JP2008209363A - Liquid leakage sensor - Google Patents

Liquid leakage sensor Download PDF

Info

Publication number
JP2008209363A
JP2008209363A JP2007048865A JP2007048865A JP2008209363A JP 2008209363 A JP2008209363 A JP 2008209363A JP 2007048865 A JP2007048865 A JP 2007048865A JP 2007048865 A JP2007048865 A JP 2007048865A JP 2008209363 A JP2008209363 A JP 2008209363A
Authority
JP
Japan
Prior art keywords
liquid leakage
liquid
leakage sensor
sensor unit
leak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007048865A
Other languages
Japanese (ja)
Other versions
JP4999493B2 (en
Inventor
Kenichi Hayashida
建一 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUUDEN KK
Tsuden KK
Original Assignee
TSUUDEN KK
Tsuden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUUDEN KK, Tsuden KK filed Critical TSUUDEN KK
Priority to JP2007048865A priority Critical patent/JP4999493B2/en
Publication of JP2008209363A publication Critical patent/JP2008209363A/en
Application granted granted Critical
Publication of JP4999493B2 publication Critical patent/JP4999493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid leakage sensor capable of detecting leakage by separating oil from moisture in leaked liquid. <P>SOLUTION: This liquid leakage sensor is equipped with an optical liquid leakage sensor part comprising a light emitter, a prism and a light receiver, for detecting leakage liquid by a light receiving amount by the light receiver; and a conductive liquid leakage sensor part for oscillating by using a pair of electrodes as oscillation elements, and detecting the leakage liquid by a variation of an oscillation frequency. The sensor is characterized by detecting liquid leakage of two kinds of liquids. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は漏液センサに関し、特に油と水を分離して検出することができる漏液センサに関する。   The present invention relates to a leak sensor, and more particularly to a leak sensor that can detect oil and water separately.

従来工場等の設備では、配管により液体を供給したり、タンクに液体を貯留したりしている。しかし、配管には多くの個所に接続用の継手が設けられ、また、タンクには液体の入出口が設けられているため、継手や入出口から液体が漏液する場合が多い。また、外部から雨水等が流れ込むこともあり、半導体製造ラインや食品の加工ライン等では水の漏液発生は致命傷である。そこで、液体の漏液の監視を常時行なわなければならず、従来の漏液監視手段としては光学式や導電式が知られている。   In facilities such as conventional factories, liquids are supplied by piping, or liquids are stored in tanks. However, pipes are provided with connecting joints at many locations, and the tank is provided with a liquid inlet / outlet, so that the liquid often leaks from the joint or the inlet / outlet. In addition, rainwater or the like may flow from the outside, and the occurrence of water leakage is fatal in semiconductor manufacturing lines and food processing lines. Therefore, it is necessary to constantly monitor liquid leakage, and optical and conductive methods are known as conventional leakage monitoring means.

特許第3220440号公報(特許文献1)には、水、酸性溶液、アルカリ溶液等の電気的導通を有する液体や、アルコール、シンナー、ベンジン等の有機性で絶縁性を有する液体の漏液を検知する光学式の漏液センサが開示されている。図1(A)、(B)は光学式漏液センサ100の原理構成図を示しており、発光器101から光102を照射し、プリズム104で光102を反射させて受光器105に入射させる。漏液がない図1(A)の場合には、プリズム104からの光102Aが正しい光軸で受光器105に入力する。しかし、図1(B)に示すように漏液110があると、漏液110によってプリズム104の光反射角(屈折角)若しくは透過光量(透過率)が変化し、受光器105への入射光量が変化する。このように光学式漏液センサ100は、発光器101の発光量を一定にし、受光器105の入射光量を検出することによって漏液110の有無を検出する。   Japanese Patent No. 3220440 (Patent Document 1) detects leakage of electrically conductive liquids such as water, acidic solutions and alkaline solutions, and organic and insulating liquids such as alcohol, thinner and benzine. An optical leak sensor is disclosed. FIGS. 1A and 1B show a principle configuration diagram of an optical liquid leakage sensor 100. Light 102 is emitted from a light emitter 101, and the light 102 is reflected by a prism 104 and incident on a light receiver 105. FIG. . In the case of FIG. 1A where there is no leakage, the light 102A from the prism 104 is input to the light receiver 105 along the correct optical axis. However, as shown in FIG. 1B, when there is a liquid leak 110, the light reflection angle (refractive angle) or transmitted light amount (transmittance) of the prism 104 changes due to the liquid leak 110, and the incident light quantity to the light receiver 105 is changed. Changes. As described above, the optical liquid leakage sensor 100 detects the presence or absence of the liquid leakage 110 by making the light emission amount of the light emitter 101 constant and detecting the incident light amount of the light receiver 105.

また、特開2005−156541号公報(特許文献2)は、漏液が浸透し得る気体層又は漏液浸透層を介して、漏液と接触し得る少なくとも1つの漏液検知部を具え、漏液検知部が、少なくとも1つの光学式反射境界面を含む光学式漏液検知部、導電性/絶縁性液体の存在によって電極間インピーダンスが変化する電極対を含む導電式漏液検知部で成る漏液センサを開示している。図2(A)、(B)は特許文献2に開示されている導電式漏液センサの検知原理を示しており、直流電源としてバッテリ201に抵抗202を介して、直列に電極210A、211A、…と電極210B、211B、…とが対向して接続されている。そして、抵抗202を流れる電流を電圧計203で計測する。図2(A)の状態では電流が流れないが、図2(B)に示すように漏液220があると、電極211Aと電極211Bとが電気的に導通することにより電流が流れ、電圧計203で電流に対応した電圧Vが計測されることにより、漏液220の検出を行う。
特許第3220440号公報 特開2005−156541号公報
Japanese Patent Laying-Open No. 2005-156541 (Patent Document 2) includes at least one leak detection unit that can come into contact with a leak via a gas layer or a leak penetration layer through which the leak can permeate. The liquid detector includes an optical leak detector including at least one optical reflective interface, and a conductive leak detector including an electrode pair whose impedance between electrodes changes due to the presence of the conductive / insulating liquid. A liquid sensor is disclosed. 2 (A) and 2 (B) show the detection principle of the conductive leakage sensor disclosed in Patent Document 2, and electrodes 210A and 211A are connected in series via a resistor 202 to a battery 201 as a DC power source. ... and electrodes 210B, 211B, ... are connected to face each other. Then, the current flowing through the resistor 202 is measured by the voltmeter 203. In the state of FIG. 2A, no current flows, but when there is a liquid leakage 220 as shown in FIG. 2B, the current flows because the electrodes 211A and 211B are electrically connected, and a voltmeter In step 203, the voltage V corresponding to the current is measured to detect the liquid leakage 220.
Japanese Patent No. 3220440 JP 2005-156541 A

しかしながら、特許文献1に開示されている漏液センサ100は、筐体の樹脂及び対象となる液体や空気の屈折率の違いによる検出のため、水のみ或いは油のみは検出できても、油と水が入り混じった状態の液体では油分の方が水より比重が軽いため、油が水の上層に来てしまうので光が透過してしまい、水の漏液と油の漏液を正確に分離して検出することが出来ない。また、漏液センサを逆向きにすれば、理論上水が下層、油が上層に来るので、油と水が入り混じった状態での検出は可能になるが、空気の分を考慮すると測定が困難である。   However, the liquid leakage sensor 100 disclosed in Patent Document 1 is a detection based on the difference in refractive index between the resin of the housing and the liquid or air of interest, so that only water or oil can be detected. In a liquid with water mixed in, the oil component is lighter in specific gravity than water, so the oil will reach the upper layer of the water and light will be transmitted, thus accurately separating the water leak from the oil leak. Cannot be detected. If the leak sensor is reversed, the water will theoretically come to the lower layer and the oil will come to the upper layer, so detection in a mixed state of oil and water is possible. Have difficulty.

また、特許文献2に開示されている漏液センサ200は対象物の導電性に依存しているため、導電性のある水には反応するが、水よりもより絶縁体に近い油には反応しにくく電流が流れないので、油の漏液を検出することができない。また、入力電源を交流にして導通及び静電容量を測定すれば検出可能と考えられるが、空気と油の差異が微小であり、複雑かつ高価な測定回路が必要となるのでコスト面でも問題がある。   Moreover, since the leak sensor 200 disclosed in Patent Document 2 depends on the conductivity of an object, it reacts with conductive water, but reacts with oil closer to an insulator than water. It is difficult to conduct the current and the oil leakage cannot be detected. In addition, it is thought that detection is possible by measuring the continuity and capacitance with AC input power, but the difference between air and oil is minute, and complicated and expensive measurement circuits are required. is there.

近年ガソリンスタンドではガソリン漏れの他に、水の漏液を検知して水がガソリンタンク等に入らないようにすることが強く望まれていると共に、食品加工ライン等では油の漏液による混入は致命傷となり、水と油を区別して検出する必要性が強まっている。にも拘らず、従来の漏液センサでは水と油を区別して検出することができなかった。   In recent years, in addition to gasoline leaks at gasoline stations, it has been strongly desired that water leaks be detected so that water does not enter gasoline tanks. It becomes a fatal wound and the need to detect water and oil separately is increasing. Nevertheless, conventional leak sensors could not detect water and oil separately.

本発明は上述のような事情からなされたものであり、本発明の目的は、油と水の特性が相違していることに着目し、光学式漏液センサと導電式漏液センサの長所を組み合わせ、コストアップとなることなく簡便に漏水、油の液漏れを区別して検出できる漏液センサを提供することにある。   The present invention has been made under the circumstances as described above, and the object of the present invention is to pay attention to the fact that the characteristics of oil and water are different. The advantages of the optical leak sensor and the conductive leak sensor are as follows. It is an object of the present invention to provide a liquid leakage sensor that can easily distinguish and detect water leakage and oil leakage without increasing the cost.

本発明は漏液センサに関し、本発明の上記目的は、発光器、プリズム及び受光器で成り、前記受光器の受光量で漏液を検出する光学式漏液センサ部と、1対の電極を発振要素として発振し、発振周波数の変化量で前記漏液を検出する導電式漏液センサ部とを設け、2種類の液体の漏液を分離検出が達成される。   The present invention relates to a liquid leakage sensor, and the above object of the present invention includes a light emitter, a prism, and a light receiver. An optical liquid leakage sensor unit that detects a liquid leakage with the amount of light received by the light receiver and a pair of electrodes. A conductive leakage sensor unit that oscillates as an oscillating element and detects the leakage according to the amount of change in the oscillation frequency is provided to separate and detect leakage of two types of liquid.

また、前記光学式漏液センサ部から出力された信号を液有無信号として、前記導電式漏液センサ部から出力された信号を水と油を区別する区別信号として処理する検出回路を設け、ランプ等で報知することで達成される。   A detection circuit for processing the signal output from the optical leakage sensor unit as a liquid presence / absence signal and the signal output from the conductive leakage sensor unit as a discrimination signal for distinguishing between water and oil; This is achieved by notifying with such as.

本発明の漏液センサによれば、光学式漏液センサと導通(導電)式漏液センサの特長を組み合わせているので、漏液の有無と、漏液がある場合には水と油を区別しての検出が可能である。そのため、ガソリンスタンドや半導体製造ライン、食品加工ライン等での漏液検出に特に有用である。   According to the liquid leakage sensor of the present invention, the features of the optical liquid leakage sensor and the continuity (conductive) liquid leakage sensor are combined. Separate detection is possible. Therefore, it is particularly useful for detecting leaks at a gas station, a semiconductor manufacturing line, a food processing line, or the like.

また、本発明の漏液センサによれば、水、酸性溶液、アルカリ溶液等の電気的導通を有する液体や、超純水、アルコール、シンナー、ベンジン等の有機性溶液等の絶縁性を有する液体の漏液を、小量の漏液量でも確実に検知可能であると共に、20℃において、6×10−2N/m以下である低表面張力を有する液体、特に3×10−2N/m以下である低表面張力を有する薄層状液体の漏液でも、高速に検知することが可能である。ガソリン、灯油、機械油、シリコンオイル、食用油等の検出も可能である。 Further, according to the liquid leakage sensor of the present invention, an electrically conductive liquid such as water, an acidic solution or an alkaline solution, or an insulating liquid such as an organic solution such as ultrapure water, alcohol, thinner or benzine. Liquid with a low surface tension of 6 × 10 −2 N / m or less at 20 ° C., particularly 3 × 10 −2 N / Even a leakage of a thin layered liquid having a low surface tension of m or less can be detected at high speed. Gasoline, kerosene, machine oil, silicone oil, edible oil, etc. can also be detected.

本発明は光学式漏液センサ部で漏液の有無を検出し、導電式漏液センサ部で電気的導通性のある液体(例えば水)と、電気的導通性の無い油や有機性溶液とを区別して検出する。しかも構造的に簡易であり、コストアップとならない特徴がある。   The present invention detects the presence or absence of liquid leakage with an optical liquid leakage sensor unit, and a conductive liquid leakage sensor unit (for example, water) and non-electrically conductive oil or organic solution Are detected and distinguished. Moreover, it is structurally simple and does not increase costs.

以下に、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図3(A)は、本発明の漏液センサ10の構成例を示しており、漏液センサ10は漏液を検出するための床1上に設置され、光学式漏液センサ部を構成する発光器11、プリズム12及び受光器13が設けられ、プリズム12の底面が床1に設置されている。また、発光器11及び受光器13は検出回路20に接続されており、導電式漏液センサ部を構成する1対の電極板14及び15が、漏液センサ10の筐体底部に設けられており、電極板14及び15は検出回路20に接続されると共に、電極板14及び15の下部が筐体外部に突出した構造となっている。   FIG. 3A shows a configuration example of the liquid leakage sensor 10 of the present invention. The liquid leakage sensor 10 is installed on the floor 1 for detecting liquid leakage and constitutes an optical liquid leakage sensor unit. A light emitter 11, a prism 12 and a light receiver 13 are provided, and the bottom surface of the prism 12 is installed on the floor 1. The light emitter 11 and the light receiver 13 are connected to a detection circuit 20, and a pair of electrode plates 14 and 15 constituting a conductive leak sensor unit are provided at the bottom of the casing of the leak sensor 10. In addition, the electrode plates 14 and 15 are connected to the detection circuit 20, and the lower portions of the electrode plates 14 and 15 protrude from the housing.

