (n-1) ( n = 1, 2,..., N) and the second-order PARCOR coefficient k 2 is output from the following equation (6) or equation (7).

上記の第2次のPARCOR係数k2の算出と同様の処理をP次まで続ける。最終段では、次のように第P次のPARCOR係数が求められる。
第P次のPARCOR係数kPの算出:
サンプル遅延部8P-1では、入力された後向きP-1次予測誤差BP-1(n) (n=1, 2, …, N)を1サンプル遅延させてBP-1(n-1)を出力する。PARCOR係数算出部5は、入力された前向きP-1次予測誤差FP-1(n) (n=1, 2, …, N)と後向きP-1次予測誤差BP-1(n-1) (n=1, 2, …, N)とを用いて後述の式(6)又は式(7)から第P次のPARCOR係数kPを出力する。
The same processing as the calculation of the second-order PARCOR coefficient k 2 is continued until the P-th order. In the final stage, the P-th order PARCOR coefficient is obtained as follows.
Calculation of Pth order PARCOR coefficient k P :
In the sample delay unit 8 P-1 , the input backward P-1 order prediction error B P-1 (n) (n = 1, 2,..., N) is delayed by one sample and B P-1 (n− 1) is output. The PARCOR coefficient calculation unit 5 P inputs the forward P-1 order prediction error F P-1 (n) (n = 1, 2,..., N) and the backward P-1 order prediction error B P-1 (n -1) A P-th order PARCOR coefficient k P is output from the following formula (6) or formula (7) using (n = 1, 2,..., N).

それぞれのPARCOR係数計算部5(i=1, 2, …, P)では、Itakuraの式

Figure 2008209637
により、PARCOR係数ki(i=1, 2, …, P)を求めている。このようにしてPARCOR係数ki(i=1, 2, …, P)を求めることは格子法と呼ばれている。式(6)又は(7)を使って格子法によりPARCOR係数を求めることにより、式(6)の場合は前向き予測誤差のエネルギーと後向き予測誤差のエネルギーの相乗平均を最小化する、又は式(7)の場合は前向き予測誤差のエネルギーと後向き予測誤差のエネルギーの相加平均を最小化するようにPARCOR係数を決めることになる。 In each PARCOR coefficient calculator 5 i (i = 1, 2,…, P), the Itakura equation
Figure 2008209637
Thus, the PARCOR coefficient k i (i = 1, 2,..., P) is obtained. Obtaining the PARCOR coefficient k i (i = 1, 2,..., P) in this way is called a lattice method. By calculating the PARCOR coefficient by the lattice method using Equation (6) or (7), in the case of Equation (6), minimize the geometric mean of the energy of the forward prediction error and the energy of the backward prediction error, or In the case of 7), the PARCOR coefficient is determined so as to minimize the arithmetic mean of the energy of the forward prediction error and the energy of the backward prediction error.

従来技術では、Rチャネルの入力信号XR(n)に関して上記格子法においてX(n)の代わりにXR(n)とおいて、Lチャネルの入力信号XL(n)に関しても同様にX(n)の代わりにXL(n)とおいて各チャネルごとにPARCOR係数を求めていた。
非特許文献1に記述されている従来技術を用いた多チャネル信号の符号化処理の具体的な手順を図3を用いて説明する。ここでは親チャネルをRチャネル、子チャネルをLチャネルとする。
In the prior art, at the X R (n) in place of X (n) in the grid system with respect to the input signal of the R channel X R (n), the same applies to the input signal of the L channel X L (n) X ( Instead of n), X L (n) is used to obtain the PARCOR coefficient for each channel.
A specific procedure of multi-channel signal encoding processing using the conventional technique described in Non-Patent Document 1 will be described with reference to FIG. Here, the parent channel is an R channel and the child channel is an L channel.

線形予測分析部11Rは入力された親チャネル原信号xR(n)から格子法により1次から予め決めた右チャネルの次数であるPR次までのPARCOR係数ki R(i=1, 2, …, PR)を算出し、PARCOR係数列KR=(k1 R, k2 R, …, kPR R)として出力する。量子化部12RはPARCOR係数列KRを量子化し、量子化済PARCOR係数列^KR=(^k1 R, ^k2 R, …, ^kPR R)を出力する。変換部13Rは入力された量子化済PARCOR係数系列^KRを線形予測係数系列^ai R=(^a1 R, ^a2 R, …, ^aPR R)に変換して出力する。線形予測フィルタ14Rは線形予測係数系列^aRをフィルタ係数として、入力された親チャネル原信号xR(n)(n=1, 2, …, N)を次式 PARCOR coefficients of the linear prediction analyzer 11R from the input parent channel original signal x R (n) P R Next to the order of the predetermined right channel from the primary by grid method k i R (i = 1, 2 ,..., P R ) are calculated and output as a PARCOR coefficient sequence K R = (k 1 R , k 2 R ,..., K PR R ). The quantization unit 12R quantizes the PARCOR coefficient sequence K R and outputs a quantized PARCOR coefficient sequence ^ K R = (^ k 1 R , ^ k 2 R ,..., ^ K PR R ). The conversion unit 13R converts the input quantized PARCOR coefficient sequence ^ K R into a linear prediction coefficient sequence ^ a i R = (^ a 1 R , ^ a 2 R , ..., ^ a PR R ) and outputs the result. . The linear prediction filter 14R uses the linear prediction coefficient sequence ^ a R as a filter coefficient, and the input parent channel original signal x R (n) (n = 1, 2,..., N)

Figure 2008209637
でフィルタリングして予測残差eR(n)を得る。ただし^a0 R=1とする。残差符号化部22Rは予測残差eR(n)を例えばエントロピー符号化し残差符号Ce Rを出力する。係数符号化部23Rは量子化済PARCOR係数系列^KR=(^k1 R, ^k2 R, …, ^kPR R)を例えばエントロピー符号化し係数符号Ck Rを出力する。符号合成部24Rは残差符号Ce Rと係数符号Ck Rを合成し、親チャネル合成符号Cg Rを出力する。符号の合成は、単に符号の結合でよい。
Figure 2008209637
To obtain a prediction residual e R (n). However, ^ a 0 R = 1. The residual encoding unit 22R entropy encodes the prediction residual e R (n), for example, and outputs a residual code C e R. The coefficient encoding unit 23R performs entropy encoding on the quantized PARCOR coefficient sequence ^ K R = (^ k 1 R , ^ k 2 R ,..., ^ K PR R ), for example, and outputs a coefficient code C k R. The code combining unit 24R combines the residual code C e R and the coefficient code C k R , and outputs a parent channel combined code C g R. The code composition may be simply code combination.

線形予測分析部31Lは入力された子チャネル信号xL(n)から格子法により1次から予め決めた左チャネルの次数であるPL次までのPARCOR係数k1 L, k2 L, …, kPL Lを算出し、PARCOR係数列KL=(k1 L, k2 L, …, kPL L)として出力する。量子化部32LはPARCOR係数系列KLを量子化し、量子化済PARCOR係数系列^KL=(^k1 L, ^k2 L, …, ^kPL L)を出力する。変換部33Lは入力された量子化済PARCOR係数系列^KLを線形予測係数系列^aL=(^a1 L, ^a2 L, …, ^aPL L)に変換して出力する。線形予測フィルタ34Lは線形予測係数系列^aL=(^a1 L, ^a2 L, …, ^aPL L)をフィルタ係数として、入力された子チャネル信号xL(n)(n=1, 2, …, N)を以下の式でフィルタリングし予測残差eL(n)を得る。ただし^a0 L=1とする。 The linear prediction analysis unit 31L uses the PARCOR coefficients k 1 L , k 2 L ,... From the input child channel signal x L (n) to the P L order which is the order of the left channel determined in advance by the lattice method. k PL L is calculated and output as a PARCOR coefficient sequence K L = (k 1 L , k 2 L ,..., k PL L ). The quantization unit 32L quantizes the PARCOR coefficient sequence K L and outputs a quantized PARCOR coefficient sequence ^ K L = (^ k 1 L , ^ k 2 L ,..., ^ K PL L ). The conversion unit 33L converts the input quantized PARCOR coefficient sequence ^ K L into a linear prediction coefficient sequence ^ a L = (^ a 1 L , ^ a 2 L ,..., ^ A PL L ) and outputs the result. The linear prediction filter 34L uses the linear prediction coefficient sequence ^ a L = (^ a 1 L , ^ a 2 L ,..., ^ A PL L ) as filter coefficients to input the child channel signal x L (n) (n = 1, 2,..., N) are filtered by the following expression to obtain a prediction residual e L (n). However, ^ a 0 L = 1.

Figure 2008209637
残差符号化部65Lは予測残差eL(n)を例えばエントロピー符号化し、残差符号Ce Lを出力する。係数符号化部66Lは量子化済PARCOR係数系列^KL=(^k1 L, ^k2 L, …, ^kPL L)を符号化し、係数符号Ck Lを出力する。符号合成部67Lは残差符号Ce Lと係数符号Ck Lを合成し、子チャネル合成符号Cg Lを出力する。
Figure 2008209637
The residual encoding unit 65L performs entropy encoding on the prediction residual e L (n), for example, and outputs a residual code C e L. The coefficient encoding unit 66L encodes the quantized PARCOR coefficient sequence ^ K L = (^ k 1 L , ^ k 2 L ,..., ^ K PL L ), and outputs a coefficient code C k L. The code synthesis unit 67L synthesizes the residual code C e L and the coefficient code C k L , and outputs a child channel synthesis code C g L.

重み計算部51は予測残差eR(n)と予測残差eL(n)を用いて次式(10)から重み係数γを求める。

Figure 2008209637
重み量子化部52は重み係数γを量子化し、量子化済重み係数^γを出力する。重み付き減算部53は、予測残差eR(n)及びeL(n)と量子化済重み係数^γとを用いて次式(11)より、残差差分信号eM(n)を得る。 The weight calculation unit 51 uses the prediction residual e R (n) and the prediction residual e L (n) to obtain the weight coefficient γ from the following equation (10).
Figure 2008209637
The weight quantization unit 52 quantizes the weight coefficient γ and outputs a quantized weight coefficient ^ γ. The weighted subtraction unit 53 uses the prediction residuals e R (n) and e L (n) and the quantized weight coefficient ^ γ to calculate the residual difference signal e M (n) from the following equation (11). obtain.

Figure 2008209637
残差符号化部61Mは残差差分信号eM(n)を例えばエントロピー符号化し、残差符号Ce Mを出力する。重み符号化部62Mは量子化済重み係数^γを符号化し重み符号Cw Mを出力する。符号合成部63Mは残差符号Ce Mと重み符号Cw Mと係数符号化部66Lで求めた係数符号Ck Lを合成し、減算子チャネル合成符号Cg Mを出力する。
Figure 2008209637
The residual encoding unit 61M performs, for example, entropy encoding on the residual difference signal e M (n), and outputs a residual code C e M. The weight encoding unit 62M encodes the quantized weight coefficient ^ γ and outputs a weight code C w M. The code combining unit 63M combines the residual code C e M , the weight code C w M, and the coefficient code C k L obtained by the coefficient encoding unit 66L, and outputs a subtractor channel combined code C g M.

