JP2008209127A - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP2008209127A
JP2008209127A JP2007043654A JP2007043654A JP2008209127A JP 2008209127 A JP2008209127 A JP 2008209127A JP 2007043654 A JP2007043654 A JP 2007043654A JP 2007043654 A JP2007043654 A JP 2007043654A JP 2008209127 A JP2008209127 A JP 2008209127A
Authority
JP
Japan
Prior art keywords
cantilever
light
solution
liquid level
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043654A
Other languages
Japanese (ja)
Other versions
JP4939974B2 (en
Inventor
Masato Iyogi
誠人 伊與木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2007043654A priority Critical patent/JP4939974B2/en
Publication of JP2008209127A publication Critical patent/JP2008209127A/en
Application granted granted Critical
Publication of JP4939974B2 publication Critical patent/JP4939974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning probe microscope capable of correcting the optical axis shift of a displacement detection mechanism caused by the difference of a cantilever or a solution or the warpage of the cantilever in the atmosphere or the solution. <P>SOLUTION: In the scanning probe microscope for measurement in a liquid composed of a displacement detection mechanism 10 constituted of a light source part 11 and a light detection part 13 and a cantilever holder 30 having a liquid level holding part 31 comprising a material pervious to the light of the light source part 11, the cantilever holder 30 is constituted so that the thickness of an incident light passing part in the direction vertical to the incident surface 31b of the incident light of the liquid level holding part 31 and the thickness of the reflected light passing part in a direction vertical to a reflected light emitting surface 31c. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大気中や液体中において先端に探針を有するカンチレバーとサンプル表面に働く相互作用を検出して距離制御を行いながら、サンプルと探針を微動機構により相対的にスキャンし、サンプルの表面の凹凸や物理特性の測定やサンプル表面の加工、あるいは、探針によりサンプル表面の物質の移動などを行うための走査型プローブ顕微鏡に関する。   The present invention detects the interaction between a cantilever having a probe at the tip and the sample surface in the atmosphere or in a liquid and controls the distance between the sample and the probe by a fine movement mechanism while performing distance control. The present invention relates to a scanning probe microscope for measuring surface irregularities and physical characteristics, processing a sample surface, or moving a material on a sample surface with a probe.

従来の走査型プローブ顕微鏡は、先端に探針を有するカンチレバーの末端に設けられた基部をカンチレバーホルダに固定し、サンプルは円筒型圧電素子などにより構成される3軸(XYZ軸)微動機構上に載置された構成である。   In a conventional scanning probe microscope, a base portion provided at the end of a cantilever having a probe at the tip is fixed to a cantilever holder, and a sample is placed on a three-axis (XYZ axis) fine movement mechanism constituted by a cylindrical piezoelectric element or the like. It is a mounted configuration.

走査型プローブ顕微鏡の測定を行う場合には、サンプルをステッピングモータなどによる粗動機構により探針に近接させた後、さらに3軸微動機構により探針とサンプル間を充分に接近させていく。そうするとサンプルと探針間には、原子間力などの物理的な力が作用し、探針は始め引力を受け、さらに近接させていくと探針は斥力を受ける。これらの引力や斥力によりカンチレバーにたわみが生ずる。このときのたわみは、通常、光てこ方式と呼ばれる変位検出機構により検出される。   When measuring with a scanning probe microscope, the sample is brought close to the probe by a coarse movement mechanism such as a stepping motor, and then the probe and the sample are sufficiently brought close to each other by a triaxial fine movement mechanism. Then, a physical force such as an interatomic force acts between the sample and the probe, and the probe receives an attractive force at the beginning, and the probe receives a repulsive force as it approaches further. These attractive and repulsive forces cause the cantilever to bend. The deflection at this time is usually detected by a displacement detection mechanism called an optical lever system.

光てこ方式とは、半導体レーザなどからなる光源からレーザ光(入射光)をカンチレバーの背面に照射する。この入射光は、カンチレバーの背面で反射し、反射光がカンチレバー半導体検出器からなる光検出器に当る。この光検出器は受光面が上下に2分割、または上下左右に4分割され、この分割された受光面の光量から反射光の入射位置を検出して、カンチレバーのたわみ量を測定することできるものである。   In the optical lever method, laser light (incident light) is irradiated on the back surface of the cantilever from a light source such as a semiconductor laser. This incident light is reflected by the back surface of the cantilever, and the reflected light strikes a photodetector comprising a cantilever semiconductor detector. In this photodetector, the light receiving surface is divided into two parts up and down, or four parts up and down and left and right, and the incident position of the reflected light can be detected from the light amount of the divided light receiving surface to measure the deflection amount of the cantilever. It is.

この原子間力などの物理的な力は、探針とサンプル間の距離に依存し、探針とサンプルを原子間力が作用する領域内に近接させて、3軸微動機構により2次元平面内で走査させながら、カンチレバーのたわみ量が常に一定になるように、サンプルと探針間の距離を制御することにより、サンプル表面の凹凸像が画像化される。このような距離制御方式はコンタクト方式の原子間力顕微鏡と呼ばれている。また、このとき探針先端とサンプル表面での物理的な作用を検出することにより、電気的物性や光学的物性などの物理特性の測定も可能である。   The physical force such as the interatomic force depends on the distance between the probe and the sample, and the probe and the sample are brought close to the region in which the interatomic force acts, and the three-axis fine movement mechanism is used in a two-dimensional plane. By controlling the distance between the sample and the probe so that the amount of deflection of the cantilever is always constant while scanning with, an uneven image on the sample surface is imaged. Such a distance control method is called a contact-type atomic force microscope. At this time, it is also possible to measure physical properties such as electrical physical properties and optical physical properties by detecting physical actions at the probe tip and the sample surface.

また、前述のコンタクト方式の原子間力顕微鏡の他に、振動方式の原子間力顕微鏡も普及している。この方式は、カンチレバーホルダに圧電素子などの加振手段を設け、加振手段によりカンチレバーを共振周波数近傍の周波数で振動させ、そのときの振幅や位相を光てこ法などの変位検出手段で計測する。探針とサンプル間を充分に接近させると、サンプルと探針間には、原子間力などの物理的な力が作用し、さらに近接していくとサンプルと探針がカンチレバーの振動に対応して間欠的に接触し、両者に接触力が作用する。この原子間力や接触力により、カンチレバーの振幅や位相が変化する。これらの力は、探針とサンプル間の距離に依存するため、カンチレバーの振幅や位相の変化量が常に一定になるように、サンプルと探針間の距離を制御することにより距離制御が行われる。振動方式の原子間力顕微鏡はコンタクト方式の原子間力顕微鏡に比べて、探針やサンプルに与えるダメージが少ないというメリットがある。   In addition to the contact-type atomic force microscope described above, a vibration-type atomic force microscope is also widely used. In this method, a vibrating means such as a piezoelectric element is provided in the cantilever holder, the cantilever is vibrated at a frequency near the resonance frequency by the vibrating means, and the amplitude and phase at that time are measured by a displacement detecting means such as an optical lever method. . When the probe and the sample are sufficiently close together, a physical force such as an interatomic force acts between the sample and the probe, and when closer, the sample and the probe respond to the vibration of the cantilever. Contact intermittently, and contact force acts on both. The atomic force and contact force change the amplitude and phase of the cantilever. Since these forces depend on the distance between the probe and the sample, distance control is performed by controlling the distance between the sample and the probe so that the amount of change in the amplitude and phase of the cantilever is always constant. . The vibration-type atomic force microscope has an advantage that it causes less damage to the probe and the sample than the contact-type atomic force microscope.

多くの走査型プローブ顕微鏡の測定は大気中で行われるが、例えば高分子や細胞、染色体、DNA、たんぱく質などの有機系やバイオ系サンプルの場合には、大気下にさらすとサンプルが変質してしまうため、培養液などの溶液中にサンプルとカンチレバーを浸して測定を行う場合もあり、生体サンプルや有機高分子サンプルなどのin situ観察や、溶液中での電気化学反応を組み合わせた測定などに応用されている。   Many scanning probe microscope measurements are performed in the atmosphere. For example, in the case of organic or biological samples such as macromolecules, cells, chromosomes, DNA, and proteins, the samples may be altered by exposure to the atmosphere. Therefore, the sample and the cantilever may be immersed in a solution such as a culture solution for measurement. For example, in-situ observation of biological samples or organic polymer samples, or measurements that combine electrochemical reactions in the solution. Applied.

ここで、図7の従来の液中測定用の走査型プローブ顕微鏡の概観図を参照し、原理を説明する(例えば、特許文献1参照)。   Here, the principle will be described with reference to an overview of the conventional scanning probe microscope for measurement in liquid in FIG. 7 (see, for example, Patent Document 1).

この従来技術は、先端に探針を有するカンチレバー101によってサンプルSの観察を行うコンタクト方式の原子間力顕微鏡であり、カンチレバー101を支持するカンチレバー支持部102と、光てこ方式によりカンチレバー101の変位を測定する変位検出機構(103,104,105,106)と、サンプルSを溶液110内に保持する溶液セル111と、サンプルSをカンチレバー101に対して移動させて走査を行う3軸微動機構107を備える。   This prior art is a contact-type atomic force microscope that observes the sample S with a cantilever 101 having a probe at the tip. The cantilever support portion 102 that supports the cantilever 101 and the cantilever 101 are displaced by an optical lever method. A displacement detection mechanism (103, 104, 105, 106) for measurement, a solution cell 111 for holding the sample S in the solution 110, and a triaxial fine movement mechanism 107 for scanning the sample S by moving the sample S relative to the cantilever 101 are provided. Prepare.

溶液セル111は、試料Sを支持する底面118と、底面118の周囲を囲む側壁119を備え、内部に溶液110を保持可能としている。溶液セル111内に溶液110を注入し、カンチレバー101及び試料Sを液体中に浸した状態とする。   The solution cell 111 includes a bottom surface 118 that supports the sample S and a side wall 119 that surrounds the periphery of the bottom surface 118, and can hold the solution 110 inside. The solution 110 is injected into the solution cell 111, and the cantilever 101 and the sample S are immersed in the liquid.

変位検出機構は、レーザ光を照射するレーザ光源103と、照射されたレーザ光をカンチレバー101方向に向けるビームスプリッタ104と、カンチレバー101で反射されたレーザ光の方向を調節するミラー105と、反射レーザ光を検出するフォトダイオード106を備える。
ここで、カンチレバー支持部102は透過性の材料で構成されており、カンチレバーが支持される側が溶液内に浸された状態に配置される。カンチレバー101に対する入射レーザ光及び反射レーザ光は、大気中から透過性の材料で構成されたカンチレバー支持部102を透過し、溶液110内を通り、溶液内に配置されたカンチレバー101で反射し、溶液110から再びカンチレバー支持部102に入射し、大気中に抜けミラー105を経由してフォトダイオード106に至る光学経路を形成する。もし、大気中からそのまま溶液中にレーザ光が入射された場合には、溶液の表面の揺れによる乱反射や光路の変化で変位検出の精度が大きく低下してしまう。しかしながら、この従来技術ではカンチレバー支持部102と溶液の界面は連続的につながっており、カンチレバー支持部102が液面保持部も兼ねた構成となっているため、溶液の界面の揺れが防止されてレーザの入射光がそのまま溶液中に進行でき、溶液中でも精度よくカンチレバー101の変位を測定することが可能である。
この状態で、3軸微動機構を用いて、カンチレバー101の変位が一定となるようにカンチレバー101とサンプルS間の距離をフィードバック制御しながら、サンプル面内でサンプルをスキャンすることで、サンプルSの形状像を測定することができる。
特開平11−142418号公報
The displacement detection mechanism includes a laser light source 103 that emits laser light, a beam splitter 104 that directs the emitted laser light toward the cantilever 101, a mirror 105 that adjusts the direction of the laser light reflected by the cantilever 101, and a reflected laser. A photodiode 106 for detecting light is provided.
Here, the cantilever support portion 102 is made of a permeable material, and is disposed in a state where the side on which the cantilever is supported is immersed in the solution. The incident laser beam and the reflected laser beam with respect to the cantilever 101 are transmitted from the atmosphere through the cantilever support portion 102 made of a transmissive material, pass through the solution 110, and are reflected by the cantilever 101 disposed in the solution. The light enters the cantilever support 102 from 110 again, and passes through the atmosphere to the photodiode 106 via the mirror 105. If laser light is incident on the solution as it is from the atmosphere, the accuracy of displacement detection is greatly reduced due to irregular reflection due to shaking of the surface of the solution and changes in the optical path. However, in this prior art, the interface between the cantilever support portion 102 and the solution is continuously connected, and the cantilever support portion 102 also serves as a liquid level holding portion. The incident light of the laser can travel directly into the solution, and the displacement of the cantilever 101 can be accurately measured even in the solution.
In this state, by using the three-axis fine movement mechanism, the sample is scanned in the sample plane while feedback controlling the distance between the cantilever 101 and the sample S so that the displacement of the cantilever 101 is constant. A shape image can be measured.
JP-A-11-142418

しかしながら、従来の液中測定用の走査型プローブ顕微鏡におけるカンチレバーホルダでは、透過性の材料からなるカンチレバー支持部や溶液中をレーザ光が進行するため、結像系の光路を用いている場合には、大気中を進行する場合に対して焦点ずれが発生する。また、大気中を進行する場合に対して、光が屈折してしまうため、フォトダイオードへの入射位置がずれてしまうという問題があった。   However, in the conventional cantilever holder in a scanning probe microscope for measurement in liquid, the laser beam travels in a cantilever support made of a transparent material or in a solution. Defocus occurs when traveling in the atmosphere. In addition, since the light is refracted when traveling in the atmosphere, the incident position on the photodiode is shifted.

一般的な走査型プローブ顕微鏡では、カンチレバーは数10μmの幅であり、狭い領域に光を照射するため、光源からの光をレンズによりカンチレバー背面に結像させる光学系が用いられる。   In a general scanning probe microscope, the cantilever has a width of several tens of μm, and an optical system that forms an image of light from the light source on the back surface of the cantilever using a lens is used to irradiate light to a narrow region.

また、溶液中での測定だけではなく、汎用性向上のため大気中測定と溶液中測定の兼用が可能となっている場合が多く、コストを抑えるため、変位検出器機構は大気用と溶液用で兼用する場合がほとんどである。   In addition to measuring in solution, it is often possible to use both atmospheric measurement and measurement in solution to improve versatility. To reduce costs, the displacement detector mechanism is used for atmospheric and solution applications. In most cases, it is also used in

焦点ずれに対しては、カンチレバーホルダに取り付けられる液面保持部(従来技術のカンチレバー保持部に相当)の厚さを調整し、溶液中でもカンチレバー背面に集光するようにホルダが設計されるが、入射光と反射光を同じ厚さの液面保持部を通した場合には、屈折によりフォトダイオードへの入射位置が大きくずれてしまうことになる。   For defocusing, the thickness of the liquid level holder attached to the cantilever holder (corresponding to the conventional cantilever holder) is adjusted, and the holder is designed to focus on the back of the cantilever even in solution. When incident light and reflected light are passed through a liquid surface holding portion having the same thickness, the incident position on the photodiode is greatly shifted due to refraction.

このため、変位検出機構のミラーを大きくしてあおり調整機構をつけたり、あるいはフォトダイオードに大気で必要とされる場合以上の移動量を持つ位置決め機構を取り入れる必要があった。この場合、装置の大型化や稼動部の増加により剛性が低下し測定精度が悪くなってしまう。さらに部品数多くなりコストが増加するといった問題が生じていた。   For this reason, it has been necessary to increase the mirror of the displacement detection mechanism to provide an adjustment mechanism, or to incorporate a positioning mechanism having a moving amount larger than that required in the atmosphere in the photodiode. In this case, due to the increase in size of the apparatus and the increase in operating parts, the rigidity is lowered and the measurement accuracy is deteriorated. Furthermore, the problem that the number of parts increased and the cost increased occurred.

また、走査型プローブ顕微鏡では測定目的に合わせ、さまざまな形状のカンチレバーが選択され、さらに、溶液もさまざまな屈折率のものが用いられているため、場合によってはフォトダイオードへ入射する反射光が変位検出機構の調整範囲を超えてしまい、測定ができない場合もあった。   In addition, scanning probe microscopes select cantilevers of various shapes according to the purpose of measurement, and furthermore, since solutions with various refractive indexes are used, the reflected light incident on the photodiode may be displaced in some cases. In some cases, the adjustment range of the detection mechanism was exceeded and measurement was not possible.

また、従来の走査型プローブ顕微鏡用のカンチレバーは、温度やカンチレバーに設けられる金属コートの内部応力などにより反りが発生し、光てこ法による変位検出を行う場合に光検出器への反射光がずれてしまうことがあった。
本発明の目的は、大気中や溶液中を問わず、カンチレバーや溶液の違いやカンチレバーの反りなどによる、変位検出機構の光軸ずれを補正することが可能な走査型プローブ顕微鏡を提供することである。
In addition, the conventional cantilever for a scanning probe microscope is warped due to temperature or internal stress of the metal coating provided on the cantilever, and the reflected light to the photodetector shifts when detecting displacement by the optical lever method. There was a case.
An object of the present invention is to provide a scanning probe microscope capable of correcting an optical axis shift of a displacement detection mechanism due to a difference in cantilever or solution, warpage of the cantilever, etc., regardless of whether it is in the air or in a solution. is there.

本発明は、前記課題を解決するために以下の手段を提供する。   The present invention provides the following means in order to solve the above problems.

本発明の液中測定用の走査型プローブ顕微鏡は、先端に探針を有し末端に基部を有するカンチレバーと、前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、光源部と光検出部から構成されて、光源部からの光をカンチレバー背面に照射し、カンチレバーからの反射光を光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、前記カンチレバーの基部を固定するためのカンチレバー固定部と、前記カンチレバーの上方に配置され、前記光源部の光に対して透過性の材料からなる液面保持部を有するカンチレバーホルダで構成される。   The scanning probe microscope for measuring in liquid according to the present invention includes a cantilever having a probe at the tip and a base at the end, and a sample for placing a sample to be measured disposed at a position facing the probe. Displacement detection mechanism that consists of a holder part, a light source part, and a light detection part, irradiates the back surface of the cantilever with light from the light source part, and receives the reflected light from the cantilever with the light detection part to detect displacement of the cantilever Part, a cantilever fixing part for fixing the base part of the cantilever, and a cantilever holder which is disposed above the cantilever and has a liquid level holding part made of a material transmissive to the light of the light source part. The

前記サンプルと前記カンチレバーは任意の溶液内に配置され、前記変位検出機構は大気中に配置され、前記液面保持部のカンチレバー上方の面は溶液に接し、前記光源からカンチレバーに至る入射光は、大気中、液面保持部、溶液中の順番で通過し、カンチレバーで反射した後の反射光が、液中、液面保持部、大気中の順番の光路を経由して光検出部に至り、カンチレバーの変位検出が行われる。   The sample and the cantilever are disposed in an arbitrary solution, the displacement detection mechanism is disposed in the atmosphere, the surface above the cantilever of the liquid level holding unit is in contact with the solution, and incident light from the light source to the cantilever is In the atmosphere, the liquid level holding part, the reflected light after passing in the order of the solution and reflected by the cantilever reaches the light detection part through the liquid, the liquid level holding part, the optical path in the order of the atmosphere, Cantilever displacement detection is performed.

以上のように構成された液中測定用の走査型プローブ顕微鏡において、本発明では、液面保持部の入射光の入射面に対して垂直方向の入射光通過部の厚さと、反射光の出射面に対して垂直方向の反射光通過部の厚さが異なるように構成した。   In the scanning probe microscope for in-liquid measurement configured as described above, according to the present invention, the thickness of the incident light passing part perpendicular to the incident light incident surface of the liquid level holding part and the emission of the reflected light The thickness of the reflected light passing portion in the direction perpendicular to the surface is different.

また、本発明の液中測定用の走査型プローブ顕微鏡では、前記液面保持部において、液面保持部の入射光の入射面に対して垂直方向の入射光通過部の厚さよりも、反射光の出射面に対して垂直方向の反射光通過部の厚さを厚くした。   Further, in the scanning probe microscope for measuring in liquid according to the present invention, the reflected light in the liquid level holding part is more than the thickness of the incident light passing part perpendicular to the incident light incident surface of the liquid level holding part. The thickness of the reflected light passing portion in the direction perpendicular to the emission surface of the light is increased.

さらに、本発明の走査型プローブ顕微鏡では、前記液面保持部において、溶液と接する面の少なくとも入射光と反射光が通過する部分は同一平面上に配置され、大気と接する面の入射光と反射光が通過する面は同一平面上にないように構成した。   Furthermore, in the scanning probe microscope of the present invention, in the liquid level holding part, at least a portion of the surface in contact with the solution through which the incident light and the reflected light pass is disposed on the same plane, and the incident light and the reflection on the surface in contact with the atmosphere are reflected. The surface through which light passes was not on the same plane.

また、本発明の液中測定用の走査型プローブ顕微鏡では、大気中の反射光側の光路中に、前記光源部の光に対して透過性の基板を挿入するように構成した。   In the scanning probe microscope for measuring in liquid according to the present invention, a substrate that is transmissive to the light from the light source unit is inserted into the optical path on the reflected light side in the atmosphere.

さらに、本発明の走査型プローブ顕微鏡では、変位検出機構は共通のものを用いて大気中での測定と溶液中での測定を兼用できるようにした。   Furthermore, in the scanning probe microscope of the present invention, a common displacement detection mechanism is used so that measurement in the atmosphere and measurement in the solution can be combined.

また、本発明の走査型プローブ顕微鏡では、先端に探針を有し末端に基部を有するカンチレバーと、前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、光源部と光検出部から構成されて、光源部からの光をカンチレバー背面に照射し、カンチレバーからの反射光を光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、前記カンチレバーの基部を固定するためのカンチレバー固定部を有するカンチレバーホルダから構成し、前記、反射光側の光路中に、前記光源部の光に対して透過性の基板を挿入するように構成した。   Further, in the scanning probe microscope of the present invention, a cantilever having a probe at the tip and a base at the end, a sample holder part placed at a position facing the probe, and for placing a sample to be measured, A displacement detection mechanism that is composed of a light source unit and a light detection unit, irradiates the back surface of the cantilever with light from the light source unit, receives light reflected from the cantilever by the light detection unit, and detects displacement of the cantilever; The cantilever holder has a cantilever fixing portion for fixing the base portion of the cantilever, and a substrate transparent to the light from the light source portion is inserted into the optical path on the reflected light side.

本発明によれば、以下の効果を奏する。   The present invention has the following effects.

本発明に係る走査型プローブ顕微鏡によれば、液面保持部や溶液中で変位検出機構の光路が屈折し、光検出部への入射位置がずれた場合でも反射光通過部の厚みを調整することで、光検出部への入射位置を任意に調整することが可能となる。   According to the scanning probe microscope according to the present invention, the thickness of the reflected light passage part is adjusted even when the optical path of the displacement detection mechanism is refracted in the liquid level holding part or the solution and the incident position on the light detection part is shifted. This makes it possible to arbitrarily adjust the incident position on the light detection unit.

したがって、変位検出機構の光源部や光検出部の位置決め機構を必要以上に大きくしたり、光検出部への入射位置調整用のあおりミラーなどを設けたりする必要がなくなり、剛性低下による測定精度の悪化を防ぐことが可能となった。また、部品数も削減できコストも抑制することができる。   Therefore, it is not necessary to make the light source part of the displacement detection mechanism and the positioning mechanism of the light detection part larger than necessary, or to provide a tilt mirror for adjusting the incident position to the light detection part. It became possible to prevent deterioration. In addition, the number of parts can be reduced and the cost can be suppressed.

さらに、測定目的に合わせ、カンチレバーや溶液の種類が変わった場合でも、光検出部へ入射する反射光が変位検出機構の調整範囲から外れてしまい測定不可能になることが防止される。   Furthermore, even when the type of cantilever or solution is changed in accordance with the measurement purpose, it is possible to prevent the reflected light incident on the light detection unit from being out of the adjustment range of the displacement detection mechanism and becoming impossible to measure.

さらに、大気中用の変位検出機構をそのままの構成で溶液中でも兼用することが可能となる。   Furthermore, the atmospheric displacement detection mechanism can be used in the solution as it is.

さらに、本発明の走査型プローブ顕微鏡では、反射光側の光路中に、光源部の光に対して透過性の基板を挿入するように構成することで、周囲の温度やカンチレバーへのコート材の内部応力の影響でカンチレバーに反りが発生した場合でも、基板の厚さを調整することで光軸ずれを補正することが可能となる。   Furthermore, in the scanning probe microscope of the present invention, a substrate that is transparent to the light of the light source unit is inserted in the optical path on the reflected light side, so that the ambient temperature and the coating material to the cantilever are Even when the cantilever is warped due to the internal stress, the optical axis deviation can be corrected by adjusting the thickness of the substrate.

以下、本発明を実施するための最良の形態について、図面を参照して詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1〜図3により、本発明に係る第1実施例を説明する。   A first embodiment according to the present invention will be described with reference to FIGS.

図1は本発明の第1実施例の大気中で用いられる走査型プローブ顕微鏡の概観図である。   FIG. 1 is a schematic view of a scanning probe microscope used in the atmosphere according to the first embodiment of the present invention.

本発明で用いられるカンチレバー1はシリコンを材料とした短冊形の形状で、先端に三角錐状の探針2を有し末端に基部3を有する構造である。カンチレバーホルダ4は、ステンレスを材料とするベースブロック5にセラミックスの絶縁基板6を介して、カンチレバー加振用の平板型の圧電素子7に取り付けられ、さらに、圧電素子7にはカンチレバー1を保持するカンチレバー保持部8が接着固定されている。振動方式で測定を行う場合には圧電素子7に電圧が印加され圧電素子7に取り付けられたカンチレバー保持部8を介してカンチレバー1がカンチレバーの共振周波数近傍の周波数で加振される。コンタクト方式で測定を行う場合には、圧電素子7には電圧は印加されず圧電素子7の各電極が短絡された状態で使用される。このように構成されたカンチレバーホルダ4のベースブロック5は走査型プローブ顕微鏡の本体ベース部9に固定される。   The cantilever 1 used in the present invention has a rectangular shape made of silicon, and has a structure having a triangular pyramid-shaped probe 2 at the tip and a base 3 at the end. The cantilever holder 4 is attached to a plate-type piezoelectric element 7 for cantilever excitation via a ceramic insulating substrate 6 on a base block 5 made of stainless steel, and the piezoelectric element 7 holds the cantilever 1. The cantilever holding portion 8 is bonded and fixed. When measurement is performed using the vibration method, a voltage is applied to the piezoelectric element 7 and the cantilever 1 is vibrated at a frequency near the resonance frequency of the cantilever via a cantilever holding portion 8 attached to the piezoelectric element 7. When the measurement is performed by the contact method, no voltage is applied to the piezoelectric element 7 and the electrodes of the piezoelectric element 7 are used in a short-circuited state. The base block 5 of the cantilever holder 4 thus configured is fixed to the main body base portion 9 of the scanning probe microscope.

カンチレバー1の変位検出に用いられる変位検出機構10は、一般に光てこ法と呼ばれる検出方式によりカンチレバー1の変位検出が行われる。本発明の変位検出機構は、光源部11と、光路を曲げるビームスプリッター12と、光検出部13から構成され、これらの部材は筐体内14に配置され、筐体14は走査型プローブ顕微鏡の本体ベース部9に固定される。   The displacement detection mechanism 10 used for detecting the displacement of the cantilever 1 detects the displacement of the cantilever 1 by a detection method generally called an optical lever method. The displacement detection mechanism of the present invention includes a light source unit 11, a beam splitter 12 that bends an optical path, and a light detection unit 13. These members are arranged in a case 14, and the case 14 is a main body of a scanning probe microscope. It is fixed to the base part 9.

光源部11は、波長670nmの半導体レーザから構成される光源と半導体レーザの光を集めカンチレバー背面に集光させるための集光レンズが内蔵されている(半導体レーザと集光レンズは図示せず)。また、光検出部13は表面を4分割されたシリコン製のフォトダイオードが用いられる。光源部11から照射された光は、ビームスプリッター12で曲げられて、直上からカンチレバー1の背面に集光される。カンチレバー1で反射した光は、光検出部13に導かれる。   The light source unit 11 includes a light source composed of a semiconductor laser having a wavelength of 670 nm and a condensing lens for collecting the light of the semiconductor laser and condensing it on the back surface of the cantilever (the semiconductor laser and the condensing lens are not shown). . The photodetection unit 13 is a silicon photodiode whose surface is divided into four. The light emitted from the light source unit 11 is bent by the beam splitter 12 and condensed on the back surface of the cantilever 1 from directly above. The light reflected by the cantilever 1 is guided to the light detection unit 13.

ここで、カンチレバー1にたわみが生じた場合には、フォトダイオード13上のスポットが動き、4分割された各受光面の強度差を検出することで、カンチレバー1の変位の検出が行われる。   Here, when the deflection of the cantilever 1 occurs, the spot on the photodiode 13 moves, and the displacement of the cantilever 1 is detected by detecting the intensity difference between the four light receiving surfaces.

ここで、光源部11には図1の紙面に対して垂直方向と上下方向に移動可能な2軸ステージ15が設けられており、ビームスプリッター12の上側に配置された光学顕微鏡像17によりカンチレバー1の像とサンプル18面で反射したレーザのスポットの像を確認しながら、2軸ステージ15によりカンチレバー1の背面へのレーザ光の位置決めが行われる。   Here, the light source unit 11 is provided with a biaxial stage 15 movable in the vertical direction and the vertical direction with respect to the paper surface of FIG. 1, and the cantilever 1 is shown by the optical microscope image 17 arranged on the upper side of the beam splitter 12. The laser beam is positioned on the back surface of the cantilever 1 by the biaxial stage 15 while confirming the image of the laser beam and the image of the laser spot reflected from the surface of the sample 18.

また、光検出部13にも図1の紙面に対して左右方向と垂直な方向に移動可能な2軸ステージ16が設けられており、フォトダイオード13の出力を確認しながらフォトダイオード13の中心に反射光のスポットの位置決めが行われる。   In addition, the light detection unit 13 is also provided with a biaxial stage 16 that can move in a direction perpendicular to the left-right direction with respect to the paper surface of FIG. 1, and at the center of the photodiode 13 while checking the output of the photodiode 13. The spot of the reflected light is positioned.

一方、探針2に対向する側にはサンプル18がサンプルステージ19上に置かれており、サンプルステージ19は、円筒型の圧電素子より構成される3軸微動機構20に固定されている。3軸微動機構20は、送りねじとステッピングモータにより探針2とサンプル18を接近させるための粗動機構21に固定されている。   On the other hand, a sample 18 is placed on a sample stage 19 on the side facing the probe 2, and the sample stage 19 is fixed to a three-axis fine movement mechanism 20 composed of a cylindrical piezoelectric element. The triaxial fine movement mechanism 20 is fixed to a coarse movement mechanism 21 for bringing the probe 2 and the sample 18 closer by a feed screw and a stepping motor.

本実施例では、振動方式の原子間力顕微鏡測定が行われ、探針2とサンプル18をあらかじめ設定した振幅が減衰するところまで粗動機構21で近接させて、3軸微動機構20によりサンプル18の面内でラスタースキャンを行いながら、振幅の減衰量が一定となるように探針2とサンプル18間の距離を制御することで、サンプル18の表面の凹凸像を測定することが可能となる。   In the present embodiment, vibration-type atomic force microscope measurement is performed, and the probe 2 and the sample 18 are brought close to each other by the coarse movement mechanism 21 until the preset amplitude is attenuated, and the sample 18 is obtained by the triaxial fine movement mechanism 20. By controlling the distance between the probe 2 and the sample 18 so that the amount of attenuation of the amplitude becomes constant while performing the raster scan in the plane, it is possible to measure an uneven image on the surface of the sample 18. .

次に、図2に液中で測定する場合の走査型プローブ顕微鏡の概観図を示す。   Next, FIG. 2 shows an overview of a scanning probe microscope when measuring in a liquid.

ここで、図1の大気中での構成と、図2の溶液中での構成の違いはカンチレバーホルダ部30と、サンプルを溶液中に浸すための溶液セル35のみであり、変位検出機構10と3軸微動機構20および粗動機構21、本体ベース部9については図1の大気中とまったく同一の構成である。そのため重複する部材には同じ番号を付し詳細な説明は省略する。   Here, the difference between the configuration in the atmosphere in FIG. 1 and the configuration in the solution in FIG. 2 is only the cantilever holder 30 and the solution cell 35 for immersing the sample in the solution. The three-axis fine movement mechanism 20, the coarse movement mechanism 21, and the main body base portion 9 have the same configuration as that in the atmosphere of FIG. Therefore, the same number is attached | subjected to the overlapping member and detailed description is abbreviate | omitted.

液中測定用のカンチレバーホルダ30は、石英ガラスから構成される液面保持部31と、液面保持部31に取り付けられているカンチレバー加振用の平板型の圧電素子32、圧電素子32に取り付けられているカンチレバー保持部33、液面保持部31が固定されカンチレバーホルダ30を走査型プローブ顕微鏡のベース部9に固定するためのステンレス材料から作られるベースブロック34から構成される。なお、圧電素子32は溶液中で使用するために防水処置が施されている。   A cantilever holder 30 for measuring in liquid is attached to a liquid level holding part 31 made of quartz glass, a plate type piezoelectric element 32 for cantilever vibration attached to the liquid level holding part 31, and the piezoelectric element 32. The cantilever holding portion 33 and the liquid level holding portion 31 are fixed, and the base block 34 is made of a stainless material for fixing the cantilever holder 30 to the base portion 9 of the scanning probe microscope. The piezoelectric element 32 is waterproofed for use in a solution.

液面保持部31はカンチレバーが取り付けられている側の面31aと、変位検出機構の光が入射する入射面31bが平行に構成されている。   The liquid level holding unit 31 includes a surface 31a on which the cantilever is attached and an incident surface 31b on which light from the displacement detection mechanism is incident.

サンプルは溶液セル35内に配置され、溶液セル35はサンプルホルダー19に載置される。溶液セル35内には溶液(蒸留水)36が入れられており、溶液36は、液面保持部31のカンチレバー1が設置される側の面31aに表面張力で接している。溶液内36にはカンチレバー1とサンプル18が配置されている。   The sample is placed in the solution cell 35, and the solution cell 35 is placed on the sample holder 19. A solution (distilled water) 36 is placed in the solution cell 35, and the solution 36 is in contact with the surface 31 a of the liquid surface holding unit 31 on the side where the cantilever 1 is installed by surface tension. The cantilever 1 and the sample 18 are arranged in the solution 36.

ここで、変位検出機構10の光源部11から照射される入射光37は、液面保持部31の入射面31bに対して入射角0°で入射する。液面保持部31の構成材料である石英ガラスはレーザ光の波長670nmに対して約94%の透過率を有するので、入射光37は液面保持部31を透過して、更に溶液36内を通過して、カンチレバー1の背面に照射される。カンチレバー1は水平面に対して取付角度13°で取り付けられており、反射角26°で反射する。反射光38は溶液36中を通過し、液面保持部31の石英ガラスを通過して大気中に出て、光検出部13に到達する。   Here, the incident light 37 emitted from the light source unit 11 of the displacement detection mechanism 10 enters the incident surface 31 b of the liquid level holding unit 31 at an incident angle of 0 °. Since quartz glass, which is a constituent material of the liquid level holding part 31, has a transmittance of about 94% with respect to the wavelength of 670 nm of the laser light, the incident light 37 passes through the liquid level holding part 31 and further passes through the solution 36. The light passes through and is irradiated on the back surface of the cantilever 1. The cantilever 1 is mounted at a mounting angle of 13 ° with respect to the horizontal plane and reflects at a reflection angle of 26 °. The reflected light 38 passes through the solution 36, passes through the quartz glass of the liquid level holding unit 31, exits into the atmosphere, and reaches the light detection unit 13.

ここで、光源部11からカンチレバー1に入射する入射光37の光路を図3により説明する。なお図3では、ビームスプリッター12は省略し、光源部11からカンチレバー1まで直線状に記載している。   Here, the optical path of the incident light 37 incident on the cantilever 1 from the light source unit 11 will be described with reference to FIG. In FIG. 3, the beam splitter 12 is omitted, and the light source unit 11 to the cantilever 1 are illustrated in a straight line.

光源部11からの光は、大気中では4.3°の開き角でカンチレバー背面に集光される。図1に示したように大気中を通る場合には、光源部11からf1の距離でカンチレバー1の背面に結像するように構成されている。本実施例ではf1は53mmである。ここで、光路上に大気の屈折率1よりも大きい、石英ガラス(屈折率1.46)と蒸留水(屈折率1.33)が入った場合には光源部11から結像点までの距離がf2に伸びる。本実施例では、石英ガラス部分の厚さT1を24mmとし、f2が61mmとなるようにした。なお、このとき液面保持部31の液面と接する面31aからカンチレバー1までの距離は約2mmである。この距離と液面保持部31の液面と接する面31aの面積が測定に必要な溶液の量に寄与し、距離が短く面積が小さいほど少ない溶液での測定が可能となる。   The light from the light source unit 11 is condensed on the back surface of the cantilever with an opening angle of 4.3 ° in the atmosphere. As shown in FIG. 1, when passing through the atmosphere, an image is formed on the back surface of the cantilever 1 at a distance of f <b> 1 from the light source unit 11. In this embodiment, f1 is 53 mm. Here, when quartz glass (refractive index 1.46) and distilled water (refractive index 1.33), which are larger than the refractive index 1 of the atmosphere, enter the optical path, the distance from the light source unit 11 to the imaging point. Extends to f2. In this example, the thickness T1 of the quartz glass portion was 24 mm, and f2 was 61 mm. At this time, the distance from the surface 31a in contact with the liquid surface of the liquid surface holding portion 31 to the cantilever 1 is about 2 mm. This distance and the area of the surface 31a in contact with the liquid surface of the liquid surface holding part 31 contribute to the amount of solution necessary for the measurement, and the measurement with a smaller amount of solution becomes possible as the distance is shorter and the area is smaller.

ここで、走査型プローブ顕微鏡の本体ベース部9に対するカンチレバーの取付部分の高さは、大気中と溶液中で異なるが、粗動機構21によりサンプル18の高さを調整できるため双方のカンチレバーホルダ4、30の設置は問題なく行うことが可能である。   Here, although the height of the mounting portion of the cantilever with respect to the main body base portion 9 of the scanning probe microscope differs in the atmosphere and in the solution, both the cantilever holders 4 can be adjusted because the height of the sample 18 can be adjusted by the coarse movement mechanism 21. , 30 can be installed without problems.

次に、カンチレバー反射後の反射光の光路を、図1、図2により説明する。大気中では光源部11からの入射光22に対して反射角26°で反射した後、反射光23はそのまま大気中を直進し、光検出部13の受光面に到達する。
一方、液中測定の場合ではそれぞれの媒質で屈折率が異なるため、反射光は界面で屈折する。カンチレバーで入射光に対して反射角26°で反射し、溶液中を進行した反射光38aは溶液36と石英ガラスからなる液面保持部31の界面31aで屈折角23.5°で屈折する。その後、液面保持部31を進行した反射光38bは液面保持部31と空気の界面31cで屈折角35.7°で屈折し、その後反射光38cは大気中を進行し光検出部方向に到達する。このとき従来の液中用のホルダでは、液面保持部31に入射光が入射する面と31bと反射光38bが出射する面が同一平面上にあり、入射光37の入射面31bに垂直な方向の液面保持部31を通過する部分の厚さと、反射光38bの出射面に垂直な方向の液面保持部31を通過する部分の厚さが等しくなり、反射光38bは入射面31bで屈折し38dのような光路を通り、光検出部13への照射位置が図1で示した大気中での反射光の位置に比べて大幅にずれ、光検出部のフォトダイオード13の検出エリアから外れてしまう。光検出部13には2軸ステージ16が設けられており、このずれ量をある程度は補正できる構成となっているが、液中測定時のずれ分までを補正しようとした場合には移動量が大きな2軸ステージ16を搭載する必要があり、配置スペースがなく配置が困難であったり、配置できた場合にも装置の剛性が低下したり、コストが上昇するという問題が発生する。
Next, the optical path of the reflected light after the cantilever reflection will be described with reference to FIGS. After being reflected at a reflection angle of 26 ° with respect to the incident light 22 from the light source unit 11 in the atmosphere, the reflected light 23 travels straight in the atmosphere and reaches the light receiving surface of the light detection unit 13.
On the other hand, in the case of measurement in liquid, since each medium has a different refractive index, the reflected light is refracted at the interface. The cantilever reflects the incident light at a reflection angle of 26 °, and the reflected light 38a traveling through the solution is refracted at a refraction angle of 23.5 ° at the interface 31a of the liquid level holding part 31 made of the solution 36 and quartz glass. Thereafter, the reflected light 38b that has traveled through the liquid level holding unit 31 is refracted at a refraction angle of 35.7 ° at the interface 31c between the liquid level holding unit 31 and the air, and then the reflected light 38c travels in the atmosphere and travels in the direction of the light detection unit. To reach. At this time, in the conventional submerged holder, the surface on which the incident light is incident on the liquid surface holding portion 31, the surface on which the reflected light 38b is emitted, and the surface on which the reflected light 38b is emitted are on the same plane and perpendicular to the incident surface 31b of the incident light 37. The thickness of the part passing through the liquid level holding part 31 in the direction is equal to the thickness of the part passing through the liquid level holding part 31 in the direction perpendicular to the emission surface of the reflected light 38b, and the reflected light 38b is incident on the incident surface 31b. The light is refracted and passes through an optical path such as 38d, and the irradiation position on the light detection unit 13 is greatly deviated from the position of the reflected light in the atmosphere shown in FIG. 1, and from the detection area of the photodiode 13 of the light detection unit. It will come off. The light detection unit 13 is provided with a biaxial stage 16 and is configured to be able to correct this deviation amount to some extent. It is necessary to mount a large two-axis stage 16, and there is a problem that there is no arrangement space and it is difficult to arrange, and even if it can be arranged, the rigidity of the apparatus decreases and the cost increases.

本実施例の場合には、入射光38の入射面31bと同じ面で反射光38bが出射した場合、大気中の場合に比べて、約7.3mmフォトダイオード13での位置がずれてしまう。この他にもカンチレバー1の取付位置の誤差や、カンチレバー製造時に生じてしまう反りなどによりさらにずれが生じてしまう場合もある。   In the case of the present embodiment, when the reflected light 38b is emitted on the same surface as the incident surface 31b of the incident light 38, the position of the photodiode 13 is shifted as compared with the case in the atmosphere. In addition to this, there may be a further deviation due to an error in the mounting position of the cantilever 1 or a warp that occurs during manufacturing of the cantilever.

そこで本実施例では液中用のカンチレバーホルダの反射光が通過する部分にのみ厚さ10mmの石英ガラス41を取り付け、反射光通過部の液面保持部31の石英ガラスの厚みを入射光通過部分よりも厚くして入射光の入射面31bと反射光38bの出射面31cが同一平面上とならないように液面保持部31を構成した。この結果、液面保持部31を通過した反射光38bは出射面31cで屈折角35.7°で屈折し、38cに示した光路を通るようにした。この結果、光検出部13でのずれ量は、両者の厚さが等しい場合よりも小さくなり、大気中の場合に比べて4.5mmのずれ量に抑えることができた。光検出部の2軸ステージ16には移動量が各軸±5mmのステージをつけているのでこのずれ量は2軸ステージ16で補正することが可能である。   Therefore, in this embodiment, the quartz glass 41 having a thickness of 10 mm is attached only to the portion where the reflected light of the in-liquid cantilever holder passes, and the thickness of the quartz glass of the liquid surface holding portion 31 of the reflected light passage portion is set to the incident light passage portion. The liquid surface holding portion 31 is configured so that the incident surface 31b for incident light and the exit surface 31c for reflected light 38b are not flush with each other. As a result, the reflected light 38b that passed through the liquid level holding part 31 was refracted at the refraction angle 35.7 ° at the exit surface 31c, and passed through the optical path indicated by 38c. As a result, the amount of deviation in the light detection unit 13 is smaller than that in the case where the thicknesses of both are equal, and the amount of deviation can be suppressed to 4.5 mm compared to the case in the atmosphere. Since the biaxial stage 16 of the light detection unit is provided with a stage whose movement amount is ± 5 mm for each axis, this deviation amount can be corrected by the biaxial stage 16.

なお、今回、液面保持部31は3つの部品39,40,41から構成されて、円盤形状の中間部分40に液面保持用の突起部分39と厚さ10mmの補正用の石英ガラス部分41をそれぞれ融着することで作製した。なお、補正用の石英ガラス部分41は屈折率の等しいマッチングオイルで2部品を光学的に密着させるようにしてもよい。   In addition, this time, the liquid level holding part 31 is composed of three parts 39, 40, 41, a disc-shaped intermediate part 40, a liquid level holding projection part 39 and a 10 mm thick quartz glass part 41 for correction. Each was manufactured by fusing. The quartz glass portion 41 for correction may be optically brought into close contact with the matching oil having the same refractive index.

この結果、装置の剛性を落としたり、コストを増加させることなしに、カンチレバーホルダと溶液セルのみの交換で大気と液中測定が兼用可能なの走査型プローブ顕微鏡を構成することができた。   As a result, it was possible to construct a scanning probe microscope that can be used for both atmospheric and liquid measurement by replacing only the cantilever holder and the solution cell without reducing the rigidity of the apparatus or increasing the cost.

図4(a)は本発明の第2実施例の液中で用いられる液中測定用の走査型プローブ顕微鏡の概観図、図4(b)は図4(a)のカンチレバーホルダ部分の平面図である。
本実施例では液中測定用のカンチレバーホルダ50以外は、実施例1と同じ構成の装置であり、変位検出機構10や走査型プローブ顕微鏡の本体ベース部9、3軸微動機構20、溶液セル35は実施例1と同じものである。また大気で用いる場合には図1と同じ構成で用いられる。そのため重複する部材には同じ番号を付し詳細な説明は省略し液中測定用のカンチレバーホルダ50の構成の異なる部分のみ説明する。
4A is a schematic view of a scanning probe microscope for measuring in liquid used in the liquid according to the second embodiment of the present invention, and FIG. 4B is a plan view of the cantilever holder portion of FIG. 4A. It is.
In this embodiment, except for the cantilever holder 50 for measuring in liquid, the apparatus has the same configuration as that of the first embodiment. The displacement detection mechanism 10, the main body base 9 of the scanning probe microscope, the triaxial fine movement mechanism 20, and the solution cell 35 are used. Is the same as in Example 1. When used in the atmosphere, it is used in the same configuration as in FIG. Therefore, the same reference numerals are given to the overlapping members, and the detailed description is omitted, and only different portions of the configuration of the cantilever holder 50 for measuring in liquid will be described.

本実施例の液中測定用のカンチレバーホルダ50の液面保持部51は石英ガラスを材料としており、円柱形状のベース部分52とその先端に融着される液面と接する突起部分53から構成される。さらに円柱形状のベース部分52は入射光が入射する側の面を削り、穴53を開けることにより液面保持部51が作製される。入射光55の入射面51aは入射光55の散乱光が測定に影響を与えない程度まで研磨される。   The liquid level holding part 51 of the in-liquid measuring cantilever holder 50 of this embodiment is made of quartz glass, and is composed of a cylindrical base part 52 and a protruding part 53 in contact with the liquid surface fused to the tip thereof. The Further, the cylindrical base portion 52 is formed by cutting the surface on the side on which incident light is incident and opening a hole 53 to form the liquid level holding portion 51. The incident surface 51a of the incident light 55 is polished to such an extent that the scattered light of the incident light 55 does not affect the measurement.

入射光55は加工された穴53の中に侵入し、液面保持部51を通過する。液面保持部51の入射面51aから溶液と接する面51bまでの厚さは入射光55が液面保持部51を構成する石英ガラスと溶液(蒸留水)36中を進行したときにカンチレバー1の背面に集光するような厚さに加工され、実施例1の図3の光路図と同じ光路長となっている。一方、カンチレバー1で反射された反射光56は円柱部位分の穴の開いていない部分54を通過する。このとき、入射光55の入射面51a、溶液との界面51b、液面保持部51を進行した反射光56bの出射面51cはそれぞれ平行に加工されている。   Incident light 55 enters the processed hole 53 and passes through the liquid level holding part 51. The thickness from the incident surface 51a of the liquid level holding part 51 to the surface 51b in contact with the solution is such that the incident light 55 travels through the quartz glass constituting the liquid level holding part 51 and the solution (distilled water) 36. The optical path length is the same as that of the optical path diagram of FIG. On the other hand, the reflected light 56 reflected by the cantilever 1 passes through a portion 54 having no hole corresponding to the cylindrical portion. At this time, the incident surface 51a of the incident light 55, the interface 51b with the solution, and the exit surface 51c of the reflected light 56b that has traveled through the liquid level holding unit 51 are processed in parallel.

このように製造された液面保持部をベースブロック57に固定して液中測定用のカンチレバーホルダ50を構成することで、液面保持部51に入射光55が入射する面51aと液面保持部51を進行した反射光56bが出射する面51cが同一平面上になく、入射光55の入射面51aに垂直な方向の石英ガラスを通過する部分の厚さよりも反射光56bの出射面に垂直な方向の石英ガラスを通過する部分の厚さを厚くすることができる。このように構成することで、カンチレバー1からの反射光56は溶液と石英ガラスの界面51bと石英ガラスと大気の界面51cで屈折し、図4(a)に1点鎖線で記載した光路56cで光検出部13に到達する。これにより、実施例1と同様に反射光56の出射面を入射光55の入射面51aと同一平面上に設けた場合の光路である図4(a)に2点鎖線で記載した光路56dよりも光検出部13へのずれ量を小さく抑えることが可能となる。   The liquid level holding part manufactured in this way is fixed to the base block 57 to constitute the cantilever holder 50 for measuring in liquid, so that the surface 51a on which the incident light 55 enters the liquid level holding part 51 and the liquid level holding. The surface 51c from which the reflected light 56b traveling through the portion 51 exits is not coplanar, and is perpendicular to the exit surface of the reflected light 56b rather than the thickness of the portion of the incident light 55 that passes through the quartz glass in the direction perpendicular to the incident surface 51a. It is possible to increase the thickness of the portion that passes through the quartz glass in any direction. With this configuration, the reflected light 56 from the cantilever 1 is refracted at the interface 51b between the solution and the quartz glass and the interface 51c between the quartz glass and the atmosphere, and passes through an optical path 56c indicated by a one-dot chain line in FIG. The light detection unit 13 is reached. As a result, similarly to the first embodiment, from the optical path 56d shown by a two-dot chain line in FIG. 4A, which is an optical path when the exit surface of the reflected light 56 is provided on the same plane as the incident surface 51a of the incident light 55. In addition, the amount of shift to the light detection unit 13 can be suppressed small.

図5は本発明の第3実施例の液中測定用の走査型プローブ顕微鏡の概観図である。
本実施例では液中用カンチレバーホルダ60と反射光の光路中に配置される平行平面基板70以外は、実施例1と同じ構成の装置であり、変位検出機構10や走査型プローブ顕微鏡の本体ベース部9、3軸微動機構20、溶液セル35は実施例1と同じものである。また大気で用いる場合には図1と同じ構成で用いられる。そのため重複する部材には同じ番号を付し詳細な説明は省略し、液中用カンチレバーホルダ60と平行平面基板70の構成の異なる部分のみ説明する。
FIG. 5 is a schematic view of a scanning probe microscope for measuring in liquid according to the third embodiment of the present invention.
In the present embodiment, except for the in-liquid cantilever holder 60 and the parallel flat substrate 70 disposed in the optical path of the reflected light, the apparatus has the same configuration as that of the first embodiment, and is the main body base of the displacement detection mechanism 10 and the scanning probe microscope. The unit 9, the triaxial fine movement mechanism 20, and the solution cell 35 are the same as those in the first embodiment. When used in the atmosphere, it is used in the same configuration as in FIG. Therefore, the same reference numerals are given to the overlapping members, and a detailed description thereof is omitted, and only different portions of the configuration of the submerged cantilever holder 60 and the parallel plane substrate 70 will be described.

本実施例で用いられる液中用のカンチレバーホルダ60は液面保持部61が石英ガラスを材料とし、円盤状の部材62に突起部63を融着することで作製される。入射光64の入射面61aと液面保持部61を進行した反射光65bの出射面61aは同一平面上になるように形成され、入射光64の入射面61aと溶液と接する面61bは平行となっている。また、入射光64が入射面61aに入射角0°で入射ように配置されている。入射光64の光路図は実施例1の図3と同一の寸法である。   The submerged cantilever holder 60 used in the present embodiment is manufactured by fusing a projection 63 to a disk-shaped member 62 with a liquid surface holding portion 61 made of quartz glass. The incident surface 61a of the incident light 64 and the exit surface 61a of the reflected light 65b that has traveled through the liquid level holding unit 61 are formed to be on the same plane, and the incident surface 61a of the incident light 64 and the surface 61b in contact with the solution are parallel to each other. It has become. Further, the incident light 64 is arranged to enter the incident surface 61a at an incident angle of 0 °. The optical path diagram of the incident light 64 has the same dimensions as those in FIG.

一方、反射光65の光路中には、カンチレバーホルダ60とは分離した形で、光路補正用のBK7を材料とする平行平面基板70が挿入される。この平行平面基板70は変位検出機構10に取り外し可能な形で固定され、液面保持部61の入射光64の入射面61aと平行に配置される。   On the other hand, a parallel plane substrate 70 made of BK7 for optical path correction is inserted into the optical path of the reflected light 65 in a form separated from the cantilever holder 60. The parallel flat substrate 70 is fixed to the displacement detection mechanism 10 in a removable manner, and is disposed in parallel with the incident surface 61 a of the incident light 64 of the liquid level holding unit 61.

反射角26°でカンチレバー1を反射した反射光65aは溶液中を進行し、屈折角23.5°で液面保持部61に入射して反射光65bは石英ガラス中を進行し、屈折角35.7°でいったん大気中に出て、反射光65cは空気中を進行する。この後、再びBK7を材料とする平行平面基板70を通過し、さらに大気中に出て光検出部13に到達する。   The reflected light 65a reflected from the cantilever 1 at a reflection angle of 26 ° travels in the solution, enters the liquid surface holding portion 61 at a refraction angle of 23.5 °, and the reflected light 65b travels through the quartz glass, and has a refraction angle of 35. Once in the atmosphere at 7 °, the reflected light 65c travels through the air. Thereafter, the light again passes through the parallel flat substrate 70 made of BK7, and further enters the atmosphere to reach the light detection unit 13.

ここでBK7は変位検出機構10の光源11の波長である670nmに対して約92%の透過率を有し、屈折率1.51で液面保持部61に使用した石英ガラスの屈折率である1.46よりも大きな屈折率を有する。   Here, BK7 is a refractive index of quartz glass having a transmittance of about 92% with respect to 670 nm, which is the wavelength of the light source 11 of the displacement detection mechanism 10, and having a refractive index of 1.51 and used for the liquid surface holding unit 61. Refractive index greater than 1.46.

したがって空気中を進行した反射光65cは屈折角22.7°で平行平面基板70に入射し、反射光65d(図の1点鎖線)はBK7内を進行し、屈折角35.7°で再び大気に出て光検出部13に到達する。もし、平行平面基板70を入れない場合には反射光65bが液面保持部61の空気との界面61aを出た後は屈折角35.7°で図5の2点鎖線65fの光路をたどり、光検出部13の位置でのずれ量が大きくなってしまう。   Accordingly, the reflected light 65c traveling in the air is incident on the parallel plane substrate 70 at a refraction angle of 22.7 °, and the reflected light 65d (the one-dot chain line in the figure) travels in the BK 7 and again at a refraction angle of 35.7 °. It goes out to the atmosphere and reaches the light detector 13. If the parallel plane substrate 70 is not inserted, the reflected light 65b follows the optical path of the two-dot chain line 65f in FIG. 5 at a refraction angle of 35.7 ° after exiting the interface 61a with the air of the liquid level holding unit 61. The amount of deviation at the position of the light detection unit 13 becomes large.

本実施例では平行平面基板70を入れることにより、約3mmずれ量を小さくすることができた。また、平行平面基板70を石英ガラスよりも大きな屈折率を有するBK7を使用したことで石英ガラスよりも補正量を大きくすることができた。   In this embodiment, the amount of deviation by about 3 mm can be reduced by inserting the parallel plane substrate 70. Further, the amount of correction can be made larger than that of quartz glass by using BK7 having a refractive index larger than that of quartz glass for the parallel flat substrate 70.

図6は本発明の第4実施例の大気中で測定するための走査型プローブ顕微鏡の概観図である。
本実施例は、反射光の光路中に平行平面基板80,81を挿入している以外は、図1の実施例とまったく同じ構成であるため、重複する部材には同じ番号を付し詳細な説明は省略する。
FIG. 6 is a schematic view of a scanning probe microscope for measuring in the atmosphere according to the fourth embodiment of the present invention.
This embodiment has the same configuration as that of the embodiment of FIG. 1 except that parallel plane substrates 80 and 81 are inserted in the optical path of the reflected light. Description is omitted.

本実施例では、使用するカンチレバー1が周囲の温度の影響や、コートされる金属の内部応力などの影響で反りが生じた場合の光路補正を行うための装置である。   In this embodiment, the cantilever 1 to be used is an apparatus for performing optical path correction when warpage occurs due to the influence of the ambient temperature or the internal stress of the metal to be coated.

まず、カンチレバー1が取付角13°でまったく反りが生じていない場合には、カンチレバー1からの反射光84の光路中に厚さ3mmのBK7を材料とする平行平面基板80を取り外し可能に挿入しておく。   First, when the cantilever 1 has a mounting angle of 13 ° and no warp occurs, a parallel flat substrate 80 made of BK7 having a thickness of 3 mm is removably inserted into the optical path of the reflected light 84 from the cantilever 1. Keep it.

このとき反射角26°で反射した反射光84は空気中を進行し平行平面基板80で屈折角16.9°で屈折し、さらに屈折角26°で平行平面基板80から再び空気中に進行し、光検出器13に到達する。   At this time, the reflected light 84 reflected at a reflection angle of 26 ° travels in the air and is refracted by the parallel plane substrate 80 at a refraction angle of 16.9 °, and further travels from the parallel plane substrate 80 to the air at a refraction angle of 26 °. The light detector 13 is reached.

ここで、もし、カンチレバー1がサンプル18側に3°の角度で反った場合には反射角32°で反射し、反射光84はもともと挿入されている厚さ3mmの平行平面基板80に屈折角20.5°で入射し、再び屈折角32°で大気中を通り、2点鎖線84bの光路で光検出器13の方向に進行する。このとき、反りがない場合に比べて光検出器13の到達位置が大きくずれてしまう。そこで本発明では、もともと反射光82の光路中に挿入していた厚さ3mmの平行平面基板80を取り外し、厚さが3mmよりも厚い平行平面基板81を挿入するようにした。この基板81通過後は1点鎖線の光路84aを通り、ずれ量は厚さ3mmの平行平面基板80を通る場合よりも中心寄りに補正される。   Here, if the cantilever 1 is bent at an angle of 3 ° to the sample 18 side, the cantilever 1 is reflected at a reflection angle of 32 °, and the reflected light 84 is refracted by the parallel plane substrate 80 having a thickness of 3 mm originally inserted. It enters at 20.5 °, passes through the atmosphere again at a refraction angle of 32 °, and travels in the direction of the photodetector 13 along the optical path of the two-dot chain line 84b. At this time, the arrival position of the photodetector 13 is largely deviated as compared with the case where there is no warp. Therefore, in the present invention, the parallel plane substrate 80 having a thickness of 3 mm that was originally inserted in the optical path of the reflected light 82 is removed, and the parallel plane substrate 81 having a thickness greater than 3 mm is inserted. After passing through the substrate 81, it passes through the one-dot chain line optical path 84a, and the amount of deviation is corrected closer to the center than when passing through the parallel flat substrate 80 having a thickness of 3 mm.

また、カンチレバー1がサンプル18とは逆側に3°反ってしまった場合を考えると、反射角20°で反射され、反射光83はもともと挿入されている厚さ3mmの平行平面基板80に屈折角13.1°で入射し、再び屈折角20°で大気中を通り、2点鎖線83bの光路で光検出器13の方向に進行する。この場合も反りがない場合に比べて光検出器13の到達位置が大きくずれてしまう。そこで本発明ではもともと反射光82の光路中に挿入していた厚さ3mmの平行平面基板80を取り外し、平行平面基板なしとした。これにより、反射光は反射角20°を保ったまま1点鎖線83aの光路を通り、ずれ量は平行平面基板80が挿入されていた場合よりも中心寄りに補正される。   Considering the case where the cantilever 1 is bent by 3 ° on the opposite side to the sample 18, the reflected light 83 is reflected at a reflection angle of 20 °, and the reflected light 83 is refracted to the originally inserted parallel flat substrate 80 having a thickness of 3 mm. It enters at an angle of 13.1 °, passes through the atmosphere again at a refraction angle of 20 °, and travels in the direction of the photodetector 13 along the optical path of a two-dot chain line 83b. Also in this case, the arrival position of the photodetector 13 is greatly deviated compared to the case where there is no warp. Therefore, in the present invention, the parallel plane substrate 80 having a thickness of 3 mm that was originally inserted in the optical path of the reflected light 82 is removed, and the parallel plane substrate is omitted. Thereby, the reflected light passes through the optical path of the one-dot chain line 83a while maintaining the reflection angle of 20 °, and the shift amount is corrected closer to the center than when the parallel plane substrate 80 is inserted.

このように構成することでカンチレバーに反りが発生した場合でも、平行平面基板によりずれ量を補正することが可能となった。   With this configuration, even when the cantilever is warped, the amount of deviation can be corrected by the parallel plane substrate.

以上、本発明の実施例を説明したが、本発明はこれらの実施例に限定されるものではない。   As mentioned above, although the Example of this invention was described, this invention is not limited to these Examples.

例えば、前記カンチレバーの代わりに、光ファイバーを先鋭化し、先端以外に金属コートを施して長軸に対して先端を曲げたプローブを用いる近接場顕微鏡にも本実施例を適用できる。   For example, in place of the cantilever, the present embodiment can be applied to a near-field microscope using a probe in which an optical fiber is sharpened, a metal coating is applied to the tip of the cantilever, and the tip is bent with respect to the long axis.

また、入射光は液面保持部の入射面に対して入射角0°としたが、斜めから入射させる方式でもよい。   Further, although the incident light has an incident angle of 0 ° with respect to the incident surface of the liquid level holding unit, a method of entering from an oblique direction may be used.

また液面保持部や補正用の基板は光の入射面と出射面が必ずしも平行平面でなくてもよい。   Further, in the liquid level holding unit and the correction substrate, the light incident surface and the light emitting surface are not necessarily parallel planes.

また、液面保持部や補正用の基板は石英ガラスや、BK7に限定されず、変位検出機構の光源の波長に対して透過性を有するものであれば任意の媒質が使用可能であり、屈折率が大きいほど補正の効果は大きくなる。
また、液面保持部や補正用の基板は複数の材料を光学的に連続になるように積層したり、固体の媒質の間に液体の媒質を挟んだ構成や補正用の基板を複数枚使用する構成、さらには入射光の入射面に対して垂直方向の入射光通過部の厚さと、反射光の出射面に対して垂直方向の反射光通過部の厚さが異なる液面保持部と補正用の基板を組み合わせた構成なども本発明に含まれる。
Further, the liquid level holding unit and the correction substrate are not limited to quartz glass or BK7, and any medium can be used as long as it is transparent to the wavelength of the light source of the displacement detection mechanism. The greater the rate, the greater the correction effect.
In addition, the liquid level holding part and the correction substrate are laminated so that a plurality of materials are optically continuous, or a configuration in which a liquid medium is sandwiched between solid media and a plurality of correction substrates are used. In addition, the thickness of the incident light passage portion perpendicular to the incident light incident surface and the thickness of the reflected light passage portion perpendicular to the reflected light exit surface are different from those of the liquid surface holding portion. The present invention includes a configuration in which substrates for use are combined.

また光てこの光路中には光路切り替え用のミラーや結像や集光を行うためのレンズが入っていてもよい。   Further, a light path switching mirror and a lens for image formation and light collection may be included in the optical path of the optical lever.

さらに、溶液の種類も蒸留水に限定されず任意の溶液が使用可能である。   Furthermore, the type of the solution is not limited to distilled water, and any solution can be used.

本発明の第一実施例の大気中測定用の走査型プローブ顕微鏡の概観図である。1 is an overview of a scanning probe microscope for measurement in air according to a first embodiment of the present invention. 本発明の第一実施例の液中測定用の走査型プローブ顕微鏡の概観図である。1 is a schematic view of a scanning probe microscope for measuring in liquid according to the first embodiment of the present invention. 本発明の第一実施例に用いられる変位検出機構のカンチレバーへの入射光の光路図である。It is an optical path diagram of the incident light to the cantilever of the displacement detection mechanism used in the first embodiment of the present invention. (a)本発明の第二実施例の液中測定用の走査型プローブ顕微鏡の概観図であり、(b)は、(a)に用いられるカンチレバーホルダの平面図である。(A) It is a general-view figure of the scanning probe microscope for submerged measurement of the 2nd Example of this invention, (b) is a top view of the cantilever holder used for (a). 本発明の第三実施例に用いられる液中測定用の走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope for the measurement in the liquid used for the 3rd Example of this invention. 本発明の第四実施例に用いられる大気測定用の走査型プローブ顕微鏡の概観図である。It is a general-view figure of the scanning probe microscope for atmospheric measurement used for the 4th example of the present invention. 従来の液中測定用の査型プローブ顕微鏡の概観図である。It is a general-view figure of the conventional probe probe microscope for measurement in liquid.

符号の説明Explanation of symbols

1,101 カンチレバー
2 探針
4 大気測定用カンチレバーホルダ
9 本体ベース部
10 変位検出機構
11 光源部
13 光検出部
17 光学顕微鏡部
18 サンプル
19 サンプルホルダ
20、107 3軸微動機構
21 粗動機構
30、50、60 液中測定用カンチレバーホルダ
31、51、61、102 液面保持部
35、111 溶液セル
36、110 溶液(蒸留水)
37、55、64 入射光
38、56、65、82、83、84 反射光
70、80、81 平行平面基板
DESCRIPTION OF SYMBOLS 1,101 Cantilever 2 Probe 4 Atmospheric measurement cantilever holder 9 Main body base part 10 Displacement detection mechanism 11 Light source part 13 Light detection part 17 Optical microscope part 18 Sample 19 Sample holder 20, 107 Triaxial fine movement mechanism 21 Coarse movement mechanism 30, 50, 60 Cantilever holders for measurement in liquid 31, 51, 61, 102 Liquid level holding part 35, 111 Solution cell 36, 110 Solution (distilled water)
37, 55, 64 Incident light 38, 56, 65, 82, 83, 84 Reflected light 70, 80, 81 Parallel plane substrate

Claims (6)

先端に探針を有し末端に基部を有するカンチレバーと、
前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、
光源部と光検出部とから構成され、前記光源部からの光を前記カンチレバーの背面に照射し、カンチレバーからの反射光を前記光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、
前記カンチレバーの基部を固定するためのカンチレバー固定部と、前記カンチレバーの上方に配置され、前記光源部の光に対して透過性の材料からなる液面保持部とを有するカンチレバーホルダと、
任意の溶液を入れる溶液セルと、から構成され、
前記サンプルと前記カンチレバーは前記溶液内に配置され、前記変位検出機構は大気中に配置され、前記液面保持部のカンチレバーが設置される側の面は溶液に接し、前記光源から前記カンチレバーに至る入射光は、大気中、液面保持部、溶液中の順番で通過し、カンチレバーで反射した後の反射光が、溶液中、液面保持部、大気中の順番の光路を経由して前記光検出部に至り、
前記液面保持部の前記入射光の入射面に対して垂直方向の入射光通過部の厚さと、反射光の出射面に対して垂直方向の反射光通過部の厚さが異なるように構成されることを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe at the tip and a base at the end;
A sample holder for placing the sample to be measured, disposed at a position facing the probe; and
A displacement detection mechanism that includes a light source unit and a light detection unit, irradiates the back surface of the cantilever with light from the light source unit, and receives the reflected light from the cantilever with the light detection unit to detect displacement of the cantilever. And
A cantilever holder having a cantilever fixing portion for fixing a base portion of the cantilever, and a liquid level holding portion which is disposed above the cantilever and is made of a material transmissive to the light of the light source portion;
A solution cell for containing an arbitrary solution, and
The sample and the cantilever are disposed in the solution, the displacement detection mechanism is disposed in the atmosphere, and the surface on the side where the cantilever is installed of the liquid level holding unit is in contact with the solution and reaches from the light source to the cantilever. Incident light passes in the order of the atmosphere, the liquid level holder, and the solution, and the reflected light after being reflected by the cantilever passes through the optical path in the order of the solution, the liquid level holder, and the atmosphere. To the detector,
The thickness of the incident light passage part perpendicular to the incident surface of the incident light of the liquid level holding part is different from the thickness of the reflected light passage part perpendicular to the exit surface of the reflected light. A scanning probe microscope.
前記液面保持部において、液面保持部の入射光の入射面に対して垂直方向の入射光通過部の厚さよりも、反射光の出射面に対して垂直方向の反射光通過部の厚さを厚くした請求項1に記載の走査型プローブ顕微鏡。 In the liquid level holding part, the thickness of the reflected light passing part in the direction perpendicular to the outgoing surface of the reflected light is larger than the thickness of the incident light passing part in the direction perpendicular to the incident light incident face of the liquid level holding part The scanning probe microscope according to claim 1, wherein the thickness of the scanning probe microscope is increased. 前記液面保持部において、前記溶液と接する面の少なくとも入射光と反射光が通過する部分は同一平面上に配置され、大気と接する面の入射光と反射光が通過する面は同一平面上にないように構成された請求項1、2に記載の走査型プローブ顕微鏡。 In the liquid level holding portion, at least a portion of the surface in contact with the solution through which incident light and reflected light pass is arranged on the same plane, and a surface in contact with the atmosphere through which incident light and reflected light pass are on the same plane. The scanning probe microscope according to claim 1, wherein the scanning probe microscope is configured so as not to exist. 先端に探針を有し末端に基部を有するカンチレバーと、
前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、
光源部と光検出部とから構成されて、前記光源部からの光をカンチレバー背面に照射し、カンチレバーからの反射光を前記光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、
前記カンチレバーの基部を固定するためのカンチレバー固定部と、前記カンチレバーの上方に配置され、前記光源部の光に対して透過性の材料からなる液面保持部とを有するカンチレバーホルダと、
任意の溶液を入れる溶液セルと、から構成され、
前記サンプルと前記カンチレバーは前記溶液内に配置され、前記変位検出機構は大気中に配置され、前記液面保持部のカンチレバーが設置される側の面は溶液に接し、前記光源から前記カンチレバーに至る入射光は、大気中、液面保持部、溶液中の順番で通過し、カンチレバーで反射した後の反射光が、液中、液面保持部、大気中の順番の光路を経由して光検出部に至り、
前記大気中の反射光側の光路中に、前記光源部の光に対して透過性の基板を挿入するように構成されることを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe at the tip and a base at the end;
A sample holder for placing the sample to be measured, disposed at a position facing the probe; and
A displacement detection mechanism that includes a light source unit and a light detection unit, irradiates the back surface of the cantilever with light from the light source unit, receives light reflected from the cantilever with the light detection unit, and detects displacement of the cantilever. When,
A cantilever holder having a cantilever fixing portion for fixing a base portion of the cantilever, and a liquid level holding portion which is disposed above the cantilever and is made of a material transmissive to the light of the light source portion;
A solution cell for containing an arbitrary solution, and
The sample and the cantilever are disposed in the solution, the displacement detection mechanism is disposed in the atmosphere, and the surface on the side where the cantilever is installed of the liquid level holding unit is in contact with the solution, and reaches the cantilever from the light source. Incident light passes in the order of the atmosphere, the liquid level holding part, and the solution, and the reflected light after being reflected by the cantilever is detected through the optical path in the order of the liquid, the liquid level holding part, and the atmosphere. To the department,
A scanning probe microscope characterized by being configured to insert a substrate that is transparent to the light of the light source unit in the optical path on the reflected light side in the atmosphere.
前記変位検出機構は、大気中での測定と溶液中での測定を兼用する共通のものである請求項1乃至4に記載の走査型プローブ顕微鏡。   5. The scanning probe microscope according to claim 1, wherein the displacement detection mechanism is common for both measurement in the atmosphere and measurement in a solution. 先端に探針を有し末端に基部を有するカンチレバーと、
前記探針に対向した位置に配置され、被測定サンプルを載置するためのサンプルホルダ部と、
光源部と光検出部とから構成されて、前記光源部からの光をカンチレバー背面に照射し、カンチレバーからの反射光を前記光検出部で受光してカンチレバーの変位の検出を行う変位検出機構部と、
前記カンチレバーの基部を固定するためのカンチレバー固定部を有するカンチレバーホルダと、から構成され、
前記反射光側の光路中に、前記光源部の光に対して透過性の基板を交換可能に配置するように構成されることを特徴とする走査型プローブ顕微鏡。
A cantilever having a probe at the tip and a base at the end;
A sample holder for placing the sample to be measured, disposed at a position facing the probe; and
A displacement detection mechanism that includes a light source unit and a light detection unit, irradiates the back surface of the cantilever with light from the light source unit, receives light reflected from the cantilever with the light detection unit, and detects displacement of the cantilever. When,
A cantilever holder having a cantilever fixing portion for fixing a base portion of the cantilever,
A scanning probe microscope characterized in that a substrate that is transparent to the light from the light source unit is disposed in the optical path on the reflected light side in an exchangeable manner.
JP2007043654A 2007-02-23 2007-02-23 Scanning probe microscope Expired - Fee Related JP4939974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043654A JP4939974B2 (en) 2007-02-23 2007-02-23 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043654A JP4939974B2 (en) 2007-02-23 2007-02-23 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2008209127A true JP2008209127A (en) 2008-09-11
JP4939974B2 JP4939974B2 (en) 2012-05-30

Family

ID=39785568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043654A Expired - Fee Related JP4939974B2 (en) 2007-02-23 2007-02-23 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP4939974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389238A (en) * 2018-04-16 2019-10-29 株式会社岛津制作所 Scanning type probe microscope and cantilever moving method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262244A (en) * 1991-02-15 1992-09-17 Daikin Ind Ltd Optical measuring apparatus
JPH06180227A (en) * 1992-12-14 1994-06-28 Olympus Optical Co Ltd Scanning probe microscope apparatus
JPH08129017A (en) * 1994-09-09 1996-05-21 Seiko Instr Inc Scanning near visual field interatomic force microscope having submerged observing function
JPH09119939A (en) * 1995-10-25 1997-05-06 Olympus Optical Co Ltd Liquid-dipped scanning probe microscope device
JPH11118813A (en) * 1997-10-21 1999-04-30 Shimadzu Corp Atomic force microscope with solution cell
WO2006090593A1 (en) * 2005-02-24 2006-08-31 Sii Nanotechnology Inc. Displacement detection mechanism for scanning probe microscope and scanning probe microscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262244A (en) * 1991-02-15 1992-09-17 Daikin Ind Ltd Optical measuring apparatus
JPH06180227A (en) * 1992-12-14 1994-06-28 Olympus Optical Co Ltd Scanning probe microscope apparatus
JPH08129017A (en) * 1994-09-09 1996-05-21 Seiko Instr Inc Scanning near visual field interatomic force microscope having submerged observing function
JPH09119939A (en) * 1995-10-25 1997-05-06 Olympus Optical Co Ltd Liquid-dipped scanning probe microscope device
JPH11118813A (en) * 1997-10-21 1999-04-30 Shimadzu Corp Atomic force microscope with solution cell
WO2006090593A1 (en) * 2005-02-24 2006-08-31 Sii Nanotechnology Inc. Displacement detection mechanism for scanning probe microscope and scanning probe microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389238A (en) * 2018-04-16 2019-10-29 株式会社岛津制作所 Scanning type probe microscope and cantilever moving method
US10794931B2 (en) 2018-04-16 2020-10-06 Shimadzu Corporation Scanning probe microscope and cantilever moving method
CN110389238B (en) * 2018-04-16 2022-03-29 株式会社岛津制作所 Scanning probe microscope and cantilever moving method

Also Published As

Publication number Publication date
JP4939974B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
US7022985B2 (en) Apparatus and method for a scanning probe microscope
US7170054B2 (en) Scanning probe microscopy cantilever holder and scanning probe microscope using the cantilever holder
JP2005517911A (en) Scanning probe microscope
CN1854793A (en) Scan probe microscope, sample observation method using same and method for manufacturing the device
JP4987284B2 (en) Cantilever holder for liquid and scanning probe microscope
EP1760455A1 (en) Measuring apparatus
US20060272398A1 (en) Beam tracking system for scanning-probe type atomic force microscope
US20110279893A1 (en) Laser scanning microscope
JP5305650B2 (en) Displacement detection mechanism for scanning probe microscope and scanning probe microscope using the same
RU2321084C2 (en) Probe for the probe microscope which uses transparent substrates, the probe microscope and the method for manufacturing the probe
JP5929818B2 (en) Scanning probe microscope
JP4939974B2 (en) Scanning probe microscope
WO2010067570A1 (en) Method for processing output of scanning type probe microscope, and scanning type probe microscope
US10564181B2 (en) Atomic force microscope with optical guiding mechanism
JP4914580B2 (en) Scanning probe microscope
JP2004101425A (en) Scattering-type near-field microscope and scattering-type near-field spectroscopic system
WO2023021867A1 (en) Scanning probe microscope, and specimen used in same
JP4162508B2 (en) Scanning mechanism for scanning probe microscope and scanning probe microscope
JP2007316006A (en) Fluorescence detecting apparatus
JPH07174767A (en) Scanning type probe microscope
JP2008102151A (en) Scanning probe microscope and scanning mechanism thereof
JP2000304755A (en) Scanning near field microscope
JP2023055301A (en) Atomic force microscope and sample measurement method
JPH0961441A (en) Scanning probe
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees