JP2008209215A - Angular velocity sensor element - Google Patents

Angular velocity sensor element Download PDF

Info

Publication number
JP2008209215A
JP2008209215A JP2007045702A JP2007045702A JP2008209215A JP 2008209215 A JP2008209215 A JP 2008209215A JP 2007045702 A JP2007045702 A JP 2007045702A JP 2007045702 A JP2007045702 A JP 2007045702A JP 2008209215 A JP2008209215 A JP 2008209215A
Authority
JP
Japan
Prior art keywords
tuning fork
angular velocity
vibration
sensor element
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007045702A
Other languages
Japanese (ja)
Inventor
Hideaki Matsudo
秀亮 松戸
Shigeto Yotsuya
成人 四ツ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2007045702A priority Critical patent/JP2008209215A/en
Publication of JP2008209215A publication Critical patent/JP2008209215A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angular velocity sensor element in which the suppression of diagonal vibration is facilitated to maintain mechanical strength and CI. <P>SOLUTION: The angular velocity sensor element includes a tuning fork-shaped crystal piece, having a pair of tuning fork arms extended from a tuning fork base part; drive electrodes driving tuning fork vibration in a width direction of the tuning fork arms; and sensor electrodes detecting a charge generated due to perpendicular vibration to be in the thickness direction of the tuning fork arms, wherein a cut part preventing the diagonal vibration of the pair of tuning fork arms is provided by a laser in the length direction, with respect to a root part of the tuning fork arms as one of both end sides in the width direction in major surfaces of the tuning fork arms, the cut part comprises a plurality of minute cut parts formed by an ultra-short pulse laser which is irradiated from a femtosecond laser, which sequentially incident thereon along the length direction of the tuning fork arms diagonal to the ridge line parts of the tuning fork arms and which exits therefrom, while cutting the ridge line parts. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は音叉型水晶振動子を用いた角速度センサ素子を技術分野とし、特に、斜め振動の抑制を容易にして角速度の検出感度を良好にした角速度センサ素子に関する。   The present invention relates to an angular velocity sensor element using a tuning-fork type crystal resonator, and more particularly to an angular velocity sensor element that facilitates suppression of oblique vibration and improves angular velocity detection sensitivity.

(発明の背景)
角速度センサ素子は車の誘導装置(カーナビ)やカメラの手振れ防止等に適用され、需要も拡大の方向にある。このようなものの一つに、例えば本出願人による二枚の音叉状水晶片を直接接合によって張り合わせたものがある(特許文献1)。
(Background of the Invention)
The angular velocity sensor element is applied to a vehicle guidance device (car navigation system), camera shake prevention, and the like, and the demand is increasing. One such example is one in which two tuning-fork crystal pieces by the present applicant are bonded together by direct bonding (Patent Document 1).

(従来技術の一例)
第4図は一従来例を説明する図で、同図(a)は角速度センサ素子の外観図、同図(b)は結線関係を示す同上面図である。
(Example of conventional technology)
4A and 4B are diagrams for explaining a conventional example. FIG. 4A is an external view of an angular velocity sensor element, and FIG. 4B is a top view showing a connection relationship.

角速度センサ素子は、音叉基部1とこれから延出した一対の音叉腕2(ab)とを有するZカットとした音叉状水晶片3からなる。音叉状水晶片3は、結晶軸(XYZ)におけるX軸の±方向を逆向きとした二枚の水晶片3(ab)を直接接合してなる。これらは、2枚の水晶ウェハを直接接合した後、フォトリソグラフィを用いたエッチングによって形成される。   The angular velocity sensor element includes a tuning-fork crystal piece 3 having a Z-cut shape having a tuning-fork base 1 and a pair of tuning-fork arms 2 (ab) extending therefrom. The tuning fork-shaped crystal piece 3 is formed by directly joining two crystal pieces 3 (ab) in which the ± direction of the X axis in the crystal axis (XYZ) is reversed. These are formed by directly joining two quartz wafers and then etching using photolithography.

音叉状水晶片3の一対の音叉腕2(ab)には、駆動電極D、センサ電極S及びモニタ電極Mを有する。駆動電極Dは一方の音叉腕2aの両主面(D±)及び他方の音叉腕2bの他主面(D−)に、センサ電極Sは各音叉腕2(ab)の内側面(S−)及び外側面(S+)に、モニタ電極Mは他方の音叉腕2bの一主面に形成される。   A pair of tuning fork arms 2 (ab) of the tuning fork crystal piece 3 has a drive electrode D, a sensor electrode S, and a monitor electrode M. The drive electrode D is on both main surfaces (D ±) of one tuning fork arm 2a and the other main surface (D−) of the other tuning fork arm 2b, and the sensor electrode S is the inner surface (S− of each tuning fork arm 2 (ab). ) And the outer surface (S +), the monitor electrode M is formed on one main surface of the other tuning fork arm 2b.

各音叉腕2(ab)の同符号の駆動電極D−同士及びセンサ電極S±同士が図示しない音叉表面上の配線路によって結線される。そして、駆動電極D±は図示しない発振回路に接続して交番電圧が印加される。駆動電極(D±)はセンサ電極S(±)との間で生ずる実線で示す電界によって、音叉腕2(ab)の幅方向となる音叉振動(水平振動)を励起する。   The drive electrodes D− and the sensor electrodes S ± of the same sign in each tuning fork arm 2 (ab) are connected by a wiring path on the surface of the tuning fork not shown. The drive electrode D ± is connected to an oscillation circuit (not shown) and an alternating voltage is applied. The drive electrode (D ±) excites tuning fork vibration (horizontal vibration) in the width direction of the tuning fork arm 2 (ab) by an electric field indicated by a solid line between the drive electrode (D ±) and the sensor electrode S (±).

センサ電極S±は図示しない電荷検出回路に接続し、基準電位Eに設定される。そして、コリオリの力に伴う、音叉腕2(ab)の厚み方向となる互いに反対方向の垂直振動(板面に対する垂直方向への変位)によって生じる点線で示す電界に基づく電荷を検出する。なお、直接接合による2枚の水晶片3(ab)はX軸の±方向が逆向きなので、各音叉腕2(ab)の内側面及び外側面には同符号の電荷が発生する。
特開2005−241606号公報「第4図(ab)」 特開2004−93158号公報「第3図」 特願2006-79442
The sensor electrode S ± is connected to a charge detection circuit (not shown) and set to a reference potential E. Then, an electric charge based on an electric field indicated by a dotted line generated by vertical vibrations (displacements in the vertical direction with respect to the plate surface) in opposite directions that are the thickness direction of the tuning fork arm 2 (ab) due to the Coriolis force is detected. Since the two crystal pieces 3 (ab) by direct bonding have the opposite directions of the ± direction of the X axis, charges of the same sign are generated on the inner side surface and the outer side surface of each tuning fork arm 2 (ab).
Japanese Patent Laying-Open No. 2005-241606, “FIG. 4 (ab)” Japanese Patent Laying-Open No. 2004-93158, “FIG. 3” Japanese Patent Application No. 2006-79442

(従来技術の問題点)
しかしながら、上記構成の角速度センサ素子では、駆動周波数とセンサ周波数とを接近させて角速度の検出感度を高めるために幅と厚みを同等にすることや、例えばエッチングを用いた製造上の点から生ずる各音叉腕及び各音叉腕間の質量の非対称性に起因して、音叉振動は水平成分「第5図の矢印A方向」のみならず垂直成分「同矢印B方向」を含む斜め振動「同矢印C方向」となる。
(Problems of conventional technology)
However, in the angular velocity sensor element having the above-described configuration, the width and thickness are made equal in order to increase the detection sensitivity of the angular velocity by bringing the drive frequency and the sensor frequency close to each other, and for example, each produced from the point of manufacture using etching Due to the asymmetry of the mass between the tuning fork arm and each tuning fork arm, the tuning fork vibration not only includes the horizontal component “arrow A direction in FIG. 5” but also the diagonal component “same arrow C direction” including the vertical component “same arrow B direction”. Direction ".

なお、2枚の水晶片3(ab)を直接接号した場合は、エッチングの異方性によって各水晶片(ab)の+X軸面に即ち各音叉腕の2(ab)の斜め方向に突起5を生じるので(第6図)、特に斜め振動を生じやすい。この場合、各音叉腕2(ab)の水平及び垂直方向の中心線A−A及びB−Bに対して質量分布が均一であっても、互いに逆となる斜め方向での質量分布は、右上がり方向が右下がり方向よりも大きくなる。したがって、この場合は、質量分布の大きい右上がり方向での斜め振動となる。   When the two crystal pieces 3 (ab) are directly connected, they protrude from the + X-axis surface of each crystal piece (ab), that is, in the diagonal direction of 2 (ab) of each tuning fork arm due to etching anisotropy. 5 (FIG. 6), it is particularly easy to cause oblique vibration. In this case, even if the mass distribution is uniform with respect to the horizontal and vertical centerlines AA and BB of each tuning fork arm 2 (ab), the mass distribution in the diagonal directions opposite to each other is The upward direction is larger than the downward right direction. Therefore, in this case, the vibration is oblique in the upward direction with a large mass distribution.

このことから、例えば特許文献2では、音叉腕2の根元部にレーザーを照射して角部に切削部4を設け、一対の音叉腕間での質量バランスをとることを開示している。この場合は、複数のレーザーを異なる角度から根元部に照射してその合成量によって切削し、それぞれの単一のレーザーでは切削できないエネルギーとして必要部分以外には損傷を与えないとしている。   For this reason, for example, Patent Document 2 discloses that a laser is applied to the root portion of the tuning fork arm 2 to provide a cutting portion 4 at a corner portion, thereby achieving a mass balance between the pair of tuning fork arms. In this case, the root portion is irradiated with a plurality of lasers from different angles, and cutting is performed according to the amount of the combined portion. The energy that cannot be cut by each single laser is not damaged except for the necessary portion.

しかし、通常の炭酸ガスレーザー等では、ビーム径が集光レンズを用いても例えば100μmとして大きくなって、局所的に切削することは困難となり、音叉腕の角部を全体的に切削することになる。このため、レーザーによる根元部の調整によって斜め振動を抑制する質量バランスがとれても、機械的強度や例えば駆動電極を損傷してクリスタルインピーダンス(CI)等を損なう虞があった。これは、小型化が進むほど、影響が大きくなる。   However, with a normal carbon dioxide laser or the like, the beam diameter becomes as large as 100 μm, for example, even if a condensing lens is used, and it becomes difficult to cut locally, so that the corners of the tuning fork arm are cut entirely. Become. For this reason, even if the mass balance that suppresses the oblique vibration by adjusting the root portion by the laser is taken, there is a possibility that the mechanical strength, for example, the drive electrode is damaged and the crystal impedance (CI) is damaged. This becomes more influential as the miniaturization progresses.

(発明の目的)
本発明は、斜め振動の抑制を容易にして機械的強度やCIを維持した角速度センサ素子を提供することを目的とする。
(Object of invention)
An object of the present invention is to provide an angular velocity sensor element that facilitates suppression of oblique vibration and maintains mechanical strength and CI.

