JP2008209361A - Lipid membrane localized fluorescent probe - Google Patents

Lipid membrane localized fluorescent probe Download PDF

Info

Publication number
JP2008209361A
JP2008209361A JP2007048847A JP2007048847A JP2008209361A JP 2008209361 A JP2008209361 A JP 2008209361A JP 2007048847 A JP2007048847 A JP 2007048847A JP 2007048847 A JP2007048847 A JP 2007048847A JP 2008209361 A JP2008209361 A JP 2008209361A
Authority
JP
Japan
Prior art keywords
fluorescent probe
molecular unit
fluorescent
dppec
probe according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007048847A
Other languages
Japanese (ja)
Inventor
Nobuaki So
伸明 宗
Toshihiko Imato
稔彦 今任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007048847A priority Critical patent/JP2008209361A/en
Publication of JP2008209361A publication Critical patent/JP2008209361A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent probe for accurately obtaining a behavior of a hydroxyl radical in a lipid membrane. <P>SOLUTION: A structure includes: a functional fluorescent molecular unit for reacting to the hydroxyl radical, and changing an intensity or a wavelength; and a hydrophobic molecular unit including a phospholipid structure for applying a lipid membrane localization to the fluorescent probe. The fluorescent probe is a compound expressed by formula (A) for example. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脂質膜に局在し、脂質膜中、あるいは脂質膜付近において、計測対象とした生理活性種を検出するための蛍光プローブに関するものである。   The present invention relates to a fluorescent probe for detecting a physiologically active species to be measured in a lipid membrane and in or near the lipid membrane.

生体中に存在する生理活性種の濃度は常に刻々と変化しており、これが生体の恒常性を維持することに繋がっている。従って、生体システムを詳細に理解しようと欲すれば、生物が生きた状態において、生理活性種に関する動的な情報を得ることが必要不可欠となる。   The concentration of physiologically active species present in the living body is constantly changing, which leads to maintaining the homeostasis of the living body. Therefore, if it is desired to understand the biological system in detail, it is indispensable to obtain dynamic information on the biologically active species in a state where the living organism is alive.

生物が生きた状態において、生理活性種に関する動的な情報を得る方法としては蛍光プローブを用いた分析法がある。   There is an analysis method using a fluorescent probe as a method for obtaining dynamic information on a biologically active species in a living state.

蛍光プローブを用いた非破壊的分析法は、細胞を破砕した後に活性を測定するという従来の破壊的分析法では得られなかった生理活性種の時間的かつ空間的な情報を得ることが可能であり、近年細胞内における生理活性種の動態を解明するための有力なツールとして、非常に大きな注目を集めている(非特許文献1参照)。   The non-destructive analysis method using a fluorescent probe can obtain temporal and spatial information on bioactive species that could not be obtained by the conventional destructive analysis method of measuring activity after disrupting cells. In recent years, it has attracted a great deal of attention as an effective tool for elucidating the dynamics of physiologically active species in cells (see Non-Patent Document 1).

蛍光プローブは種々のものが提案されてきているが、蛍光プローブの端緒はCa2+計測用蛍光プローブ(非特許文献2−4参照)であり、以降、金属イオン計測用蛍光プローブを中心に様々な蛍光プローブが開発され、その有用性が証明されている。 Various fluorescent probes have been proposed, but the beginning of the fluorescent probe is a fluorescent probe for Ca 2+ measurement (see Non-Patent Document 2-4), and thereafter, various fluorescent probes for measuring metal ions are mainly used. Fluorescent probes have been developed and their usefulness has been proven.

しかしながら、従来の蛍光プローブ開発においては、細胞質における生理活性種の挙動を捉えることのみに主眼が置かれ、細胞質以外、すなわち脂質膜(細胞膜)等における生理活性種の挙動をとらえることについては注目されていなかった。   However, in the development of conventional fluorescent probes, the main focus is on capturing the behavior of physiologically active species in the cytoplasm, and attention is focused on capturing the behavior of physiologically active species in areas other than the cytoplasm, that is, lipid membranes (cell membranes). It wasn't.

近年、細胞内プロセスの包括的理解に対する要望は益々高まっており、これに伴い細胞質以外、すなわち脂質膜(細胞膜)等における生理活性種の挙動の解明についても非常に重要性が高まっている。   In recent years, there has been an increasing demand for a comprehensive understanding of intracellular processes, and accordingly, the importance of elucidating the behavior of physiologically active species other than the cytoplasm, that is, lipid membranes (cell membranes) and the like is also increasing.

例えば、種々の疾病や老化等と深く関与すると考えられている脂質過酸化反応は脂質膜において進行する反応であり、この脂質過酸化反応に関与している生理活性種の挙動が解明できれば、種々の疾病や老化等のメカニズムを知る一助となる。   For example, lipid peroxidation, which is thought to be deeply involved in various diseases and aging, is a reaction that proceeds in the lipid membrane. If the behavior of physiologically active species involved in this lipid peroxidation can be clarified, It helps to know the mechanism of diseases and aging.

そして、この脂質過酸化反応はヒドロキシルラジカルが主に誘起していると言われている。しかしながら、既存のヒドロキシルラジカル計測用蛍光プローブとして知られるテレフタル酸(非特許文献5,6参照)、蛍光基標識ニトロキシド(非特許文献7−10参照)、HPF及びAFP(非特許文献11参照)、蛍光基標識DNA(非特許文献12参照)、CCA及びSECCA(非特許文献13−15参照)はいずれも水溶液系におけるヒドロキシルラジカルの計測を目的として開発されたものであり、脂質膜におけるヒドロキシルラジカルの挙動を正確に捉える目的に使用することは困難であった。
Zhang,J.,Campbell,R.E.,Ting,A.Y.,Tsien,R.Y.(2002)Nature Reviews Molecular Cell Biology,3,906-918. Tsien,R.Y.(1980) Biochemistry,19,2396-2404. Grynkiewicz,G.,Poenie,M.,Tsien,R.Y.(1985) J.Biol.Chem.,260,3440-3450. Minta,A.,Kao,J.P.Y.,Tsien,R.Y.(1989) J.Biol.Chem.,264,8171-8178. Yan,E.B.,Unthank,J.K.,Castillo-Melendez,M.,Miller,S.L.,Langford,S.J.,Walker,D.W.(2005) J.Appl.Physiol.,98,2304-2310. Qu,X.,Kirschenbaum,L.J.,Borish,E.T.(2000) Photochem.Photobiol.,71,307-313. Pou,S.,Huang,Y-I.,Bhan,A.,Bhadti,V.S.,Hosmane,R.S.,Wu,S.Y.,Cao,G-L.,Rosen,G.M.(1993) Anal.Biochem.,212,85-90. Pou,S.,Bhan,A.,Bhadti,V.S.,Wu,S.Y.,Hosmane,R.S.,Rosen,G.M.(1995) FASEB J.,9,1085-1090. Yang,X-F.,Guo,X-Q.(2001) Anal.Chim.Acta.,434,169-177. Yang,X-F.,Guo,X-Q.(2001) Analyst,126,1800-1804. Setsukinai,K-I.,Urano,Y.,Kakinuma,K.,Majima,H.J.,Nagano,T.(2003) J.Biol.Chem.,278,3170-3175. Soh,N.,Makihara,K.,Sakoda,E.,Imato,T.(2004) Chem.Commun.,496-497. Makrigiorgos,G.M.,Baranowska-Korttlewicz,J.,Bump,E.,Sahu,S.K.,Berman,R.M.,Kassis,A.I.(1993) Int.J.Radiat.Biol.,63,445-458. Makrigiorgos,G.M.,Folkard,M.,Huang,C.,Bump,E.,Baranowska-Kortylewicz,Sahu,S.K.,Michael,B.D.,Kassis,A.I.(1994) Radiat.Res.,138,177-185. Makrigiorgos,G.M.,Bump,E.,Huang,C.,Baranowska-Kortylewicz,J.,Kassis,A.I.(1995) Free Radical Biol.Med.,18,669-678.
This lipid peroxidation reaction is said to be mainly induced by hydroxyl radicals. However, terephthalic acid known as an existing fluorescent probe for measuring hydroxyl radical (see Non-Patent Documents 5 and 6), fluorescent group-labeled nitroxide (see Non-Patent Documents 7-10), HPF and AFP (see Non-Patent Document 11), Fluorescent group-labeled DNA (see Non-Patent Document 12), CCA and SECCA (see Non-Patent Documents 13-15) are both developed for the purpose of measuring hydroxyl radicals in aqueous solutions. It was difficult to use it for the purpose of accurately capturing the behavior.
Zhang, J .; , Campbell, R .; E. , Ting, A. Y. , Tsien, R .; Y. (2002) Nature Reviews Molecular Cell Biology, 3, 906-918. Tsien, R.A. Y. (1980) Biochemistry, 19, 2396-2404. Grynkiewicz, G. Poenie, M .; , Tsien, R .; Y. (1985) J. et al. Biol. Chem. 260, 3440-3450. Minta, A. Kao, J .; P. Y. , Tsien, R .; Y. (1989) J.A. Biol. Chem. , 264, 8171-8178. Yan, E .; B. Unthank, J .; K. Castillo-Melendez, M .; Miller, S .; L. Langford, S .; J. Walker, D .; W. (2005) J.A. Appl. Physiol. 98, 2304-2310. Qu, X. Kirschenbaum, L. J. Borish, E .; T. (2000) Photochem. Photobiol. 71, 307-313. Pou, S. , Huang, YI. , Bhan, A. Bhadti, V .; S. Hosmane, R .; S. , Wu, S. Y. , Cao, GL. Rosen, G .; M. (1993) Anal. Biochem. , 212, 85-90. Pou, S. , Bhan, A. Bhadti, V .; S. , Wu, S. Y. Hosmane, R .; S. Rosen, G .; M. (1995) FASEB J. , 9, 1085-1090. Yang, XF. , Guo, XQ. (2001) Anal. Chim. Acta. 434, 169-177. Yang, XF. , Guo, XQ. (2001) Analyst, 126, 1800-1804. Setsukinai, KI. Urano, Y .; Kakinuma, K .; Majima, H .; J. Nagano, T .; (2003) J.A. Biol. Chem. , 278, 3170-3175. Soh, N. Makihara, K .; Sakoda, E .; , Imato, T .; (2004) Chem. Commun. , 496-497. Makrigiorgos, G. M. , Baranowska-Korttlewicz, J.A. , Bump, E .; Sahu, S .; K. Berman, R .; M. , Kassis, A .; I. (1993) Int. J. Radiat. Biol. 63, 445-458. Makrigiorgos, G. M. , Folkard, M .; , Huang, C .; , Bump, E .; , Baranowska-Kortylewicz, Sahu, S. K. , Michael, B. D. , Kassis, A .; I. (1994) Radiat. Res. 138, 177-185. Makrigiorgos, G. M. , Bump, E .; , Huang, C .; , Baranowska-Kortylewicz, J.A. , Kassis, A .; I. (1995) Free Radical Biol. Med. , 18, 669-678.

解決しようとする問題点は、従来の蛍光プローブが、脂質膜における生理活性種、例えばヒドロキシルラジカルの挙動を正確に捉える目的に使用することが困難であったという点である。   The problem to be solved is that it has been difficult to use conventional fluorescent probes for the purpose of accurately capturing the behavior of physiologically active species such as hydroxyl radicals in lipid membranes.

本発明に係る蛍光プローブは、生理活性種を捕捉あるいは生理活性種と反応することにより蛍光を変化させる役割を担う機能性蛍光分子ユニットと、蛍光プローブに対して脂質膜局在性を付与する役割を担う疎水性(脂溶性)分子ユニットをその構造中に有することを最も主要な特徴とする。機能性蛍光分子ユニットと疎水性(脂溶性)分子ユニットは直接結合していてもよく、リンカーを介していても良い。リンカーは両者を結合するものであれば、特に限定されない。例えば、置換基を有していても良いC1からC6のアルキル基を挙げることができる。   The fluorescent probe according to the present invention has a functional fluorescent molecular unit responsible for changing fluorescence by capturing or reacting with a biologically active species, and a role of imparting lipid membrane localization to the fluorescent probe. The main feature is to have in its structure a hydrophobic (lipid-soluble) molecular unit responsible for. The functional fluorescent molecular unit and the hydrophobic (lipid-soluble) molecular unit may be directly bonded or via a linker. A linker will not be specifically limited if both are couple | bonded. For example, the C1-C6 alkyl group which may have a substituent can be mentioned.

ここで、前記機能性蛍光分子ユニットとしては例えば活性酸素種、更に言えばヒドロキシルラジカルと反応して蛍光強度または波長が変化するものを挙げることができる。ヒドロキシルラジカルと反応して蛍光強度または波長が変化する機能性蛍光分子ユニットとしては、例えばクマリン骨格又はフェノキサゾン(Phenoxazone)骨格を有するものを挙げることができる。   Here, examples of the functional fluorescent molecular unit include those that react with reactive oxygen species, more specifically, hydroxyl radicals, and change in fluorescence intensity or wavelength. Examples of the functional fluorescent molecular unit that changes its fluorescence intensity or wavelength upon reaction with a hydroxyl radical include those having a coumarin skeleton or a phenoxazone skeleton.

また、前記疎水性分子ユニットとしては例えば分子構造中に脂質構造を含むものを挙げることができる。脂質構造を構成する脂質としては単純脂質、複合脂質、イソプレノイド等を挙げることができる。この脂質構造を構成する脂質としては複合脂質が好ましく、複合脂質としては、リン脂質、糖脂質、スフィンゴ脂質等を挙げることができる。リン脂質としては、ホスファチジルコリン(PC)、ホスファチジルエタノールアミン(PE)、ホスファチジルセリン(PS)、ホスファチジルグリセロール(PG)、ホスファチジルイノシトール(PI)等を挙げることができる。なお、前記で記した種々の脂質を機能性蛍光分子ユニットと化学的に結合する際には、その結合部位の構造が本来の脂質分子の構造から一部変化する。従って、ここで言う脂質とは、この化学結合に伴い形成される脂質誘導体を含んでいる。   Examples of the hydrophobic molecular unit include those having a lipid structure in the molecular structure. Examples of lipids constituting the lipid structure include simple lipids, complex lipids, and isoprenoids. Complex lipids are preferred as lipids constituting this lipid structure, and examples of complex lipids include phospholipids, glycolipids, and sphingolipids. Examples of phospholipids include phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), and the like. When the various lipids described above are chemically bonded to the functional fluorescent molecular unit, the structure of the binding site is partly changed from the structure of the original lipid molecule. Therefore, the lipid mentioned here includes a lipid derivative formed with this chemical bond.

すなわち、本発明に係る蛍光プローブとしては、例えば下記の一般式(A):

Figure 2008209361
(式中、Rは水素原子又はC1-18アルキル基を示し、かつn = 8〜20)で表される化合物又はその塩が提供される。 That is, as the fluorescent probe according to the present invention, for example, the following general formula (A):
Figure 2008209361
(Wherein R represents a hydrogen atom or a C1-18 alkyl group, and n = 8 to 20) or a salt thereof is provided.

上記の発明のより好ましい様態として、上記一般式(A)において、Rが水素原子であり、かつn = 14である化合物又はその塩が提供される。   As a more preferred embodiment of the above invention, there is provided a compound or a salt thereof, wherein, in the general formula (A), R is a hydrogen atom and n = 14.

本発明に係る蛍光プローブは、疎水性分子ユニットと脂質膜との疎水性相互作用に基づき、脂質膜に局在し、更に機能性蛍光分子の作用に基づき、計測対象とした生理活性種、例えばヒドロキシルラジカルと反応して蛍光強度または波長が変化するので、脂質膜中またはその付近に存在する生理活性物質を効果的に検出することができるという利点がある。   The fluorescent probe according to the present invention is based on the hydrophobic interaction between the hydrophobic molecular unit and the lipid membrane, and is localized in the lipid membrane, and further based on the action of the functional fluorescent molecule, Since the fluorescence intensity or wavelength changes by reacting with hydroxyl radical, there is an advantage that a physiologically active substance existing in or near the lipid membrane can be effectively detected.

脂質膜における生理活性種の挙動を正確に捉えるという目的を、生理活性種に応答する機能性蛍光分子ユニットに疎水性分子ユニットを結合させるという簡単な構成で、機能性蛍光分子ユニットの蛍光応答性を損なわずに実現した。その例として、ヒドロキシルラジカルに応答するクマリン骨格を有する機能性蛍光分子ユニットにホスファチジルエタノールアミン(PE)誘導体を結合した蛍光プローブを開発し、前記目的を達成した。以下、本発明を実施例により更に具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。   Fluorescence responsiveness of functional fluorescent molecular units with a simple configuration that binds hydrophobic molecular units to functional fluorescent molecular units that respond to biologically active species in order to accurately capture the behavior of biologically active species in lipid membranes Realized without compromising. As an example, a fluorescent probe in which a phosphatidylethanolamine (PE) derivative is bound to a functional fluorescent molecular unit having a coumarin skeleton that responds to hydroxyl radicals has been developed, and the above object has been achieved. EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.

(実験1)ヒドロキシルラジカル計測用蛍光プローブ(1,2-dipalmitoylglycerophosphorylethanolamine labeled with coumarin:DPPEC)の合成
〔実験操作〕
Coumarin-3-carboxylic acid(CCA)、1-ethyl-3-(3-dimethylamino- propyl) carbodiimide hydrochloride(EDC)、1-hydroxy-7-azabenzo- triazole(HOAt)をCHCl3とDMFの混合溶媒に溶解し、室温で一時間攪拌した。その後、1,2-dipalmitoylglycerophosphorylethanolamine(DPPE)とtriethylamine(TEA)を反応溶液に添加し、室温で一晩攪拌した。反応溶液をエバポレーターで減圧濃縮した後、抽出、シリカゲルカラムクロマトグラフィー精製により白色固体を得た。
(Experiment 1) Synthesis of fluorescent probe for hydroxyl radical measurement (1,2-dipalmitoylglycerophosphorylethanolamine labeled with coumarin: DPPEC) [Experimental operation]
Coumarin-3-carboxylic acid (CCA), 1-ethyl-3- (3-dimethylamino-propyl) carbodiimide hydrochloride (EDC), 1-hydroxy-7-azabenzo-triazole (HOAt) as a mixed solvent of CHCl 3 and DMF Dissolved and stirred at room temperature for 1 hour. Thereafter, 1,2-dipalmitoylglycerophosphorylethanolamine (DPPE) and triethylamine (TEA) were added to the reaction solution and stirred overnight at room temperature. The reaction solution was concentrated under reduced pressure using an evaporator, followed by extraction and purification by silica gel column chromatography to obtain a white solid.

〔実験結果〕
1H-NMR測定及び質量分析(MALDI-TOF/MS)測定により、目的としたDPPECが得られたことを確認した。
〔Experimental result〕
1 H-NMR measurement and mass spectrometry (MALDI-TOF / MS) measurement confirmed that the intended DPPEC was obtained.

(実験2)DPPECのヒドロキシルラジカル検出能評価(様々な量のヒドロキシルラジカルを発生)
DPPECのヒドロキシルラジカル検出能を評価するため、1, 2-dipalmitoyl-sn-glycerophosphorylcholine(DPPC)のリポソームに導入したDPPECに対し、銅を介するH2O2のレドックス分解反応により発生させたヒドロキシルラジカルを作用させ、蛍光スペクトル測定を行った。
(Experiment 2) Evaluation of DPPEC's ability to detect hydroxyl radicals (generates various amounts of hydroxyl radicals)
In order to evaluate DPPEC's ability to detect hydroxyl radicals, the hydroxyl radicals generated by the redox decomposition reaction of copper-mediated H 2 O 2 to DPPEC introduced into the liposomes of 1,2-dipalmitoyl-sn-glycerophosphorylcholine (DPPC) Fluorescence spectrum measurement was performed.

〔実験操作〕
DPPC 8.5 mgをCHCl3に溶解し、10 mg/mL DPPEC溶液を50 μL添加した。その後、55℃の水浴中でN2を流しながら溶媒を除去した。0.1 M リン酸緩衝液(pH 7.4)を加え、ボルテックスした後、超音波を照射してDPPEC導入リポソームを形成した(100 μM DPPEC/2 mM DPPC)。
[Experimental operation]
DPPC 8.5 mg was dissolved in CHCl 3 and 50 mg of 10 mg / mL DPPEC solution was added. Then, the solvent was removed while flowing N 2 in a 55 ° C. water bath. A 0.1 M phosphate buffer (pH 7.4) was added, vortexed, and then irradiated with ultrasound to form DPPEC-introduced liposomes (100 μM DPPEC / 2 mM DPPC).

100 μM DPPEC導入リポソーム溶液250 μLに対し、0.1 M リン酸緩衝液(pH 7.4)を添加し、励起及び蛍光スペクトル測定を行った(最終濃度: 50 μM DPPEC)。その後、種々濃度のCuSO4水溶液、H2O2水溶液を添加し、タイムコース測定を開始した(最終濃度: 50 μM DPPEC, 0, 0.1, 1, 5, 10, 50 μM CuSO4, 1 mM H2O2)。測定開始から5分後、アスコルビン酸ナトリウム水溶液を添加した(最終濃度: 50 μM DPPEC, 0, 0.1, 1, 5, 10, 50 μM CuSO4, 1 mM H2O2, 100 μM アスコルビン酸)。さらに60分後、蛍光スペクトル測定を行った。測定条件は37℃、励起波長400 nm、蛍光波長444 nmとした。 To 250 μL of 100 μM DPPEC-introduced liposome solution, 0.1 M phosphate buffer (pH 7.4) was added, and excitation and fluorescence spectra were measured (final concentration: 50 μM DPPEC). Then, various concentrations of CuSO 4 aqueous solution and H 2 O 2 aqueous solution were added, and time course measurement was started (final concentration: 50 μM DPPEC, 0, 0.1, 1, 5, 10, 50 μM CuSO 4 , 1 mM H 2 O 2 ). 5 minutes after the start of measurement, sodium ascorbate aqueous solution was added (final concentration: 50 μM DPPEC, 0, 0.1, 1, 5, 10, 50 μM CuSO 4 , 1 mM H 2 O 2 , 100 μM ascorbic acid. ). After an additional 60 minutes, the fluorescence spectrum was measured. The measurement conditions were 37 ° C., excitation wavelength 400 nm, and fluorescence wavelength 444 nm.

〔実験結果〕
DPPEC導入リポソームに対し、種々濃度のヒドロキシルラジカルを作用させた時の蛍光強度比の時間変化を図1に、また蛍光スペクトル測定の結果を図2に示す。図1で示したように、DPPECはアスコルビン酸の添加に伴い直ちに最大蛍光波長における蛍光強度比を増大することが明らかとなった。さらに、この蛍光強度比の増大はCu2+濃度の増大に伴って大きくなることが確認された。また、図2で示したように、Cu2+濃度の増大に伴い蛍光スペクトルの蛍光強度も増大することが確認された。従って、DPPECのクマリン部位がヒドロキシルラジカルとの反応により、強蛍光体である7-ヒドロキシ体を形成したと考えられる。以上の結果から、DPPECがヒドロキシルラジカル検出能を有していることが示された。
〔Experimental result〕
FIG. 1 shows changes over time in the fluorescence intensity ratio when various concentrations of hydroxyl radicals are allowed to act on DPPEC-introduced liposomes, and FIG. 2 shows the results of fluorescence spectrum measurement. As shown in FIG. 1, it became clear that DPPEC immediately increased the fluorescence intensity ratio at the maximum fluorescence wavelength with the addition of ascorbic acid. Furthermore, it was confirmed that this increase in the fluorescence intensity ratio increases with increasing Cu 2+ concentration. In addition, as shown in FIG. 2, it was confirmed that the fluorescence intensity of the fluorescence spectrum increases as the Cu 2+ concentration increases. Therefore, it is considered that the coumarin part of DPPEC formed a 7-hydroxy form, which is a strong fluorescent substance, by reaction with the hydroxyl radical. From the above results, it was shown that DPPEC has hydroxyl radical detection ability.

(実験3)DPPECのヒドロキシルラジカル検出能評価(ヒドロキシルラジカル消去剤を添加)
DMSOはヒドロキシルラジカルの代表的な消去剤として知られている。そこで、DPPECがヒドロキシルラジカルと反応して蛍光変化を起こしていることを確認するため、DPPECを用いたヒドロキシルラジカル検出に対してDMSOが与える影響について評価した。
(Experiment 3) Evaluation of hydroxyl radical detectability of DPPEC (addition of hydroxyl radical scavenger)
DMSO is known as a representative scavenger for hydroxyl radicals. Therefore, in order to confirm that DPPEC reacts with hydroxyl radicals to cause fluorescence changes, the effect of DMSO on hydroxyl radical detection using DPPEC was evaluated.

〔実験操作〕
100 μM DPPEC導入リポソーム溶液250 μLに対し、種々濃度のDMSOを含んだ0.1 M リン酸緩衝液(pH 7.4)、さらにCuSO4水溶液、H2O2水溶液を添加し、タイムコース測定を開始した(最終濃度: 50 μM DPPEC, 10 μM CuSO4, 1 mM H2O2, 0, 0.1, 1, 10 mM DMSO)。測定開始から5分後、アスコルビン酸ナトリウム水溶液を添加した(最終濃度: 50 μM DPPEC, 10 μM CuSO4, 1 mM H2O2, 100 μM アスコルビン酸, 0, 0.1, 1, 10 mM DMSO)。測定条件は37℃、励起波長400 nm、蛍光波長444 nmとした。
[Experimental operation]
100 μM DPPEC-introduced liposome solution to 250 μL, 0.1 M phosphate buffer (pH 7.4) containing various concentrations of DMSO, CuSO 4 aqueous solution, and H 2 O 2 aqueous solution were added, and time course measurement was performed. (Final concentrations: 50 μM DPPEC, 10 μM CuSO 4 , 1 mM H 2 O 2 , 0, 0.1, 1, 10 mM DMSO). 5 minutes after the start of measurement, sodium ascorbate aqueous solution was added (final concentration: 50 μM DPPEC, 10 μM CuSO 4 , 1 mM H 2 O 2 , 100 μM ascorbic acid, 0, 0.1, 1, 10 mM DMSO ). The measurement conditions were 37 ° C., excitation wavelength 400 nm, and fluorescence wavelength 444 nm.

一方、100 μM DPPEC導入リポソーム溶液250 μLに対し、0.1 M リン酸緩衝液(pH 7.4)、さらにCuSO4水溶液、H2O2水溶液を添加し、タイムコース測定を開始した(最終濃度: 50 μM DPPEC, 10 μM CuSO4, 1 mM H2O2)。測定開始から5分後、アスコルビン酸ナトリウム水溶液を添加した(最終濃度: 50 μM DPPEC, 10 μM CuSO4, 1 mM H2O2, 100 μM アスコルビン酸)。さらに、測定開始から7分後、DMSO水溶液を添加した(最終濃度: 50 μM DPPEC, 10 μM CuSO4, 1 mM H2O2, 100 μM アスコルビン酸, 10 mM DMSO)。測定条件は37℃、励起波長400 nm、蛍光波長444 nmとした。 On the other hand, 0.1 M phosphate buffer (pH 7.4), CuSO 4 aqueous solution and H 2 O 2 aqueous solution were added to 250 μL of 100 μM DPPEC-introduced liposome solution, and time course measurement was started (final) Concentration: 50 μM DPPEC, 10 μM CuSO 4 , 1 mM H 2 O 2 ). Five minutes after the start of measurement, an aqueous sodium ascorbate solution was added (final concentrations: 50 μM DPPEC, 10 μM CuSO 4 , 1 mM H 2 O 2 , 100 μM ascorbic acid). Furthermore, 7 minutes after the start of measurement, an aqueous DMSO solution was added (final concentrations: 50 μM DPPEC, 10 μM CuSO 4 , 1 mM H 2 O 2 , 100 μM ascorbic acid, 10 mM DMSO). The measurement conditions were 37 ° C., excitation wavelength 400 nm, and fluorescence wavelength 444 nm.

〔実験結果〕
測定サンプルに予めDMSOを添加していた場合の結果を図3に示す。これを見るとわかるように、DMSOの影響によりヒドロキシルラジカル発生に伴う蛍光強度比の増大は小さくなることが確かめられた。一方、ヒドロキシルラジカル発生により蛍光強度が増大している途中でDMSOを加えた場合、図4に示すように、添加直後から直ちに蛍光強度比の増大が抑制された。これらの結果は、発生したヒドロキシルラジカルがDMSOによって消去され、DPPECの7-ヒドロキシ体の形成が妨げられたことに起因していると考えられる。以上の結果から、DPPECの蛍光変化がヒドロキシルラジカルとの反応に基づくものであることを確認することができた。
〔Experimental result〕
The results when DMSO is added to the measurement sample in advance are shown in FIG. As can be seen from this, it was confirmed that the increase in the fluorescence intensity ratio accompanying the generation of hydroxyl radicals was reduced by the influence of DMSO. On the other hand, when DMSO was added while the fluorescence intensity was increasing due to the generation of hydroxyl radicals, the increase in the fluorescence intensity ratio was suppressed immediately after the addition, as shown in FIG. These results may be attributed to the fact that the generated hydroxyl radical was eliminated by DMSO, preventing the formation of the 7-hydroxy form of DPPEC. From the above results, it was confirmed that the fluorescence change of DPPEC was based on the reaction with hydroxyl radical.

(実験4)DPPECのヒドロキシルラジカル選択性評価
DPPECのヒドロキシルラジカルに対する選択性を評価するため、代表的な活性酸素種であるパーオキシナイトライト(ONOO-)、次亜塩素酸イオン(OCl-)、スーパーオキシドアニオン(・O2 -)、過酸化水素(H2O2)、一酸化窒素(NO)、ペルオキシラジカル(ROO・)を作用させ、蛍光測定を行った。
(Experiment 4) Hydroxyl radical selectivity evaluation of DPPEC
In order to evaluate the selectivity of DPPEC for hydroxyl radical, peroxynitrite (ONOO ), hypochlorite ion (OCl ), superoxide anion (· O 2 ), Fluorescence measurement was performed by reacting hydrogen oxide (H 2 O 2 ), nitric oxide (NO), and peroxy radical (ROO.).

〔実験操作〕
100 μM DPPEC導入リポソーム溶液250 μLに対し、0.1 M リン酸緩衝液(pH 7.4)を添加し、タイムコース測定を開始した(最終濃度: 50 μM DPPEC)。測定開始から5分後、種々濃度の活性酸素種発生剤を添加した(最終濃度: 50 μM TDFT, {50 μM ONOO-, 50 μM NaOCl (50 μM OCl-), 50 μM KO2 (50 μM ・O2 -), 50 μM H2O2, 25 μM NOC 7 (50 μM NO), 25 μM 2, 2’-azobis(2-amidinopropane) dihydrochloride (50 μM ROO・)})。また、同様にして、CuSO4水溶液、H2O2水溶液を添加した5分後にアスコルビン酸ナトリウム溶液を加えてヒドロキシルラジカルを発生させた(最終濃度: 50 μM DPPEC, {[CuSO4]/[H2O2]/[ascorbic acid]: 50 μM/500 μM/25 μM, 50 μM/500 μM/50 μM (50, 100 μM ・OH)})。測定条件は37℃、励起波長400 nm、蛍光波長444 nmとした。
[Experimental operation]
To 250 μL of liposome solution introduced with 100 μM DPPEC, 0.1 M phosphate buffer (pH 7.4) was added, and time course measurement was started (final concentration: 50 μM DPPEC). Five minutes after the start of measurement, various concentrations of reactive oxygen species generator were added (final concentrations: 50 μM TDFT, {50 μM ONOO , 50 μM NaOCl (50 μM OCl ), 50 μM KO 2 (50 μM • O 2 -), 50 μM H 2 O 2, 25 μM NOC 7 (50 μM NO), 25 μM 2, 2'-azobis (2-amidinopropane) dihydrochloride (50 μM ROO ·)}). Similarly, a hydroxyl radical was generated by adding a sodium ascorbate solution 5 minutes after the addition of CuSO 4 aqueous solution and H 2 O 2 aqueous solution (final concentration: 50 μM DPPEC, {[CuSO 4 ] / [H 2 O 2 ] / [ascorbic acid]: 50 μM / 500 μM / 25 μM, 50 μM / 500 μM / 50 μM (50, 100 μM OH)}). The measurement conditions were 37 ° C., excitation wavelength 400 nm, and fluorescence wavelength 444 nm.

〔実験結果〕
様々な活性酸素種を作用させた際のDPPECの蛍光強度比の時間変化を図5に示す。これを見ると明らかなように、DPPECはヒドロキシルラジカル以外の活性酸素種については有意な蛍光変化を示さないことが明らかとなった。これより、DPPECがヒドロキシルラジカルに対して優れた選択性を有することが確認できた。
〔Experimental result〕
FIG. 5 shows changes with time in the fluorescence intensity ratio of DPPEC when various reactive oxygen species are allowed to act. As is clear from this, it was revealed that DPPEC does not show a significant fluorescence change for reactive oxygen species other than the hydroxyl radical. This confirmed that DPPEC has excellent selectivity for hydroxyl radicals.

(実験5)脂質膜局在性の評価
DPPECは脂質膜局在性を付与するために疎水性であるリン脂質部位を有している。そこで、新規蛍光プローブであるDPPECと既存のプローブであるCCAが各々ヒドロキシルラジカルとの反応に伴い形成する蛍光体であるDPPEHCと7-OH-CCAを用い、蛍光プローブの細胞膜局在性を評価した。
(Experiment 5) Evaluation of lipid membrane localization
DPPEC has a phospholipid site that is hydrophobic to confer lipid membrane localization. Therefore, we evaluated the plasma membrane localization of the fluorescent probe using DPPEHC and 7-OH-CCA, which are phosphors formed by the reaction of hydroxyl radicals with the new fluorescent probe DPPEC and the existing probe CCA. .

〔実験操作〕
培養したRAW264細胞に対し、DPPEHCあるいはCCAを添加し、37℃でインキュベートした。その後、遠心分離操作による洗浄を行い、緩衝液を加えてプレートリーダーによる蛍光測定を行った。なお、蛍光プローブを添加しない細胞懸濁溶液をブランクとして用いた。
[Experimental operation]
DPPEHC or CCA was added to the cultured RAW264 cells and incubated at 37 ° C. Thereafter, washing was performed by centrifugation, a buffer solution was added, and fluorescence was measured with a plate reader. A cell suspension solution to which no fluorescent probe was added was used as a blank.

〔実験結果〕
プレートリーダーによる蛍光測定の結果を図6に示す。図6を見るとわかるように、疎水性部位を持たない7-OH-CCAはブランクと同等の蛍光強度を示し、細胞膜局在性を持たないことが確認された。一方で、DPPEHCはより強い蛍光強度を示し、細胞膜に局在していることが明らかとなった。以上のことから、DPPECは優れた細胞膜局在性を有しているものと考えられる。
〔Experimental result〕
The result of fluorescence measurement with a plate reader is shown in FIG. As can be seen from FIG. 6, 7-OH-CCA having no hydrophobic site showed fluorescence intensity equivalent to that of the blank, and it was confirmed that it did not have cell membrane localization. On the other hand, DPPEHC showed stronger fluorescence intensity and was found to be localized in the cell membrane. From the above, it is considered that DPPEC has excellent cell membrane localization.

DPPEC導入リポソームに対して種々濃度のヒドロキシルラジカルを作用させた時の蛍光強度比の時間変化を示すグラフである(発生試薬は硫酸銅(II)、過酸化水素、アスコルビン酸の混合溶液で、添加する硫酸銅(II)の濃度を変化させた)。It is a graph showing the time change of the fluorescence intensity ratio when various concentrations of hydroxyl radicals are allowed to act on DPPEC-introduced liposomes (the generated reagent is a mixed solution of copper (II) sulfate, hydrogen peroxide and ascorbic acid, added The concentration of copper sulfate (II) to be changed was changed). DPPEC導入リポソームに対して種々濃度のヒドロキシルラジカルを作用させた時の蛍光強度と蛍光波長(nm)との関係を示すグラフである(発生試薬は硫酸銅(II)、過酸化水素、アスコルビン酸の混合溶液で、添加する硫酸銅(II)の濃度を変化させた)。It is a graph showing the relationship between the fluorescence intensity and the fluorescence wavelength (nm) when hydroxyl radicals of various concentrations are allowed to act on DPPEC-introduced liposomes (the generated reagents are copper sulfate (II), hydrogen peroxide, ascorbic acid) The concentration of copper sulfate (II) to be added was changed in the mixed solution). DPPEC導入リポソームに対してヒドロキシルラジカルを作用させた際の蛍光強度比の時間変化(予めDMSOを添加していた場合)を示すグラフである(発生試薬は硫酸銅(II)、過酸化水素、アスコルビン酸の混合溶液で最後にアスコルビン酸を加えた)。It is a graph which shows the time change (when DMSO is added beforehand) when a hydroxyl radical is made to act on a DPPEC introduction | transduction liposome (A generation reagent is copper sulfate (II), hydrogen peroxide, ascorbine). Finally, ascorbic acid was added in the acid mixture solution). DPPEC導入リポソームに対して種々濃度のヒドロキシルラジカルを作用させた際の蛍光強度比の時間変化(途中でDMSOを加えた場合)を示すグラフである(発生試薬は硫酸銅(II)、過酸化水素、アスコルビン酸の混合溶液で最後にアスコルビン酸を加え、これにより観測される蛍光増大の途中でDMSOを加えた)。It is a graph which shows the time change (when DMSO is added on the way) when the hydroxyl radical of various concentrations is made to act on DPPEC introduction liposome (the generation reagent is copper (II) sulfate, hydrogen peroxide) Ascorbic acid was finally added in a mixed solution of ascorbic acid, and DMSO was added in the middle of the fluorescence increase observed thereby). DPPEC導入リポソームに対して様々な活性酸素種を作用させた際の蛍光強度比の時間変化を示すグラフである。It is a graph which shows the time change of the fluorescence intensity ratio at the time of making various reactive oxygen species act with respect to a DPPEC introduction | transduction liposome. DPPEHCあるいは7-OH-CCAをRAW264細胞に添加し、その後洗浄した時の細胞懸濁溶液の蛍光強度をプレートリーダーにより測定したグラフである(蛍光プローブを添加しない場合の結果もリファレンスとして示す)。It is the graph which measured the fluorescence intensity of the cell suspension solution when DPPEHC or 7-OH-CCA was added to RAW264 cells and then washed, using a plate reader (the result when no fluorescent probe is added is also shown as a reference).

Claims (11)

生理活性種と反応して蛍光強度または波長が変化する機能性蛍光分子ユニットと、疎水性分子ユニットとを備えた蛍光プローブ。   A fluorescent probe comprising a functional fluorescent molecular unit that changes fluorescence intensity or wavelength by reacting with a biologically active species, and a hydrophobic molecular unit. 前記機能性蛍光分子ユニットが活性酸素種と反応して蛍光強度または波長が変化するものであることを特徴とする請求項1に記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the functional fluorescent molecular unit reacts with reactive oxygen species to change fluorescence intensity or wavelength. 前記機能性蛍光分子ユニットがヒドロキシルラジカルと反応して蛍光強度または波長が変化するものであることを特徴とする請求項1又は2に記載の蛍光プローブ。   The fluorescent probe according to claim 1 or 2, wherein the functional fluorescent molecular unit reacts with a hydroxyl radical to change fluorescence intensity or wavelength. 前記機能性蛍光分子ユニットがクマリン骨格を有するものであることを特徴とする請求項1〜3のいずれかに記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the functional fluorescent molecular unit has a coumarin skeleton. 前記機能性蛍光分子ユニットがフェノキサゾン(Phenoxazone)骨格を有するものであることを特徴とする請求項1〜3のいずれかに記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the functional fluorescent molecular unit has a phenoxazone skeleton. 前記疎水性分子ユニットが脂質構造を含むことを特徴とする請求項1〜5のいずれかに記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the hydrophobic molecular unit includes a lipid structure. 前記疎水性分子ユニットが複合脂質構造を含むことを特徴とする請求項1〜6のいずれかに記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the hydrophobic molecular unit includes a complex lipid structure. 前記疎水性分子ユニットがリン脂質構造を含むことを特徴とする請求項1〜7のいずれかに記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the hydrophobic molecular unit includes a phospholipid structure. 前記疎水性分子ユニットがホスファチジルエタノールアミン誘導体構造を含むことを特徴とする請求項1〜8のいずれかに記載の蛍光プローブ。   The fluorescent probe according to claim 1, wherein the hydrophobic molecular unit includes a phosphatidylethanolamine derivative structure. 下記の一般式(A):
Figure 2008209361
(式中、Rは水素原子又はC1-18アルキル基を示し、かつn = 8〜20)で表される化合物又はその塩。
The following general formula (A):
Figure 2008209361
(Wherein R represents a hydrogen atom or a C1-18 alkyl group, and n = 8 to 20) or a salt thereof.
Rが水素原子であり、かつn = 14である請求項10に記載の化合物又はその塩。   The compound or a salt thereof according to claim 10, wherein R is a hydrogen atom and n = 14.
JP2007048847A 2007-02-28 2007-02-28 Lipid membrane localized fluorescent probe Pending JP2008209361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048847A JP2008209361A (en) 2007-02-28 2007-02-28 Lipid membrane localized fluorescent probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048847A JP2008209361A (en) 2007-02-28 2007-02-28 Lipid membrane localized fluorescent probe

Publications (1)

Publication Number Publication Date
JP2008209361A true JP2008209361A (en) 2008-09-11

Family

ID=39785768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048847A Pending JP2008209361A (en) 2007-02-28 2007-02-28 Lipid membrane localized fluorescent probe

Country Status (1)

Country Link
JP (1) JP2008209361A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105037428A (en) * 2015-07-10 2015-11-11 河南工业大学 Preparation method for coumarin-3-phosphonate derivative
CN108409791A (en) * 2018-04-26 2018-08-17 福建师范大学泉港石化研究院 A kind of detection H2O2Fluorescence probe and preparation method thereof
WO2019009355A1 (en) * 2017-07-06 2019-01-10 山田 健一 Therapeutic drug for lipid-peroxidation-induced diseases and screening method for therapeutic drugs for lipid-peroxidation-induced diseases
WO2021201284A1 (en) 2020-04-02 2021-10-07 東洋インキScホールディングス株式会社 Fluorescent labeling agent and fluorescent dye
CN113959995A (en) * 2020-07-20 2022-01-21 中国科学院化学研究所 Measuring device and measuring method for hydroxyl free radicals and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105037428A (en) * 2015-07-10 2015-11-11 河南工业大学 Preparation method for coumarin-3-phosphonate derivative
WO2019009355A1 (en) * 2017-07-06 2019-01-10 山田 健一 Therapeutic drug for lipid-peroxidation-induced diseases and screening method for therapeutic drugs for lipid-peroxidation-induced diseases
JPWO2019009355A1 (en) * 2017-07-06 2020-05-21 山田 健一 Drug for treating lipid peroxidation-induced disease and method for screening the same
US11519893B2 (en) 2017-07-06 2022-12-06 Ken-ichi YAMADA Therapeutic drug for lipid-peroxidation-induced diseases and screening method for therapeutic drugs for lipid-peroxidation-induced diseases
CN108409791A (en) * 2018-04-26 2018-08-17 福建师范大学泉港石化研究院 A kind of detection H2O2Fluorescence probe and preparation method thereof
WO2021201284A1 (en) 2020-04-02 2021-10-07 東洋インキScホールディングス株式会社 Fluorescent labeling agent and fluorescent dye
CN113959995A (en) * 2020-07-20 2022-01-21 中国科学院化学研究所 Measuring device and measuring method for hydroxyl free radicals and application thereof
CN113959995B (en) * 2020-07-20 2023-12-26 中国科学院化学研究所 Measuring device, measuring method and application of hydroxyl radical

Similar Documents

Publication Publication Date Title
Ren et al. Mitochondria and lysosome-targetable fluorescent probes for HOCl: recent advances and perspectives
Xiao et al. Lanthanide complex-based luminescent probes for highly sensitive time-gated luminescence detection of hypochlorous acid
Xie et al. Two-photon imaging of formaldehyde in live cells and animals utilizing a lysosome-targetable and acidic pH-activatable fluorescent probe
Zhang et al. Mitochondria-accessing ratiometric fluorescent probe for imaging endogenous superoxide anion in live cells and Daphnia magna
Zhang et al. A mitochondria-targetable fluorescent probe for peroxynitrite: fast response and high selectivity
Park et al. A ratiometric fluorescent probe based on a BODIPY–DCDHF conjugate for the detection of hypochlorous acid in living cells
Chen et al. A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging
Arnhold et al. Effects of hypochlorous acid on unsaturated phosphatidylcholines
Li et al. Chromogenic and fluorogenic chemosensors for hydrogen sulfide: review of detection mechanisms since the year 2009
Wang et al. A highly specific and ultrasensitive fluorescent probe for basal lysosomal HOCl detection based on chlorination induced by chlorinium ions (Cl+)
Zhao et al. Transforming the recognition site of 4-hydroxyaniline into 4-methoxyaniline grafted onto a BODIPY core switches the selective detection of peroxynitrite to hypochlorous acid
Manna et al. Ratiometric detection of hypochlorite applying the restriction to 2-way ESIPT: simple design for “naked-eye” tap water analysis
Liu et al. A mitochondria-targeting time-gated luminescence probe for hypochlorous acid based on a europium complex
Cai et al. A chromenoquinoline-based two-photon fluorescent probe for the highly specific and fast visualization of sulfur dioxide derivatives in living cells and zebrafish
Wang et al. A twist six-membered rhodamine-based fluorescent probe for hypochlorite detection in water and lysosomes of living cells
JP2008209361A (en) Lipid membrane localized fluorescent probe
Wang et al. A two-photon fluorescent probe for detecting endogenous hypochlorite in living cells
Vignoni et al. Photo-oxidation of unilamellar vesicles by a lipophilic pterin: Deciphering biomembrane photodamage
CN104910070B (en) Quick high-selectivity hypochlorous acid fluorescent probe and its application
Wei et al. A novel profluorescent probe for detecting oxidative stress induced by metal and H 2 O 2 in living cells
Zhao et al. A specific and rapid “on-off” acenaphthenequinone-based probe for HOCl detection and imaging in living cells
Zhang et al. A rhodamine hydrazide-based fluorescent probe for sensitive and selective detection of hypochlorous acid and its application in living cells
Tang et al. A novel two-photon fluorescent probe for hydrogen sulfide in living cells using an acedan–NBD amine dyad based on FRET process with high selectivity and sensitivity
Li et al. A 1, 8-naphthalimide-based fluorescent probe for selective and sensitive detection of peroxynitrite and its applications in living cell imaging
Wang et al. Selective detection and visualization of exogenous/endogenous hypochlorous acid in living cells using a BODIPY‐based red‐emitting fluorescent probe