符号量比較部68は、通常の子チャネル合成符号Cg Lと減算子チヤネル合成符号Cg Mの符号量を比較し、少ないほうをそれを表す符号と共に子チャネル符号として出力する。これが従来法である。
特開2005-115267 鎌本優,守谷健弘,西本卓也,嵯峨山茂樹,“チャネル間相関を用いた多チャネル信号の可逆圧縮符号化”,情報処理学会論文誌(Vol.46, No.5, pp.1118-1128)
The code amount comparison unit 68 compares the code amounts of the normal child channel composite code C g L and the subtractor channel composite code C g M , and outputs the smaller one together with the code representing it as a child channel code. This is the conventional method.
JP2005-115267 Yu Kamamoto, Takehiro Moriya, Takuya Nishimoto, Shigeki Hiyama, “Reversible compression coding of multi-channel signals using inter-channel correlation”, Transactions of Information Processing Society of Japan (Vol.46, No.5, pp.1118- 1128)

従来技術では、2チャネル以上の入力であっても、それぞれのチャネル毎に線形予測残差のエネルギーが小さくなるように求めたPARCOR係数を用いて線形予測分析を行っていた。しかしながら、子チャネルにおいて符号化の対象となる、式(11)に示した残差差分信号についてはエネルギーが最小となっているわけではなく、残差差分信号をエントロピー符号化した際の符号量は必ずしも少なくできず、効率の良い符号化を行っているとはいえなかった。
この発明の目的は、従来より効率のよい符号化が可能なマルチチャネル信号符号化方法、その装置、その方法によるプログラムとそれを記録する記録媒体を提供することである。
In the prior art, even when input is two or more channels, linear prediction analysis is performed using a PARCOR coefficient obtained so that the energy of the linear prediction residual is reduced for each channel. However, the energy of the residual difference signal shown in Equation (11), which is to be encoded in the child channel, is not minimum, and the amount of code when the residual difference signal is entropy encoded is It cannot always be reduced, and it cannot be said that efficient encoding is performed.
An object of the present invention is to provide a multi-channel signal encoding method capable of encoding more efficiently than before, an apparatus therefor, a program according to the method, and a recording medium for recording the program.

この発明によれば、複数サンプルで構成されるフレーム毎に入力された複数チャネルの信号に対応する符号を生成するマルチチャネル符号化方法は、
少なくとも1つのチャネル、以下第1チャネルと呼ぶ、の信号を線形予測分析して第1チャネルPARCOR係数と第1チャネル残差信号を生成する第1チャネル線形予測分析ステップと、
上記第1チャネル以外の少なくとも1つのチャネル、以下第2チャネルと呼ぶ、の信号からその残差信号が上記第1チャネル残差信号に近づくように第2チャネルPARCOR係数を相関格子法により求め、その第2チャネルPARCOR係数に基づいて上記第2チャネル信号の残差信号を第2チャネル残差信号として生成するチャネル間相関を利用した線形予測分析ステップと、
上記第1チャネル残差信号と上記第2チャネル残差信号間の重み付き減算処理により残差差分信号を生成する重み付き減算ステップと、
上記第1チャネルPARCOR係数と上記第1チャネル残差信号を符号化して第1チャネル符号を出力し、少なくとも上記第2チャネルPARCOR係数と上記残差差分信号を符号化して第2チャネル符号を出力する符号化ステップ、
とを含むことを特徴とする。
According to the present invention, a multi-channel encoding method for generating a code corresponding to a signal of a plurality of channels input for each frame composed of a plurality of samples,
A first channel linear prediction analysis step of linearly predicting and analyzing a signal of at least one channel, hereinafter referred to as a first channel, to generate a first channel PARCOR coefficient and a first channel residual signal;
A second channel PARCOR coefficient is obtained by a correlation grid method so that the residual signal approaches the first channel residual signal from a signal of at least one channel other than the first channel, hereinafter referred to as a second channel, A linear prediction analysis step using inter-channel correlation that generates a residual signal of the second channel signal as a second channel residual signal based on a second channel PARCOR coefficient;
A weighted subtraction step of generating a residual difference signal by a weighted subtraction process between the first channel residual signal and the second channel residual signal;
The first channel PARCOR coefficient and the first channel residual signal are encoded to output a first channel code, and at least the second channel PARCOR coefficient and the residual difference signal are encoded to output a second channel code. Encoding step,
It is characterized by including.

本発明によれば、子チャネル残差信号が親チャネル残差信号に近づくように子チャネルのPARCOR係数を決めるので、残差差分信号の基準値を従来より小さくすることが可能であり、従って、子チャネルの符号量が少ない、より効率の良い符号化が可能となる。   According to the present invention, since the PARCOR coefficient of the child channel is determined so that the child channel residual signal approaches the parent channel residual signal, it is possible to make the reference value of the residual difference signal smaller than that in the prior art. It is possible to perform more efficient coding with a small code amount of the child channel.

発明の原理
この発明によれば、親チャネル残債信号と子チャネル残差信号の重みつき減算により生成される残差差分信号に必要な符号量を減らすため、合計の基準値(子チャネルの、減算処理後の前向き及び後向き予測誤差のエネルギーの合計)が最小となるように、子チャネル残差信号を求めるためのPARCOR係数を決める。つまり、子チャネルの残差信号が親チャネルの残差信号に近づくようにPARCOR係数を計算する。
ここでは、例として親チャネルは従来の方法によりPARCOR係数と残差信号を求め、子チャネルの残差信号が親チャネルの残差信号に近づくように子チャネルのPARCOR係数を決める方法を説明する。言い換えれば、残差差分信号eM(n)のフレーム当りのエネルギーを最小化するように子チャネルのPARCOR係数を決める。
Principle of the Invention According to the present invention, in order to reduce the amount of code required for the residual difference signal generated by weighted subtraction of the parent channel residual signal and the child channel residual signal, the total reference value (child channel, The PARCOR coefficient for determining the child channel residual signal is determined so that the sum of the energy of the forward and backward prediction errors after the subtraction process is minimized. That is, the PARCOR coefficient is calculated so that the residual signal of the child channel approaches the residual signal of the parent channel.
Here, as an example, a method will be described in which a parent channel obtains a PARCOR coefficient and a residual signal by a conventional method, and determines the PARCOR coefficient of the child channel so that the residual signal of the child channel approaches the residual signal of the parent channel. In other words, the PARCOR coefficient of the child channel is determined so as to minimize the energy per frame of the residual difference signal e M (n).

相関格子法1
親チャネルの残差信号eM(n)に子チャネルの残差信号が似るように子チャネル信号xL(n)の線形予測分析でPARCOR係数を格子法により決める第1の方法を図4を参照して説明する。この実施例では、図2に示した従来の格子法において、1次からP-1次までは従来の格子法を用いてPARCOR係数を算出し、最終段のP次についてのみ従来と異なる方法でPARCOR係数を算出する。従って、図4には初段と最終段のみを示してある。ここでは、子チャネル信号xL(n)が格子法処理の初段に与えられる。格子法処理の最終段には、従来法にはない、重み係数計算部9Wとゲイン部9Xが設けられており、PARCOR係数計算部5は親チャネルの残差信号eM(n)を利用してPARCOR係数kPを計算する点が従来と異なる。
Correlation grid method 1
FIG. 4 shows a first method for determining the PARCOR coefficient by the lattice method in the linear prediction analysis of the child channel signal x L (n) so that the residual signal of the child channel resembles the residual signal e M (n) of the parent channel. The description will be given with reference. In this embodiment, in the conventional lattice method shown in FIG. 2, the PARCOR coefficient is calculated from the first order to the P-1 order using the conventional lattice method, and only the P order of the final stage is different from the conventional method. Calculate the PARCOR coefficient. Therefore, FIG. 4 shows only the first stage and the last stage. Here, the child channel signal x L (n) is given to the first stage of the lattice method processing. The final stage of the grid method processing is not in the conventional method, and the weighting factor calculator 9W and the gain section 9X are provided, PARCOR coefficient calculating unit 5 P the use a residual signal of the parent channel e M (n) and that calculates the PARCOR coefficients k P and is different from the conventional.

重み付き係数計算部9Wは、加算部7FP-1からの前向きP-1次予測誤差FP-1(n)(n=1, 2, …, N)と、サンプル遅延部8P-1からの後向きP-1次予測誤差BP-1(n-1)と、親チャネル残差信号eR(n)とを使って次式(12)から重み係数gを算出する。

Figure 2008209637
式(12)のカッコ内の第1項は、子チャネル信号の前向き予測誤差FP-1(n)と親チャネル残差信号eR(n)との相互相関を親チャネル残差信号のエネルギーで規格化した表現となっている。第2項は、子チャネル信号の後向き予測誤差BP-1(n-1)と親チャネル残差信号eR(n)との相互相関を親チャネル残差信号のエネルギーで規格化した表現となっている。ここでは重み係数gはこれら2つの規格化相互相関の相加平均で表されているが、重み付き平均としてもよい。 The weighted coefficient calculation unit 9W includes a forward P-1 order prediction error F P-1 (n) (n = 1, 2,..., N) from the addition unit 7F P-1 , and a sample delay unit 8 P-1. The weight coefficient g is calculated from the following equation (12) using the backward P-1 order prediction error B P-1 (n-1) and the parent channel residual signal e R (n).
Figure 2008209637
The first term in parentheses in equation (12) represents the cross-correlation between the forward prediction error F P-1 (n) of the child channel signal and the parent channel residual signal e R (n), and the energy of the parent channel residual signal. It has become a standardized expression. The second term is a representation in which the cross-correlation between the backward prediction error B P-1 (n-1) of the child channel signal and the parent channel residual signal e R (n) is normalized by the energy of the parent channel residual signal. It has become. Here, the weight coefficient g is expressed as an arithmetic average of these two normalized cross-correlations, but may be a weighted average.

あるいは、次式(13)のように、重み係数gをこれら2つの規格化相互相関の相乗平均で表してもよい。

Figure 2008209637
ゲイン部9Xは、親チャネルの残差信号eR(n)に重み係数gを乗算し、親チャネル重み付き残差信号g´eR(n)を出力する。PARCOR係数計算部5は、加算部7FP-1からの前向きP-1次予測誤差FP-1(n)(n=1, 2, …, N)と、サンプル遅延部8P-1からの後向きP-1次予測誤差BP-1(n-1)と、重み付き親チャネル残差信号g´eR(n)とを用いて、次式(14)によりPARCOR係数kPを算出する。 Or you may represent the weighting coefficient g by the geometric mean of these two normalization cross correlations like following Formula (13).
Figure 2008209637
The gain unit 9X multiplies the parent channel residual signal e R (n) by a weighting factor g, and outputs a parent channel weighted residual signal g′e R (n). The PARCOR coefficient calculation unit 5 P includes a forward P-1 order prediction error F P-1 (n) (n = 1, 2,..., N) from the addition unit 7F P-1 , and a sample delay unit 8 P-1 Using the backward P-1 order prediction error B P-1 (n-1) and the weighted parent channel residual signal g´e R (n), the PARCOR coefficient k P is calculate.

Figure 2008209637
ここで、式(7)に示したBurg法の変形として相加平均での求め方を示したが、式(6)に示した相乗平均によるItakura法の変形として次式(15)によって計算してもよい。
Figure 2008209637
で示すように前向き予測誤差FP-1(n)と後向き予測誤差BP-1(n-1)の重み比率αと(1-α)(ただし1≧α≧0)を変えるなど、他の基準を最小化するように求めてもよい。いずれにしても、親チャネル残差信号eR(n)に対し子チャネルの残差信号が似るように子チャネルの線形予測フィルタに対する予測係数を決めればよい。
Figure 2008209637
Here, an arithmetic mean was obtained as a modification of the Burg method shown in Equation (7), but it was calculated by the following equation (15) as a variant of the Itakura method based on the geometric mean shown in Equation (6). May be.
Figure 2008209637
The weight ratio α and (1-α) (where 1 ≧ α ≧ 0) of the forward prediction error F P-1 (n) and the backward prediction error B P-1 (n-1) are changed as shown in FIG. You may ask to minimize the criterion. In any case, the prediction coefficient for the linear prediction filter of the child channel may be determined so that the residual signal of the child channel resembles the parent channel residual signal e R (n).

上述のように式(12)又は(13)で表される重み係数gは親チャネル残差信号eR(n)と前向き予測誤差FP-1(n)との相互相関と、親チャネル残差信号eR(n)と後向き予測誤差BP-1(n-1)との相互相関によって表されており、従って、式(14), (15)又は(16)で表されるこの発明によるPARCOR係数を算出する格子法は、親チャネル残差信号と、前向き及び後向き予測誤差との相互相関に基づいた表現となっており、この発明によるPARCOR係数演算処理方法を相関格子法と呼ぶことにする。 As described above, the weighting factor g expressed by the equation (12) or (13) is the cross-correlation between the parent channel residual signal e R (n) and the forward prediction error F P-1 (n), and the parent channel residual. This invention is represented by the cross-correlation between the difference signal e R (n) and the backward prediction error B P-1 (n-1), and is therefore represented by the formula (14), (15) or (16) The grid method for calculating the PARCOR coefficient according to is based on the cross-correlation between the parent channel residual signal and the forward and backward prediction errors. The PARCOR coefficient calculation processing method according to the present invention is called the correlation grid method. To.

