JP2008209283A - Apparatus and method for monitoring structure - Google Patents

Apparatus and method for monitoring structure Download PDF

Info

Publication number
JP2008209283A
JP2008209283A JP2007047099A JP2007047099A JP2008209283A JP 2008209283 A JP2008209283 A JP 2008209283A JP 2007047099 A JP2007047099 A JP 2007047099A JP 2007047099 A JP2007047099 A JP 2007047099A JP 2008209283 A JP2008209283 A JP 2008209283A
Authority
JP
Japan
Prior art keywords
power
power generation
generated
conducting wire
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007047099A
Other languages
Japanese (ja)
Other versions
JP4913628B2 (en
Inventor
Yusuke Kobayashi
裕介 小林
Makoto Tanaka
田中  誠
Tatsuro Sakamoto
達朗 坂本
Yasuhiro Sakai
康弘 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
USC Corp
Original Assignee
Railway Technical Research Institute
USC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, USC Corp filed Critical Railway Technical Research Institute
Priority to JP2007047099A priority Critical patent/JP4913628B2/en
Publication of JP2008209283A publication Critical patent/JP2008209283A/en
Application granted granted Critical
Publication of JP4913628B2 publication Critical patent/JP4913628B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0672Spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/52Sports equipment ; Games; Articles for amusement; Toys
    • B29L2031/5254Swimming or diving equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for monitoring a structure, which complements the inspections conducted by humans, and effectively carries out maintenances and efficiently, in order to solve the problems related to fatigue in the structure. <P>SOLUTION: The apparatus includes a power generating means for generating an electric power, in response to a vibration caused by a vehicle which travels on the structure which is an object to be monitored; a conducting wire made of a conductive material and formed on the surface of the structure; a detecting means for detecting the conduction state of the conducting wire by using the electric power generated by the power generating means; a transmitting means for transmitting information that represents the conduction state of the conducting wire, detected by the detecting means by using the electric power generated by the power generating means; and a receiving means which is installed at the vehicle and receives the information representing the conduction state of the conducting wire which is transmitted by the transmitting means. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、鉄道構造物等の疲労き裂の発生状況を監視する監視装置及び監視方法に関する。   The present invention relates to a monitoring device and a monitoring method for monitoring the occurrence of fatigue cracks in railway structures and the like.

鋼橋における主要な変状には疲労と腐食があり、鋼橋を100年のオーダーで供用し続けるためには、これらの変状に適切に対処していく必要がある。鋼鉄道橋では、「鉄道構造物等維持管理標準・同解説(構造物編鋼・合成構造物)」に定められている全般検査によって、疲労や腐食といった変状の発生の捕捉、もしくは進行の程度を把握している。全般検査において変状が認められた場合は、さらに個別検査を実施し、変状の程度の詳細な把握、変状原因の究明、補修・補強方法の検討などを行う。ここでいう全般検査とは、通常全般検査と特別全般検査に区分され、通常全般検査は橋側歩道や桁下からの目視によって行う検査であり、特別全般検査は足場等を利用して近接した状態で目視を行う検査である。2年に一度全般検査を実施することが義務付けられているが、一般的には通常全般検査を行なっており、塗装の塗替え時にその足場を利用して特別全般検査を行なっている。   The main deformations in steel bridges are fatigue and corrosion, and in order to keep the steel bridge in service on the order of 100 years, it is necessary to cope with these deformations appropriately. For steel railway bridges, the occurrence of deformation such as fatigue and corrosion is captured or progressed through general inspections set forth in the “Maintenance and Management Standards for Railroad Structures / Description” (structure knitting steel / synthetic structures). I know the degree. If abnormalities are found in the general inspection, further individual inspections will be conducted to find out the details of the degree of deformation, investigate the cause of the deformation, and examine repair / reinforcement methods. General inspection here is classified into normal general inspection and special general inspection, and normal general inspection is inspection performed by visual inspection from the bridge sidewalk or under the girder, and special general inspection is in close proximity using scaffolding etc. This is an inspection in which a visual check is performed in a state. Although it is obliged to carry out a general inspection once every two years, generally a general inspection is usually performed, and a special general inspection is performed using the scaffold when repainting.

腐食に対する検査では、発生部位を捕捉し、腐食面積および板厚減耗量によって腐食の状態を把握している。発生部位の検知や腐食面積の把握については、目視によって十分捉えることが可能であり、板厚減耗量についてはキャリパーや超音波板厚計等の簡易な計測器により捉えることができる。また、腐食の進行の程度は、2年に一度の全般検査で得られた結果の推移から判断することで、充分に効果的な維持管理を行うことが可能である。 一方、疲労については、発生した疲労き裂を全般検査によって発見している。疲労き裂が微細であるため見逃す可能性もあるが、一度の見落としでは列車の走行を阻害するような重大な状態には進行しないように検査周期を定めているのが現状である。   In the inspection for corrosion, the site of occurrence is captured, and the state of corrosion is grasped by the corrosion area and the thickness loss. The detection of the occurrence site and the grasp of the corrosion area can be sufficiently grasped by visual observation, and the thickness loss can be grasped by a simple measuring instrument such as a caliper or an ultrasonic thickness gauge. In addition, it is possible to perform sufficiently effective maintenance management by judging the degree of progress of corrosion from the transition of results obtained by a general inspection once every two years. On the other hand, with regard to fatigue, the fatigue cracks that have occurred are found by general inspection. Although the fatigue crack is fine, it may be missed, but the inspection period is set so that it does not progress to a serious state that impedes train travel with a single oversight.

なお、先行技術として、亀裂先端の応力を求め、疲労度を検知し、破壊の危険性を診断する圧電材料を用いた亀裂の危険度診断方法知られている(例えば、特許文献1参照)。また、圧電素子を用いた発電装置も知られている(例えば、特許文献2参照)。
特開2002−098626号公報 特開2006−129602号公報
As a prior art, there is known a crack risk diagnosis method using a piezoelectric material that obtains the stress at the crack tip, detects the fatigue level, and diagnoses the risk of fracture (for example, see Patent Document 1). A power generation device using a piezoelectric element is also known (see, for example, Patent Document 2).
JP 2002-098626 A JP 2006-129602 A

ところで、疲労き裂の進展は、腐食などの進行と比べて一般的に早く、簡易な補修・補強で済ます等の効果的な維持管理を実現するためには、より早期に発生き裂を捕捉することが望ましく、また、予防保全の観点から言えば、繰返し生じる応力によって累積する疲労を捉え、疲労き裂の発生を予測し事前に対策を行うことも望ましいが、目視を主体とした全般検査では累積する疲労を把握することは困難であるという問題がある。   By the way, the progress of fatigue cracks is generally faster than the progress of corrosion, etc. In order to achieve effective maintenance management such as simple repairs and reinforcements, the cracks generated are caught earlier. From the viewpoint of preventive maintenance, it is also desirable to capture fatigue accumulated due to repeated stress, predict the occurrence of fatigue cracks, and take measures in advance. Then, there is a problem that it is difficult to grasp the accumulated fatigue.

本発明は、このような事情に鑑みてなされたもので、疲労における上記の課題に対して、人間が行う検査を補完し、効果的かつ効率的な維持管理を行うことができる構造物の監視装置及び監視方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and for monitoring the structure capable of performing effective and efficient maintenance management by complementing the inspection performed by humans for the above-mentioned problem in fatigue. An object is to provide an apparatus and a monitoring method.

本発明は、監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、前記構造物の表面に導電性材料により形成された導線と、前記発電手段によって発電された電力を使用して前記導線の通電状態を検出する検出手段と、前記発電手段によって発電された電力を使用して、前記検出手段において検出された前記導線の通電状態を示す情報を送信する送信手段と、前記車両に備えられ、前記送信手段が送信した前記導線の通電状態を示す情報を受信する受信手段とを備えたことを特徴とする。   The present invention provides a power generation means for generating power in response to vibration generated by a vehicle traveling on a structure to be monitored, a conductive wire formed of a conductive material on the surface of the structure, and power generation by the power generation means. Detecting means for detecting an energization state of the conductor using the generated electric power, and transmitting information indicating the energization state of the conductor detected by the detection means using the electric power generated by the power generation means. It is characterized by comprising transmitting means and receiving means provided in the vehicle for receiving information indicating the energization state of the conducting wire transmitted by the transmitting means.

本発明は、前記発電手段は、前記振動による運動エネルギーを電気エネルギーに変換する圧電素子を備えたことを特徴とする。   The present invention is characterized in that the power generation means includes a piezoelectric element that converts kinetic energy generated by the vibration into electric energy.

本発明は、前記発電手段は、前記振動による運動エネルギーによりコイルまたはマグネットを動かし、コイルに交差する磁束変化により、コイルに起電力を発生させることを特徴とする。   The present invention is characterized in that the power generation means moves a coil or a magnet by kinetic energy due to the vibration, and generates an electromotive force in the coil by a magnetic flux change intersecting the coil.

本発明は、前記検出手段は、前記導線の抵抗値変化に基づいて、前記導線の通電状態を検出することを特徴とする。   The present invention is characterized in that the detection means detects an energization state of the conducting wire based on a change in resistance value of the conducting wire.

本発明は、前記発電手段は、前記構造物上を車両が走行した場合に発生する振動に共振するように前記構造物に固定されていることを特徴とする。   The present invention is characterized in that the power generation means is fixed to the structure so as to resonate with vibration generated when a vehicle travels on the structure.

本発明は、監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、前記構造物に設けられたセンサと、前記発電手段によって発電された電力を使用して前記センサの出力を読み取る検出手段と、前記発電手段によって発電された電力を使用して、前記検出手段において検出された前記センサ出力情報を送信する送信手段と、前記車両に備えられ、前記送信手段が送信した前記センサ出力情報を受信する受信手段とを備えたことを特徴とする。   The present invention uses power generation means for generating electric power in response to vibration generated when a vehicle travels on a structure to be monitored, a sensor provided in the structure, and electric power generated by the power generation means. Detection means for reading the output of the sensor, transmission means for transmitting the sensor output information detected by the detection means using the power generated by the power generation means, and provided in the vehicle, the transmission Receiving means for receiving the sensor output information transmitted by the means.

本発明は、監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、前記構造物の表面に導電性材料により形成された導線とを備えた監視装置における監視方法であって、前記発電手段によって発電された電力を使用して前記導線の通電状態を検出する検出ステップと、前記発電手段によって発電された電力を使用して、前記検出された前記導線の通電状態を示す情報を送信する送信ステップと、前記車両において、前記送信した前記導線の通電状態を示す情報を受信する受信ステップとを有することを特徴とする。   The present invention relates to a monitoring device comprising a power generation means for generating electric power in response to vibration generated when a vehicle travels on a structure to be monitored, and a conductive wire formed of a conductive material on the surface of the structure. A detection method for detecting an energization state of the conductor using the electric power generated by the power generation means, and using the electric power generated by the power generation means, It has a transmission step which transmits the information which shows an energized state, and the receiving step which receives the information which shows the energized state of the transmitted said conducting wire in the vehicle.

本発明は、監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、前記構造物に設けられたセンサとを備えた監視装置における監視方法であって、前記発電手段によって発電された電力を使用して前記センサの出力情報を読み取る検出ステップと、前記発電手段によって発電された電力を使用して、前記センサ出力情報を送信する送信ステップと、前記車両において、前記送信した前記センサ出力情報を受信する受信ステップとを有することを特徴とする。   The present invention is a monitoring method in a monitoring device comprising a power generation means for generating electric power in response to vibration generated when a vehicle travels on a structure to be monitored, and a sensor provided in the structure, In the vehicle, a detection step of reading the output information of the sensor using the power generated by the power generation means, a transmission step of transmitting the sensor output information using the power generated by the power generation means, And a receiving step of receiving the transmitted sensor output information.

本発明によれば、導電性表面材料によって形成された導線を、疲労き裂が発生しやすい箇所の表面に設けておき、この導線の通電状態に基づいて疲労き裂を検知するようにしたため、疲労き裂が発生した部位が、橋側歩道や桁下からでは直接目視できないような位置である場合であってもき裂の発生を検知することが可能である。また、圧電素子を用いて、構造物の振動によって発電を行い、この発電電力を使用して、き裂の検出及びき裂の検出状況を示す情報の送信を行うようにしたため、山間部や非電化区間等の商用電源を利用できない地域の構造物であってもき裂の検知を行うことが可能である。また、き裂の検出状況を示す情報の受信を、構造物の上を走行する鉄道車両において受信するようにしたため、検査員が検査対象の構造物に出向く必要がなくなり、検査コストを大幅に削減することができるという効果が得られる。また、車両通過時に検知データを回収することができるようになるため、有線もしくは無線の機器を構造物に設置して検知結果を遠隔地の事務所等に送信する等の装置を省くことができ、監視装置の構成を簡単にすることができる。このため、監視装置のコストダウンを図ることが可能となる。   According to the present invention, the conductive wire formed of the conductive surface material is provided on the surface where the fatigue crack is likely to occur, and the fatigue crack is detected based on the current-carrying state of the conductive wire. It is possible to detect the occurrence of a crack even when the site where the fatigue crack has occurred is a position that cannot be directly viewed from the sidewalk or under the girder. In addition, the piezoelectric element is used to generate power by vibration of the structure, and this generated power is used to detect cracks and transmit information indicating the detection status of cracks. It is possible to detect cracks even in structures in areas where commercial power sources such as electrified sections cannot be used. In addition, since information indicating the detection status of cracks is received by railway vehicles that run on the structure, it is not necessary for the inspector to visit the structure to be inspected, greatly reducing inspection costs. The effect that it can do is acquired. In addition, since the detection data can be collected when the vehicle passes, it is possible to omit a device such as installing a wired or wireless device on the structure and transmitting the detection result to a remote office or the like. The configuration of the monitoring device can be simplified. For this reason, it is possible to reduce the cost of the monitoring device.

以下、本発明の一実施形態による監視装置を図面を参照して説明する。図1は同実施形態の構成を示すブロック図である。この図において、符号1は、鉄道鋼橋の桁である。符号2は、鉄道鋼橋の桁1上に敷かれたレールである。符号3は、レール2上を走行する鉄道車両(以下、車両と称する)である。符号11は、振動を与えることにより起電するピエゾ素子から構成する発電部である。符号12は、桁1の表面の塗膜としての性能を有しつつ、導電性を有する導電性表面材料を塗布することによって形成された導線である。符号13は、導線12の通電状態を検出する検出部である。符号14、15は、発電部11及び検出部13と導線12を接続するための接続端子である。符号16は、検出部13が検出した導線12の通電状態の情報を無線で送信する送信部である。符号31は、車両3内に設けられ、送信部16が送信した通電状態情報を受信する無線で受信部である。符号32は、ディスプレイ装置等で構成され、受信部31が受信した通電状態情報を表示する表示部である。符号33は、フラッシュメモリ等で構成され、受信部31が受信した通電状態情報を記憶する記憶部である。   Hereinafter, a monitoring device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment. In this figure, the code | symbol 1 is a girder of a railway steel bridge. Reference numeral 2 is a rail laid on the beam 1 of the railway steel bridge. Reference numeral 3 denotes a railway vehicle (hereinafter referred to as a vehicle) that travels on the rail 2. Reference numeral 11 denotes a power generation unit including a piezo element that generates electricity by applying vibration. Reference numeral 12 denotes a conductive wire formed by applying a conductive surface material having conductivity while having performance as a coating film on the surface of the beam 1. Reference numeral 13 denotes a detection unit that detects an energized state of the conducting wire 12. Reference numerals 14 and 15 are connection terminals for connecting the power generation unit 11 and the detection unit 13 to the conductor 12. Reference numeral 16 denotes a transmission unit that wirelessly transmits information on the energization state of the conducting wire 12 detected by the detection unit 13. Reference numeral 31 is a wireless receiver that is provided in the vehicle 3 and receives the energization state information transmitted by the transmitter 16. Reference numeral 32 denotes a display unit that includes a display device or the like and displays energization state information received by the receiving unit 31. Reference numeral 33 denotes a storage unit that is configured by a flash memory or the like and stores the energization state information received by the receiving unit 31.

ここで、導電性表面材料を用いて桁1の表面に形成された導線12について説明する。導線12の用途として、疲労き裂発生検知を目的とした用途と、疲労き裂の進展検知を目的とした用途の2種類の用途がある。疲労き裂発生検知を目的とした場合の導電性表面材料には金属系顔料(銀・銀被覆銅粉末)を使用し、また、疲労き裂の進展検知を目的とした場合の導電性表面材料には炭素系顔料(カーボンブラック)を使用する。それぞれの顔料は、銀、銅、ニッケルや、グラファイト、カーボンブラック等の種々の材料を用いて導電性表面材料を作製し、造膜性、作業性および体積抵抗率等をパラメータとして検討した上で選定することが望ましい。橋梁の塗装は下塗、中塗、上塗に分類され、複数層で構成されているが、導電性表面材料は中塗、もしくは下塗の2層目に塗布する。   Here, the conducting wire 12 formed on the surface of the beam 1 using a conductive surface material will be described. There are two types of uses of the lead wire 12, one for the purpose of detecting the occurrence of fatigue cracks and another for the purpose of detecting the progress of fatigue cracks. Metallic pigment (silver / silver-coated copper powder) is used as the conductive surface material for the purpose of detecting the occurrence of fatigue cracks, and conductive surface material for the purpose of detecting the growth of fatigue cracks. For this, a carbon pigment (carbon black) is used. Each pigment is made of various materials such as silver, copper, nickel, graphite, carbon black, etc., and the conductive surface materials are prepared, and the film forming property, workability, volume resistivity, etc. are studied as parameters. It is desirable to select. Bridge painting is classified into undercoat, intermediate coat, and topcoat, and consists of multiple layers, but the conductive surface material is applied to the second layer of the intermediate coat or undercoat.