検出回路20の構成は図4に示すようになっており、受光器13からの検出信号DTは増幅器21で増幅されてコンパレータ22に入力される。コンパレータ22は増幅器21からの検出信号DTaを基準値Vr2と比較し、基準値Vr2に対する大小に応じて2値の液有無信号LSを出力する。また、1対の電極板14及び15は、本発明では静電容量として作用させ、発振器23からの1要素として使用する。発振器23の出力(周波数信号)FはF−V変換器24に入力され、周波数fに対応した電圧Vに変換され、電圧Vはコンパレータ25に入力される。コンパレータ25は電圧Vを基準値Vr1と比較し、基準値Vr1に対する大小に応じて2値の油と水の区別信号DSを出力する。なお、F−V変換器24の特性は、例えば図5に示すように周波数fが高くなるに従って電圧Vが大きくなる。 The configuration of the detection circuit 20 is as shown in FIG. 4, and the detection signal DT from the light receiver 13 is amplified by the amplifier 21 and input to the comparator 22. The comparator 22 compares the detection signal DTa from the amplifier 21 with the reference value V r2 and outputs a binary liquid presence / absence signal LS according to the magnitude of the reference value V r2 . Further, in the present invention, the pair of electrode plates 14 and 15 act as a capacitance and are used as one element from the oscillator 23. An output (frequency signal) F of the oscillator 23 is input to the F-V converter 24, converted to a voltage V corresponding to the frequency f, and the voltage V is input to the comparator 25. The comparator 25 compares the voltage V with the reference value V r1 and outputs a binary oil / water discrimination signal DS according to the magnitude of the reference value V r1 . The characteristic of the FV converter 24 is that the voltage V increases as the frequency f increases as shown in FIG. 5, for example.

コンパレータ25から出力される区別信号DSはAND回路26Aに入力されると共に、NOT回路26Bを経てAND回路26Cに入力され、コンパレータ22から出力される液有無信号LSはAND回路26Aに入力されると共に、NOT回路26Bに入力される。そして、AND回路26Aの出力が“H”となったときにランプ20Aが点灯し、NOT回路26Bの出力が“H”となったときにランプ20Bが点灯し、AND回路26Cの出力が“H”となったときにランプ20Cが点灯する。   The discrimination signal DS output from the comparator 25 is input to the AND circuit 26A, is input to the AND circuit 26C via the NOT circuit 26B, and the liquid presence / absence signal LS output from the comparator 22 is input to the AND circuit 26A. , And input to the NOT circuit 26B. When the output of the AND circuit 26A becomes “H”, the lamp 20A is turned on. When the output of the NOT circuit 26B becomes “H”, the lamp 20B is turned on, and the output of the AND circuit 26C becomes “H”. The lamp 20C is turned on.

このような構成において、図3(A)のように床1上に水や油の漏液が無い場合、コンパレータ22は液無しを示す“L”の液有無信号LSが出力される。従って、コンパレータ25からの区別信号DSに関係なく、NOT回路26Bの出力は“H”となってランプ20Bが点灯する。これにより、現在は液無し、つまり漏液が無いことを知ることができる。   In such a configuration, when there is no water or oil leakage on the floor 1 as shown in FIG. 3A, the comparator 22 outputs a liquid presence / absence signal LS indicating “no liquid”. Therefore, regardless of the discrimination signal DS from the comparator 25, the output of the NOT circuit 26B becomes “H” and the lamp 20B is lit. Thereby, it can be known that there is no liquid at present, that is, there is no leakage.

次に、図3(B)のように床1上に液体2が漏れた場合、前述したようにプリズム12の屈折率若しくは透過率が変化することによって、コンパレータ22の出力である液有無信号LSが“L”から“H”に変わるので、NOT回路26Bの出力が“L”となってランプ20Bが消灯し、液漏れがあることを知ることができる。そして、漏液2の存在によって電極板14及び15で構成する静電容量が変化し、発振器23の発振周波数fが変化し、これがF−V変換器24で電圧Vに変換される。水と油では誘電率が異なるため静電容量も異なり、その結果発振器23の発信周波数も異なり、電圧Vは水と油で相違する。そのため、基準値Vr1に対して、コンパレータ25からの区別信号DSを水に対して“L”とし、油及び空気に対して“H”とすることができる。区別信号DSが“H”、つまり油と空気の場合にはAND回路26Aの出力が“H”となってランプ20Aが点灯する。これにより、油の漏液であることが分かる。また、区別信号DSが“L”、つまり水の場合にはAND回路26Cの出力が“H”となってランプ20Cが点灯する。これにより、水の漏液であることが分かる。 Next, when the liquid 2 leaks onto the floor 1 as shown in FIG. 3B, the liquid presence / absence signal LS, which is the output of the comparator 22, is changed by changing the refractive index or transmittance of the prism 12 as described above. Changes from "L" to "H", the output of the NOT circuit 26B becomes "L", the lamp 20B is turned off, and it can be known that there is a liquid leak. And the electrostatic capacitance comprised by the electrode plates 14 and 15 changes by the presence of the liquid leak 2, and the oscillation frequency f of the oscillator 23 changes, and this is converted into the voltage V by the FV converter 24. Since the dielectric constant is different between water and oil, the capacitance is also different. As a result, the oscillation frequency of the oscillator 23 is also different, and the voltage V is different between water and oil. Therefore, for the reference value V r1 , the discrimination signal DS from the comparator 25 can be “L” for water and “H” for oil and air. When the discrimination signal DS is “H”, that is, oil and air, the output of the AND circuit 26A becomes “H” and the lamp 20A is turned on. Thereby, it turns out that it is an oil leak. When the discrimination signal DS is “L”, that is, water, the output of the AND circuit 26C becomes “H” and the lamp 20C is lit. Thereby, it turns out that it is a water leak.