相関格子法1の変形例1
上記相関格子法1では、格子法による処理の最終段であるP次のPARCOR係数kPについてのみ従来とは異なる方法で計算を行なったが、上記相関格子法1のP時と同様の方法によるPARCOR係数の算出を前段において実施して1次からP次までの全次数のPARCOR係数k1, k2, …, kPを求めてもよい。あるいは、任意の段、例えば11≦Pとし、1次から10次までのPARCOR係数の算出に上記相関格子法1のP次と同様の方法を採用し、11次からP次までは従来法によるPARCOR係数の算出を行なってもよい。要するに、1つ以上の任意の次数のPARCOR係数の算出を、上記相関格子法1のP次と同様の方法で行なえば、この発明による最低限の効果は得られる。
Modification 1 of the correlation grid method 1
In the correlation grid method 1, only the P-order PARCOR coefficient k P which is the final stage of processing by the grid method is calculated by a method different from the conventional method. PARCOR coefficients of all orders of the calculation of the PARCOR coefficients from the primary implemented in the preceding stage to P next k 1, k 2, ..., may be determined k P. Alternatively, for any stage, for example, 11 ≦ P, the same method as the P order of the correlation grid method 1 is used for calculating the PARCOR coefficient from the first order to the tenth order, and from the 11th order to the P order, the conventional method is used. The PARCOR coefficient may be calculated. In short, if the calculation of one or more arbitrary order PARCOR coefficients is performed in the same manner as the P order of the correlation grid method 1, the minimum effect of the present invention can be obtained.

相関格子法1の変形例2
相関格子法1の変形例1において、図5に示すように任意の段(第i段)において図4と同様に重み係数計算部9Wi-1により前向き及び後向き予測誤差Fi-1(n), Bi-1(n-1)と親チャネル残差信号eR(n)から式(12)により重み係数gを求め、その重み係数gによりゲイン部9Xi-1で残差信号eR(n)に重み付けを行い、この重み付き残差信号g´eR(n)を使ってPARCOR係数計算部5により式(14), (15)又は(16)においてPの代わりにiとしてPARCOR係数kiを求める。更に、図5の点線枠で示す、乗算部6Fi, 6Bi、加算部7Fi, 7Biを含む予測誤差算出部EEに極性反転部9Yiを設け、重み付き残差信号g´eR(n)に対し極性反転部9Yiでg´eR(n)の極性を反転して加算部7Biに与えることにより、次段に用いる前向きi次予測誤差Fi(n)及び後向きi次予測誤差Bi(n)を得る。即ち、前向きi次予測誤差Fi(n)及び後向きi次予測誤差Bi(n)は次式により求めることになる。
Fi(n)=Fi-1(n)+ki´Bi-1(n-1)−g´eR(n) (17)
Bi(n)=ki´Fi(n)+Bi-1(n-1)−g´eR(n) (18)
Modification 2 of the correlation grid method 1
In the first modification of the correlation grid method 1, forward and backward prediction error by weighting factor calculator 9W i-1 similar to FIG. 4 in any stage (i-th stage), as shown in FIG. 5 F i-1 (n ), B i-1 (n-1) and the parent channel residual signal e R (n), the weight coefficient g is obtained by the equation (12), and the residual signal e is obtained by the gain unit 9X i-1 using the weight coefficient g. R (n) is weighted, and this weighted residual signal g′e R (n) is used by the PARCOR coefficient calculation unit 5 i to replace i with P in the formula (14), (15) or (16). The PARCOR coefficient k i is obtained as follows. Further, the polarity inversion unit 9Y i is provided in the prediction error calculation unit EE including the multiplication units 6F i and 6B i and the addition units 7F i and 7B i shown by the dotted frame in FIG. 5, and the weighted residual signal g′e R By reversing the polarity of g′e R (n) with respect to (n) by the polarity reversing unit 9Y i and giving it to the adding unit 7B i , the forward i-th order prediction error F i (n) and the backward i used in the next stage Next prediction error B i (n) is obtained. That is, the forward i-th order prediction error F i (n) and the backward i-th order prediction error B i (n) are obtained by the following equations.
F i (n) = F i-1 (n) + k i ' B i-1 (n-1)-g'e R (n) (17)
B i (n) = k i ' F i (n) + B i-1 (n-1)-g'e R (n) (18)

相関格子法2
この相関格子法2では、図4の相関格子法1と同様に1次からP-1次までは従来の格子法を用いてPARCOR係数を算出するが、最終段のP次については異なる方法でPARCOR係数を算出する。以下、図6を参照して図4の相関格子法1と異なる部分についてのみ説明する。この相関格子法2は、図4の相関格子法1において、重み計算部9Wとゲイン部9Xを省略し、親チャネル残差信号eR(n)をそのままPARCOR係数計算部5に与えてPARCOR係数kPを計算している。
Correlation grid method 2
In this correlation grid method 2, the PARCOR coefficient is calculated using the conventional grid method from the first order to the P-1 order as in the correlation grid method 1 in FIG. Calculate the PARCOR coefficient. Hereinafter, only parts different from the correlation grid method 1 of FIG. 4 will be described with reference to FIG. This correlation grid method 2, the correlation grid method 1 of Figure 4, omitting the weight calculator 9W and the gain unit 9X, giving the parent channel residual signal e R (n) is directly in PARCOR coefficient calculating unit 5 P PARCOR and to calculate the coefficient k P.

PARCOR係数計算部5は、加算部7FP-1からの前向きP-1次予測誤差FP-1(n)(n=1, 2, …, N)と、サンプル遅延部8P-1からの後向きP-1次予測誤差BP-1(n-1) (n=1, 2, …, N)と、親チャネル残差信号eR(n)とから次式(19)によりPARCOR係数kPを算出する。

Figure 2008209637
The PARCOR coefficient calculation unit 5 P includes a forward P-1 order prediction error F P-1 (n) (n = 1, 2,..., N) from the addition unit 7F P-1 , and a sample delay unit 8 P-1 From the backward P-1 order prediction error B P-1 (n-1) (n = 1, 2,…, N) and the parent channel residual signal e R (n) by the following equation (19) to calculate the coefficient k P.
Figure 2008209637

上記式(19)と式(14)を比較すると、式(19)においては、式(14)における前向き予測誤差FP-1(n)及び後ろ向き予測誤差BP-1(n-1)のそれぞれに対し親チャネル残差信号eR(n)の重み付き減算を行わず、分子においては前向き予測誤差FP-1(n)と親チャネル残差信号eR(n)間の相互相関と、後ろ向き予測誤差BP-1(n-1)と親チャネル残差信号eR(n)間の相互相関の積を親チャネル残差信号エネルギーで規格化して減算している。また、分母においては、前向き予測誤差FP-1(n)と親チャネル残差信号eR(n)間の相互相関と、後ろ向き予測誤差BP-1(n-1)と親チャネル残差信号eR(n)間の相互相関の2乗和を親チャネル残差信号エネルギーで規格化して減算している。 Comparing the above equation (19) and equation (14), in equation (19), the forward prediction error F P-1 (n) and the backward prediction error B P-1 (n-1) in equation (14) The weighted subtraction of the parent channel residual signal e R (n) is not performed for each, and in the numerator, the cross-correlation between the forward prediction error F P-1 (n) and the parent channel residual signal e R (n) The product of the cross-correlation between the backward prediction error B P-1 (n-1) and the parent channel residual signal e R (n) is normalized by the parent channel residual signal energy and subtracted. In the denominator, the cross-correlation between the forward prediction error F P-1 (n) and the parent channel residual signal e R (n), the backward prediction error B P-1 (n-1) and the parent channel residual The sum of squares of the cross-correlation between the signals e R (n) is normalized by the parent channel residual signal energy and subtracted.

式(19)の分母における前向き予測誤差FP-1(n)を共通に含む項の差分が、式(14)の分母における前向き予測誤差FP-1(n)と親チャネル残差信号eR(n)間の重み付き減算に対応し、式(19)の分母における後ろ向き予測誤差BP-1(n-1)を共通に含む項の差分が、式(14)の分母における後ろ向き予測誤差BP-1(n-1)と親チャネル残差信号eR(n)間の重み付き減算に対応する。式(19)においても、分母のFP-1(n)を共通に含む項とBP-1(n-1)を共通に含む項を重み付き平均してPARCOR係数kPを求めてもよい。 Difference term including forward prediction error F P-1 in the denominator of equation (19) to (n) in common, forward prediction error F P-1 (n) as the parent channel residual signal e in the denominator of formula (14) Corresponding to the weighted subtraction between R (n), the difference in terms that commonly include the backward prediction error B P-1 (n-1) in the denominator of Equation (19) is the backward prediction in the denominator of Equation (14). This corresponds to weighted subtraction between the error B P-1 (n-1) and the parent channel residual signal e R (n). In Equation (19), the PARCOR coefficient k P can also be obtained by weighted averaging the terms that commonly include the denominator F P-1 (n) and the terms that commonly include B P-1 (n-1). Good.

相関格子法2の変形例1
図6に示した相関格子法2では、格子法による処理の最終段であるP次のPARCOR係数kPについてのみ従来と異なる方法で算出したが、上記相関格子法2のP次と同様の方法によるPARCOR係数の算出を全段において実施して1次からP次までの全次数のPARCOR係数k1, k2, …, kPを求めてもよい。あるいは、任意の段、例えば11≦Pとし、1次から10次までのPARCOR係数の算出に上記相関格子法1のP次と同様の方法を採用し、11次からP次までは従来法によるPARCOR係数の算出を行なってもよい。要するに、1つ以上の任意の次数のPARCOR係数の算出を、上記相関格子法1のP次と同様の方法で行なえば、この発明による最低限の効果は得られる。
Modification 1 of the correlation grid method 2
In the correlation grid method 2 shown in FIG. 6, only the P-order PARCOR coefficient k P which is the final stage of the processing by the grid method is calculated by a method different from the conventional method, but the same method as the P-order of the correlation grid method 2 is used. The PARCOR coefficients may be calculated in all stages to obtain the PARCOR coefficients k 1 , k 2 ,..., K P for all orders from the first order to the P order. Alternatively, for any stage, for example, 11 ≦ P, the same method as the P order of the correlation grid method 1 is used for calculating the PARCOR coefficient from the first order to the tenth order, and from the 11th order to the P order, the conventional method is used. The PARCOR coefficient may be calculated. In short, if the calculation of one or more arbitrary order PARCOR coefficients is performed in the same manner as the P order of the correlation grid method 1, the minimum effect of the present invention can be obtained.

相関格子法2の変形例2
図5に示した相関格子法1の変形例2と同様に、相関格子法2の変形例1においても任意の段のPARCOR係数kiを求めた後、図5の点線枠で示す予測誤差算出部EEの構成を採用し、次の段に用いる前向きi次予測誤差Fi(n)及び後向きi次予測誤差Bi(n)を式(17), (18)により求めてもよい。
Modification 2 of the correlation grid method 2
Similar to the modified example 2 of the correlated grid method 1 shown in FIG. 5, in the modified example 1 of the correlated grid method 2, after obtaining the PARCOR coefficient k i at an arbitrary stage, the prediction error calculation indicated by the dotted frame in FIG. The configuration of the part EE may be adopted, and the forward i-th order prediction error F i (n) and the backward i-th order prediction error B i (n) used in the next stage may be obtained by equations (17) and (18).

上述の各相関格子法及びその変形例においては、いずれも各処理段STiにおける後ろ向き予測誤差Bi(n-1)はその処理段に至る各段で遅延を受けている。そこで、その遅延量に合わせて後ろ向き予測誤差Bi(n-1)との演算にかかわる親チャネル残差信号eR(n)も遅延を与えて演算を行ってもよい。 In each of the above-described correlation grid methods and variations thereof, the backward prediction error B i (n−1) at each processing stage ST i is delayed at each stage leading to that processing stage. Therefore, the parent channel residual signal e R (n) related to the calculation with the backward prediction error B i (n−1) may be calculated in accordance with the delay amount with a delay.

例えば、式(12), (13), (19)において、ΣBP-1(n-1)×eR(n)の代わりに

Figure 2008209637
に置き換えてもよい。また式(14), (15), (16)において、BP-1(n-1)-g×eR(n)をBP-1(n-1)-g×eR(n-P)と置き換えてもよい。更に、式(18)におけるg×eR(n)をg×eR(n-i)に置き換えてもよい。 For example, in equations (12), (13), (19), instead of ΣB P-1 (n-1) × e R (n)
Figure 2008209637
May be replaced. In the equations (14), (15), (16), B P-1 (n-1) -g × e R (n) is replaced with B P-1 (n-1) -g × e R (nP) May be replaced. Furthermore, g × e R (n) in equation (18) may be replaced with g × e R (ni).

マルチチャネル信号符号化の基本構成と処理手順
図7はこの発明によるマルチチャネル信号の符号化を、左右2チャネルの信号に適用した場合の符号化装置の基本的な機能構成を示し、その処理手順を図8に示す。この発明では、マルチチャネル入力信号を符号化する場合、どのチャネル信号が親チャネル信号、また子チャネル信号として入力されるか予め決められている場合もあるし、あるいは、この符号化装置において決める場合もある(親子の決め方の詳細は非特許文献1参照)。例えばここでは右チャネル信号が親チャネル信号として入力され、左チャネル信号が子チャネル信号として入力されたとする。
このマルチチャネル信号符号化装置は、親チャネル用の線形予測分析手段10と、親チャネル符号化手段20と、チャネル間相関を利用した線形予測分析手段40と、重み付き減算処理手段50と、差分符号化手段60とから構成されている。
The encoding of the multi-channel signal encoding basic configuration and processing procedure 7 are multi-channel signal according to the present invention, it illustrates the basic functional structure of a coding apparatus when applied to left and right channel signals, the procedure Is shown in FIG. In the present invention, when a multi-channel input signal is encoded, it may be determined in advance which channel signal is input as a parent channel signal or a child channel signal, or is determined by this encoding apparatus. (See Non-Patent Document 1 for details on how to determine parent and child). For example, it is assumed here that the right channel signal is input as a parent channel signal and the left channel signal is input as a child channel signal.
The multi-channel signal encoding apparatus includes a parent channel linear prediction analysis unit 10, a parent channel encoding unit 20, a linear prediction analysis unit 40 using inter-channel correlation, a weighted subtraction processing unit 50, a difference The encoding means 60 is comprised.

まず、線形予測分析手段10において、親チャネル信号xR(n)を入力信号として図2で示した従来の格子法によりPARCOR係数列KRを求め、それに基づいて更に、親チャネル残差信号eR(n)を例えば式(2)により求める(ステップS1)。得られた親チャネル残差信号eR(n)に対し、次にチャネル間相関を利用した線形予測分析手段40により、子チャネル残差信号が近づくように子チャネル用のPARCOR係数列KMを決める(ステップS2)。これは、具体的には図4乃至6で説明したこの発明による相関格子法によってPARCOR系数列を決めることであり、これにより親チャネル残差信号と、子チャネル信号の前向き及び後向き予測誤差との間のエネルギー差が小さくなるようにしている。 First, in the linear prediction analysis means 10, the PARCOR coefficient sequence K R is obtained by the conventional lattice method shown in FIG. 2 using the parent channel signal x R (n) as an input signal, and further based on the PARCOR coefficient sequence K e R (n) is obtained by, for example, equation (2) (step S1). The parent channel residual signal e R (n) thus obtained is subjected to a PARCOR coefficient sequence K M for the child channel so that the child channel residual signal approaches by the linear prediction analysis means 40 using the inter-channel correlation. Determine (step S2). Specifically, this is to determine the PARCOR series by the correlation grid method according to the present invention described with reference to FIGS. 4 to 6, whereby the parent channel residual signal and the forward and backward prediction errors of the child channel signal are determined. The energy difference between them is made small.

チャネル間相関を利用した線形予測分析手段40は更に、得られた子チャネル用PARCOR係数列KMを使って子チャネル信号の残差信号eM(n)を生成する(ステップS3)。次に、重み付き減算処理手段50は、親チャネル残差信号eR(n)と子チャネル残差信号eM(n)の重み付き減算処理により残差差分信号~eM(n)を生成する(ステップS4)。次に、親チャネル符号化手段20により親チャネルのPARCOR係数列KRと親チャネル残差信号eR(n)を符号化すると共に、差分符号化手段60により子チャネルのPARCOR係数列KM、残差差分信号~eM(n)、重み係数γをそれぞれ符号化する(ステップS5)。 The linear prediction analysis means 40 using the inter-channel correlation further generates a residual signal e M (n) of the child channel signal using the obtained child channel PARCOR coefficient sequence K M (step S3). Then, weighted subtraction processing unit 50, generates a residual difference signal ~ e M (n) by weighted subtraction of the parent channel residual signal e R (n) and the child channel residual signal e M (n) (Step S4). Next, the parent channel encoding unit 20 encodes the parent channel PARCOR coefficient sequence K R and the parent channel residual signal e R (n), and the differential encoding unit 60 encodes the child channel PARCOR coefficient sequence K M , The residual difference signal ~ e M (n) and the weight coefficient γ are each encoded (step S5).

実施例1
図9はこの発明をステレオ信号の符号化に適用した場合の符号化装置のブロック図を示す。図3の従来技術の構成と異なる点は、図3における子チャネル線形予測分析部31Lの代わりにチャネル間相関を利用した線形予測分析部41Mが設けられ、残差符号化部65L、符号合成部67L、符号量比較部68に対応するものが設けられていないことである。また、図3における量子化部32L、変換部33L、線形予測フィルタ34L、係数符号化部66Lは、それぞれ図9における同様の構成部42M〜44M,64Mに置き換えられている。
Example 1
FIG. 9 shows a block diagram of an encoding apparatus when the present invention is applied to encoding of a stereo signal. 3 is different from the configuration of the prior art in FIG. 3 in that a linear prediction analysis unit 41M using inter-channel correlation is provided instead of the child channel linear prediction analysis unit 31L in FIG. 3, and a residual encoding unit 65L, a code synthesis unit 67L and the code amount comparison unit 68 are not provided. Also, the quantization unit 32L, the conversion unit 33L, the linear prediction filter 34L, and the coefficient encoding unit 66L in FIG. 3 are replaced with the same configuration units 42M to 44M and 64M in FIG. 9, respectively.

図9における線形予測分析部11R、量子化部12R、変換部13R、線形予測フィルタ14Rを含む構成10は、請求項9における第1チャネル線形予測分析手段に対応する。図9におけるチャネル間相関を利用した線形予測分析部41M、量子化部42M、変換部43M、線形予測フィルタ44Mを含む構成40は、請求項9におけるチャネル間相関を利用した線形予測分析手段に対応する。図9における重み計算部51、重み量子化部52、重み付き減算部53を含む構成50は、請求項9における重み付き減算手段に対応する。図9における残差符号化部22R、係数符号化部23R、符号合成部24Rを含む構成20は、請求項9における第1チャネル符号化手段に対応する。図9における残差符号化部61M、重み符号化部62M、符号合成部63M、係数符号化部64を含む構成60は、請求項9における第2チャネル符号化手段に対応する。これらの対応関係は以降の各実施例においても当てはまる。   The configuration 10 including the linear prediction analysis unit 11R, the quantization unit 12R, the conversion unit 13R, and the linear prediction filter 14R in FIG. 9 corresponds to the first channel linear prediction analysis unit in claim 9. The configuration 40 including the linear prediction analysis unit 41M, the quantization unit 42M, the conversion unit 43M, and the linear prediction filter 44M using the inter-channel correlation in FIG. 9 corresponds to the linear prediction analysis unit using the inter-channel correlation in claim 9. To do. The configuration 50 including the weight calculation unit 51, the weight quantization unit 52, and the weighted subtraction unit 53 in FIG. 9 corresponds to the weighted subtraction means in claim 9. The configuration 20 including the residual encoding unit 22R, the coefficient encoding unit 23R, and the code synthesis unit 24R in FIG. 9 corresponds to the first channel encoding unit in claim 9. The configuration 60 including the residual encoding unit 61M, the weight encoding unit 62M, the code synthesis unit 63M, and the coefficient encoding unit 64 in FIG. 9 corresponds to the second channel encoding unit in claim 9. These correspondences also apply to the following embodiments.

あるフレーム(Nサンプル)の右チャネルの信号をxR(n)(n=1, 2, …, N)、左チャネルの信号をxL(n)(n=1, 2, …, N)とする。ここでは、右チャネルを親チャネル、左チャネルを子チャネルとする。
線形予測分析部11Rは入力された親チャネル信号xR(n)から従来の格子法によりPARCOR係数ki R(i=1, 2, …, P)を生成する。量子化部12Rは入力されたPARCOR係数ki R(i=1, 2, …, P)を量子化し、量子化済PARCOR係数^ki R(i=1, 2, …, P)を出力する。変換部13Rは入力された量子化済PARCOR係数^ki R(i=1, 2, …, P)を量子化済予測係数^ai R(i=1, 2, …, P)に変換する。線形予測フィルタ14Rは量子化済予測係数^ai R(i=1, 2, …, P)をフィルタ係数として、入力された親チャネル信号xR(n)を前述の式(8)でフィルタリングし予測残差eR(n)を得る。ただし^a0 R=1とする。
The right channel signal of a frame (N samples) is x R (n) (n = 1, 2,…, N), and the left channel signal is x L (n) (n = 1, 2,…, N). And Here, the right channel is a parent channel and the left channel is a child channel.
The linear prediction analysis unit 11R generates PARCOR coefficients k i R (i = 1, 2,..., P R ) from the input parent channel signal x R (n) by a conventional lattice method. PARCOR coefficient quantizer 12R is input k i R (i = 1, 2, ..., P R) is quantized and quantized PARCOR coefficient ^ k i R (i = 1 , 2, ..., P R) Is output. Conversion unit 13R is inputted quantized PARCOR coefficient ^ k i R (i = 1 , 2, ..., P R) the quantized prediction coefficients ^ a i R (i = 1 , 2, ..., P R) Convert to The linear prediction filter 14R uses the quantized prediction coefficient ^ a i R (i = 1, 2,..., P R ) as a filter coefficient, and the input parent channel signal x R (n) according to the above equation (8). Filter to obtain the prediction residual e R (n). However, ^ a 0 R = 1.

残差符号化部22Rは予測残差eR(n)を符号化し残差符号Ce Rを出力する。係数符号化部23Rは量子化済PARCOR係数^ki R(i=1, 2, …, P)を符号化し係数符号Ck Rを出力する。符号合成部24Rは残差符号Ce Rと係数符号Ck Rを合成し、親チャネル合成符号Cg Rを出力する。
チャネル間相関を利用した線形予測分析部41Mは子チャネル信号xL(n)に対し、親チャネル残差信号eR(n)を使って前述の図4〜6で説明したこの発明による相関格子法のいずれかによりPM次までのPARCOR係数ki M(i=1, 2, …, PM)を計算する。
The residual encoding unit 22R encodes the prediction residual e R (n) and outputs a residual code C e R. The coefficient encoding unit 23R encodes the quantized PARCOR coefficient ^ k i R (i = 1, 2,..., P R ) and outputs a coefficient code C k R. The code combining unit 24R combines the residual code C e R and the coefficient code C k R , and outputs a parent channel combined code C g R.
The linear prediction analysis unit 41M using the inter-channel correlation uses the parent channel residual signal e R (n) for the child channel signal x L (n), and the correlation grid according to the present invention described with reference to FIGS. PARCOR coefficient by any law to P M following k i M (i = 1, 2, ..., P M) is calculated.