導電性表面材料を橋梁を構成する部材に塗布しておき、疲労き裂が発生もしくは進展した場合に、き裂上の導電性表面材料が発生したき裂に沿って割れるため、この時に変化する導電性表面材料の電気的抵抗の変化を捉えて、疲労き裂の発生もしくは進展を検知することによって、疲労き裂発生検知または疲労き裂の進展検知を検知することができる。   When conductive surface material is applied to the members constituting the bridge and a fatigue crack is generated or propagates, the conductive surface material on the crack breaks along the generated crack. By detecting changes in electrical resistance of the conductive surface material and detecting the occurrence or progress of fatigue cracks, it is possible to detect the occurrence of fatigue cracks or the detection of fatigue cracks.

次に、図1に示す監視装置における疲労き裂検知の原理を簡単に説明する。導線12は、疲労き裂の生じやすい箇所に、導電性表面材料を細線状に一筆書き(分岐がない状態)で塗布することにより形成する。そして、この導線12の断線(通電状態ではなくなること)を検出することによって疲労き裂の発生を検知する。導線12の断線を検出するだけのため、測定機器類を使用しなくて済む特徴を有している。また、山間部や非電化区間等において商用電源を利用できない場合を想定して、鉄道車両通過時の鋼桁の振動から起電する圧電素子(ピエゾ素子)に発電を行い、この電力を電源として用いる。また、検出結果を検出部13が取り付けられている桁1上を走行している車両3に対して、通電状態情報を送信するようにしたため、圧電素子で発電した電力で十分に情報送信を行うことができる。   Next, the principle of fatigue crack detection in the monitoring apparatus shown in FIG. 1 will be briefly described. The conductive wire 12 is formed by applying a conductive surface material in a thin line shape with a single stroke (no branching) at a place where fatigue cracks are likely to occur. Then, the occurrence of a fatigue crack is detected by detecting disconnection of the conducting wire 12 (no longer being energized). Since only the disconnection of the conducting wire 12 is detected, there is a feature that it is not necessary to use measuring instruments. In addition, assuming that commercial power cannot be used in mountainous areas or non-electrified sections, power is generated by piezoelectric elements (piezo elements) that generate electricity from the vibration of steel girders when passing through railway vehicles. Use. Further, since the energization state information is transmitted to the vehicle 3 traveling on the beam 1 to which the detection unit 13 is attached, the detection result is sufficiently transmitted with the electric power generated by the piezoelectric element. be able to.

次に、図2を参照して、図1に示す発電部11の構成を説明する。発電部11は、圧電セラミックスを用いた発電(ピエゾ発電)を行うものであり、圧電セラミックスに加えられた運動エネルギーを効率よく電気エネルギーに変換することで効率よく発電を行うことができる。この発電部11には、例えば、特許文献2に記載の圧電発電装置を用いることができる。図2は、発電部11に対して、桁1の振動を効率良く伝えるための構成を示す図である。この図に示すように、発電部11は、一方の端部が桁1に固定され、他方の端部に質量11bが固定された板バネ11aに取り付けられる。このとき、発電部11は、板バネ11aのバネ定数、質量11bとの関係から決まる固有振動数に基づいて、桁1の振動と共振する位置になるように調整して取り付ける。このように、発電部11を板バネ11aに固定することにより、桁1の振動を効率よく発電部11に対して伝えることができるため、発電部11において十分な発電量を得ることが可能となる。   Next, with reference to FIG. 2, the structure of the electric power generation part 11 shown in FIG. 1 is demonstrated. The power generation unit 11 performs power generation using piezoelectric ceramics (piezo power generation), and can efficiently generate power by efficiently converting kinetic energy applied to the piezoelectric ceramics into electrical energy. For the power generation unit 11, for example, a piezoelectric power generation device described in Patent Document 2 can be used. FIG. 2 is a diagram illustrating a configuration for efficiently transmitting the vibration of the girder 1 to the power generation unit 11. As shown in this figure, the power generation unit 11 is attached to a leaf spring 11a having one end fixed to the beam 1 and the other end having a mass 11b. At this time, the power generation unit 11 is adjusted and attached so as to resonate with the vibration of the beam 1 based on the natural frequency determined from the relationship between the spring constant of the leaf spring 11a and the mass 11b. In this way, by fixing the power generation unit 11 to the leaf spring 11a, the vibration of the beam 1 can be efficiently transmitted to the power generation unit 11, so that it is possible to obtain a sufficient power generation amount in the power generation unit 11. Become.

次に、図1を参照して、監視装置の動作を説明する。まず、発電部11は、車両3が桁1上を走行していないときは、桁1に振動が発生しないため、発電を行わない。一方、桁1上を車両3が通過すると、発電部11は、桁1に発生する振動によって発電が行われ、導線12内に電流が流れる。検出部13は、通電状態(断線の有無)を検出する。図3に示すように、桁1に疲労き裂が発生していた場合、導線12は、き裂1aによって断線が発生する。検出部13は、この断線発生を検出することによってき裂発生を検知することができる。検出部13は通電状態を検出した結果得られる通電状態情報を送信部16へ出力する。送信部16は、発電部11が桁1の振動によって発電した電力を使用して、検出部13から出力される通電状態情報を無線通信によって送信する。このとき、桁1上を通過している車両3に搭載されている受信部31は、送信部16が送信した通電状態情報(断線あり/なしの1ビットの情報)を受信する。   Next, the operation of the monitoring device will be described with reference to FIG. First, when the vehicle 3 is not traveling on the beam 1, the power generation unit 11 does not generate power because no vibration is generated in the beam 1. On the other hand, when the vehicle 3 passes over the girder 1, the power generation unit 11 generates power by vibration generated in the girder 1, and a current flows in the conductor 12. The detection unit 13 detects an energized state (presence of disconnection). As shown in FIG. 3, when the fatigue crack has generate | occur | produced in the girder 1, the conducting wire 12 will be disconnected by the crack 1a. The detection unit 13 can detect the occurrence of a crack by detecting the occurrence of this disconnection. The detection unit 13 outputs energization state information obtained as a result of detecting the energization state to the transmission unit 16. The transmission unit 16 uses the power generated by the power generation unit 11 due to the vibration of the digit 1 to transmit the energization state information output from the detection unit 13 by wireless communication. At this time, the reception unit 31 mounted on the vehicle 3 passing over the digit 1 receives the energization state information (1-bit information with / without disconnection) transmitted by the transmission unit 16.

そして、受信部31は、記憶部31に車両3を識別する情報と、時刻情報と、受信した通電状態情報とを関係付けて記憶する。また、受信部31は、受信した通電状態情報を表示部32に表示する。この表示は、車両3に乗車している検査員が目視によって確認するものである。車両3が出発点から終着点まで走行することにより、出発点から終着点までの経路上の各橋梁の桁1に取り付けられた監視装置から送信された通電状態情報が記憶部33に記憶されることになる。記憶部33に記憶されている情報を分析することにより、各橋梁のき裂発生を検知することが可能となる。   And the receiving part 31 relates and memorize | stores the information which identifies the vehicle 3, the time information, and the received electricity supply state information in the memory | storage part 31. FIG. The receiving unit 31 displays the received energization state information on the display unit 32. This display is confirmed visually by an inspector on the vehicle 3. When the vehicle 3 travels from the starting point to the ending point, the energization state information transmitted from the monitoring device attached to the girder 1 of each bridge on the route from the starting point to the ending point is stored in the storage unit 33. It will be. By analyzing the information stored in the storage unit 33, it is possible to detect the occurrence of cracks in each bridge.

なお、検出部13は、図3に示すように、き裂1bの状態に応じて変化する抵抗値の変化を検出して、き裂の発生検出を行うようにしてもよい。また、導電性表面材料を構造物の表面に塗布するのに代えて、導電性材料を用いた導線等を構造物の表面に形成し、この導線の通電状態を検知するようにしてもよい。   As shown in FIG. 3, the detection unit 13 may detect the occurrence of a crack by detecting a change in resistance value that changes in accordance with the state of the crack 1b. Further, instead of applying the conductive surface material to the surface of the structure, a conductive wire or the like using the conductive material may be formed on the surface of the structure, and the conduction state of the conductive wire may be detected.

また、疲労き裂が発生し補修・補強を行う必要がある場合に、施工するまでに年単位で時間を要す状況では、疲労き裂が重大な長さ(例えば脆性破壊を誘起し部材を破断させてしまうような長さ)に進展していないことを、頻繁に確認する必要がある。このような場合、疲労き裂(図3に示す符号1c)の端部近傍に新たに導電性表面材料を塗布しておくことにより、き裂の進展を検知するようにしてもよい。さらに、疲労き裂の進展を検知する場合、導電性表面材料を疲労き裂の発生した部位に面状に塗布し、疲労き裂の進展によって導電性表面材料の断面積が減じられた時の電気的な抵抗値の変化を捉えることによって、疲労き裂の進展量を検知するようにしてもよい。   Also, when fatigue cracks occur and repair / reinforcement is required, in situations where time is required for construction every year, fatigue cracks can cause significant length (for example, brittle fracture is induced It is necessary to confirm frequently that it has not progressed to such a length that would cause it to break. In such a case, the progress of the crack may be detected by newly applying a conductive surface material near the end of the fatigue crack (reference numeral 1c shown in FIG. 3). In addition, when detecting the progress of a fatigue crack, the conductive surface material is applied in a planar shape to the site where the fatigue crack has occurred, and when the cross-sectional area of the conductive surface material is reduced due to the progress of the fatigue crack. The amount of progress of the fatigue crack may be detected by capturing a change in the electrical resistance value.

また、前述した説明においては、導線12の通電状態に基づいて、疲労き裂検出の例を説明したが、導線12に代えて歪み等を検出するセンサを構造物に取り付け、このセンサの出力を発電部11によって発電した電力によってセンサ検出回路(検出部13に相当)を駆動し、このセンサ検出回路の出力を送信部16によって送信するようにしてもよい。このようにすることにより、例えば、地震時に被る大きなひずみ等を検出することも可能となる。   In the above description, an example of fatigue crack detection has been described based on the energization state of the conducting wire 12. However, instead of the conducting wire 12, a sensor for detecting strain or the like is attached to the structure, and the output of this sensor is The sensor detection circuit (corresponding to the detection unit 13) may be driven by the power generated by the power generation unit 11, and the output of the sensor detection circuit may be transmitted by the transmission unit 16. By doing in this way, for example, it becomes possible to detect a large strain or the like suffered during an earthquake.

なお、発電部11は、圧電素子に代えて、振動による運動エネルギーによりコイルまたはマグネットを動かし、コイルに交差する磁束変化により、コイルに起電力を発生させることで必要な電力を得るようにしてもよい。   In addition, it replaces with a piezoelectric element, and the electric power generation part 11 may move a coil or a magnet with the kinetic energy by vibration, and may make it generate required electromotive force by generating an electromotive force in a coil by the magnetic flux change which cross | intersects a coil. Good.

また、前述した説明においては、橋梁を例にして説明したが、き裂の検知対象は、橋梁に限らず、法面やトンネルの内面等であってもよい。また、構造物の上を走行する車両についても鉄道に限らず、自動車等であってもよい。   In the above description, the bridge is taken as an example. However, the crack detection target is not limited to the bridge, and may be a slope, an inner surface of a tunnel, or the like. Further, the vehicle traveling on the structure is not limited to the railroad but may be an automobile or the like.

<導電性表面材料の性能確認試験>
次に、導電性表面材料の性能確認試験結果について説明する。導電性表面材料に要求される性能には、鋼材に発生したき裂に伴って表面材料も破壊されること(き裂視認性)、表面材料の導電性が屋外での長期間の使用で変化しないこと(耐久性)、疲労き裂の進展に伴って破壊された導電性表面材料の抵抗値の変化と疲労き裂の進展量に相関があること(き裂の進展検知性)等が挙げられる。ここでは、耐久性とき裂の進展検知性について実施した試験結果を示す。
<Performance confirmation test of conductive surface material>
Next, the performance confirmation test result of the conductive surface material will be described. The required performance of the conductive surface material is that the surface material is destroyed along with the crack generated in the steel (crack visibility), and the conductivity of the surface material changes with long-term outdoor use. Not to be done (durability), the change in resistance value of the conductive surface material destroyed with the progress of the fatigue crack and the amount of progress of the fatigue crack are correlated (crack growth detectability), etc. It is done. Here, the results of tests conducted on durability and detectability of crack growth are shown.

(1)耐久性試験
耐久性は促進劣化試験によって確認した。実際に橋梁に施工する場合の耐久性評価を行うという観点から、「財団法人鉄道総合技術研究所編集:鋼構造物塗装設計施工指針、研友社、2005」に記されている一般環境で15年以上の長期耐久性が期待できる塗装系の中塗の一部に導電性表面材料を使用した試験片を作製し、電気特性の耐久性を評価した。この結果、促進劣化試験中の電気抵抗値の変化率はいずれも5%以内に収まっている結果が得られた。鋼橋の立地環境は千差万別であるため、促進試験のサイクル数と実環境における期間とを対応させることはできないが、導電性表面材料を実環境において使用した場合でもその電気的な抵抗値の変化は微小であることが示唆された。
(1) Durability test Durability was confirmed by an accelerated deterioration test. From the standpoint of evaluating durability when actually installing on bridges, the general environment described in “Edition of Railway Technical Research Institute: Steel Structure Coating Design and Construction Guidelines, Kenyusha, 2005” 15 A test piece using a conductive surface material as part of a coating-type intermediate coating that can be expected to have a long-term durability of more than a year was evaluated, and the durability of electrical characteristics was evaluated. As a result, the change rate of the electrical resistance value during the accelerated deterioration test was all within 5%. Because the location environment of steel bridges varies widely, the number of cycles of accelerated tests cannot be matched with the period in the actual environment, but the electrical resistance even when the conductive surface material is used in the actual environment It was suggested that the change of the value was very small.

(2)き裂の進展検知性の確認試験
疲労き裂の進展検知性は、撤去された実橋梁から切り出した桁を用いて疲労試験を行い、発生した疲労き裂の部位に導電性表面材料を塗布し、電気抵抗値を測定することによって確認した。この結果、疲労き裂が進展するにしたがって導電性表面材料の抵抗値が大きくなる結果が得られ、導電性表面材料を用いて疲労き裂の進展が検知可能であることが確認できた。
なお、導電性表面材料の膜厚によっても抵抗値が変化するため、疲労き裂の進展量と抵抗値の変化量との相関を正確に捉えるためには、導電性表面材料の膜厚を一定にすることが望ましいという結果が得られた。
(2) Confirmation test of crack growth detectability Fatigue crack progress detectability is conducted by conducting a fatigue test using a girder cut out from the removed actual bridge, and conducting surface material at the site of the generated fatigue crack. This was confirmed by coating and measuring the electric resistance value. As a result, a result that the resistance value of the conductive surface material increases as the fatigue crack progresses was obtained, and it was confirmed that the progress of the fatigue crack was detectable using the conductive surface material.
In addition, since the resistance value also changes depending on the film thickness of the conductive surface material, the film thickness of the conductive surface material must be constant in order to accurately grasp the correlation between the fatigue crack growth amount and the resistance value change amount. The result that it was desirable to be obtained was obtained.

このように、導電性表面材料によって形成された導線を、疲労き裂が発生しやすい箇所の表面に設けておき、この導線の断線または抵抗値変化を検出することによって疲労き裂を検知するようにしたため、疲労き裂が発生した部位が、橋側歩道や桁下からでは直接目視できないような位置である場合であってもき裂の発生を検知することが可能である。また、圧電素子を用いて、構造物の振動によって発電を行い、この発電電力を使用して、き裂の検出及びき裂の検出状況を示す情報の送信を行うようにしたため、山間部や非電化区間等の商用電源を利用できない地域の構造物であってもき裂の検知を行うことが可能である。また、き裂の検出状況を示す情報の受信を、構造物の上を走行する鉄道車両において受信するようにしたため、検査員が検査対象の構造物に出向く必要がなくなり、検査コストを大幅に削減することができる。   As described above, the conductive wire formed of the conductive surface material is provided on the surface of the portion where the fatigue crack is likely to occur, and the fatigue crack is detected by detecting the disconnection of the conductive wire or the change in the resistance value. Therefore, it is possible to detect the occurrence of a crack even when the site where the fatigue crack has occurred is a position that cannot be directly seen from the bridge sidewalk or under the girder. In addition, the piezoelectric element is used to generate power by vibration of the structure, and this generated power is used to detect cracks and transmit information indicating the detection status of cracks. It is possible to detect cracks even in structures in areas where commercial power sources such as electrified sections cannot be used. In addition, since information indicating the detection status of cracks is received by railway vehicles that run on the structure, it is not necessary for the inspector to visit the structure to be inspected, greatly reducing inspection costs. can do.

本発明の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of this invention. 図1に示す発電部11の詳細な構成を示す説明図である。It is explanatory drawing which shows the detailed structure of the electric power generation part 11 shown in FIG. 図1に示す桁1に発生した疲労き裂の状態を示す説明図である。It is explanatory drawing which shows the state of the fatigue crack which generate | occur | produced in the girder 1 shown in FIG.

符号の説明Explanation of symbols

1・・・桁、11・・・発電部、12・・・検出部、13・・・送信部、14、15・・・接続端子、16・・・導電性表面材料、2・・・レール、3・・・車両、31・・・受信部、32・・・表示部、33・・・記憶部   DESCRIPTION OF SYMBOLS 1 ... Digit, 11 ... Power generation part, 12 ... Detection part, 13 ... Transmission part, 14, 15 ... Connection terminal, 16 ... Conductive surface material, 2 ... Rail 3 ... Vehicle, 31 ... Receiver, 32 ... Display, 33 ... Storage

Claims (8)

監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、
前記構造物の表面に導電性材料により形成された導線と、
前記発電手段によって発電された電力を使用して前記導線の通電状態を検出する検出手段と、
前記発電手段によって発電された電力を使用して、前記検出手段において検出された前記導線の通電状態を示す情報を送信する送信手段と、
前記車両に備えられ、前記送信手段が送信した前記導線の通電状態を示す情報を受信する受信手段と
を備えたことを特徴とする監視装置。
Power generation means for generating power in response to vibration generated by the vehicle traveling on the structure to be monitored;
A conducting wire formed of a conductive material on the surface of the structure;
Detecting means for detecting an energization state of the conducting wire using electric power generated by the power generating means;
Transmitting means for transmitting information indicating the energization state of the conducting wire detected by the detecting means using the power generated by the power generating means;
A monitoring device, comprising: a receiving unit that is provided in the vehicle and receives information indicating an energization state of the conducting wire transmitted by the transmitting unit.
前記発電手段は、前記振動による運動エネルギーを電気エネルギーに変換する圧電素子を備えたことを特徴とする請求項1に記載の監視装置。   The monitoring apparatus according to claim 1, wherein the power generation unit includes a piezoelectric element that converts kinetic energy generated by the vibration into electric energy. 前記発電手段は、前記振動による運動エネルギーによりコイルまたはマグネットを動かし、コイルに交差する磁束変化により、コイルに起電力を発生させることを特徴とする請求項1に記載の監視装置。   The monitoring apparatus according to claim 1, wherein the power generation unit moves a coil or a magnet by kinetic energy due to the vibration and generates an electromotive force in the coil by a magnetic flux change intersecting the coil. 前記検出手段は、前記導線の抵抗値変化に基づいて、前記導線の通電状態を検出することを特徴とする請求項1から3のいずれかに記載の監視装置。   The monitoring device according to claim 1, wherein the detection unit detects an energization state of the conducting wire based on a change in resistance value of the conducting wire. 前記発電手段は、前記構造物上を車両が走行した場合に発生する振動に共振するように前記構造物に固定されていることを特徴とする請求項1から4のいずれかに記載の監視装置。   5. The monitoring device according to claim 1, wherein the power generation unit is fixed to the structure so as to resonate with vibration generated when a vehicle travels on the structure. . 監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、
前記構造物に設けられたセンサと、
前記発電手段によって発電された電力を使用して前記センサの出力を読み取る検出手段と、
前記発電手段によって発電された電力を使用して、前記検出手段において検出された前記センサ出力情報を送信する送信手段と、
前記車両に備えられ、前記送信手段が送信した前記センサ出力情報を受信する受信手段と
を備えたことを特徴とする監視装置。
Power generation means for generating power in response to vibration generated by the vehicle traveling on the structure to be monitored;
A sensor provided in the structure;
Detection means for reading the output of the sensor using the power generated by the power generation means;
Transmitting means for transmitting the sensor output information detected by the detecting means using the power generated by the power generating means;
A monitoring device, comprising: a receiving unit that is provided in the vehicle and that receives the sensor output information transmitted by the transmitting unit.
監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、前記構造物の表面に導電性材料により形成された導線とを備えた監視装置における監視方法であって、
前記発電手段によって発電された電力を使用して前記導線の通電状態を検出する検出ステップと、
前記発電手段によって発電された電力を使用して、前記検出された前記導線の通電状態を示す情報を送信する送信ステップと、
前記車両において、前記送信した前記導線の通電状態を示す情報を受信する受信ステップと
を有することを特徴とする構造物の監視方法。
This is a monitoring method in a monitoring device comprising a power generation means for generating electric power in response to vibration generated when a vehicle travels on a structure to be monitored, and a conductive wire formed of a conductive material on the surface of the structure. And
A detection step of detecting an energization state of the conducting wire using the power generated by the power generation means;
A transmission step of transmitting information indicating the detected energization state of the conductor using the power generated by the power generation means;
The vehicle monitoring method further comprising: a receiving step of receiving the transmitted information indicating the energized state of the conducting wire.
監視対象の構造物上を車両が走行することにより発生する振動に応じて発電する発電手段と、前記構造物に設けられたセンサとを備えた監視装置における監視方法であって、
前記発電手段によって発電された電力を使用して前記センサの出力情報を読み取る検出ステップと、
前記発電手段によって発電された電力を使用して、前記センサ出力情報を送信する送信ステップと、
前記車両において、前記送信した前記センサ出力情報を受信する受信ステップと
を有することを特徴とする構造物の監視方法。
A monitoring method in a monitoring device comprising a power generation means for generating electric power in response to vibration generated by a vehicle traveling on a structure to be monitored, and a sensor provided in the structure,
A detection step of reading output information of the sensor using the power generated by the power generation means;
A transmission step of transmitting the sensor output information using the power generated by the power generation means;
A receiving method for receiving the transmitted sensor output information in the vehicle.
JP2007047099A 2007-02-27 2007-02-27 Structure monitoring apparatus and monitoring method Expired - Fee Related JP4913628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047099A JP4913628B2 (en) 2007-02-27 2007-02-27 Structure monitoring apparatus and monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047099A JP4913628B2 (en) 2007-02-27 2007-02-27 Structure monitoring apparatus and monitoring method

Publications (2)

Publication Number Publication Date
JP2008209283A true JP2008209283A (en) 2008-09-11
JP4913628B2 JP4913628B2 (en) 2012-04-11

Family

ID=39785712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047099A Expired - Fee Related JP4913628B2 (en) 2007-02-27 2007-02-27 Structure monitoring apparatus and monitoring method

Country Status (1)

Country Link
JP (1) JP4913628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174823A (en) * 2010-02-25 2011-09-08 Railway Technical Research Institute Crack monitoring device and crack monitoring method
JP2012171560A (en) * 2011-02-23 2012-09-10 Nippon Signal Co Ltd:The Wheel detector
JP2016024187A (en) * 2014-07-23 2016-02-08 ザ・ボーイング・カンパニーTheBoeing Company System and method for evaluating remaining life of operative sub-system of vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792337A (en) * 1994-05-12 1998-08-11 Texas Instruments Incorporated Method and apparatus for detection of corrosion
JPH1178885A (en) * 1997-09-02 1999-03-23 East Japan Railway Co Multistage moving collection system
JP2004301571A (en) * 2003-03-28 2004-10-28 Railway Technical Res Inst Monitoring device of structure and its monitoring system
JP2005130624A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Generator and power generation method
JP2005182289A (en) * 2003-12-17 2005-07-07 Nec Corp Information collecting method/system
JP2005184992A (en) * 2003-12-19 2005-07-07 Mn Engineering Kk Oscillating generator and portable communication device with the same
JP2005523494A (en) * 2002-04-03 2005-08-04 エスアールアイ インターナショナル Sensor device for structural health monitoring
JP2005353015A (en) * 2004-06-08 2005-12-22 Takuo Kokatsu Environment-conscious road energy utilization system for extracting, collecting and effectively utilizing unused energy and unifying management of road information
JP2006162391A (en) * 2004-12-06 2006-06-22 Nippon Telegr & Teleph Corp <Ntt> Vibration starting wireless device, structure inspection device, structure inspection method, program and recording medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792337A (en) * 1994-05-12 1998-08-11 Texas Instruments Incorporated Method and apparatus for detection of corrosion
JPH1178885A (en) * 1997-09-02 1999-03-23 East Japan Railway Co Multistage moving collection system
JP2005523494A (en) * 2002-04-03 2005-08-04 エスアールアイ インターナショナル Sensor device for structural health monitoring
JP2004301571A (en) * 2003-03-28 2004-10-28 Railway Technical Res Inst Monitoring device of structure and its monitoring system
JP2005130624A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Generator and power generation method
JP2005182289A (en) * 2003-12-17 2005-07-07 Nec Corp Information collecting method/system
JP2005184992A (en) * 2003-12-19 2005-07-07 Mn Engineering Kk Oscillating generator and portable communication device with the same
JP2005353015A (en) * 2004-06-08 2005-12-22 Takuo Kokatsu Environment-conscious road energy utilization system for extracting, collecting and effectively utilizing unused energy and unifying management of road information
JP2006162391A (en) * 2004-12-06 2006-06-22 Nippon Telegr & Teleph Corp <Ntt> Vibration starting wireless device, structure inspection device, structure inspection method, program and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174823A (en) * 2010-02-25 2011-09-08 Railway Technical Research Institute Crack monitoring device and crack monitoring method
JP2012171560A (en) * 2011-02-23 2012-09-10 Nippon Signal Co Ltd:The Wheel detector
JP2016024187A (en) * 2014-07-23 2016-02-08 ザ・ボーイング・カンパニーTheBoeing Company System and method for evaluating remaining life of operative sub-system of vehicle

Also Published As

Publication number Publication date
JP4913628B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4688080B2 (en) Corrosion sensor, sheath tube, sheath tube joint member and corrosion sensor unit
Liu et al. State-of-the-art review of technologies for pipe structural health monitoring
US9927381B2 (en) Apparatus, systems and methods for local in situ measurement of corrosion condition information with contactless electrodes
Park et al. Magnetic Flux Leakage Sensing‐Based Steel Cable NDE Technique
Dong et al. Bridges structural health monitoring and deterioration detection-synthesis of knowledge and technology
JP5936276B2 (en) Crack monitoring device
Gastineau et al. Bridge health monitoring and inspections–a survey of methods
CN102721725A (en) Device and method for measuring corroding and cleaning effects on line in chemical cleaning process of power station boiler
JP4913628B2 (en) Structure monitoring apparatus and monitoring method
JP5345089B2 (en) Crack monitoring apparatus and crack monitoring method
Arndt et al. NDE for corrosion detection in reinforced concrete structures–a benchmark approach
KR102309387B1 (en) Monitoring apparatus for damper of overhead power line
JP2009035795A (en) Cathodic protection management system for pipeline, and cathodic protection management method
JP2014077253A (en) Device and method for monitoring structure crack, and disconnection gauge
JP2012202792A (en) Life prediction method for optical fiber compound overhead ground line
CN105222827A (en) A kind of in-service metallic conduit and pressure part safety comprehensive monitoring and evaluation method
JP4620101B2 (en) Fatigue crack detection device and fatigue crack detection system
JP4698318B2 (en) Anticorrosion state monitoring method and system
JP2008064610A (en) Deterioration diagnosing method of aerial strip
JP5690254B2 (en) Method and apparatus for monitoring deterioration of RC structure due to rebar corrosion
Gasparin et al. Eddy current crack monitoring system for structural health monitoring (SHM) applications
KR102357219B1 (en) Electric pole diagnosis device using guided ultrasound
Sumitro et al. Structural health monitoring paradigm for concrete structures
Li et al. State-of-the-art pipeline structural health monitoring systems
Dezfouli et al. Structural health monitoring of buried pipelines under static dislocation and vibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees