JP2008209347A - Antimicrobial performance evaluating method - Google Patents

Antimicrobial performance evaluating method Download PDF

Info

Publication number
JP2008209347A
JP2008209347A JP2007048528A JP2007048528A JP2008209347A JP 2008209347 A JP2008209347 A JP 2008209347A JP 2007048528 A JP2007048528 A JP 2007048528A JP 2007048528 A JP2007048528 A JP 2007048528A JP 2008209347 A JP2008209347 A JP 2008209347A
Authority
JP
Japan
Prior art keywords
antibacterial
antibacterial agent
test piece
agent
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007048528A
Other languages
Japanese (ja)
Inventor
Satoshi Niima
聡 新間
Yoshiyuki Takesako
慶幸 竹迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007048528A priority Critical patent/JP2008209347A/en
Publication of JP2008209347A publication Critical patent/JP2008209347A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy and convenient antimicrobial performance evaluating method without using microorganisms and live bacteria. <P>SOLUTION: A dissolution speed V of an antibacterial medicine in a step (b) is determined by a formula: (A-A')/T=V and then this antibacterial performance is evaluated with this dissolution speed V as an index, by using an initial quantity A, a remaining quantity A', and a time T, and the following steps of (a), (b), and (c); (a) specifying an initial quantity A of an antibacterial medicine or an element constituting the antibacterial medicine contained in an antibacterial test specimen with antimicrobial process applied; (b) exposing the antibacterial test specimen to an environment that accelerates the dissolution of the antibacterial test specimen for a time T only; (c) specifying a remaining quantity A' of an antibacterial medicine or an element constituting the antibacterial medicine contained in an antibacterial test specimen that has elapsed the step (b). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、抗菌加工が施された樹脂等の部材の抗菌性能を評価する方法に関する。   The present invention relates to a method for evaluating antibacterial performance of a member such as a resin subjected to antibacterial processing.

近年、抗菌加工を施した製品が多く出回っている。抗菌加工製品の開発では、試作して数多くある抗菌剤(有機化合物系・有機金属化合物系・無機化合物系など)の中から抗菌剤を選定するため膨大な数の試験が必要となる。抗菌加工を施した樹脂製品において、同じ抗菌剤であっても基材となる樹脂の材質によって、抗菌性能に差があり、抗菌剤と基材の最適な組合せを選定するためである。
抗菌性、防かび性の評価手法としては、JISに規定してある抗菌試験(JIS Z 2801−2000)、防カビ試験(JIS Z 2911−2000)又はそれに類似した試験を実施するのが一般的である。非特許文献1には、上記JISの規定に準じた評価方法が開示されている。
In recent years, many products with antibacterial treatment are on the market. In the development of antibacterial processed products, a huge number of tests are required to select an antibacterial agent from among a large number of antibacterial agents (organic compound type, organometallic compound type, inorganic compound type, etc.) that have been prototyped. This is because, in a resin product subjected to antibacterial processing, even if the same antibacterial agent is used, there is a difference in antibacterial performance depending on the material of the resin serving as the base material, and the optimum combination of the antibacterial agent and the base material is selected.
As a method for evaluating antibacterial and antifungal properties, an antibacterial test (JIS Z 2801-2000), an antifungal test (JIS Z 2911-2000), or a similar test specified in JIS is generally performed. It is. Non-Patent Document 1 discloses an evaluation method according to the above JIS regulations.

また、特許文献1には、(a)細胞表面が親水的である微生物を樹脂試料表面に付着させる工程と、(b)樹脂試料表面に付着させた微生物を、水1Lに対して肉エキス0.06〜1g、タンパク質分解物0.13〜2g及び無機栄養素0.06〜1gを含む培地中で培養する工程と、(c)樹脂試料表面における微生物の増殖状態を指標として、樹脂試料の湿潤環境下における抗菌防汚性を評価する工程と、を含む樹脂試料の湿潤環境下における抗菌防汚性の評価方法が開示されている。
さらに、特許文献2には、抗菌加工を施した対象機と、抗菌加工を施さない比較機とを夫々準備し、それぞれの所定表面位置に塗布し、空調設備を所定時間作動させて対象機と比較機とにおける生菌数の変動に基づいて抗菌性能を評価するようにし、かつ評価試験開始時の生菌コロニー数および評価試験終了時の生菌コロニー数を計数するとともに、評価試験開始時と評価試験終了時との間の1又は複数の経過時間時において生菌コロニー数を計数することにより、生菌数の変動傾向を経過時間との関係において把握する空調設備の抗菌性能評価方法が開示されている。
Patent Document 1 discloses that (a) a step of attaching a microorganism whose cell surface is hydrophilic to the surface of a resin sample, and (b) a microorganism attached to the surface of a resin sample, 0.01 to 1 g, a step of culturing in a medium containing 0.13 to 2 g of proteolysate and 0.06 to 1 g of mineral nutrients, and (c) wetting of the resin sample using the growth state of microorganisms on the surface of the resin sample as an index And a method for evaluating antibacterial and antifouling properties in an environment, and a method for evaluating antibacterial and antifouling properties in a wet environment of a resin sample.
Furthermore, in Patent Document 2, a target machine that has been subjected to antibacterial processing and a comparator that is not subjected to antibacterial processing are prepared, applied to respective predetermined surface positions, and air conditioning equipment is operated for a predetermined period of time. The antibacterial performance is evaluated based on the fluctuation of the number of viable bacteria in the comparator, and the number of viable colonies at the start of the evaluation test and the number of viable colonies at the end of the evaluation test are counted. Disclosed is a method for evaluating the antibacterial performance of an air conditioner that counts the number of viable colonies at one or more elapsed times between the end of the evaluation test and grasps the fluctuation tendency of the viable counts in relation to the elapsed time. Has been.

特開2000−232895号公報JP 2000-232895 A 特許第3734220号公報Japanese Patent No. 3734220 「抗菌塗料製品管理のためのガイドライン」 社団法人 日本塗料工業会 平成15年1月“Guidelines for the management of antibacterial paint products” Japan Paint Manufacturers Association January 2003

以上の評価方法は、いずれも微生物又は生菌を用いる。したがって、抗菌性能を評価する前提として、微生物又は生菌を用意し、かつ適切に取扱う煩雑さを伴う。
本発明は、このような技術的課題に基づいてなされたもので、微生物又は生菌を用いることなく、抗菌性能を評価する方法を提供することを目的とする。
All of the above evaluation methods use microorganisms or viable bacteria. Therefore, as a premise for evaluating antibacterial performance, it involves the complexity of preparing and appropriately handling microorganisms or viable bacteria.
The present invention has been made based on such a technical problem, and an object thereof is to provide a method for evaluating antibacterial performance without using microorganisms or viable bacteria.

本発明者等はかかる目的のもと、抗菌加工が施された樹脂(抗菌試験片)について、環境暴露試験を行って抗菌剤が抗菌試験片から溶出する速度を測定した。一方で、この抗菌試験片についてJISに従った抗菌性能評価を行った。その結果、抗菌剤の溶出速度とJISに従った抗菌性能評価との間に関連性があることを知見した。本発明は、この知見に基づくものであり、抗菌加工が施された抗菌試験片に含まれる抗菌剤又は抗菌剤を構成する元素の初期量Aを特定する工程(a)と、抗菌試験片を、抗菌剤の溶出を加速させる環境に時間Tだけ曝す工程(b)と、工程(b)を経た抗菌試験片に含まれる抗菌剤又は抗菌剤を構成する元素の残量A’を特定する工程(c)と、初期量A、残量A’及び時間Tを用い、式:(A−A’)/T=Vにより工程(b)における抗菌剤の溶出速度Vを求め、この溶出速度Vを指標として、抗菌性能を評価することを特徴とする抗菌性能の評価方法である。   For these purposes, the present inventors conducted an environmental exposure test on a resin subjected to antibacterial processing (antibacterial test piece) and measured the rate at which the antibacterial agent eluted from the antibacterial test piece. On the other hand, the antibacterial performance evaluation according to JIS was performed about this antibacterial test piece. As a result, it was found that there is a relationship between the dissolution rate of the antibacterial agent and the antibacterial performance evaluation according to JIS. The present invention is based on this finding, the step (a) of specifying the initial amount A of the antibacterial agent or the element constituting the antibacterial agent contained in the antibacterial test piece subjected to antibacterial processing, and the antibacterial test piece A step (b) of exposing the antibacterial agent to an environment that accelerates the dissolution of the antibacterial agent for a time T, and a step of identifying the antibacterial agent contained in the antibacterial test piece that has undergone the step (b) or the remaining amount A ′ of the element constituting the antibacterial agent Using (c), the initial amount A, the remaining amount A ′ and the time T, the elution rate V of the antibacterial agent in step (b) is obtained from the formula: (AA ′) / T = V, and this elution rate V It is an antibacterial performance evaluation method characterized by evaluating antibacterial performance using as a parameter.

以上説明したように、本発明によれば、抗菌試験片を、抗菌剤の溶出を加速させる環境に所定時間だけ曝し、その間の抗菌剤の溶出速度を求めることにより、抗菌性能を評価するものである。したがって、本発明は、従来のように微生物又は生菌を用いることのない、簡便な抗菌性能の評価方法を提供することができる。   As described above, according to the present invention, the antibacterial test piece is exposed to an environment for accelerating the elution of the antibacterial agent for a predetermined time, and the antibacterial performance is evaluated by determining the elution rate of the antibacterial agent during that time. is there. Therefore, the present invention can provide a simple method for evaluating antibacterial performance without using microorganisms or viable bacteria as in the prior art.

以下、添付図面を参照しつつ本発明による実施形態を詳細に説明する。
図1は、本実施形態に係る抗菌性能の評価方法の手順を示すフローチャートである。
図1に示すように、抗菌性能の評価方法は、抗菌試験片作製、環境暴露試験、抗菌剤残量分析、溶出速度算出及び抗菌性能評価、という手順によって行われる。以下、各手順毎に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a flowchart showing a procedure of an antibacterial performance evaluation method according to the present embodiment.
As shown in FIG. 1, the antibacterial performance evaluation method is performed according to the following procedures: antibacterial test piece preparation, environmental exposure test, antibacterial agent residual amount analysis, dissolution rate calculation, and antibacterial performance evaluation. Hereinafter, each procedure will be described.

<抗菌試験片作製>
抗菌試験片は、抗菌加工が施されている。
抗菌試験片の基材としては、樹脂、繊維、金属、セラミックス、塗料、ゴム、木材、紙等、抗菌加工が施されて製品化されている材料を広く用いることができる。
一方、抗菌剤としては、タンパク質と結合性の高い銀、銅等の無機系の抗菌剤を用いることができる。また、アルコール系、フェノール系、アルデヒド系、カルボン酸系、エステル系、エーテル系、ニトリル系、過酸化物・エポキシ系、ハロゲン系、ピリジン・ キノリン系、トリアジン系、イソチアゾロン系、イミダゾール系、チアゾール系、アニリド系、ビグアナイド系、ジスルフィド系、チオカーバメート系、ペプチドタンパク系、界面活性剤系及び有機金属系等の有機系の抗菌剤を用いることもできる。さらに、有機−無機系のハイブリッド型抗菌剤を用いることもできる。
<Preparation of antibacterial test piece>
The antibacterial test piece is subjected to antibacterial processing.
As the base material of the antibacterial test piece, materials that have been subjected to antibacterial processing, such as resin, fiber, metal, ceramics, paint, rubber, wood, and paper, can be widely used.
On the other hand, as the antibacterial agent, inorganic antibacterial agents such as silver and copper having high binding properties to proteins can be used. Alcohol, phenol, aldehyde, carboxylic acid, ester, ether, nitrile, peroxide / epoxy, halogen, pyridine / quinoline, triazine, isothiazolone, imidazole, thiazole Organic antibacterial agents such as anilide, biguanide, disulfide, thiocarbamate, peptide protein, surfactant and organometallic can also be used. Furthermore, an organic-inorganic hybrid antibacterial agent can also be used.

抗菌加工の具体的な手法は、用いる基材及び抗菌剤によって適宜選択されるが、大きくは、基材表面にコーティングする方法と、基材中に分散させる方法がある。基材表面にコーティングする方法は、使用する基材を問わない。コーティングの方法は、用いられる抗菌剤によって選択すればよい。一方、基材中に分散させる方法は、適用される基材が限定される。典型的には、樹脂を基材とする場合には、抗菌剤が配合された樹脂原料を用意し、これを射出成形することによって、抗菌剤が分散された抗菌試験片を得ることができる。この場合、抗菌剤の分散性を高めるために、抗菌剤を含むマスターバッチを樹脂原料に配合することが現実的である。同様に、抗菌剤が分散された抗菌試験片は、ゴムを基材とする場合にも有効である。   The specific method of the antibacterial processing is appropriately selected depending on the base material and the antibacterial agent to be used, and there are mainly a method of coating the surface of the base material and a method of dispersing in the base material. The method for coating the surface of the substrate is not limited to the substrate to be used. The coating method may be selected depending on the antibacterial agent used. On the other hand, the base material to which the method of dispersing in the base material is applied is limited. Typically, when a resin is used as a base material, an antibacterial test piece in which the antibacterial agent is dispersed can be obtained by preparing a resin raw material in which the antibacterial agent is blended and injection molding the resin raw material. In this case, in order to improve the dispersibility of the antibacterial agent, it is realistic to blend a master batch containing the antibacterial agent into the resin raw material. Similarly, an antibacterial test piece in which an antibacterial agent is dispersed is also effective when rubber is used as a base material.

抗菌試験片作製の段階で、含有される抗菌剤の量(初期量A)が特定される。抗菌剤の初期量Aは、通常、抗菌試験片作製時に添加された抗菌剤の量とすればよいが、抗菌試験片作製の過程で抗菌剤が減少する場合には、抗菌試験片作製後に抗菌剤の量を特定する必要がある。また、抗菌剤に含まれる特定の元素の量を特定することもできる。なお、抗菌剤がコーティングによって基材表面に加工されている場合も、本発明においては抗菌試験片に含有されているものとみなす。   At the stage of preparing the antibacterial test piece, the amount of the antibacterial agent contained (initial amount A) is specified. The initial amount A of the antibacterial agent is usually the amount of the antibacterial agent added during the preparation of the antibacterial test piece. However, when the antibacterial agent decreases during the preparation of the antibacterial test piece, It is necessary to specify the amount of the agent. Moreover, the quantity of the specific element contained in an antibacterial agent can also be specified. In addition, even when the antibacterial agent is processed on the surface of the base material by coating, it is regarded as being contained in the antibacterial test piece in the present invention.

<環境暴露試験>
以上で得られた抗菌試験片は、環境暴露試験に供される。
抗菌剤は、通常、時間の経過とともに基材から溶出する。環境暴露試験は、抗菌剤が溶出する速度を加速するために行う。抗菌性能評価の迅速化のためである。
環境暴露試験は、具体的には、抗菌試験片を、加熱環境、腐食環境、あるいは湿潤環境等に曝すことによって実現される。具体的な環境は、抗菌性能を評価して適用される用途、製品に適合させることが望ましい。例えば、高温環境で使用される製品のために抗菌性能を評価する場合には、抗菌試験片を加熱環境下に曝せばよい。
環境暴露試験は、後に求められる抗菌剤の溶出速度を求めるために、所定の時間(T)を設定して行われる。
<Environmental exposure test>
The antibacterial test piece obtained as described above is subjected to an environmental exposure test.
Antibacterial agents usually elute from the substrate over time. Environmental exposure tests are conducted to accelerate the rate at which antimicrobial agents dissolve. This is to speed up antibacterial performance evaluation.
Specifically, the environmental exposure test is realized by exposing the antibacterial test piece to a heating environment, a corrosive environment, a wet environment, or the like. It is desirable that the specific environment is adapted to the application and product to be applied by evaluating antibacterial performance. For example, when antibacterial performance is evaluated for a product used in a high temperature environment, the antibacterial test piece may be exposed to a heated environment.
The environmental exposure test is performed by setting a predetermined time (T) in order to determine the elution rate of the antibacterial agent that is required later.

<抗菌剤残量分析>
所定時間Tの環境暴露試験が終了したならば、抗菌試験片に残留する抗菌剤の残量を分析、測定する。前述したように、残留した抗菌剤そのものの量に限らず、抗菌剤を構成する元素を測定対象としてもよい。
抗菌剤の残量は、公知の各種分析方法を用いることができる。有機系の抗菌剤については、フーリエ変換赤外分光装置(FT−IR)を用いることができる。有機化合物は赤外域において、その物質固有の振動スペクトルを有している。したがって、その赤外吸収波長を測定することにより定性分析を行うことができる。そして、吸収の強さを測定することにより定量分析を行うことができる。フーリエ変換赤外分光装置は、干渉計を使用して干渉曲線(インターフェログラム)を測定し、それをフーリエ変換して赤外スペクトルを得る装置である。
<Antibiotics remaining amount analysis>
When the environmental exposure test for a predetermined time T is completed, the remaining amount of the antibacterial agent remaining on the antibacterial test piece is analyzed and measured. As described above, not only the amount of the remaining antibacterial agent itself but also the elements constituting the antibacterial agent may be measured.
Various known analysis methods can be used for the remaining amount of the antibacterial agent. For the organic antibacterial agent, a Fourier transform infrared spectrometer (FT-IR) can be used. An organic compound has a vibration spectrum unique to the substance in the infrared region. Therefore, qualitative analysis can be performed by measuring the infrared absorption wavelength. And quantitative analysis can be performed by measuring the intensity of absorption. The Fourier transform infrared spectrometer is an apparatus that measures an interference curve (interferogram) using an interferometer, and obtains an infrared spectrum by Fourier transforming the interference curve.

また、特定の元素を分析する場合には、原子吸光分析、蛍光X線分析、電子線マイクロアナライザ等を用いることができる。元素分析による場合、抗菌剤を構成する元素の中で、最も検出感度の高い元素を分析対象とすることが望ましい。抗菌剤の残量特定の精度を得るためである。たとえば、後述する実施例で示すピリジン系有機抗菌剤の場合、Zn(亜鉛)を分析対象とすることが好ましい。また、分析する元素は、複数であってもよい。   Moreover, when analyzing a specific element, atomic absorption analysis, fluorescent X-ray analysis, an electron beam microanalyzer, etc. can be used. In the case of elemental analysis, it is desirable to select an element with the highest detection sensitivity among the elements constituting the antibacterial agent. This is to obtain the accuracy of identifying the remaining amount of the antibacterial agent. For example, in the case of a pyridine-based organic antibacterial agent shown in the examples described later, it is preferable to use Zn (zinc) as an analysis target. Further, a plurality of elements to be analyzed may be used.

<溶出速度算出>
抗菌剤の残量が特定できたならば、次に、抗菌剤の溶出速度を算出する。
図2に示すように、環境暴露試験前の抗菌剤の初期量をA、環境暴露試験後の抗菌剤の残量をA’とすると、環境暴露試験における抗菌剤の溶出速度Vは、V=(A−A’)/Tにより求められる。
前述したように、初期量A、残量A’は、抗菌剤そのものの量とすることができるし、抗菌剤を構成する特定の元素の量とすることもできる。有機系の抗菌剤を用いる場合、抗菌剤そのものの量を測定するには、前述したフーリエ変換赤外分光装置(FT−IR)を用いればよい。また、有機系の抗菌剤を用いる場合であっても、抗菌剤を構成する特定の元素、例えばN(窒素)、S(硫黄)、その他の元素を分析する場合には、原子吸光分析、蛍光X線分析、電子線マイクロアナライザ等を用いればよい。
<Elution rate calculation>
If the remaining amount of the antibacterial agent can be specified, then the dissolution rate of the antibacterial agent is calculated.
As shown in FIG. 2, when the initial amount of the antibacterial agent before the environmental exposure test is A and the remaining amount of the antibacterial agent after the environmental exposure test is A ′, the dissolution rate V of the antibacterial agent in the environmental exposure test is V = It is obtained by (AA ′) / T.
As described above, the initial amount A and the remaining amount A ′ can be the amount of the antibacterial agent itself, or can be the amount of a specific element constituting the antibacterial agent. When using an organic antibacterial agent, the above-described Fourier transform infrared spectrometer (FT-IR) may be used to measure the amount of the antibacterial agent itself. Even when an organic antibacterial agent is used, when analyzing specific elements constituting the antibacterial agent, such as N (nitrogen), S (sulfur), and other elements, atomic absorption analysis, fluorescence X-ray analysis, electron beam microanalyzer, or the like may be used.

<抗菌性能評価>
以上のようにして求められた抗菌剤の溶出速度Vにより、抗菌性能を評価する。
抗菌性能評価は、溶出速度Vの大・小により行うのが基本であるが、単純に溶出速度Vの大・小によって抗菌性能を評価できない場合もある。すなわち、抗菌剤の溶出速度Vが大きいということは、抗菌効果に即効性があることを示唆している。しかし、溶出速度Vが大きいために、基材中の抗菌剤の減少が速くなり、抗菌効果の持続性の点では劣る場合がある。
例えば、図3に示すように、同一の抗菌剤について、基材A、基材B及び基材Cについて評価試験を行ったところ、抗菌剤の溶出経過が異なるとの結果を得たものとする。ここで、基材Aは溶出速度Vが最も速く、基材Cは溶出速度Vが最も遅く、基材Bはその中間である。この場合、基材Aを用いると、抗菌効果に即効性が認められるものの、その効果の持続性は劣る。一方、基材Cを用いると、逆に、抗菌効果は遅効性を有するが、その効果を長期間にわたって持続できるといえる。基材Bを用いると、抗菌効果の即効性及びその効果の持続性を兼ね備えることになる。したがって、抗菌効果の即効性を求める場合には、基材Aを選択することになる。また、抗菌効果の持続性を求める場合には、基材Cを選択することになる。さらに、抗菌効果の即効性及び持続性をともにもとめるのであれば、基材Bを選択することになる。本発明における抗菌性能の評価とは、以上の態様を包含している。
<Antimicrobial performance evaluation>
The antibacterial performance is evaluated based on the dissolution rate V of the antibacterial agent determined as described above.
The antibacterial performance evaluation is basically performed based on whether the elution rate V is large or small, but there are cases where the antibacterial performance cannot be simply evaluated based on the large or small elution rate V. That is, the high dissolution rate V of the antibacterial agent suggests that the antibacterial effect is immediate. However, since the elution rate V is large, the decrease in the antibacterial agent in the base material is accelerated, and the durability of the antibacterial effect may be inferior.
For example, as shown in FIG. 3, when the evaluation test was performed on the base material A, the base material B, and the base material C with respect to the same antibacterial agent, it was assumed that the elution process of the antibacterial agent was different. . Here, the base material A has the fastest elution rate V, the base material C has the slowest elution rate V, and the base material B is in the middle. In this case, when the base material A is used, an immediate effect is recognized in the antibacterial effect, but the sustainability of the effect is inferior. On the other hand, when the base material C is used, the antibacterial effect has a delayed effect, but it can be said that the effect can be sustained over a long period of time. When the base material B is used, the antibacterial effect is immediately effective and the effect is sustained. Therefore, when the immediate effect of the antibacterial effect is required, the substrate A is selected. Further, when the durability of the antibacterial effect is required, the substrate C is selected. Furthermore, the base material B is selected if both the immediate effect and the sustainability of the antibacterial effect are obtained. The evaluation of antibacterial performance in the present invention includes the above aspects.

ところで、図3にも示したように、同一の抗菌剤であっても、基材によって抗菌性能に差異があることがある。したがって、複数種の抗菌剤及び複数種の基材の中で、最も抗菌効果の高い組み合せを見出すために、本発明を適用することができる。後述する実施例にも示されるように、抗菌剤の溶出速度VとJISに規定してある抗菌試験の結果が対応している。したがって、微生物又は生菌を用いることなく、本発明の抗菌性能の評価方法により、抗菌効果の優れた抗菌剤と基材との組み合せを抽出する。この組み合せは、一つに限られるものではなく、複数の組み合せを抽出することもできる。すなわち、抗菌性能の評価結果として、最終的にはJISの規定による試験を行うことが必要な場合がある。そこで、本発明により抗菌効果の優れた抗菌剤と基材との組み合せを複数抽出し、最終的には、JISの規定による試験を行うことによって、最も好ましい抗菌剤と基材との組み合わせを選定することができる。   By the way, as shown also in FIG. 3, even if it is the same antibacterial agent, there may be a difference in antibacterial performance depending on the base material. Therefore, the present invention can be applied to find a combination having the highest antibacterial effect among a plurality of types of antibacterial agents and a plurality of types of base materials. As shown also in the Example mentioned later, the dissolution rate V of an antibacterial agent and the result of the antibacterial test prescribed | regulated to JIS respond | correspond. Therefore, a combination of an antibacterial agent having excellent antibacterial effect and a base material is extracted by the method for evaluating antibacterial performance of the present invention without using microorganisms or viable bacteria. This combination is not limited to one, and a plurality of combinations can be extracted. That is, as an evaluation result of antibacterial performance, it may be necessary to finally perform a test according to JIS regulations. Therefore, according to the present invention, a plurality of combinations of antibacterial agents having excellent antibacterial effects and base materials are extracted, and finally, the most preferable combination of antibacterial agents and base materials is selected by performing a test according to JIS regulations. can do.

ポリプロピレン樹脂(PP)、ポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)に、ピリジン系の有機抗菌剤を添加した抗菌試験片を作製した。抗菌試験片は、各々の樹脂原料に有機抗菌剤(マスターバッチ)を所定量配合して射出成形により作製した。抗菌試験片の寸法は、50×50×2mmである。なお、基材をポリプロピレン樹脂とする抗菌試験片を抗菌試験片(PP)、基材をポリアクリロニトルブタジエンスチレン共重合樹脂とする抗菌試験片を抗菌試験片(ABS)ということにする。
抗菌試験片(PP)及び抗菌試験片(ABS)に含まれるZn量を測定した。なお、ピリジン系の有機抗菌剤は、その構成元素としてZnを含んでいる。したがって、Zn含有量の変動が把握できれば、ピリジン系有機抗菌剤の含有量の変動を特定することができる。抗菌試験片(PP)及び抗菌試験片(ABS)の、Zn含有量(初期)は以下の通りである。なお、Zn含有量は、EPMAにより測定した。
抗菌試験片(PP):Zn含有量=0.518wt%
抗菌試験片(ABS):Zn含有量=0.271wt%
Antibacterial test pieces were prepared by adding a pyridine-based organic antibacterial agent to polypropylene resin (PP) and polyacrylonitrile butadiene styrene copolymer resin (ABS). An antibacterial test piece was prepared by injection molding with a predetermined amount of an organic antibacterial agent (masterbatch) added to each resin raw material. The dimension of the antibacterial test piece is 50 × 50 × 2 mm. The antibacterial test piece (PP) is an antibacterial test piece (PP) whose base material is a polypropylene resin, and the antibacterial test piece (ABS) is an antibacterial test piece whose base material is a polyacrylonitrile butadiene styrene copolymer resin.
The amount of Zn contained in the antibacterial test piece (PP) and the antibacterial test piece (ABS) was measured. The pyridine-based organic antibacterial agent contains Zn as a constituent element. Therefore, if the fluctuation | variation of Zn content can be grasped | ascertained, the fluctuation | variation of content of a pyridine type organic antibacterial agent can be specified. The Zn content (initial) of the antibacterial test piece (PP) and the antibacterial test piece (ABS) is as follows. The Zn content was measured by EPMA.
Antibacterial test piece (PP): Zn content = 0.518 wt%
Antibacterial test piece (ABS): Zn content = 0.271 wt%

次に、二種類の抗菌試験片を流水中に168時間晒す環境暴露試験を実施した。なお、水槽内に抗菌試験片を配置し、ポンプを用いて水槽内の水を循環させることにより流水を形成した。流水に触れた抗菌試験片は、抗菌剤の溶出が加速される。
試験終了後、各抗菌試験片のZn含有量(流水劣化後)を上述したのと同様に測定した。その結果は以下の通りである。
抗菌試験片(PP):Zn含有量=0.260wt%
抗菌試験片(ABS):Zn含有量=0.238wt%
Next, an environmental exposure test was performed in which two types of antibacterial test pieces were exposed to running water for 168 hours. In addition, the antibacterial test piece was arrange | positioned in the water tank, and flowing water was formed by circulating the water in a water tank using a pump. Antibacterial test pieces that have been exposed to running water accelerate the dissolution of the antibacterial agent.
After the test was completed, the Zn content (after running water deterioration) of each antibacterial test piece was measured in the same manner as described above. The results are as follows.
Antibacterial test piece (PP): Zn content = 0.260 wt%
Antibacterial test piece (ABS): Zn content = 0.238 wt%

以上のZn含有量の変動より、抗菌剤の溶出速度を求めた。その結果を表1に示す。
表1に示すように、同じピリジン系有機抗菌剤を用いても、基材が異なると抗菌剤の溶出速度が相違する。すなわち、ピリジン系有機抗菌剤の場合、ポリプロピレン樹脂(PP)を基材とする方が、ポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)を基材とするよりも、抗菌剤の溶出速度が顕著に速い。
The dissolution rate of the antibacterial agent was determined from the above variation in Zn content. The results are shown in Table 1.
As shown in Table 1, even when the same pyridine-based organic antibacterial agent is used, the dissolution rate of the antibacterial agent is different if the substrate is different. That is, in the case of a pyridine-based organic antibacterial agent, the elution rate of the antibacterial agent is significantly higher when the polypropylene resin (PP) is used as the base material than when the polyacrylonitrile butadiene styrene copolymer resin (ABS) is used as the base material. fast.

Figure 2008209347
Figure 2008209347

以上の二種類の抗菌試験片を用いて、JIS Z 2801−2000に準じて抗菌効果を評価した。評価方法は以下の通りである。
抗菌試験片(PP)及び抗菌試験片(ABS)、さらに抗菌剤を含まない以外は抗菌試験片(PP)及び抗菌試験片(ABS)と同様に作製した無加工試験片(PP’)及び無加工試験片(ABS’)を用意した。抗菌剤は、前述したピリジン系有機抗菌剤を用い、添加量を0.1wt%及び0.5wt%の二種類とした。なお、この添加量は、ピリジン系有機抗菌剤自体の量である。
上記試験片を各々別のシャーレ上に置き、2.5〜10×10個/mlとなるように調整した液菌0.4mlを各試験片の上に滴下した。その上に、40mm×40mmのフィルムを被せて、試験片と密着させた。なお、抗菌性能評価のための菌としては、黄色ブドウ球菌(Staphylococcus aureus)及び緑膿菌(Pseudomonas aeruginos)を用いた。
フィルムが被せられた各試験片を、35℃、湿度90%以上の環境下に24時間放置した。その後、フィルムを剥がすとともに、液体培地により試験片に付着している液菌を洗い出し、これを寒天培地と混釈して、35℃の温度で48時間培養した。
The antibacterial effect was evaluated according to JIS Z 2801-2000 using the above two types of antibacterial test pieces. The evaluation method is as follows.
Antibacterial test piece (PP) and antibacterial test piece (ABS), as well as unprocessed test piece (PP ') and no A processed test piece (ABS ') was prepared. As the antibacterial agent, the aforementioned pyridine-based organic antibacterial agent was used, and the addition amount was two types of 0.1 wt% and 0.5 wt%. The amount added is the amount of the pyridine organic antibacterial agent itself.
Each of the above test pieces was placed on a separate petri dish, and 0.4 ml of liquid bacteria adjusted to 2.5 to 10 × 10 5 cells / ml was dropped onto each test piece. A 40 mm × 40 mm film was placed thereon and brought into close contact with the test piece. In addition, Staphylococcus aureus and Pseudomonas aeruginos were used as bacteria for antibacterial performance evaluation.
Each test piece covered with the film was left in an environment of 35 ° C. and a humidity of 90% or more for 24 hours. Thereafter, the film was peeled off, and the liquid bacteria adhering to the test piece were washed out with a liquid medium, mixed with an agar medium, and cultured at a temperature of 35 ° C. for 48 hours.

その後、培地上に生じた生菌コロニー数を数え、それぞれの生菌コロニー数の常用対数値を求め、以下の式により、抗菌活性値Rを求めた。なお、この抗菌活性値が2.0以上であれば、抗菌効果があると判断される。
R=[Log(B−A)−Log(C−A)]=[Log(B/C)]
A:無加工試験片における、環境暴露試験前の生菌数の平均値(個)
B:無加工試験片における、24時間後の生菌数の平均値(個)
C:抗菌試験片における、24時間後の生菌数の平均値(個)
Thereafter, the number of viable colonies generated on the medium was counted, the common logarithm of each viable colony number was obtained, and the antibacterial activity value R was obtained by the following formula. In addition, if this antibacterial activity value is 2.0 or more, it is judged that there exists an antibacterial effect.
R = [Log (BA) -Log (CA)] = [Log (B / C)]
A: Average number of viable bacteria before environmental exposure test in unprocessed specimens
B: Average number of viable cells after 24 hours in unprocessed test piece
C: Average number of viable bacteria after 24 hours in antibacterial test piece

抗菌性能評価は、前述した流水試験前、流水試験100時間経過後及び流水試験168時間経過後について行った。抗菌性能評価の結果を図4〜図9に示す。なお、図4〜図6は抗菌試験片(PP)、無加工試験片(PP’)により求められた結果を示し、図4は抗菌剤の濃度と抗菌活性値の関係を示し、図5は黄色ブドウ球菌についての流水時間と抗菌活性値の関係を示し、図6は緑膿菌についての流水時間と抗菌活性値の関係を示している。また、図7〜図9は抗菌試験片(ABS)、無加工試験片(ABS’)により求められた結果を示し、図7は抗菌剤の濃度と抗菌活性値の関係を示し、図8は黄色ブドウ球菌についての流水時間と抗菌活性値の関係を示し、図9は緑膿菌についての流水時間と抗菌活性値の関係を示している。   The antibacterial performance evaluation was performed before the flowing water test described above, after 100 hours of flowing water test and after 168 hours of flowing water test. The results of antibacterial performance evaluation are shown in FIGS. 4 to 6 show the results obtained from the antibacterial test piece (PP) and the unprocessed test piece (PP ′), FIG. 4 shows the relationship between the concentration of the antibacterial agent and the antibacterial activity value, and FIG. The relationship between the running time and antibacterial activity value for S. aureus is shown, and FIG. 6 shows the relationship between the running time and antibacterial activity value for Pseudomonas aeruginosa. 7 to 9 show the results obtained by the antibacterial test piece (ABS) and the unprocessed test piece (ABS ′), FIG. 7 shows the relationship between the concentration of the antibacterial agent and the antibacterial activity value, and FIG. FIG. 9 shows the relationship between the running time and the antibacterial activity value for Pseudomonas aeruginosa.

図4〜図9より、同一の抗菌剤を用いても、基材が異なると抗菌活性値に差異があることがわかる。図4と図7とを比較すると、ピリジン系有機抗菌剤を用いる場合、ポリプロピレン樹脂(PP)を基材として用いた方が、ポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)を基材として用いるよりも、抗菌性能が高い。この傾向は、流水試験を行っても同様である。この結果を表1に示している(○、×)。
そこで、表1に示した抗菌剤溶出速度と対比すると、抗菌溶出速度の速い、ポリプロピレン樹脂(PP)を基材とする抗菌試験片(PP)は抗菌性能が優れている。一方、抗菌溶出速度の遅い、ポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)を基材とする抗菌試験片(ABS)は抗菌性能が劣る。以上の結果より、抗菌剤溶出速度により、抗菌性能を概ね評価できることがわかる。
4-9, even if the same antibacterial agent is used, it can be seen that there is a difference in the antibacterial activity value if the substrate is different. When FIG. 4 is compared with FIG. 7, when using a pyridine type organic antibacterial agent, the direction using a polypropylene resin (PP) as a base material is more than using a polyacrylonitrile butadiene styrene copolymer resin (ABS) as a base material. Even antibacterial performance is high. This tendency is the same even when a running water test is conducted. The results are shown in Table 1 (◯, ×).
Therefore, when compared with the antibacterial agent elution rate shown in Table 1, the antibacterial test piece (PP) based on polypropylene resin (PP) having a high antibacterial elution rate is excellent in antibacterial performance. On the other hand, an antibacterial test piece (ABS) based on polyacrylonitrile butadiene styrene copolymer resin (ABS), which has a slow antibacterial elution rate, is inferior in antibacterial performance. From the above results, it can be seen that the antibacterial performance can be generally evaluated by the dissolution rate of the antibacterial agent.

本発明に係る抗菌性能の評価方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the evaluation method of the antibacterial performance which concerns on this invention. 抗菌剤の溶出速度Vを求める方法を説明する図である。It is a figure explaining the method of calculating | requiring the elution rate V of an antibacterial agent. 同一の抗菌剤であっても、基材によって抗菌性能に差異があることを示すグラフである。It is a graph which shows that even if it is the same antibacterial agent, there exists a difference in antibacterial performance by a base material. 基材をポリプロピレン樹脂(PP)とする抗菌試験片による抗菌性能評価の結果を示すグラフである。It is a graph which shows the result of the antibacterial performance evaluation by the antibacterial test piece which makes a base material polypropylene resin (PP). 基材をポリプロピレン樹脂(PP)とする抗菌試験片において、黄色ブドウ球菌を用いた抗菌性能評価の結果を示すグラフである。It is a graph which shows the result of antibacterial performance evaluation using Staphylococcus aureus in the antibacterial test piece which makes a base material polypropylene resin (PP). 基材をポリプロピレン樹脂(PP)とする抗菌試験片において、緑膿菌を用いた抗菌性能評価の結果を示すグラフである。It is a graph which shows the result of antibacterial performance evaluation using Pseudomonas aeruginosa in the antibacterial test piece which makes a base material polypropylene resin (PP). 基材をポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)とする抗菌試験片による抗菌性能評価の結果を示すグラフである。It is a graph which shows the result of the antibacterial performance evaluation by the antibacterial test piece which uses a base material as a polyacrylonitrile butadiene styrene copolymer resin (ABS). 基材をポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)とする抗菌試験片において、黄色ブドウ球菌を用いた抗菌性能評価の結果を示すグラフである。It is a graph which shows the result of the antibacterial performance evaluation using Staphylococcus aureus in the antibacterial test piece which makes a base material polyacrylonitrile butadiene styrene copolymer resin (ABS). 基材をポリアクリロニトルブタジエンスチレン共重合樹脂(ABS)とする抗菌試験片において、緑膿菌を用いた抗菌性能評価の結果を示すグラフである。It is a graph which shows the result of antibacterial performance evaluation using Pseudomonas aeruginosa in the antibacterial test piece which makes a base material polyacrylonitrile butadiene styrene copolymer resin (ABS).

Claims (3)

抗菌加工が施された抗菌試験片に含まれる抗菌剤又は前記抗菌剤を構成する元素の初期量Aを特定する工程(a)と、
前記抗菌試験片を、前記抗菌剤の溶出を加速させる環境に時間Tだけ曝す工程(b)と、
前記工程(b)を経た前記抗菌試験片に含まれる前記抗菌剤又は前記抗菌剤を構成する元素の残量A’を特定する工程(c)と、
前記初期量A、前記残量A’及び前記時間Tを用い、式:(A−A’)/T=Vにより前記工程(b)における前記抗菌剤の溶出速度Vを求め、この溶出速度Vを指標として、抗菌性能を評価することを特徴とする抗菌性能の評価方法。
A step (a) of identifying an antibacterial agent contained in an antibacterial test piece subjected to antibacterial processing or an initial amount A of an element constituting the antibacterial agent;
Exposing the antibacterial test strip to an environment that accelerates the dissolution of the antibacterial agent for a period of time (b);
The step (c) of identifying the antibacterial agent contained in the antibacterial test piece that has undergone the step (b) or the remaining amount A ′ of the element constituting the antibacterial agent;
Using the initial amount A, the remaining amount A ′ and the time T, the elution rate V of the antibacterial agent in the step (b) is obtained by the formula: (AA ′) / T = V, and this elution rate V An antibacterial performance evaluation method characterized by evaluating antibacterial performance using as a parameter.
前記抗菌試験片は、前記抗菌剤が分散された樹脂材料であることを特徴とする請求項1に記載の抗菌性能の評価方法。   The antibacterial performance evaluation method according to claim 1, wherein the antibacterial test piece is a resin material in which the antibacterial agent is dispersed. 前記抗菌剤は、有機系の抗菌剤であることを特徴とする請求項1又は2に記載の抗菌性能の評価方法。   The antibacterial performance evaluation method according to claim 1, wherein the antibacterial agent is an organic antibacterial agent.
JP2007048528A 2007-02-28 2007-02-28 Antimicrobial performance evaluating method Withdrawn JP2008209347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007048528A JP2008209347A (en) 2007-02-28 2007-02-28 Antimicrobial performance evaluating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007048528A JP2008209347A (en) 2007-02-28 2007-02-28 Antimicrobial performance evaluating method

Publications (1)

Publication Number Publication Date
JP2008209347A true JP2008209347A (en) 2008-09-11

Family

ID=39785758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048528A Withdrawn JP2008209347A (en) 2007-02-28 2007-02-28 Antimicrobial performance evaluating method

Country Status (1)

Country Link
JP (1) JP2008209347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227390A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Detoxifying treatment method for apparatus incorporating organic halogen compound
JP2020195345A (en) * 2019-06-04 2020-12-10 イビデン株式会社 Antimicrobial member antimicrobial performance determination method, antimicrobial performance measurement method, antimicrobial member quality determination method, antimicrobial member regeneration method, antimicrobial member monitoring business method, and member surface copper deposition measurement method
CN112198130A (en) * 2020-10-22 2021-01-08 北方华锦化学工业股份有限公司 Method for rapidly detecting antibacterial performance of antibacterial ABS product in production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227390A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Detoxifying treatment method for apparatus incorporating organic halogen compound
JP2020195345A (en) * 2019-06-04 2020-12-10 イビデン株式会社 Antimicrobial member antimicrobial performance determination method, antimicrobial performance measurement method, antimicrobial member quality determination method, antimicrobial member regeneration method, antimicrobial member monitoring business method, and member surface copper deposition measurement method
CN112198130A (en) * 2020-10-22 2021-01-08 北方华锦化学工业股份有限公司 Method for rapidly detecting antibacterial performance of antibacterial ABS product in production

Similar Documents

Publication Publication Date Title
JP6153731B2 (en) Bacteria measurement method, antibacterial and / or bacteria reduction evaluation method, and holding material
US10274406B2 (en) Accelerated Wright-Giemsa and May-Grünwald staining methods
Webb et al. Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride
US4094745A (en) Method of staining microscopic organisms
Grzelak et al. Development of a novel direct bioautography–thin-layer chromatography test: Optimization of growth conditions for Gram-negative bacteria, Escherichia coli
JP2008209347A (en) Antimicrobial performance evaluating method
JP2010014500A (en) Simple component analyzing method of metal material
Ayub et al. Specimen preparation for electron microscopy: an overview
JP7447025B2 (en) Improved microbial biomass measurement method
Lie et al. Surface mould growth on wood: a comparison of laboratory screening tests and outdoor performance
CA1089339A (en) Method of staining micro-organisms
GB2593360A (en) Antimicrobial susceptibility assay and kit
CN107475348B (en) Method for evaluating bacteriostatic ability of cholate and sodium deoxycholate
JP7374724B2 (en) Freshness labels and freshness label kits
Alonso Tips and tricks for high quality MAR-FISH preparations: focus on bacterioplankton analysis
CN110702750B (en) PEC aptamer sensor and preparation method thereof
CN111089943B (en) Measuring method for rapidly judging cleaning performance of mildew-proof or isolating powder on glass surface
CN108120714B (en) Reagent for detecting microalbumin in urine and application thereof
Tarimeri et al. A high sensitive, reproducible and disposable immunosensor for analysis of SOX2
Kalinina et al. Growth of the Fungus Aspergillus niger on a Varnished Fabric in Different Temperature and Humidity Conditions
Scholtz et al. Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights
Sawoszczuk et al. Application of solid‐phase microextraction with gas chromatography and mass spectrometry for the early detection of active moulds on historical woollen objects
Kurhekar et al. In-vitro Assays for antimicrobial Assessment
Brunon et al. ToF‐SIMS and XPS characterization of antimicrobial textiles for the food processing industry
Wang et al. Comparison of Escherichia coli surface attachment methods for single-cell, in vivo microscopy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511