量子化部42Mは入力されたPARCOR係数ki M(i=1, 2, …, PM)を量子化し、量子化済PARCOR係数^ki M(i=1, 2, …, PM)を出力する。変換部43Mは入力された量子化済PARCOR係数^ki M(i=1, 2, …, PM)を量子化済予測係数^ai M(i=1, 2, …, PM)に変換する。線形予測フィルタ44Mは量子化済予測係数^ai M(i=1, 2, …, PM)をフィルタ係数として、入力された子チャネル信号xL(n)を以下の式でフィルタリングし予測残差eM(n)を得る。ただし^a0 M=1とする。 The quantization unit 42M quantizes the input PARCOR coefficient k i M (i = 1, 2,..., P M ), and the quantized PARCOR coefficient ^ k i M (i = 1, 2,..., P M ). Is output. The transform unit 43M converts the input quantized PARCOR coefficient ^ k i M (i = 1, 2,..., P M ) into a quantized prediction coefficient ^ a i M (i = 1, 2,..., P M ). Convert to The linear prediction filter 44M uses the quantized prediction coefficient ^ a i M (i = 1, 2,..., P M ) as a filter coefficient, and filters the input child channel signal x L (n) by the following expression to perform prediction. Obtain the residual e M (n). However, ^ a 0 M = 1.

Figure 2008209637
重み計算部51は親チャネルの予測残差eR(n)と相互相関を考慮した予測残差eM(n)を用いて以下の式から重み係数γを求める。
Figure 2008209637
重み量子化部52は重み係数γを量子化し、量子化済重み係数^γを得る。重み付き減算部53は、残差信号eR(n)、eM(n)と量子化済重み係数^γを用いて次式より、残差差分信号~eM(n)を得る。
Figure 2008209637
Figure 2008209637
The weight calculation unit 51 obtains a weighting coefficient γ from the following equation using the prediction residual e R (n) of the parent channel and the prediction residual e M (n) considering the cross correlation.
Figure 2008209637
The weight quantization unit 52 quantizes the weight coefficient γ to obtain a quantized weight coefficient ^ γ. The weighted subtraction unit 53 uses the residual signals e R (n) and e M (n) and the quantized weight coefficient ^ γ to obtain a residual difference signal ~ e M (n) from the following equation.
Figure 2008209637

残差符号化部61Mは残差差分信号~eM(n)を符号化し残差符号Ce Mを出力する。係数符号化部64Mは量子化済PARCOR係数^ki M(i=1, 2, …, PM)を符号化し係数符号Ck Mを出力する。重み符号化部62Mは量子化済重み係数^γを符号化し重み符号Cw Mを出力する。符号合成部63Mは残差符号Ce Mと重み符号Cw Mと係数符号Ck Mを合成し、子チャネル合成符号Cg Mを出力する。 The residual encoding unit 61M encodes the residual difference signal ~ e M (n) and outputs a residual code C e M. The coefficient encoding unit 64M encodes the quantized PARCOR coefficient ^ k i M (i = 1, 2,..., P M ) and outputs a coefficient code C k M. The weight encoding unit 62M encodes the quantized weight coefficient ^ γ and outputs a weight code C w M. The code combining unit 63M combines the residual code C e M , the weight code C w M, and the coefficient code C k M , and outputs a child channel combined code C g M.

このように、この発明においては相互相関を利用した線形予測分析部41Mにより、子チャネル信号xL(n)からPL次までのPARCOR係数を求める際に、任意の少なくとも1段において親チャネル残差信号eR(n)と、子チャネル信号xL(n)の前向き予測誤差及び後向き予測誤差との重み付き差分のエネルギーが少なくなるようにPARCOR係数を決めているので、それだけ子チャネル残差信号が親チャネル残差信号に似ることになり、式(22)による重み付き減算により生成された残差差分信号の符号化に必要な符号量が少なくなる。 As described above, in the present invention, when the PARCOR coefficients from the child channel signal x L (n) to the P L order are obtained by the linear prediction analysis unit 41M using cross-correlation, the parent channel remaining in any at least one stage. The PARCOR coefficient is determined so that the energy of the weighted difference between the forward prediction error and the backward prediction error of the difference signal e R (n) and the child channel signal x L (n) is reduced. The signal resembles the parent channel residual signal, and the amount of code required for encoding the residual difference signal generated by the weighted subtraction according to Equation (22) is reduced.

実施例2
前述した図3の従来技術において、重み付き減算部53の処理としては、例えば、複数タップの重み付き減算処理や時間差を考慮した複数タップの重み付き減算処理を行うことが知られている(特許文献1)。この発明においても、式(22)の代わりに複数タップ(j=-1, 0, 1)の重み付き減算処理を、

Figure 2008209637
として残差差分信号を求めてもよいし、時間差(サンプル数間隔τ)を考慮した複数タップの重み付き減算処理を、
Figure 2008209637
として残差差分信号を求めてもよい。 Example 2
In the prior art of FIG. 3 described above, as the processing of the weighted subtraction unit 53, for example, performing a multi-tap weighted subtraction process or a multi-tap weighted subtraction process considering time difference is known (patent). Reference 1). Also in the present invention, a weighted subtraction process of a plurality of taps (j = -1, 0, 1) is used instead of the equation (22).
Figure 2008209637
The residual difference signal may be obtained as a multi-tap weighted subtraction process considering the time difference (sample number interval τ),
Figure 2008209637
A residual difference signal may be obtained as follows.

このように複数タップの重み付き減算処理によれば、子チャネル残差信号を親チャネル残差信号により近づけるように制御することができるので、それだけ符号量を減らすことができる。例えば、左右チャネル信号の音源位置が中央から一方の側にずれている場合でも、音源から2つのマイクロホンへの到達時間差に応じたタップ位置での重みを制御できるので、その結果符号の圧縮率を向上させることができる。   As described above, according to the weighted subtraction process with a plurality of taps, the child channel residual signal can be controlled to be closer to the parent channel residual signal, so that the code amount can be reduced accordingly. For example, even when the sound source position of the left and right channel signals is shifted from the center to one side, the weight at the tap position according to the arrival time difference from the sound source to the two microphones can be controlled, so that the code compression rate can be reduced. Can be improved.

実施例3
図9の実施例では、親子関係が決定済みの場合を例として挙げたが、一度それぞれの予測残差を求めて、エネルギーの小さい方を親チャネルとして分析を行ってもよい。その実施例を図10に示す。この実施例は、図9の構成に対し、図3と同様の線形予測分析部31L、量子化部32L、変換部33L、線形予測フィルタ34Lを含む子チャネル線形予測分析手段が追加され(これらを含む構成は請求項10における第2チャネル第2線形予測分析手段に対応する)、子チャネル信号に対し同様の処理を行なって残差信号eL(n)を得る。更に、比較部45Lと入力切替部2が設けられる。親チャネル側の線形予測フィルタ14Rからの残差信号eR(n)のエネルギーと子チャネル残差信号eL(n)のエネルギーを例えば次式
Example 3
In the example of FIG. 9, the case where the parent-child relationship has been determined has been described as an example, but each prediction residual may be obtained once and the analysis with the smaller energy as the parent channel may be performed. An example thereof is shown in FIG. In this embodiment, a child channel linear prediction analysis unit including a linear prediction analysis unit 31L, a quantization unit 32L, a conversion unit 33L, and a linear prediction filter 34L similar to FIG. 3 is added to the configuration of FIG. The corresponding configuration corresponds to the second channel second linear prediction analysis means in claim 10), and the same processing is performed on the child channel signal to obtain the residual signal e L (n). Further, a comparison unit 45L and an input switching unit 2 are provided. The energy of the residual signal e R (n) from the linear prediction filter 14R on the parent channel side and the energy of the child channel residual signal e L (n) are represented by the following equations, for example.

Figure 2008209637
により計算し、小さい方のチャネルの入力信号を親チャネル信号、大きい方のチャネルの入力信号を子チャネル信号と決定し、それに従って入力切替部2を切り替え制御する。以下の処理は図9と同様である。なお、比較部45Lによる比較は、残差信号のエネルギーの比較を行う場合を示したが、絶対値の和や符号量の比較を用いてもよい。
Figure 2008209637
The input signal of the smaller channel is determined as the parent channel signal, and the input signal of the larger channel is determined as the child channel signal, and the input switching unit 2 is switched and controlled accordingly. The subsequent processing is the same as in FIG. Note that the comparison by the comparison unit 45L shows a case where energy of residual signals is compared, but a sum of absolute values or a comparison of code amounts may be used.

実施例4
図9の実施例において得られる符号の符号量と、図9における右チャネル信号xR(n)を子チャネルの入力とし、左チャネル信号xL(n)を親チャネルの入力として(即ち親子関係を逆にして)図11に示すように再度符号化を行い、図9の場合の符号量と比較しての少ない方を出力としてもよい。例えば、図12に示すように、図9(又は図11)の構成で示される符号化装置をこの変形実施例の符号化部3とし、符号化部3の入力側に入力切替部2を設け、出力側に選択出力部4を設ける。選択出力部4には符号化部3を構成する図9(又は図11)の符号合成部24R,63Mからの符号の組を保持する記憶部4A,4Bと、それらの記憶部4A,4Bに保持された符号の組の符号量を計算し、どちらが小であるか判定する符号量比較部4Cと、小さいと判定されたほうの符号の組を選択出力する選択部4Dとが設けられている。
Example 4
The code amount obtained in the embodiment of FIG. 9 and the right channel signal x R (n) in FIG. 9 as the input of the child channel and the left channel signal x L (n) as the input of the parent channel (that is, the parent-child relationship) It is also possible to perform the encoding again as shown in FIG. 11 and to output the smaller one compared with the code amount in the case of FIG. For example, as shown in FIG. 12, the encoding device shown in the configuration of FIG. 9 (or FIG. 11) is the encoding unit 3 of this modified example, and the input switching unit 2 is provided on the input side of the encoding unit 3. The selection output unit 4 is provided on the output side. The selection output unit 4 includes storage units 4A and 4B that hold a set of codes from the code synthesis units 24R and 63M in FIG. 9 (or FIG. 11) constituting the encoding unit 3, and the storage units 4A and 4B. A code amount comparison unit 4C that calculates the code amount of the retained code set and determines which is smaller, and a selection unit 4D that selectively outputs the code set that is determined to be smaller are provided. .

まず、入力切替部2により右チャネル信号を親チャネル信号、左チャネル信号を子チャネル信号として符号化部3に入力し、図9に示すように符号化処理を行なう。出力符号Cg R, Cg Mは例えば記憶部4Aに保持する。
次に、入力切替部2を切り替えて右チャネル信号を親チャネル信号、右チャネル信号を子チャネル信号として符号化部3に入力し、図11に示すように符号化処理(LとRを逆にした処理)を行なう。図9における信号または符号を表す記号に使用されているMは図11の処理においてM2に変えてある。また図9における記号γはγ2に変えてある。図11の符号化処理による出力符号Cg L, Cg M2は記憶部4Bに保持される。
First, the input switching unit 2 inputs the right channel signal as a parent channel signal and the left channel signal as a child channel signal to the encoding unit 3, and performs an encoding process as shown in FIG. The output codes C g R and C g M are held in the storage unit 4A, for example.
Next, the input switching unit 2 is switched to input the right channel signal as a parent channel signal and the right channel signal as a child channel signal to the encoding unit 3 and perform encoding processing (L and R are reversed as shown in FIG. 11). Process). M used for a symbol representing a signal or a sign in FIG. 9 is changed to M2 in the process of FIG. Further, the symbol γ in FIG. 9 is changed to γ 2 . Output codes C g L and C g M2 obtained by the encoding process of FIG. 11 are held in the storage unit 4B.

符号量比較部4Cにより記憶部4Aに保持されている符号Cg R+Cg Mと記憶部4Bに保持されている符号Cg L+Cg M2の符号量をそれぞれ計算し、符号量が少ないほうを選択出力部4Dにより選択し、選択した符号の組と、何れのチャネルが親チャネル(又は子チャネル)であるかを表す情報CCとを出力する。
この方法によれば、右チャネル残差信号のエネルギーと左チャネル残差信号エネルギーを比較して親チャネル、子チャネルを決定する場合より、より効率の高い符号化が可能となる。
The code amount of the code C g R + C g M held in the storage unit 4A and the code C g L + C g M2 held in the storage unit 4B are respectively calculated by the code amount comparison unit 4C. select the better the selection output section 4D small, a set of the selected code, any channel and outputs the information C C indicating whether a parent channel (or child channels).
According to this method, encoding can be performed more efficiently than when the parent channel and child channel are determined by comparing the energy of the right channel residual signal and the energy of the left channel residual signal.

実施例5
子チャネルに関しては、通常の線形予測分析を行って求めた係数符号Ck Lと残差符号Ce Lとを合成して得たCg Lと、図9の実施例で求めたCg Mの符号量を符号量比較部で比較して少ない方を出力しても良い。その変形実施例を図13に示す。この変形実施例は、図9の実施例に対し、図3と同様の線形予測分析部31L、量子化部32L、変換部33L、線形予測フィルタ34L、残差符号化部42L、係数符号化部65L、符号合成部66L、符号量比較部67が追加され、図3の場合と同様の処理を行なう。
図13おける線形予測分析部31L、量子化部32L、変換部33L、線形予測フィルタ34Lを含む構成は、請求項12における第2チャネル線形予測分析手段に対応する。図13における残差符号化部65L、係数符号化部66L、符号合成部67Lを含む構成は、請求項12における第2チャネル第2符号化手段に対応する。
符号合成部67Lからの合成符号Cg Lと符号合成部63Mからの合成符号Cg Mが符号量比較部71に与えられてそれらの符号量が比較され、少ない方の合成符号を選択してどちらを選択したかを表す情報と共に子チャネルの符号として出力する。この実施例によれば、減算処理を行わないほうが符号量が少ない場合には、通常の線形予測分析の結果を用いることになるので、従来法と比べて圧縮率が悪化することは常にない。
Example 5
For the child channel, C g L obtained by combining the coefficient code C k L obtained by performing the normal linear prediction analysis and the residual code C e L, and C g M obtained in the embodiment of FIG. The code amount may be compared by the code amount comparison unit and the smaller one may be output. A modified embodiment is shown in FIG. This modified embodiment is similar to the embodiment of FIG. 9 in that the same linear prediction analysis unit 31L, quantization unit 32L, conversion unit 33L, linear prediction filter 34L, residual encoding unit 42L, coefficient encoding unit as in FIG. 65L, a code synthesizing unit 66L, and a code amount comparing unit 67 are added, and the same processing as in FIG. 3 is performed.
The configuration including the linear prediction analysis unit 31L, the quantization unit 32L, the conversion unit 33L, and the linear prediction filter 34L in FIG. 13 corresponds to the second channel linear prediction analysis unit in claim 12. The configuration including the residual encoding unit 65L, the coefficient encoding unit 66L, and the code synthesis unit 67L in FIG. 13 corresponds to the second channel second encoding unit in claim 12.
Combined code C g M from composite code C g L and the code combining unit 63M from the code combining unit 67L is given to the code amount comparator 71 is compared their code amount, and select the composite code of the smaller It outputs as the code | symbol of a child channel with the information showing which was selected. According to this embodiment, when the code amount is smaller when the subtraction process is not performed, the result of the normal linear prediction analysis is used, so that the compression rate is not always deteriorated as compared with the conventional method.

実施例6
相関格子法に基づく式(14), (15), (16), (19)で計算されるPARCOR係数ki(i=1, 2, , P)の絶対値は原理的に1より大となることはないが、実際の演算処理においては、何らかの原因(例えばコンピュータによる数値演算における端数切捨てあるいは切り上げなど)により、まれに係数kiの絶対値が1より大となってしまうことがある。図9の実施例において、チャネル間相関を利用した線形予測分析部41Mにより生成されたPARCOR係数ki Mに絶対値が1以上のものがあると、それらの係数を変換して得た線形予測係数ai Mによる線形予測フィルタ44Mの動作が不安定になる問題がある。そこで、図13の変形実施例において、符号量比較部68で合成符号Cg LとCg Mの符号量を比較して少ない方を出力する代わりに、チャネル間相関を利用した線形予測分析部41Mで得られたPARCOR係数に依存してどちらを選択するかを決めてもよい。その例を図14に示す。図14の変形実施例は、図13の変形実施例において符号量比較部68の代わりに符号選択部69を設けたものである。
Example 6
In principle, the absolute value of PARCOR coefficient k i (i = 1, 2,, P) calculated by Eqs. (14), (15), (16), (19) based on the correlation grid method is greater than 1. In an actual calculation process, the absolute value of the coefficient k i may sometimes be larger than 1 due to some cause (for example, rounding down or rounding up in a numerical calculation by a computer). In the embodiment of FIG. 9, if there is a PARCOR coefficient k i M generated by the linear prediction analysis unit 41M using the inter-channel correlation having an absolute value of 1 or more, the linear prediction obtained by converting those coefficients. There is a problem that the operation of the linear prediction filter 44M with the coefficient a i M becomes unstable. Therefore, in the modified embodiment of FIG. 13, instead of comparing the code amounts of the composite codes C g L and C g M by the code amount comparison unit 68 and outputting the smaller one, a linear prediction analysis unit using inter-channel correlation Which one to select may be determined depending on the PARCOR coefficient obtained at 41M. An example is shown in FIG. In the modified embodiment of FIG. 14, a code selection unit 69 is provided instead of the code amount comparison unit 68 in the modified embodiment of FIG.

図14おける線形予測分析部31L、量子化部32L、変換部33L、線形予測フィルタ34Lを含む構成は、請求項13における第2チャネル線形予測分析手段に対応する。図14における残差符号化部65L、係数符号化部66L、符号合成部67Lを含む構成は、請求項13における第2チャネル第2符号化手段に対応する。   The configuration including the linear prediction analysis unit 31L, the quantization unit 32L, the conversion unit 33L, and the linear prediction filter 34L in FIG. 14 corresponds to the second channel linear prediction analysis unit in claim 13. The configuration including the residual encoding unit 65L, the coefficient encoding unit 66L, and the code synthesis unit 67L in FIG. 14 corresponds to the second channel second encoding unit in claim 13.

符号選択部69はチャネル間相関を利用した線形予測分析部41Mにより得られたPM個のPARCOR係数ki M(i=1, 2, …, PM)の、いずれか少なくとも1つの係数の絶対値が閾値(例えば1)以上の場合は従来と同様の合成符号Cg Lを、そうでない場合は合成符号Cg Mを子チャネル符号として出力する。前者を選択した場合は、量子化部42M,変換部43M,線形予測フィルタ44M、残差符号化部61M、重み符号化部62M、符号合成部63M、係数符号化部64M等の処理を行う必要がないので、処理量を減らすことができる。 Code selection unit 69 PARCOR coefficient P M pieces obtained by the linear prediction analysis unit 41M using inter-channel correlation k i M (i = 1, 2, ..., P M) of either at least one coefficient When the absolute value is greater than or equal to a threshold (for example, 1), the same composite code C g L as the conventional one is output, and otherwise, the composite code C g M is output as the child channel code. When the former is selected, the quantization unit 42M, the conversion unit 43M, the linear prediction filter 44M, the residual encoding unit 61M, the weight encoding unit 62M, the code synthesis unit 63M, the coefficient encoding unit 64M, and the like need to be performed. Since there is no, the amount of processing can be reduced.

上述した各実施例1〜6は2チャネル信号の場合を示したが、2チャネルよりチャネル数が多い場合は、非特許文献1に示されているように、例えば残差信号のエネルギーあるいは絶対値の和が小さくなるようなペアを決め、それぞれのペアについて上述した符号化を行なえばよい。その場合、1つまたは複数のチャネルについてはそれぞれ他のチャネルと重複して複数のペアを作ってもよいし、1つまたは複数のチャネルについてはそれぞれ単独で符号化してもよい。ロスレス符号化の場合は、親チャネルを表す符号も出力する。ただし、入力が2チャネルの場合には、重み係数符合の有無により親子関係が明示的なので、親チャネルを表す符号は省略してもよい。
上述したこの発明の各実施例による符号化方法は、コンピュータで実行可能なプログラムとして実施してもよい。また、そのプログラムを読み取り可能な記録媒体に記録しておき、コンピュータによりその記録媒体から読み出したプログラムを実行してもよい。
Each of the first to sixth embodiments described above shows the case of a two-channel signal. However, when there are more channels than two channels, as shown in Non-Patent Document 1, for example, the energy or absolute value of the residual signal It is only necessary to determine a pair that reduces the sum of the two and perform the above-described encoding for each pair. In that case, one or a plurality of channels may be overlapped with another channel to form a plurality of pairs, or one or a plurality of channels may be encoded independently. In the case of lossless coding, a code representing the parent channel is also output. However, when the input is two channels, the parent-child relationship is explicit depending on the presence / absence of the weighting coefficient code, and therefore the code representing the parent channel may be omitted.
The encoding method according to each embodiment of the present invention described above may be implemented as a computer-executable program. Alternatively, the program may be recorded on a readable recording medium, and the program read from the recording medium may be executed by a computer.

図15は従来の方法と、この発明の図7による方法により、さまざまな種類の音源ファイルについての平均圧縮率を比較したものである。音源は30秒のステレオ音源であり、48kHz/16bit(15ファイル)、48kHz/24bit(15ファイル)、96kHz/24bit(15ファイル)、192kHz/24bit(6ファイル)を使用した。図に示すように予測次数10,30,50のいずれの場合もこの発明による符号化の方が圧縮率(符号化後のデータ量/符号化前のデータ量)が小さくなっていることが示されている。   FIG. 15 compares the average compression rates for various types of sound source files by the conventional method and the method according to FIG. 7 of the present invention. The sound source was a stereo sound source of 30 seconds, and 48 kHz / 16 bit (15 files), 48 kHz / 24 bit (15 files), 96 kHz / 24 bit (15 files), and 192 kHz / 24 bit (6 files) were used. As shown in the figure, it is shown that the compression ratio (data amount after encoding / data amount before encoding) is smaller in the encoding according to the present invention in any of the prediction orders 10, 30, and 50. Has been.

従来のマルチチャネル符号化の概念を示すブロック図。The block diagram which shows the concept of the conventional multichannel encoding. 従来の格子法によるPARCOR係数の決定方法を説明するための図。The figure for demonstrating the determination method of the PARCOR coefficient by the conventional lattice method. 従来のマルチチャネル符号化装置の例を示すブロック図。The block diagram which shows the example of the conventional multichannel encoding apparatus. この発明による相関格子法によるPARCOR係数の決定方法を説明するための図。The figure for demonstrating the determination method of the PARCOR coefficient by the correlation grid method by this invention. 相関格子法の変形例を説明するための図。The figure for demonstrating the modification of a correlation lattice method. 相関格子法の他の例を説明するための図。The figure for demonstrating the other example of a correlation lattice method. この発明によるマルチチャネル符号化装置の基本的機能構成ブロック図。1 is a basic functional configuration block diagram of a multi-channel encoding device according to the present invention. FIG. この発明によるマルチチャネル符号化方法の基本的な処理手順を示すフロー図。The flowchart which shows the basic process sequence of the multichannel encoding method by this invention. この発明によるマルチチャネル符号化装置の実施例1を示すブロック図。1 is a block diagram showing a first embodiment of a multi-channel encoding device according to the present invention. この発明による実施例2を示すブロック図。The block diagram which shows Example 2 by this invention. 図9における左右チャネル信号を入れ替えた処理を示すブロック図。The block diagram which shows the process which replaced the left-right channel signal in FIG. 図9と図11による実施例3を示すブロック図。FIG. 12 is a block diagram showing a third embodiment according to FIG. 9 and FIG. 11. この発明による実施例4を示すブロック図。The block diagram which shows Example 4 by this invention. この発明による実施例5を示すブロック図。The block diagram which shows Example 5 by this invention. この発明の効果を示すためのグラフ。The graph for showing the effect of this invention.

Claims (17)

複数サンプルで構成されるフレーム毎に入力された複数チャネルの信号に対応する符号を生成するマルチチャネル符号化方法であり、
少なくとも1つのチャネル、以下第1チャネルと呼ぶ、の信号を線形予測分析して第1チャネルPARCOR係数と第1チャネル残差信号を生成する第1チャネル線形予測分析ステップと、
上記第1チャネル以外の少なくとも1つのチャネル、以下第2チャネルと呼ぶ、の信号からその残差信号が上記第1チャネル残差信号に近づくように第2チャネルPARCOR係数を相関格子法により求め、その第2チャネルPARCOR係数に基づいて上記第2チャネル信号の残差信号を第2チャネル残差信号として生成するチャネル間相関を利用した線形予測分析ステップと、
上記第1チャネル残差信号と上記第2チャネル残差信号間の重み付き減算処理により残差差分信号を生成する重み付き減算ステップと、
上記第1チャネルPARCOR係数と上記第1チャネル残差信号を符号化して第1チャネル符号を出力し、少なくとも上記第2チャネルPARCOR係数と上記残差差分信号を符号化して第2チャネル符号を出力する符号化ステップ、
とを含むことを特徴とするマルチチャネル信号符号化方法。
A multi-channel encoding method for generating a code corresponding to a signal of a plurality of channels input for each frame composed of a plurality of samples,
A first channel linear prediction analysis step of linearly predicting and analyzing a signal of at least one channel, hereinafter referred to as a first channel, to generate a first channel PARCOR coefficient and a first channel residual signal;
A second channel PARCOR coefficient is obtained by a correlation grid method so that the residual signal approaches the first channel residual signal from a signal of at least one channel other than the first channel, hereinafter referred to as a second channel, A linear prediction analysis step using inter-channel correlation that generates a residual signal of the second channel signal as a second channel residual signal based on a second channel PARCOR coefficient;
A weighted subtraction step of generating a residual difference signal by a weighted subtraction process between the first channel residual signal and the second channel residual signal;
The first channel PARCOR coefficient and the first channel residual signal are encoded to output a first channel code, and at least the second channel PARCOR coefficient and the residual difference signal are encoded to output a second channel code. Encoding step,
And a multi-channel signal encoding method.
請求項1記載のマルチチャネル信号符号化方法において、上記第2チャネル信号を線形予測分析して第2チャネル第2残差信号を生成する第2チャネル第2線形予測分析ステップと、上記第1チャネル残差信号の基準値と上記第2チャネル第2残差信号の基準値を比較し、その比較結果に基づいて上記第1チャネル信号と上記第2チャネル信号を入れ替えを制御する比較制御ステップを更に含むことを特徴とするマルチチャネル信号符号化方法。   2. The multi-channel signal encoding method according to claim 1, wherein a second channel second linear prediction analysis step of generating a second channel second residual signal by performing a linear prediction analysis on the second channel signal, and the first channel. A comparison control step of comparing a reference value of the residual signal with a reference value of the second channel second residual signal, and controlling switching of the first channel signal and the second channel signal based on the comparison result A multi-channel signal encoding method comprising: 請求項1記載のマルチチャネル信号符号化方法において、上記第1チャネル信号と上記第2チャネル信号を入れ替えないときの上記第1チャネル符号と上記第2チャネル符号の合計符号量と、入れ替えたときの合計符号量を比較し、合計符号量の小さい方を選択出力すると共にどちらを選択したかを表す情報を出力する選択出力ステップを更に含むことを特徴とするマルチチャネル信号符号化方法。   The multi-channel signal encoding method according to claim 1, wherein the total code amount of the first channel code and the second channel code when the first channel signal and the second channel signal are not interchanged with each other A multi-channel signal encoding method further comprising a selection output step of comparing the total code amount, selecting and outputting the smaller one of the total code amounts, and outputting information indicating which one is selected. 請求項1記載のマルチチャネル信号符号化方法において、上記第2チャネル信号を線形予測分析して第2チャネル第2PARCOR係数と、第2チャネル第2残差信号とを生成する第2チャネル線形予測分析ステップと、上記第2チャネル第2残差信号と上記第2チャネル第2PARCOR係数を符号化し、第2チャネル第2符号を出力する第2チャネル第2符号化ステップと、上記第2チャネル符号と上記第2チャネル第2符号の符号量を比較し、符号量の小さい方を第2チャネル符号として出力する符号量比較ステップとを更に含むことを特徴とするマルチチャネル信号符号化方法。   2. The multi-channel signal encoding method according to claim 1, wherein the second channel signal is subjected to linear prediction analysis to generate a second channel second PARCOR coefficient and a second channel second residual signal. A second channel second encoding step for encoding the second channel second residual signal and the second channel second PARCOR coefficient, and outputting a second channel second code, the second channel code, and A multi-channel signal encoding method, further comprising: a code amount comparison step of comparing the code amount of the second channel second code and outputting the smaller code amount as the second channel code. 請求項1記載のマルチチャネル信号符号化方法において、上記第2チャネル信号を線形予測分析して第2チャネル第2PARCOR係数と第2チャネル第2残差信号とを生成する第2チャネル線形予測分析ステップと、上記第2チャネル第2残差信号と上記第2チャネル第2PARCOR係数とを符号化して第2チャネル第2符号を出力する第2チャネル第2符号化ステップと、上記第2チャネルPARCOR係数の少なくとも1つの絶対値が所定値以上であるか否かにより上記第2チャネル第2符号か上記第2チャネル符号を選択出力する符号選択ステップとを更に含むことを特徴とするマルチチャネル信号符号化方法。   2. The multi-channel signal encoding method according to claim 1, wherein the second channel signal is subjected to linear prediction analysis to generate a second channel second PARCOR coefficient and a second channel second residual signal. A second channel second encoding step of encoding the second channel second residual signal and the second channel second PARCOR coefficient to output a second channel second code, and the second channel PARCOR coefficient A multi-channel signal encoding method, further comprising: a code selection step of selectively outputting the second channel second code or the second channel code depending on whether or not at least one absolute value is equal to or greater than a predetermined value. . 請求項1乃至5のいずれか記載のマルチチャネル信号符号化方法において、上記第2チャネルPARCOR係数を求めるステップは、複数段の処理による格子法の任意の少なくとも1つの段において、上記第2チャネル信号の前向き予測誤差と上記第1チャネル残差信号間の相互相関と、上記第2チャネル信号の後向き予測誤差と上記第1チャネル残差信号間の相互相関に基づいて重み係数を決めるステップと、上記第2チャネル信号の前向き予測誤差と後向き予測誤差に対しそれぞれ上記第1チャネル残差信号を上記重み係数により重み付け減算をすることにより更新した前向き予測誤差と後向き予測誤差に基づいてその段のPARCOR係数を計算するステップを含むことを特徴とするマルチチャネル信号符号化方法。   6. The multi-channel signal encoding method according to claim 1, wherein the step of obtaining the second channel PARCOR coefficient includes the second channel signal in at least one stage of a lattice method using a plurality of stages of processing. Determining a weighting factor based on a cross-correlation between the forward prediction error of the first channel residual signal and the cross-correlation between the backward prediction error of the second channel signal and the first channel residual signal; The PARCOR coefficient of the stage based on the forward prediction error and the backward prediction error updated by weighting and subtracting the first channel residual signal with the weighting coefficient for the forward prediction error and the backward prediction error of the second channel signal, respectively. A multi-channel signal encoding method comprising the step of: 請求項6記載のマルチチャネル信号符号化方法において、上記重み係数を決めるステップは上記第2チャネル信号の上記前向き予測誤差と上記第1チャネル残差信号間の相互相関と、上記後向き予測誤差と上記第1チャネル残差信号間の相互相関との平均に基づいて計算することを特徴とするマルチチャネル信号符号化方法。   7. The multi-channel signal encoding method according to claim 6, wherein the step of determining the weighting factor includes the cross-correlation between the forward prediction error of the second channel signal and the first channel residual signal, the backward prediction error, and the A multi-channel signal encoding method comprising calculating based on an average of cross-correlations between first channel residual signals. 請求項1乃至5のいずれか記載のマルチチャネル信号符号化方法において、上記第2チャネルPARCOR係数を求めるステップは、上記第2チャネル信号の前向き予測誤差と後向き予測誤差間の相互相関から、上記前向き予測誤差と上記第1チャネル残差信号間の相互相関と、上記後向き予測誤差と上記第1チャネル残差信号間の相互相関との積の規格化された値を減算して得た第1の値を求め、上記前向き予測誤差エネルギーと上記後向き予測誤差のエネルギーの和から、上記前向き予測誤差と上記第1チャネル残差信号間の相互相関と上記後向き予測誤差と上記第1チャネル残差信号間の相互相関の2乗和平均の規格化された値を減算して得た第2の値を求め、上記第1の値と上記第2の値の比に基づいて上記PARCOR係数を計算することを特徴とするマルチチャネル信号符号化方法。   6. The multi-channel signal encoding method according to claim 1, wherein the step of obtaining the second channel PARCOR coefficient is based on a cross correlation between a forward prediction error and a backward prediction error of the second channel signal. A first value obtained by subtracting a normalized value of a product of a prediction error and a cross-correlation between the first channel residual signal and a cross-correlation between the backward prediction error and the first channel residual signal. A value is obtained, and the cross-correlation between the forward prediction error and the first channel residual signal, the backward prediction error, and the first channel residual signal is calculated from the sum of the forward prediction error energy and the backward prediction error energy. Obtaining a second value obtained by subtracting a normalized value of the square sum of the cross-correlation of the cross-correlation, and calculating the PARCOR coefficient based on a ratio between the first value and the second value With features Multichannel signal coding method that. 複数サンプルで構成されるフレーム毎に入力された複数チャネルの信号に対応する符号を生成するマルチチャネル符号化装置であり、
少なくとも1つのチャネル、以下第1チャネルと呼ぶ、の第1チャネル信号を線形予測分析して第1チャネルPARCOR係数と第1チャネル残差信号を生成する第1チャネル線形予測分析手段と、
上記第1チャネル以外の少なくとも1つのチャネル、以下第2チャネルと呼ぶ、の信号からその残差信号が上記第1チャネル残差信号に似るように第2チャネルPARCOR係数を相関格子法により求め、その第2チャネルPARCOR係数に基づいて上記第2チャネル信号の残差信号を第2チャネル残差信号として生成するチャネル間相関を利用した線形予測分析手段と、
上記第1チャネル残差信号と上記第2チャネル残差信号間の重み付き減算処理により残差差分信号を生成する重み付き減算手段と、
上記第1チャネルPARCOR係数と上記第1チャネル残差信号を符号化して第1チャネル符号を出力する第1チャネル符号化手段と、
少なくとも上記第2チャネルPARCOR係数と上記残差差分信号を符号化して第2チャネル符号を出力する第2チャネル符号化手段、
とを含むことを特徴とするマルチチャネル信号符号化装置。
A multi-channel encoding device that generates a code corresponding to a signal of a plurality of channels input for each frame composed of a plurality of samples,
First channel linear prediction analysis means for generating a first channel PARCOR coefficient and a first channel residual signal by performing a linear prediction analysis of a first channel signal of at least one channel, hereinafter referred to as a first channel;
A second channel PARCOR coefficient is obtained from a signal of at least one channel other than the first channel, hereinafter referred to as a second channel, so that the residual signal resembles the first channel residual signal by a correlation lattice method, Linear prediction analysis means using inter-channel correlation for generating a residual signal of the second channel signal as a second channel residual signal based on a second channel PARCOR coefficient;
Weighted subtraction means for generating a residual difference signal by weighted subtraction processing between the first channel residual signal and the second channel residual signal;
First channel encoding means for encoding the first channel PARCOR coefficient and the first channel residual signal and outputting a first channel code;
Second channel encoding means for encoding at least the second channel PARCOR coefficient and the residual difference signal and outputting a second channel code;
A multi-channel signal encoding device.
請求項9記載のマルチチャネル信号符号化装置において、上記第2チャネル信号を線形予測分析して第2チャネル第2残差信号を生成する第2チャネル第2線形予測分析手段と、上記第1チャネル信号と上記第2チャネル信号を入れ替え可能な入れ替え手段と、上記第1チャネル残差信号の基準値と上記第2チャネル第2残差信号の基準値を比較し、その比較結果に基づいて上記入れ替え手段を制御する比較制御手段を更に含むことを特徴とするマルチチャネル信号符号化装置。   10. The multi-channel signal encoding apparatus according to claim 9, wherein second channel second linear prediction analysis means for generating a second channel second residual signal by performing linear prediction analysis on the second channel signal, and the first channel. A switching means capable of switching the signal and the second channel signal, a reference value of the first channel residual signal and a reference value of the second channel second residual signal are compared, and the switching is performed based on the comparison result. A multi-channel signal encoding apparatus, further comprising comparison control means for controlling the means. 請求項9記載のマルチチャネル信号符号化装置において、上記第1チャネル信号と上記第2チャネル信号を入れ替え可能な入力切替手段と、上記入力切替手段が、上記第1チャネル信号と上記第2チャネル信号を入れ替えないときの上記第1チャネル符号と上記第2チャネル符号の合計符号量と、入れ替えたときの合計符号量を比較し、合計符号量の小さい方を選択出力すると共にどちらを選択したかを表す情報を出力する選択出力手段とを更に含むことを特徴とするマルチチャネル信号符号化装置。   10. The multi-channel signal encoding apparatus according to claim 9, wherein the input switching means capable of switching the first channel signal and the second channel signal, and the input switching means include the first channel signal and the second channel signal. The total code amount of the first channel code and the second channel code when the code is not replaced is compared with the total code amount when the code is replaced, and the smaller total code amount is selected and output, and which one is selected A multi-channel signal encoding apparatus, further comprising selection output means for outputting information to be expressed. 請求項9記載のマルチチャネル信号符号化装置において、上記第2チャネル信号を線形予測分析して第2チャネル第2PARCOR係数と、第2チャネル第2残差信号とを生成する第2チャネル線形予測分析手段と、上記第2チャネル第2残差信号と上記第2チャネル第2PARCOR係数を符号化し、第2チャネル第2符号を出力する第2チャネル第2符号化手段と、上記第2チャネル符号と上記第2チャネル第2符号の符号量を比較し、符号量の小さいほうを第2チャネル符号として出力する符号量比較手段とを更に含むことを特徴とするマルチチャネル信号符号化装置。   10. The multi-channel signal encoding apparatus according to claim 9, wherein the second channel signal is subjected to linear prediction analysis to generate a second channel second PARCOR coefficient and a second channel second residual signal. Means, a second channel second encoding means for encoding the second channel second residual signal and the second channel second PARCOR coefficient, and outputting a second channel second code, the second channel code and the above A multi-channel signal encoding apparatus, further comprising: a code amount comparing means for comparing the code amount of the second channel second code and outputting the smaller code amount as the second channel code. 請求項9記載のマルチチャネル信号符号化装置において、上記第2チャネル信号を線形予測分析して第2チャネル第2PARCOR係数と第2チャネル第2残差信号とを生成する第2チャネル線形予測分析手段と、上記第2チャネル第2残差信号と上記第2チャネル第2PARCOR係数とを符号化して第2チャネル第2符号を出力する第2チャネル第2符号化手段と、上記第2チャネルPARCOR係数の少なくとも1つの絶対値が所定値以上であるか否かにより上記第2チャネル第2符号か上記第2チャネル符号を選択出力する符号選択手段とを更に含むことを特徴とするマルチチャネル信号符号化装置。   10. The multi-channel signal encoding apparatus according to claim 9, wherein said second channel signal is subjected to linear prediction analysis to generate a second channel second PARCOR coefficient and a second channel second residual signal. And second channel second encoding means for encoding the second channel second residual signal and the second channel second PARCOR coefficient and outputting a second channel second code, and second channel PARCOR coefficient A multi-channel signal encoding apparatus, further comprising code selection means for selectively outputting the second channel second code or the second channel code depending on whether or not at least one absolute value is equal to or greater than a predetermined value. . 請求項9乃至13のいずれか記載のマルチチャネル信号符号化装置において、上記チャネル間相関を利用した線形予測分析手段は、格子法による複数の処理段を含み、任意の少なくとも1つの処理段において、上記第2チャネル信号の前向き予測誤差と上記第1チャネル残差信号間の相互相関と、上記第2チャネル信号の後向き予測誤差と上記第1チャネル残差信号間の相互相関に基づいて重み係数を決める重み係数計算手段と、上記第2チャネル信号の前向き予測誤差と後向き予測誤差に対しそれぞれ上記第1チャネル残差信号を上記重み係数により重み付け減算し、得られた差分信号に基づいてその段のPARCOR係数を計算するPARCOR係数計算手段とを含むことを特徴とするマルチチャネル信号符号化装置。   The multi-channel signal encoding apparatus according to any one of claims 9 to 13, wherein the linear prediction analysis means using the inter-channel correlation includes a plurality of processing stages based on a lattice method, and in any at least one processing stage, A weighting factor is determined based on the cross-correlation between the forward prediction error of the second channel signal and the first channel residual signal, and the cross-correlation between the backward prediction error of the second channel signal and the first channel residual signal. A weighting factor calculating means for determining, the first channel residual signal is weighted and subtracted by the weighting factor with respect to the forward prediction error and the backward prediction error of the second channel signal, respectively, and based on the obtained difference signal, And a PARCOR coefficient calculating means for calculating a PARCOR coefficient. 請求項14記載のマルチチャネル信号符号化装置において、上記重み係数計算手段は、上記重み係数を上記第2チャネル信号の上記前向き予測誤差と上記第1チャネル残差信号間の相関と、上記後向き予測誤差と上記第1チャネル残差信号間の相関との平均に基づいて計算することを特徴とするマルチチャネル信号符号化装置。   15. The multi-channel signal encoding apparatus according to claim 14, wherein the weighting factor calculation means uses the weighting factor as a correlation between the forward prediction error of the second channel signal and the first channel residual signal, and the backward prediction. A multi-channel signal encoding apparatus that calculates based on an average of an error and a correlation between the first channel residual signals. 請求項1乃至8のいずれか記載の方法をコンピュータで実行するプログラム。 The program which performs the method in any one of Claims 1 thru | or 8 with a computer. 請求項16記載のプログラムが記録された、コンピュータで読み取り実行可能な記録媒体。 A computer-readable recording medium on which the program according to claim 16 is recorded.
JP2007045982A 2007-02-26 2007-02-26 Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method Active JP4914245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045982A JP4914245B2 (en) 2007-02-26 2007-02-26 Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045982A JP4914245B2 (en) 2007-02-26 2007-02-26 Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method

Publications (2)

Publication Number Publication Date
JP2008209637A true JP2008209637A (en) 2008-09-11
JP4914245B2 JP4914245B2 (en) 2012-04-11

Family

ID=39786003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045982A Active JP4914245B2 (en) 2007-02-26 2007-02-26 Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method

Country Status (1)

Country Link
JP (1) JP4914245B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140546A1 (en) * 2009-06-03 2010-12-09 日本電信電話株式会社 Coding method, decoding method, coding apparatus, decoding apparatus, coding program, decoding program and recording medium therefor
WO2010140590A1 (en) * 2009-06-03 2010-12-09 日本電信電話株式会社 Parcor coefficient quantization method, parcor coefficient quantization device, program and storage medium
JP2013130885A (en) * 2008-12-22 2013-07-04 Nippon Telegr & Teleph Corp <Ntt> Encoding method, decoding method, apparatus thereof, program, and recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115267A (en) * 2003-10-10 2005-04-28 Nippon Telegr & Teleph Corp <Ntt> Multichannel encoding method and decoding method, device and program therefor, and recording medium for the program
WO2006003993A1 (en) * 2004-07-02 2006-01-12 Nippon Telegraph And Telephone Corporation Multi-channel signal encoding method, decoding method, device thereof, program, and recording medium thereof
WO2006019117A1 (en) * 2004-08-19 2006-02-23 Nippon Telegraph And Telephone Corporation Multichannel signal encoding method, its decoding method, devices for these, program, and its recording medium
JP2008175993A (en) * 2007-01-17 2008-07-31 Nippon Telegr & Teleph Corp <Ntt> Multichannel signal encoding method, encoding device using same, and program by method, and recording medium recording program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115267A (en) * 2003-10-10 2005-04-28 Nippon Telegr & Teleph Corp <Ntt> Multichannel encoding method and decoding method, device and program therefor, and recording medium for the program
WO2006003993A1 (en) * 2004-07-02 2006-01-12 Nippon Telegraph And Telephone Corporation Multi-channel signal encoding method, decoding method, device thereof, program, and recording medium thereof
WO2006019117A1 (en) * 2004-08-19 2006-02-23 Nippon Telegraph And Telephone Corporation Multichannel signal encoding method, its decoding method, devices for these, program, and its recording medium
JP2008175993A (en) * 2007-01-17 2008-07-31 Nippon Telegr & Teleph Corp <Ntt> Multichannel signal encoding method, encoding device using same, and program by method, and recording medium recording program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130885A (en) * 2008-12-22 2013-07-04 Nippon Telegr & Teleph Corp <Ntt> Encoding method, decoding method, apparatus thereof, program, and recording medium
WO2010140546A1 (en) * 2009-06-03 2010-12-09 日本電信電話株式会社 Coding method, decoding method, coding apparatus, decoding apparatus, coding program, decoding program and recording medium therefor
WO2010140590A1 (en) * 2009-06-03 2010-12-09 日本電信電話株式会社 Parcor coefficient quantization method, parcor coefficient quantization device, program and storage medium
CN102449689A (en) * 2009-06-03 2012-05-09 日本电信电话株式会社 Coding method, decoding method, coding apparatus, decoding apparatus, coding program, decoding program and recording medium therefor
CN102449691A (en) * 2009-06-03 2012-05-09 日本电信电话株式会社 Parcor coefficient quantization method, parcor coefficient quantization device, program and storage medium
JPWO2010140590A1 (en) * 2009-06-03 2012-11-22 日本電信電話株式会社 PARCOR coefficient quantization method, PARCOR coefficient quantization apparatus, program, and recording medium
JP5486597B2 (en) * 2009-06-03 2014-05-07 日本電信電話株式会社 Encoding method, encoding apparatus, encoding program, and recording medium
US8902997B2 (en) 2009-06-03 2014-12-02 Nippon Telegraph And Telephone Corporation PARCOR coefficient quantization method, PARCOR coefficient quantization apparatus, program and recording medium
US8909521B2 (en) 2009-06-03 2014-12-09 Nippon Telegraph And Telephone Corporation Coding method, coding apparatus, coding program, and recording medium therefor

Also Published As

Publication number Publication date
JP4914245B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
USRE49464E1 (en) Audio or video encoder, audio or video decoder and related methods for processing multi-channel audio or video signals using a variable prediction direction
RU2369917C2 (en) Method of improving multichannel reconstruction characteristics based on forecasting
JP5193070B2 (en) Apparatus and method for stepwise encoding of multi-channel audio signals based on principal component analysis
JP5122681B2 (en) Parametric stereo upmix device, parametric stereo decoder, parametric stereo downmix device, and parametric stereo encoder
JP4374448B2 (en) Multi-channel signal encoding method, decoding method thereof, apparatus, program and recording medium thereof
MX2012011528A (en) Mdct-based complex prediction stereo coding.
KR20080033909A (en) Audio decoder
RU2628900C2 (en) Coder, decoder, system and method using concept of balance for parametric coding of audio objects
WO2010140350A1 (en) Down-mixing device, encoder, and method therefor
DK3201918T3 (en) DECODING PROCEDURE AND DECODS FOR DIALOGUE IMPROVEMENT
JP4914245B2 (en) Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method
JP4838774B2 (en) Prediction coefficient determination method and apparatus for multi-channel linear predictive coding, program, and recording medium
JP3886482B2 (en) Multi-channel encoding method, decoding method, apparatus, program and recording medium thereof
JP4963973B2 (en) Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method
JP2007178684A (en) Multi-channel audio decoding device
Muin et al. A review of lossless audio compression standards and algorithms
JP6179122B2 (en) Audio encoding apparatus, audio encoding method, and audio encoding program
JP4838773B2 (en) Prediction order determination method of linear predictive coding, prediction coefficient determination method and apparatus using the same, program, and recording medium thereof
JP5166618B2 (en) Multi-channel signal encoding method, encoding device using the same, program and recording medium using the method
US9837085B2 (en) Audio encoding device and audio coding method
JP2015118123A (en) Audio encoding device, audio encoding method, audio encoding program, and audio decoding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Ref document number: 4914245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350