(着目点及び先願)
本発明はビーム径が小さくエネルギーが大きなフェムト秒レーザーに着目し、これによる先願(特許文献3)では、いずれも音叉腕の根元部における幅方向の辺縁の主面に対して、フェムト秒レーザによる垂直方向から超短パルスレーザーを照射して円又は円弧状の穴を設ける構成とする。
(Points of interest and prior application)
The present invention focuses on femtosecond lasers having a small beam diameter and large energy, and in the previous application (Patent Document 3), the femtoseconds are applied to the main surface of the edge in the width direction at the root of the tuning fork arm. A configuration in which a circular or arc-shaped hole is provided by irradiating an ultrashort pulse laser from a vertical direction by a laser.

なお、フェムト秒レーザ(超短パルスレーザー)は、数フェムト秒(1フェムトは1000兆分の1)単位での極めて短いパルス信号としたレーザーを発生する。したがって、ビーム径は3〜50μm程度と非常に小さく、エネルギーが極短時間に集中して出力レベルが非常に大きい。これにより、切削部(根元部)における微小穴の切削を容易にする。また、超短パルスのため、水晶への熱影響が実質的にないので、双晶発生のおそれも極めて小さい。   A femtosecond laser (ultrashort pulse laser) generates a laser having an extremely short pulse signal in units of several femtoseconds (one femto is one thousandth of a trillion). Therefore, the beam diameter is as small as about 3 to 50 μm, the energy is concentrated in a very short time, and the output level is very large. Thereby, the cutting of the minute hole in the cutting part (root part) is facilitated. In addition, because of the ultrashort pulse, there is virtually no thermal effect on the crystal, so there is very little risk of twinning.

また、アナログ的な時間制御によるレーザーに比較すると、音叉基部の切削部に対して的確(ピンポイント的)に照射できることから、時間ではなく照射回数の制御によって斜め振動の抑制を容易にする。   In addition, compared with a laser based on analog time control, the cutting portion of the tuning fork base can be irradiated accurately (pinpoint), and therefore it is easy to suppress oblique vibrations by controlling the number of irradiations, not the time.

(先願の問題点)
この場合、フェムト秒レーザーの出力を小さくすると切削時間がかかりすぎ、出力を大きくすると穴の底面に超短パルスレーザーのエネルギーが集中(残留)する。このため、穴の底面にクラック等の損傷を生じたり、結晶構造自体を破壊し易いという問題があった。
(Problems of prior application)
In this case, if the output of the femtosecond laser is reduced, it takes too much cutting time, and if the output is increased, the energy of the ultrashort pulse laser is concentrated (residual) on the bottom surface of the hole. For this reason, there has been a problem that damage such as cracks occurs on the bottom surface of the hole or the crystal structure itself is easily destroyed.

(解決手段)
音叉基部から一対の音叉腕が延出した音叉状水晶片を備え、前記音叉腕の幅方向となる音叉振動を駆動する駆動電極と前記音叉腕の厚み方向となる垂直振動による電荷を検出するセンサ電極とを有し、前記一対の音叉腕の斜め振動を防止する切削部を、前記音叉腕の主面における幅方向の両端側の少なくとも一方として、前記音叉腕の根元部に対して長さ方向にレーザーによって設けた角速度センサ素子において、前記切削部はフェムト秒レーザーから照射される超短パルスレーザーによって形成されるとともに、前記超短パルスレーザーを前記音叉腕の稜線部に斜交して前記音叉腕の長さ方向に沿って順次に入射し、前記稜線部を切削しながら出射して形成された複数の微小切削部からなる構成とする。
(Solution)
A sensor comprising a tuning fork crystal piece in which a pair of tuning fork arms extends from a tuning fork base, and a drive electrode for driving tuning fork vibration in the width direction of the tuning fork arm, and a sensor for detecting charges due to vertical vibration in the thickness direction of the tuning fork arm A cutting portion that has an electrode and prevents oblique vibration of the pair of tuning fork arms is at least one of both end sides in the width direction of the main surface of the tuning fork arm, and the length direction with respect to the root portion of the tuning fork arm In the angular velocity sensor element provided by the laser, the cutting portion is formed by an ultrashort pulse laser irradiated from a femtosecond laser, and the ultrashort pulse laser is obliquely crossed on the ridge line portion of the tuning fork arm to form the tuning fork. It is configured to include a plurality of minute cutting portions that are sequentially incident along the length direction of the arm and are emitted while cutting the ridge line portion.

このような構成であれば、音叉腕の根元部に設けられた複数の微小切削部によって、質量分布を可変して斜め振動を抑制できる。この場合、微小切削部からなる集合体の外周領域(輪郭)は、従来例に比較して明確になる。したがって、切削部の外周近辺での不要な切削を防止するので、機械的強度や電気的特性を良好に維持できる。   With such a configuration, the mass distribution can be varied and the oblique vibration can be suppressed by the plurality of micro-cut portions provided at the root portion of the tuning fork arm. In this case, the outer peripheral area (contour) of the assembly composed of the minute cutting parts becomes clear as compared with the conventional example. Therefore, unnecessary cutting in the vicinity of the outer periphery of the cutting portion is prevented, so that the mechanical strength and electrical characteristics can be favorably maintained.

また、フェムト秒レーザーによる超短パルスレーザーは音叉腕の稜線部を斜交して切削しながら入出射する。したがって、超短パルスレーザーのエネルギーが先願(特許文献3)のように残留せず、余すことなく逃げるので、水晶に対する損傷を防止できる。   In addition, an ultrashort pulse laser using a femtosecond laser enters and exits while cutting the ridge line portion of the tuning fork arm obliquely. Therefore, the energy of the ultrashort pulse laser does not remain as in the prior application (Patent Document 3) and escapes without being left over, so that damage to the crystal can be prevented.

(実施態様項)
本発明の請求項2では、請求項1において、前記切削部は前記複数の微小切削部のうちの隣接する微小切削部が重畳する。これにより、超短パルスレーザーによる複数の微小切削部は音叉腕の延出始端側となる音叉根元部に集中して形成されるので、斜め振動の制御効率を高められる。これは、切削部が音叉腕の延出始端に近いほど音叉振動に影響を与えることに起因する。
(Embodiment section)
According to claim 2 of the present invention, in claim 1, adjacent cutting parts of the plurality of cutting parts overlap each other in the cutting part. As a result, a plurality of micro-cut portions by the ultrashort pulse laser are formed in a concentrated manner on the root portion of the tuning fork on the extending start end side of the tuning fork arm, thereby improving the control efficiency of the oblique vibration. This is due to the fact that the closer the cutting part is to the starting end of the tuning fork arm, the more the tuning fork vibration is affected.

同請求項3では、請求項2において、前記切削部は平坦状とする。これによれば、超短パルスレーザーが請求項2の場合よりも根元部に集中するので、さらに斜め振動の制御効率を高める。なお、微小切削部は超短パルスレーザーのビーム形状に応じて基本的には円弧状となるので、微小切削部が接近するほど平坦状となる。但し、超短パルスレーザーのビーム径は極めて小さいので、隣接する微小切削部が重畳すると切削部はほぼ平坦になる。   In the said Claim 3, the said cutting part is made flat in Claim 2. According to this, since the ultrashort pulse laser is concentrated at the root portion as compared with the case of claim 2, the control efficiency of the oblique vibration is further increased. Note that the minute cutting portion basically has an arc shape according to the beam shape of the ultrashort pulse laser, and thus becomes flatter as the minute cutting portion approaches. However, since the beam diameter of the ultrashort pulse laser is extremely small, when the adjacent minute cutting parts are overlapped, the cutting parts are almost flat.

同請求項4では、請求項1において、前記切削部は前記複数の微小切削部の隣接する微小切削部が離間する。この場合は、隣接する微小切削部が離間して重畳しないので、各微小切削部に対する超短パルスレーザーの照射も1回のみとなる。したがって、超短パルスレーザーを重複させる請求項2や3の場合に比較して損傷や双晶化をさらに防止する。   According to the fourth aspect of the present invention, in the first aspect, the cutting portion is separated from the minute cutting portions adjacent to the plurality of minute cutting portions. In this case, since the adjacent minute cutting parts are not separated and overlapped, the irradiation of the ultrashort pulse laser to each minute cutting part is performed only once. Therefore, damage and twinning are further prevented as compared with the case of claims 2 and 3 where the ultrashort pulse laser is overlapped.

同請求項5では、請求項1、2、3又は4において、前記切削部は前記一対の音叉腕のいずれにも設けられ、前記一対の音叉腕における幅方向の同一側となる一端側とする。これによれば、一対の音叉腕のいずれにも切削部を設けるので、斜め振動を抑制した上で、一対の音叉腕の質量を均等に維持する。   In the fifth aspect of the present invention, in the first, second, third, or fourth aspect, the cutting portion is provided on any one of the pair of tuning fork arms, and is one end side that is the same side in the width direction of the pair of tuning fork arms. . According to this, since a cutting part is provided in any of a pair of tuning fork arms, while suppressing diagonal vibration, the mass of a pair of tuning fork arms is maintained uniformly.

したがって、一対の音叉腕の一方のみに切削部を設けた場合に比較し、両音叉腕の固有振動周波数を均一にして、音叉基部への振動漏れを防止し、クリスタルインピーダンスを良好にする。なお、斜め振動の防止に当たり、音叉腕の一方のみに切削部を設けると、左右の音叉腕の固有振動数を異ならせる原因となる。   Therefore, compared with the case where the cutting part is provided only in one of the pair of tuning fork arms, the natural vibration frequency of both tuning fork arms is made uniform, vibration leakage to the tuning fork base is prevented, and the crystal impedance is improved. In order to prevent oblique vibration, providing a cutting portion on only one of the tuning fork arms may cause the natural frequencies of the left and right tuning fork arms to differ.

(第1実施形態、請求項1、4に相当)
第1図は本発明の第1実施形態を説明する角速度センサ素子(音叉状水晶片)の一部拡大図である。なお、前従来例と同一部分には同番号を付与してその説明は簡略又は省略する。
(First embodiment, equivalent to claims 1 and 4)
FIG. 1 is a partially enlarged view of an angular velocity sensor element (tuning fork-shaped crystal piece) for explaining a first embodiment of the present invention. In addition, the same number is attached | subjected to the same part as a prior art example, and the description is simplified or abbreviate | omitted.

角速度センサ素子は前述したように2枚の水晶ウェハ3(ab)を直接接合によって張り合わせた後にフォトエッチングによって加工され、音叉基部1から一対の音叉腕2(ab)が延出した個々の音叉状水晶片3に分割される。一対の音叉腕2(ab)には、音叉振動を励起する駆動電極D±、垂直振動による電荷を検出するセンサ電極S±、及び音叉振動の振幅レベルを一定にするモニタ電極Mを有する(前第4図参照)。   As described above, the angular velocity sensor element is processed by photo-etching after two quartz wafers 3 (ab) are directly bonded to each other, and each tuning-fork shape in which a pair of tuning fork arms 2 (ab) extends from the tuning fork base 1. Divided into crystal pieces 3. The pair of tuning fork arms 2 (ab) includes a drive electrode D ± that excites tuning fork vibration, a sensor electrode S ± that detects charges due to vertical vibration, and a monitor electrode M that makes the amplitude level of tuning fork vibration constant (front). (See FIG. 4).

そして、フェムト秒レーザによる超短パルスレーザー(図中の矢印P)を少なくとも音叉腕2(ab)の一方例えば2aの根元部に照射して切削し、斜め振動を抑制する。この場合、超短パルスレーザーにおけるパルス1個分の出力パワー(エネルギー)をPo μJ、照射回数をN回とし、これらの積算値であるレーザエネルギーPm(=NPo μJ)が照射される。   Then, an ultrashort pulse laser (arrow P in the figure) using a femtosecond laser is irradiated to at least one of the tuning fork arms 2 (ab), for example, the root of 2a, and cut to suppress oblique vibration. In this case, the output power (energy) of one pulse in the ultrashort pulse laser is Po μJ, the number of irradiation is N times, and the laser energy Pm (= NPo μJ) which is an integrated value of these is irradiated.

例えば超短パルスレーザーのパルス幅を70フェムト秒とし、1パルスの出力パワーPoを10μJ、パルス回数Nを10回、レーザエネルギーPmを100μJとする。   For example, the pulse width of the ultrashort pulse laser is 70 femtoseconds, the output power Po of one pulse is 10 μJ, the number of pulses N is 10, and the laser energy Pm is 100 μJ.

超短パルスレーザーは、一方の音叉腕2aの根元部における外側(右側)の稜線部に斜交して照射する。超短パルスレーザーの照射角度は音叉腕2aの一主面に対して例えば45゜として入射し、音叉腕2aの外側面から出射する。この場合、超短パルスレーザのエネルギーによって稜線部を斜め方向に切削しながら貫通し、稜線部に微小切削部4が形成される。   The ultrashort pulse laser irradiates obliquely to the outer (right side) ridge line portion of the root portion of one tuning fork arm 2a. The irradiation angle of the ultrashort pulse laser is incident on one main surface of the tuning fork arm 2a as 45 °, for example, and is emitted from the outer surface of the tuning fork arm 2a. In this case, the ridgeline portion is penetrated while being cut in an oblique direction by the energy of the ultrashort pulse laser, and the minute cutting portion 4 is formed in the ridgeline portion.

そして、音叉腕2aにおける音叉基部1の根元部中の延出始端から長さ方向に沿って、順次に先端側に向かって超短パルスレーザーを稜線部に照射する。これにより、音叉腕2aの根元部における稜線部には長さ方向に沿った複数の微小切削部4が形成される。この場合、音叉基部1の根元部に対する超短パルスレーザーの照射ごとに角速度センサ素子を駆動し、斜め振動の垂直成分による電荷をセンサ電極S±によって検出する。そして、垂直成分による電荷がほぼ0とする規格値以下になるまでこれを繰り返す。   Then, the ridge line portion is sequentially irradiated with the ultrashort pulse laser toward the distal end side along the length direction from the extending start end in the root portion of the tuning fork base portion 1 in the tuning fork arm 2a. As a result, a plurality of micro-cut portions 4 along the length direction are formed at the ridge line portion at the root portion of the tuning fork arm 2a. In this case, the angular velocity sensor element is driven each time the base portion of the tuning fork base 1 is irradiated with the ultrashort pulse laser, and the charge due to the vertical component of the oblique vibration is detected by the sensor electrode S ±. This is repeated until the electric charge due to the vertical component becomes equal to or less than the standard value that is almost zero.

このようなものでは、発明の効果の欄でも述べたように、超短パルスレーザーによる切削なので微小切削部4の集合領域(輪郭)が明確になって、集合領域の外周近辺での不要な切削を防止し、機械的強度や電気的特性を良好に維持できる。そして、超短パルスレーザーは音叉腕2aの稜線部を斜交して切削しながら貫通する。   In such a case, as described in the column of the effect of the invention, since the cutting is performed by the ultrashort pulse laser, the gathering area (contour) of the micro-cutting part 4 becomes clear, and unnecessary cutting near the outer periphery of the gathering area is performed. And mechanical strength and electrical characteristics can be maintained well. The ultrashort pulse laser penetrates the ridge line portion of the tuning fork arm 2a while being obliquely cut.

したがって、超短パルスレーザーのエネルギーが微小切削部4内に残留せず、余すことなく逃げるので、水晶に対する損傷や双晶化を防止できる。さらに、この例では、複数の微小切削部4は離間して形成されるので、隣接する微小切削部を重畳させる場合(第2実施形態)に比較し、超短パルスレーザーを重複して照射しないので、水晶の損傷や双晶化をさらに防止できる。   Therefore, the energy of the ultrashort pulse laser does not remain in the minute cutting part 4 and escapes without being left over, so that damage to the quartz crystal and twinning can be prevented. Furthermore, in this example, since the plurality of micro-cutting parts 4 are formed apart from each other, the ultra-short pulse laser is not repeatedly irradiated as compared with the case where the adjacent micro-cutting parts are overlapped (second embodiment). Therefore, it is possible to further prevent crystal damage and twinning.

(第2実施形態、請求項1、2、3に相当)
第2図は本発明の第2実施形態を説明する角速度センサ素子の一部拡大図である。なお、第1実施形態と同一部分の説明は省略又は簡略する。
(Embodiment 2 corresponds to claims 1, 2, and 3)
FIG. 2 is a partially enlarged view of an angular velocity sensor element for explaining a second embodiment of the present invention. In addition, description of the same part as 1st Embodiment is abbreviate | omitted or simplified.

第2実施形態でも、フェムト秒レーザによる超短パルスレーザーは、第1実施形態と同様に、音叉腕2aの根元部における稜線部に斜交して、音叉腕2aの延出始端から先端側に向かって照射される。そして、ここでは、超短パルスレーザーによる微小切削部4は隣接するもの同士が重畳して形成される。この場合、超短パルスレーザーのビーム径は前述のように μmとするので、微小切削部4の集合体は稜線部を斜交する平坦部4Aを形成する。   Also in the second embodiment, the ultrashort pulse laser by the femtosecond laser is obliquely crossed at the ridge line portion at the root portion of the tuning fork arm 2a and is extended from the extending start end of the tuning fork arm 2a to the distal end side as in the first embodiment. Irradiated towards. And here, the adjacent micro cut parts 4 by the ultrashort pulse laser are formed to overlap each other. In this case, since the beam diameter of the ultrashort pulse laser is μm as described above, the aggregate of the minute cutting portions 4 forms a flat portion 4A that obliquely intersects the ridge line portion.

このようなものでは、音叉腕2aの根元部における延出始端側に微小切削部4を集中して平坦部4A形成する。したがって、微小切欠部4を離間して形成する第1実施形態に比較し、微小切削部4による平坦部4Aが延出始端部側となるので斜め振動に対する抑制効果(調整感度)を高められる。   In such a case, the flat cutting portion 4A is formed by concentrating the minute cutting portions 4 on the extending start end side of the root portion of the tuning fork arm 2a. Therefore, as compared with the first embodiment in which the minute notches 4 are formed apart from each other, the flat portion 4A by the minute cutting portion 4 is on the extension start end side, so that the suppression effect (adjustment sensitivity) against oblique vibration can be enhanced.

(他の事項)
上記実施形態では一方の音叉腕2aにのみ超短パルスレーザーを照射して斜め振動を抑制したが、一対の音叉腕2(ab)における幅方向の各一端側(例えば右側)となる一主面の稜線部に超短パルスレーザーを照射してもよい。これらの場合、一対の音叉腕2(ab)の根元部中の延出始端側に超短パルスレーザーを照射できるので、一方の音叉腕2aのみの根元部に照射する場合に比較して斜め振動の抑制効果を高められる。
(Other matters)
In the above embodiment, only one tuning fork arm 2a is irradiated with the ultrashort pulse laser to suppress the oblique vibration. However, one main surface on each end side (for example, the right side) in the width direction of the pair of tuning fork arms 2 (ab). You may irradiate the ridgeline part of an ultrashort pulse laser. In these cases, since the ultrashort pulse laser can be irradiated to the extended starting end side in the root portion of the pair of tuning fork arms 2 (ab), the vibration is oblique compared to the case where the root portion of only one tuning fork arm 2a is irradiated. The suppression effect of can be enhanced.

なお、各音叉腕2(ab)における幅方向の一端側となる一主面(例えば右側主面)の稜線部に超短パルスレーザーを照射したとき、前第5図に示した斜め振動Cを水平振動Aに戻す。そして、各音叉腕2(ab)における幅方向の他端側となる一主面(左側主面)に照射したとき、水平振動Aを斜め振動Cにする。そして、一対の音叉腕2(ab)の他主面の稜線部を切削する場合は、これらとは逆方向の調整となる。   When the ridge line portion of one main surface (for example, the right main surface) on one end side in the width direction of each tuning fork arm 2 (ab) is irradiated with an ultrashort pulse laser, the oblique vibration C shown in FIG. 5 is applied. Return to horizontal vibration A. And when it irradiates to one main surface (left main surface) which becomes the other end side of the width direction in each tuning fork arm 2 (ab), the horizontal vibration A turns into the diagonal vibration C. And when cutting the ridgeline part of the other main surface of a pair of tuning fork arms 2 (ab), it becomes adjustment in the direction opposite to these.

要するに、一対の音叉腕2(ab)における各主面側の稜線部において、一方の音叉腕2aの内側と他方の音叉腕2bの外側が等価な効果を奏し、一方の音叉腕2aの外側と他方の音叉腕2bの内側とが等価な効果を奏する。このことから、一方の音叉腕2aの一端側にて斜め振動を抑制して逆方向の斜め振動となった場合は、一方の音叉腕2a又は及び他方の音叉腕2bの他端側に超短パルスレーザーを照射して元の水平振動に戻すことができる。   In short, the inner side of one tuning fork arm 2a and the outer side of the other tuning fork arm 2b exhibit an equivalent effect at the ridge line portion on each main surface side of the pair of tuning fork arms 2 (ab), and the outer side of one tuning fork arm 2a The inside of the other tuning fork arm 2b has an equivalent effect. From this, when the diagonal vibration is suppressed at one end side of one tuning fork arm 2a and the diagonal vibration in the reverse direction is generated, the tuning fork arm 2a or the other tuning side of the other tuning fork arm 2b is extremely short. The original horizontal vibration can be restored by irradiating a pulse laser.

そして、一対の音叉腕2(ab)の稜線部に超短パルスレーザーを照射して微小切削部4を設けた場合は、各音叉腕2(ab)間での固有振動周波数を均等にするので、振動特性を良好に維持できる。さらに、一対の音叉腕2(ab)の同一主面側から超短パルスレーザーを照射して斜め振動を抑制する場合は、第3図に示したように、凹状の容器本体5に角速度センサ素子を収容した後、調整できるので有用となる。なお、図中の符号6は音叉基部1を保持する台座である。   And when the ultrashort pulse laser is irradiated to the ridge line part of a pair of tuning fork arms 2 (ab) and the minute cutting part 4 is provided, the natural vibration frequency between the tuning fork arms 2 (ab) is made uniform. The vibration characteristics can be maintained well. Further, in the case of suppressing the oblique vibration by irradiating the ultrashort pulse laser from the same main surface side of the pair of tuning fork arms 2 (ab), as shown in FIG. It is useful because it can be adjusted after it is stored. Reference numeral 6 in the figure denotes a pedestal that holds the tuning fork base 1.

また、音叉状水晶片3は2枚の水晶片3(ab)の直接接合としたが、単板であったとしても適用できることは勿論である。この場合は、エッチングの異方性によって+X軸面に突起を生じ、(第3図の上面図)同様に斜め振動を生じる。また、上記実施例では水晶を用いた音叉の例を説明したが、材料はこれに限らず、ニオブ酸リチウム、タンタル酸リチウム、さらには圧電膜を形成したシリコン等任意のもので構成できる。 Further, although the tuning fork crystal piece 3 is formed by directly joining two crystal pieces 3 (ab), it is needless to say that the tuning fork crystal piece 3 can be applied even if it is a single plate. In this case, protrusions are generated on the + X-axis surface due to the anisotropy of etching, and oblique vibration is generated in the same manner (top view of FIG. 3). In the above embodiment, an example of a tuning fork using quartz has been described. However, the material is not limited to this, and any material such as lithium niobate, lithium tantalate, or silicon with a piezoelectric film formed thereon can be used.

本発明の第1実施形態を説明する角速度センサ素子の一部拡大図である。It is a partial enlarged view of the angular velocity sensor element for explaining the first embodiment of the present invention. 本発明の第2実施形態を説明する角速度センサ素子の一部拡大図である。It is a partial enlarged view of the angular velocity sensor element explaining the second embodiment of the present invention. 本発明の適用例を示す容器本体に収容した角速度センサ素子の平面図である。It is a top view of the angular velocity sensor element accommodated in the container main body which shows the example of application of this invention. 従来例を説明する図で、同図(a)は角速度センサ素子の外観図、同図(b)は結線関係を示す上面図である。It is a figure explaining a prior art example, the figure (a) is an external view of an angular velocity sensor element, and the figure (b) is a top view which shows a connection relation. 従来例(斜め振動)を説明する角速度センサ素子の上面図である。It is a top view of the angular velocity sensor element explaining a prior art example (diagonal vibration). 従来例を説明する角速度センサ素子の上面図である。It is a top view of the angular velocity sensor element explaining a conventional example.

符号の説明Explanation of symbols

1 音叉基部、2 音叉腕、3 音叉状水晶片、4 切削部4、5 容器本体、6 台座。 1 tuning fork base, 2 tuning fork arm, 3 tuning fork crystal piece, 4 cutting part 4, 5 container body, 6 pedestal.

Claims (5)

音叉基部から一対の音叉腕が延出した音叉状水晶片を備え、前記音叉腕の幅方向となる音叉振動を駆動する駆動電極と前記音叉腕の厚み方向となる垂直振動による電荷を検出するセンサ電極とを有し、前記一対の音叉腕の斜め振動を防止する切削部を、前記音叉腕の主面における幅方向の両端側の少なくとも一方として、前記音叉腕の根元部に対して長さ方向にレーザーによって設けた角速度センサ素子において、前記切削部はフェムト秒レーザーから照射される超短パルスレーザーによって形成されるとともに、前記超短パルスレーザーを前記音叉腕の稜線部に斜交して前記音叉腕の長さ方向に沿って順次に入射し、前記稜線部を切削しながら出射して形成された複数の微小切削部からなることを特徴とする角速度センサ素子。   A sensor comprising a tuning fork crystal piece in which a pair of tuning fork arms extends from a tuning fork base, and a sensor for detecting electric charges caused by vertical vibration in the thickness direction of the tuning fork arm and a driving electrode for driving the tuning fork vibration in the width direction of the tuning fork arm A cutting portion that has an electrode and prevents oblique vibration of the pair of tuning fork arms is at least one of both end sides in the width direction of the main surface of the tuning fork arm, and the length direction with respect to the root portion of the tuning fork arm In the angular velocity sensor element provided by the laser, the cutting portion is formed by an ultrashort pulse laser irradiated from a femtosecond laser, and the ultrashort pulse laser is obliquely crossed on the ridge line portion of the tuning fork arm to form the tuning fork. An angular velocity sensor element comprising a plurality of minute cutting portions that are sequentially incident along the length direction of the arm and are emitted while cutting the ridge line portion. 請求項1において、前記切削部は前記複数の微小切削部のうちの隣接する微小切削部が重畳した角速度センサ素子。   The angular velocity sensor element according to claim 1, wherein the cutting portion is a superposition of adjacent micro cutting portions of the plurality of micro cutting portions. 請求項2において、前記切削部は平坦状である角速度センサ素子。   The angular velocity sensor element according to claim 2, wherein the cutting portion is flat. 請求項1において、前記切削部は前記複数の微小切削部うちの隣接する微小切削部が離間した角速度センサ素子。   2. The angular velocity sensor element according to claim 1, wherein the cutting portion is an adjacent one of the plurality of minute cutting portions. 請求項1、2、3又は4において、前記切削部は前記一対の音叉腕のいずれにも設けられ、前記一対の音叉腕における幅方向の同一側となる一端側とする角速度センサ素子。   5. The angular velocity sensor element according to claim 1, wherein the cutting portion is provided on any one of the pair of tuning fork arms, and is one end side on the same side in the width direction of the pair of tuning fork arms.
JP2007045702A 2007-02-26 2007-02-26 Angular velocity sensor element Pending JP2008209215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007045702A JP2008209215A (en) 2007-02-26 2007-02-26 Angular velocity sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045702A JP2008209215A (en) 2007-02-26 2007-02-26 Angular velocity sensor element

Publications (1)

Publication Number Publication Date
JP2008209215A true JP2008209215A (en) 2008-09-11

Family

ID=39785647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045702A Pending JP2008209215A (en) 2007-02-26 2007-02-26 Angular velocity sensor element

Country Status (1)

Country Link
JP (1) JP2008209215A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112748A (en) * 2010-11-24 2012-06-14 Seiko Epson Corp Vibration piece, sensor unit, electronic apparatus, method for manufacturing vibration piece, and method for manufacturing sensor unit
US20130085557A1 (en) * 2011-09-30 2013-04-04 Nidek Co., Ltd. Stimulus electrode for biological tissue and method of producing the same
JP2013205328A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Vibration piece, sensor unit and electronic apparatus
US9091542B2 (en) 2011-09-29 2015-07-28 Seiko Epson Corporation Sensor element, method for manufacturing sensor element, sensor device, and electronic apparatus
US9103674B2 (en) 2011-09-29 2015-08-11 Seiko Epson Corporation Sensor element, method for manufacturing sensor element, sensor device, and electronic apparatus
US9130147B2 (en) 2012-04-27 2015-09-08 Seiko Epson Corporation Vibrating reed, gyro sensor, electronic apparatus, and mobile unit
US9222775B2 (en) 2012-02-14 2015-12-29 Seiko Epson Corporation Vibrator element, sensor unit, and electronic device
US9299912B2 (en) 2012-04-06 2016-03-29 Seiko Epson Corporation Vibrator element, manufacturing method of vibrator element, sensor unit, and electronic apparatus
US9329040B2 (en) 2011-09-26 2016-05-03 Seiko Epson Corporation Angular velocity sensor and method of manufacture
US9341477B2 (en) 2012-05-23 2016-05-17 Seiko Epson Corporation Vibrator element, method of manufacturing vibrator element, angular velocity sensor, electronic device, and moving body
JP2018162975A (en) * 2017-03-24 2018-10-18 セイコーエプソン株式会社 Angular velocity sensor production method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112748A (en) * 2010-11-24 2012-06-14 Seiko Epson Corp Vibration piece, sensor unit, electronic apparatus, method for manufacturing vibration piece, and method for manufacturing sensor unit
US9362483B2 (en) 2010-11-24 2016-06-07 Seiko Epson Corporation Vibrator element having a suppressed vibration signal of leakage vibration
US9030082B2 (en) 2010-11-24 2015-05-12 Seiko Epson Corporation Vibrator element, sensor unit, electronic apparatus, manufacturing method of vibrator element, and manufacturing method of sensor unit
US9329040B2 (en) 2011-09-26 2016-05-03 Seiko Epson Corporation Angular velocity sensor and method of manufacture
US9103674B2 (en) 2011-09-29 2015-08-11 Seiko Epson Corporation Sensor element, method for manufacturing sensor element, sensor device, and electronic apparatus
US9091542B2 (en) 2011-09-29 2015-07-28 Seiko Epson Corporation Sensor element, method for manufacturing sensor element, sensor device, and electronic apparatus
US20130085557A1 (en) * 2011-09-30 2013-04-04 Nidek Co., Ltd. Stimulus electrode for biological tissue and method of producing the same
US9222775B2 (en) 2012-02-14 2015-12-29 Seiko Epson Corporation Vibrator element, sensor unit, and electronic device
US9093638B2 (en) 2012-03-29 2015-07-28 Seiko Epson Corporation Vibrating element, sensor unit and electronic apparatus
JP2013205328A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Vibration piece, sensor unit and electronic apparatus
US9299912B2 (en) 2012-04-06 2016-03-29 Seiko Epson Corporation Vibrator element, manufacturing method of vibrator element, sensor unit, and electronic apparatus
US9130147B2 (en) 2012-04-27 2015-09-08 Seiko Epson Corporation Vibrating reed, gyro sensor, electronic apparatus, and mobile unit
US9341477B2 (en) 2012-05-23 2016-05-17 Seiko Epson Corporation Vibrator element, method of manufacturing vibrator element, angular velocity sensor, electronic device, and moving body
JP2018162975A (en) * 2017-03-24 2018-10-18 セイコーエプソン株式会社 Angular velocity sensor production method

Similar Documents

Publication Publication Date Title
JP2008209215A (en) Angular velocity sensor element
JP5037819B2 (en) Electronics
JP5135683B2 (en) Vibrating gyro sensor and method for manufacturing vibrating element
KR100770826B1 (en) Piezoelectric oscillator piece and piezoelectric device
JP2006284551A (en) Oscillating gyro sensor
JP2009010717A (en) Piezoelectric vibrator and manufacturing method thereof
JP2007096900A (en) Piezoelectric vibrating piece and piezoelectric device
JP5107399B2 (en) Vibration type gyro sensor
JP2008131527A (en) Tuning fork type piezoelectric vibration chip and piezoelectric device
JP2008306468A (en) Piezoelectric vibration piece and piezoelectric vibrator
JP2011160391A (en) Piezoelectric vibration piece, method of manufacturing the same, piezoelectric vibrator and oscillator
JP5008424B2 (en) Method for manufacturing vibrator
JP2009027687A (en) Piezoelectric vibrator, method for manufacturing the same, and lid for piezoelectric vibrator
JP2005017273A (en) Piezoelectric vibrating gyroscope element, manufacturing method therefor, and piezoelectric vibrating gyroscope sensor
JP2005341251A (en) Piezo-electric oscillating piece and piezo-electric device
JP2007256016A (en) Angular velocity sensor element
JP2007163200A (en) Vibrating reed and angular velocity sensor
JP2008113380A (en) Method for manufacturing crystal vibrator, crystal vibrator, and electronic component
JP2007208670A (en) Method for manufacturing crystal device
JP6766879B2 (en) Frequency adjustment method for piezoelectric vibration device
JP5671821B2 (en) Vibrating piece and device
JP2007288331A (en) Manufacturing method of piezoelectric vibration reed, the piezoelectric vibration reed, and piezoelectric vibrator
JP2008131062A (en) Piezoelectric vibrator and manufacturing method thereof, and piezoelectric device
JP2005039780A (en) Piezoelectric oscillating piece, method for manufacturing piezoelectric oscillating piece, piezoelectric oscillator, oscillatory gyroscope, and method for manufacturing piezoelectric oscillator and oscillatory gyroscope
JP2008267983A (en) Piezoelectric vibrating gyroscope and its adjusting method