なお、上述では検出回路20を漏液センサ10内に設けているが配線や無線で外部に設けても良い。また、ランプ20A〜20Cに代えて、或いはランプに加えて音等で報知することも可能である。   In the above description, the detection circuit 20 is provided in the leak sensor 10. However, the detection circuit 20 may be provided outside by wiring or wirelessly. Moreover, it is also possible to notify by sound or the like instead of the lamps 20A to 20C or in addition to the lamp.

また、A/D変換器付きのマイクロコンピュータ(若しくはCPU等の電子処理手段)を使用することにより、コンパレータ22、F−V変換器24、コンパレータ25を不要とすることができる。更にマイクロコンピュータを使用すれば、AND回路26A及び26C、NOT回路26Bを設けることなく論理演算することも可能であり、シンプルなものとなる。   Further, by using a microcomputer with an A / D converter (or electronic processing means such as a CPU), the comparator 22, the FV converter 24, and the comparator 25 can be dispensed with. Further, if a microcomputer is used, it is possible to perform a logical operation without providing the AND circuits 26A and 26C and the NOT circuit 26B, which is simple.

図6は本発明に適用できる発振回路の一例を示しており、電極板14及び15で容量Cを形成し、電極板15に増幅器231を接続し、更にバンドパスフィルタ(位相調整)233及び増幅器234を接続し、増幅器234の出力Faが電極板14に(フィードバックとして)接続されている。増幅器231にはゲイン調整部232が設けられており、ゲイン調整部232で増幅器231のゲインを可変する。   FIG. 6 shows an example of an oscillation circuit applicable to the present invention. A capacitor C is formed by the electrode plates 14 and 15, an amplifier 231 is connected to the electrode plate 15, and a band-pass filter (phase adjustment) 233 and an amplifier are provided. 234 is connected, and the output Fa of the amplifier 234 is connected to the electrode plate 14 (as feedback). The amplifier 231 is provided with a gain adjustment unit 232, and the gain adjustment unit 232 varies the gain of the amplifier 231.

このような構成において、液体(水、油等)が電極板14及び15に接触すれば、電極板14及び15間の容量Cが変化する。よって、容量Cが小さいときは発振せず、容量Cが適正な値(漏液時)になると発振するようにすることにより、液体の有無を検出することができる。   In such a configuration, when a liquid (water, oil, etc.) contacts the electrode plates 14 and 15, the capacitance C between the electrode plates 14 and 15 changes. Therefore, it is possible to detect the presence or absence of the liquid by not oscillating when the capacity C is small and oscillating when the capacity C reaches an appropriate value (at the time of leakage).

図7は本発明の漏液センサ30の構造例を示しており、円盤状の筐体31内に基板32が配設されており、基板32に発光器33及び受光器34が設けられている。発光器33及び受光器34に対向するようにその下方にプリズム35が設けられ、更に1対の電極36A及び36Bが設けられている。基板32上に検出回路が取り付けられていてもよく、筐体31が上下に分割可能に着脱可能に形成された合成樹脂部材で構成されていても良い。かかる構造の合成樹脂部材としては、ポリエチレンテレフタレート、アモルファス性ポリエチレンテレフタレート、ポリエチレン、ポリスチレン、ポリプロピレン等が使用でき、また、一体成形用の熱可塑性エラストマーとしてはポリブタジエン樹脂が使用可能である。   FIG. 7 shows an example of the structure of the liquid leakage sensor 30 of the present invention. A substrate 32 is disposed in a disk-shaped housing 31, and a light emitter 33 and a light receiver 34 are provided on the substrate 32. . A prism 35 is provided below the light emitter 33 and the light receiver 34 so as to face the light emitter 33 and the light receiver 34, and a pair of electrodes 36A and 36B are further provided. A detection circuit may be attached on the substrate 32, and the casing 31 may be formed of a synthetic resin member formed so as to be detachable in a vertical direction. As the synthetic resin member having such a structure, polyethylene terephthalate, amorphous polyethylene terephthalate, polyethylene, polystyrene, polypropylene or the like can be used, and a polybutadiene resin can be used as the thermoplastic elastomer for integral molding.

更に図8に別の実施形態の漏液センサ40を示して説明する。円盤状本体は筐体本体41とキャップ部42とで分割可能に形成され、筐体本体41の底部中央にプリズム43が配設され、本例では4対の電極44a、44b〜47a、47bが筐体本体41の底部に設けられている。また、筐体には電源や信号線等を配線する配線チューブ48が連結されている。電極44a、44b〜47a、47bは直列に接続されても、並列に接続されても良い。   Furthermore, FIG. 8 shows and explains the liquid leakage sensor 40 of another embodiment. The disc-shaped main body is formed so as to be split between the housing main body 41 and the cap portion 42, and a prism 43 is disposed at the center of the bottom of the housing main body 41. In this example, four pairs of electrodes 44a, 44b to 47a, 47b are provided. Provided at the bottom of the housing body 41. In addition, a wiring tube 48 for connecting a power source, a signal line, and the like is connected to the casing. The electrodes 44a, 44b to 47a, 47b may be connected in series or in parallel.

このように複数対の電極44a、44b〜47a、47bを設けることにより、広範囲での漏液を検出することができる。なお、本例では4対の電極を設けているが、電極の対数は任意である。   By providing a plurality of pairs of electrodes 44a, 44b to 47a, 47b as described above, it is possible to detect liquid leakage in a wide range. In this example, four pairs of electrodes are provided, but the number of pairs of electrodes is arbitrary.

本発明の漏液センサによれば、水、酸性溶液、アルカリ溶液等の電気的導通を有する液体や、超純水、アルコール、シンナー、ベンジン等の有機性溶液等の絶縁性を有する液体の漏液を、小量の漏液量でも確実に検知可能であると共に、20℃において、6×10−2N/m以下である低表面張力を有する液体、特に3×10−2N/m以下である低表面張力を有する薄層状液体の漏液でも、高速に検知することが可能である。ガソリン、灯油、機械油、シリコンオイル、食用油等の検出に最適な効果をもたらす。 According to the liquid leakage sensor of the present invention, leakage of an electrically conductive liquid such as water, an acidic solution or an alkaline solution, or an insulating liquid such as an organic solution such as ultrapure water, alcohol, thinner or benzine. The liquid can be reliably detected even with a small amount of liquid leakage, and has a low surface tension of 6 × 10 −2 N / m or less at 20 ° C., particularly 3 × 10 −2 N / m or less. Even a leakage of a thin layered liquid having a low surface tension can be detected at high speed. It is optimal for detecting gasoline, kerosene, machine oil, silicone oil, edible oil, etc.

従来の光学式漏液センサの検知原理を示す図である。It is a figure which shows the detection principle of the conventional optical leak sensor. 従来の導電(導通)式漏液センサの検知原理を示す図である。It is a figure which shows the detection principle of the conventional electroconductive (conduction) type | formula leak sensor. 本発明の漏液センサの構成例を示す構成図である。It is a block diagram which shows the structural example of the leak sensor of this invention. 本発明の漏液センサの検出回路の一例を示すブロック図である。It is a block diagram which shows an example of the detection circuit of the leak sensor of this invention. F−V変換器の特性例を示す図である。It is a figure which shows the example of a characteristic of a FV converter. 発振回路の他の例を示す回路図である。It is a circuit diagram which shows the other example of an oscillation circuit. 本発明の漏液センサの他の構成例を示す構造図である。It is a block diagram which shows the other structural example of the leak sensor of this invention. 本発明の漏液センサの更に他の構成例を示す底面図及び側面図である。It is the bottom view and side view showing other examples of composition of the leak sensor of the present invention.

符号の説明Explanation of symbols

1 床
10、30、40 漏液センサ
11、33、101 発光器
12、35、43、104 プリズム
13、34、105 受光器
14、15 電極板
20 検出回路
20A〜20C ランプ
21、231、234 増幅器
22、25 コンパレータ
23 発振器
24 F−V変換器
26A、26C AND回路
26B NOT回路
31 筐体
32 基板
41 筐体本体
42 キャップ部
48 配線チューブ
100 光学式漏液センサ
102 光
103 検出器底面
110、220 漏液
200 導電式漏液センサ
201 バッテリ
202 抵抗
203 電圧計
232 ゲイン調整部
233 バンドパスフィルタ
1 Floor 10, 30, 40 Leak sensor 11, 33, 101 Light emitter 12, 35, 43, 104 Prism 13, 34, 105 Light receiver 14, 15 Electrode plate 20 Detection circuit 20A-20C Lamp 21, 231, 234 Amplifier 22, 25 Comparator 23 Oscillator 24 FV converter 26A, 26C AND circuit 26B NOT circuit 31 Housing 32 Substrate 41 Housing body 42 Cap section 48 Wiring tube 100 Optical leak sensor 102 Light 103 Detector bottom surface 110, 220 Leakage 200 Conductive leak sensor 201 Battery 202 Resistance 203 Voltmeter 232 Gain adjusting unit 233 Band pass filter

Claims (8)

発光器、プリズム及び受光器で成り、前記受光器の受光量で漏液を検出する光学式漏液センサ部と、1対の電極を発振要素として発振し、発振周波数の変化量で前記漏液を検出する導電式漏液センサ部とを具備し、2種類の液体の漏液を検出することを特徴とする漏液センサ。 An optical leak sensor unit that includes a light emitter, a prism, and a light receiver and detects a liquid leak with the amount of light received by the light receiver, and oscillates with a pair of electrodes as an oscillation element, A liquid leakage sensor comprising: a conductive liquid leakage sensor unit for detecting liquid leakage, and detecting leakage of two types of liquids. 前記光学式漏液センサ部及び前記導電式漏液センサ部の各出力に基づいて、漏液の有無、漏液の種類を判定して出力する検出回路を具備した請求項1に記載の漏液センサ。 2. The liquid leakage according to claim 1, further comprising a detection circuit that determines and outputs the presence / absence of liquid leakage and the type of liquid leakage based on outputs of the optical liquid leakage sensor unit and the conductive liquid leakage sensor unit. Sensor. 前記検出回路は、前記光学式漏液センサ部から出力された検出信号を増幅器とコンパレータによって処理することにより液有無信号を出力するようになっている請求項2に記載の漏液センサ。 The liquid leakage sensor according to claim 2, wherein the detection circuit outputs a liquid presence / absence signal by processing the detection signal output from the optical liquid leakage sensor unit with an amplifier and a comparator. 前記検出回路は、前記導電式漏液センサ部の電極板に接続され、前記電極板を静電容量として作用させ、発振器の1要素として使用し、F−V変換器とコンパレータによって処理することにより、水と油を区別する区別信号を出力するようになっている請求項2に記載の漏液センサ。 The detection circuit is connected to an electrode plate of the conductive leakage sensor unit, and the electrode plate acts as a capacitance, is used as one element of an oscillator, and is processed by an FV converter and a comparator. The liquid leakage sensor according to claim 2, which outputs a discrimination signal for discriminating between water and oil. 前記1対の電極に接続されたゲイン調整部を有する第1増幅器と、前記第1増幅器の出力に接続されたバンドパスフィルタと、前記バンドパスフィルタの出力を入力接続され、出力を前記1対の電極の一方にフィードバックする第2増幅器とを具備して発振回路を形成している請求項2に記載の漏液センサ。 A first amplifier having a gain adjustment unit connected to the pair of electrodes; a band-pass filter connected to an output of the first amplifier; and an output of the band-pass filter connected to the input; The liquid leakage sensor according to claim 2, further comprising a second amplifier that feeds back to one of the electrodes to form an oscillation circuit. 前記検出回路は、前記液有無信号又は前記区別信号が出力されたとき、それらの出力を報知するランプで成っている請求項2乃至5のいずれかに記載の漏液センサ。 The liquid leakage sensor according to any one of claims 2 to 5, wherein the detection circuit comprises a lamp for notifying the output when the liquid presence / absence signal or the discrimination signal is output. 前記検出回路は、前記導電式漏液センサ部の電極板に接続され、前記電極板を静電容量として作用させ、発振器の1要素として使用し、前記発振器の発振周波数を直接測定して処理するマイクロコンピュータ若しくは電子処理手段を具備している請求項2に記載の漏液センサ。 The detection circuit is connected to an electrode plate of the conductive leak sensor unit, causes the electrode plate to act as a capacitance, is used as one element of an oscillator, and directly measures and processes the oscillation frequency of the oscillator The liquid leakage sensor according to claim 2, further comprising a microcomputer or electronic processing means. 前記マイクロコンピュータ若しくは電子処理手段の処理結果を表示する表示手段を更に具備している請求項7に記載の漏液センサ。 8. The liquid leakage sensor according to claim 7, further comprising display means for displaying a processing result of the microcomputer or electronic processing means.
JP2007048865A 2007-02-28 2007-02-28 Leak sensor Active JP4999493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048865A JP4999493B2 (en) 2007-02-28 2007-02-28 Leak sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048865A JP4999493B2 (en) 2007-02-28 2007-02-28 Leak sensor

Publications (2)

Publication Number Publication Date
JP2008209363A true JP2008209363A (en) 2008-09-11
JP4999493B2 JP4999493B2 (en) 2012-08-15

Family

ID=39785770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048865A Active JP4999493B2 (en) 2007-02-28 2007-02-28 Leak sensor

Country Status (1)

Country Link
JP (1) JP4999493B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187650A (en) * 2018-10-10 2019-01-11 北京荣信慧科科技有限公司 A kind of high reliability water-leakage detecting system
KR20190111237A (en) * 2018-03-22 2019-10-02 성백명 Capacitive leak sensor
KR20200005851A (en) * 2018-07-09 2020-01-17 최기환 Sensor for detecting liquid and device using the same
KR20200050914A (en) * 2020-02-26 2020-05-12 (주)메티스 Harmful chemical solution leakage sensor with IoT
CN113310635A (en) * 2021-05-26 2021-08-27 广西电网有限责任公司南宁供电局 CVT oil tank defect detecting and processing device
WO2024063411A1 (en) * 2022-09-22 2024-03-28 (주)플로우테크 Liquid leak detection sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159646A (en) 2017-03-23 2018-10-11 株式会社デンソーウェーブ Water leakage detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249889A (en) * 1988-08-11 1990-02-20 Sekiyu Kodan Underwater oil-gas leakage detector
JP3220440B2 (en) * 1999-09-01 2001-10-22 株式会社ツーデン Liquid leak sensor
JP2002350275A (en) * 2001-05-30 2002-12-04 Tatsuta Electric Wire & Cable Co Ltd Liquid leakage monitoring device
JP2005077317A (en) * 2003-09-02 2005-03-24 Fuji Photo Film Co Ltd Measuring device
JP2005156541A (en) * 2003-10-30 2005-06-16 Tsuuden:Kk Liquid leakage sensor and liquid leakage sensing system
JP2008513772A (en) * 2004-09-15 2008-05-01 エイジェンシー フォー サイエンス, テクノロジー アンド リサーチ Surface plasmon resonance and quartz crystal microbalance sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249889A (en) * 1988-08-11 1990-02-20 Sekiyu Kodan Underwater oil-gas leakage detector
JP3220440B2 (en) * 1999-09-01 2001-10-22 株式会社ツーデン Liquid leak sensor
JP2002350275A (en) * 2001-05-30 2002-12-04 Tatsuta Electric Wire & Cable Co Ltd Liquid leakage monitoring device
JP2005077317A (en) * 2003-09-02 2005-03-24 Fuji Photo Film Co Ltd Measuring device
JP2005156541A (en) * 2003-10-30 2005-06-16 Tsuuden:Kk Liquid leakage sensor and liquid leakage sensing system
JP2008513772A (en) * 2004-09-15 2008-05-01 エイジェンシー フォー サイエンス, テクノロジー アンド リサーチ Surface plasmon resonance and quartz crystal microbalance sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190111237A (en) * 2018-03-22 2019-10-02 성백명 Capacitive leak sensor
KR102063253B1 (en) * 2018-03-22 2020-01-07 성백명 Capacitive leak sensor
KR20200005851A (en) * 2018-07-09 2020-01-17 최기환 Sensor for detecting liquid and device using the same
KR102135683B1 (en) * 2018-07-09 2020-07-20 최기환 Sensor for detecting liquid and device using the same
CN109187650A (en) * 2018-10-10 2019-01-11 北京荣信慧科科技有限公司 A kind of high reliability water-leakage detecting system
CN109187650B (en) * 2018-10-10 2023-12-26 北京荣信慧科科技有限公司 High-reliability water leakage detection system
KR20200050914A (en) * 2020-02-26 2020-05-12 (주)메티스 Harmful chemical solution leakage sensor with IoT
KR102126902B1 (en) * 2020-02-26 2020-06-29 주식회사 트리톤넷 Harmful chemical solution leakage sensor with IoT
CN113310635A (en) * 2021-05-26 2021-08-27 广西电网有限责任公司南宁供电局 CVT oil tank defect detecting and processing device
WO2024063411A1 (en) * 2022-09-22 2024-03-28 (주)플로우테크 Liquid leak detection sensor

Also Published As

Publication number Publication date
JP4999493B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4999493B2 (en) Leak sensor
US7482818B2 (en) Systems and methods for detecting the presence and/or absence of a solid liquid or gas
US9851235B2 (en) Apparatus for determining and/or monitoring at least one process variable of a medium
US9243941B2 (en) Magnetic-inductive flowmeter with an empty tube detecting device of an admittance measuring type
US20130298667A1 (en) Apparatus and Method for Capacitive Fill Level Measurement
TW200930994A (en) Liquid level sensing device and method
US5187444A (en) Sensor for sensing the presence of electrolyte solution
US20190230912A1 (en) Detection device for detecting fishing device entering water and method thereof
JP2004347353A (en) Flow sensor
US7730780B2 (en) Level switch and method for detecting the fill level of a medium in a container
KR100794945B1 (en) Liquid surface level sensor
KR100859568B1 (en) Electrostatic capacitance type sensor for detecting liquid level and system
AU2022228113B2 (en) Liquid Level Measurement Apparatus
RU2304285C2 (en) Method and system for electronic detection of conductive or dielectric substance with dielectric constant higher than dielectric constant of air
US5623252A (en) Liquid level detector using audio frequencies
JP2008281347A (en) Liquid leakage sensor
JPH05133886A (en) Device for detecting properties of fuel
JP2005274158A (en) Electrostatic capacity type liquid sensor
CN219178675U (en) Liquid level detection circuit, container and smoke machine
JP2014118152A (en) Foreign matter mixing detector
US20240025215A1 (en) Liquid height level system
CN214309022U (en) Digital optical liquid level sensor
KR102126902B1 (en) Harmful chemical solution leakage sensor with IoT
JP2015004682A (en) Foreign matter contamination detection device
WO2018058733A1 (en) Anti-overflow detection device for cooking utensil and cooking utensil having same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250