JP2008209119A - Position determining device - Google Patents

Position determining device Download PDF

Info

Publication number
JP2008209119A
JP2008209119A JP2007043500A JP2007043500A JP2008209119A JP 2008209119 A JP2008209119 A JP 2008209119A JP 2007043500 A JP2007043500 A JP 2007043500A JP 2007043500 A JP2007043500 A JP 2007043500A JP 2008209119 A JP2008209119 A JP 2008209119A
Authority
JP
Japan
Prior art keywords
shielding plate
light shielding
objective lens
light
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007043500A
Other languages
Japanese (ja)
Inventor
Junji Endo
潤二 遠藤
Shigetaka Arima
成隆 有馬
Akio Tokuda
彰男 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F K KOGAKU KENKYUSHO KK
FK KOGAKU KENKYUSHO KK
Original Assignee
F K KOGAKU KENKYUSHO KK
FK KOGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F K KOGAKU KENKYUSHO KK, FK KOGAKU KENKYUSHO KK filed Critical F K KOGAKU KENKYUSHO KK
Priority to JP2007043500A priority Critical patent/JP2008209119A/en
Publication of JP2008209119A publication Critical patent/JP2008209119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position determining device capable of accurately determining even the position of an measuring object causing back reflection and making the measurement difficult in a conventional method. <P>SOLUTION: The position determining device includes: an object lens opposed to a surface of an measuring object; a lighting unit for converging illumination light onto the above predetermined position through the object lens; a condenser lens disposed on an axis optically equivalent to an optical axis of the object lens and converging beams reflected by the measuring object and then passing through the object lens in a direction opposite to the illumination light; a light shielding plate for shielding a half of a rear focal plane by setting a straight line passing through an optical axis or the immediate vicinity of the same as the boundary on the rear focal plane of the condenser lens; and a photodetector disposed in the light traveling direction ahead of the light shielding plate and calculating the intensity center position from the distribution of intensity of the light having reached the same, wherein a midpoint light shielding plate is disposed in at least one position on the optical axis between the above object lens and the above light shielding plate to shield a center portion of the beams reaching the photodetector after passing through an area having the optical axis almost a symmetric axis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガラス等の透明性基板上に加工、被膜成形等を施すための装置に用いられる透明性基板と装置の位置関係を判定する位置判定装置に関するものであって、この装置は主として自動焦点合わせ装置に組み込んで使用されるものである。   The present invention relates to a position determination device for determining the positional relationship between a transparent substrate and a device used in a device for processing, film forming, etc. on a transparent substrate such as glass, and this device is mainly automatic. It is used by being incorporated into a focusing device.

従来の位置判定装置の構成と計測の原理を、図1、図2および図3を用いて説明する。
図1において、装置に対して決められた距離にある所定位置15がその物体側焦点となるように対物レンズ21が保持されている。照射光源25から出た光は、絞り26と照射レンズ27によって適当な広がり角に成形された後、実線矢印40a、40bで示したごとくビームスプリッタ23で反射し、対物レンズ21を通って所定位置15上に焦点、すなわち照射ビームスポット42を結ぶ。本図では、煩雑になることを避けるために光線の位置を少しずらして表現し、またビームスプリッタ23を透過した光線は記載されていない。
計測対象物表面10aが所定位置15にある場合には、計測対象物表面10aによって反射した光線が破線矢印のごとく対物レンズ21を通り、平行ビームとなってビームスプリッタ23を透過し、集光レンズ22によってその後側焦点位置に検出器側表面反射スポット55を結び、ビーム重心位置検出型の光検出器24に至る。ここでも、ビームスプリッタ23で反射するビーム、およびビームスプリッタ23を透過する際の屈折効果による光線のずれ等は、原理の説明に不要であるので描かれていない。集光レンズ22の後側焦点面上には、光軸20を通る直線を境界とする半平面、本図においては光軸20から上半分を遮蔽する遮光板30が置かれている。計測対象物表面10aからの反射光は、本条件下、すなわち計測対象物表面10aが所定位置15にある場合には、 集光レンズ22の後側焦点面において点状となり、遮光板30で遮られることなく光検出器24に至るため、光検出器24で検出されるビーム重心位置は光軸20に一致する。
The configuration of a conventional position determination device and the principle of measurement will be described with reference to FIG. 1, FIG. 2, and FIG.
In FIG. 1, the objective lens 21 is held so that a predetermined position 15 at a predetermined distance from the apparatus is the object side focal point. The light emitted from the irradiation light source 25 is shaped to an appropriate divergence angle by the diaphragm 26 and the irradiation lens 27, then reflected by the beam splitter 23 as indicated by solid arrows 40a and 40b, and passed through the objective lens 21 to a predetermined position. A focal point, that is, an irradiation beam spot 42 is formed on 15. In this figure, in order to avoid complication, the position of the light beam is expressed with a slight shift, and the light beam transmitted through the beam splitter 23 is not shown.
When the measurement object surface 10a is at the predetermined position 15, the light beam reflected by the measurement object surface 10a passes through the objective lens 21 as indicated by the broken line arrow, passes through the beam splitter 23 as a parallel beam, and is a condensing lens. 22 connects the detector-side surface reflection spot 55 to the rear focal position, and reaches the beam center-of-gravity position detection type photodetector 24. Here, the beam reflected by the beam splitter 23 and the deviation of the light beam due to the refraction effect when passing through the beam splitter 23 are not shown because they are not necessary for the explanation of the principle. On the rear focal plane of the condensing lens 22, a light shielding plate 30 that shields the upper half from the optical axis 20 in the figure, a half plane having a straight line passing through the optical axis 20 as a boundary, is placed. The reflected light from the measurement object surface 10a is punctiform at the rear focal plane of the condenser lens 22 under this condition, that is, when the measurement object surface 10a is at the predetermined position 15, and is blocked by the light shielding plate 30. Therefore, the position of the center of gravity of the beam detected by the photodetector 24 coincides with the optical axis 20.

次に図2を用いて、計測対象物表面10aが所定位置15より対物レンズ21よりにある場合(以下Near側、対物レンズ21から遠い側をFar側と略す)について説明する。計測対象物表面10a上では、照射ビーム40は焦点を結ぶ以前であるため光軸20に近づく方向に反射し、破線で示したごとく対物レンズ21寄りの位置に照射ビームスポット52を結び、対物レンズ21に入射する。レンズの結像原理に基づき、物体側焦点位置よりレンズに近いところから出た光線は対物レンズ21を透過後発散光となってビームスプリッタ23を透過し、集光レンズ22に至る。このレンズにおいても、結像原理に基づき、有限距離からの光は像側焦点位置より遠方に結像されるため、検出器側表面反射スポット55の位置は遮光板30より光検出器24寄りとなる。すなわち遮光板30上ではビームの上半分が遮蔽される。従って、光検出器24に至るビームは、図中網掛けで示した部分が削除され、光検出器24で検出されるビーム重心位置は上側半円の重心位置となる。計測対象物表面10aが対物レンズ21側から所定位置15に近づいていくと。集光レンズ22による焦点は光検出器24側から遮光板30に近づいていくので、検出されるビーム重心位置は光軸20位置に少しずつ近づき、計測対象物表面10aが所定位置15に達した瞬間にビーム重心位置が光軸20位置に一致することになる。   Next, the case where the measurement target surface 10a is closer to the objective lens 21 than the predetermined position 15 will be described with reference to FIG. 2 (hereinafter, the near side, the side far from the objective lens 21 is abbreviated as the Far side). On the measurement object surface 10a, since the irradiation beam 40 is before focusing, it reflects in the direction approaching the optical axis 20, connects the irradiation beam spot 52 at a position closer to the objective lens 21 as indicated by a broken line, and the objective lens. 21 is incident. Based on the imaging principle of the lens, a light beam emitted from a position closer to the lens than the object-side focal position passes through the objective lens 21 and becomes divergent light, then passes through the beam splitter 23 and reaches the condenser lens 22. Also in this lens, based on the imaging principle, light from a finite distance is imaged farther from the image-side focal position, so the position of the detector-side surface reflection spot 55 is closer to the photodetector 24 than the light-shielding plate 30. Become. That is, the upper half of the beam is shielded on the light shielding plate 30. Accordingly, the portion of the beam that reaches the photodetector 24 is indicated by the shaded portion in the figure, and the center of gravity of the beam detected by the photodetector 24 becomes the center of gravity of the upper semicircle. When the measurement object surface 10a approaches the predetermined position 15 from the objective lens 21 side. Since the focal point of the condenser lens 22 approaches the light shielding plate 30 from the light detector 24 side, the detected beam center of gravity gradually approaches the optical axis 20 position, and the measurement object surface 10a reaches the predetermined position 15. The beam barycentric position coincides with the optical axis 20 position instantaneously.

図3を用いて、対物レンズ21から見て計測対象物表面10aが所定位置15より遠い場合、すなわちFar側にある場合について説明する。
この条件においては、照射ビーム40は焦点42を結んだのち光軸20から離れつつある状態で計測対象物表面10aに至る。したがって、図中点線で示したように、対物レンズ21から見て計測対象物表面10aより遠方の表面反射スポット52から出てきたかのごとく反射する。この反射光50は対物レンズ21によって集束する光線となり、ビームスプリッタ23を通って集光レンズ22に至る。レンズの結像原理に基づき、集光レンズ22の像側焦点位置より内側に検出器側表面反射スポット55を結ぶ。遮光板30は上側半分を遮蔽するため、光検出器24に至るビームは下半分となり、検出されるビーム重心位置は下半円の重心位置である。
The case where the measurement target surface 10a is far from the predetermined position 15 as viewed from the objective lens 21, that is, the case where it is on the Far side will be described with reference to FIG.
Under this condition, the irradiation beam 40 reaches the measurement object surface 10a in a state of being separated from the optical axis 20 after the focal point 42 is formed. Therefore, as shown by the dotted line in the figure, the light is reflected as if it came out from the surface reflection spot 52 far from the measurement object surface 10a when viewed from the objective lens 21. The reflected light 50 becomes a light beam converged by the objective lens 21 and reaches the condenser lens 22 through the beam splitter 23. Based on the imaging principle of the lens, the detector-side surface reflection spot 55 is connected to the inner side of the image-side focal position of the condenser lens 22. Since the light shielding plate 30 shields the upper half, the beam reaching the photodetector 24 is the lower half, and the detected beam center of gravity is the center of gravity of the lower half circle.

計算シミュレーション例を図4に示す。計測結果は、使用するレンズの焦点距離および位置関係に依存する。
本例では、対物レンズ21の焦点距離が9mm、集光レンズ22の焦点距離が14.55mm、対物レンズ21と集光レンズ22間の距離が120mm、光検出器24の直径は12mmである。横軸は計測表面の所定位置15からのずれ量をmm単位で示しており、マイナスは所定位置15より対物レンズ21側すなわちNear側を表している。また縦軸は光検出器24の出力で、検出されたビームの重心位置をmm単位で示している。
グラフの曲線は、所定位置15を境にビーム重心位置が反転するので、たとえば光検出器24の出力がプラスであれば、計測対象物と対物レンズ21の距離を離していき、光検出器24の出力が0を横切ってマイナスになる位置で停止させれば、自動焦点あわせが可能となる。この方式の位置判定方法を、ここではNear-Far方式を呼ぶことにする。
A calculation simulation example is shown in FIG. The measurement result depends on the focal length and positional relationship of the lens used.
In this example, the focal length of the objective lens 21 is 9 mm, the focal length of the condenser lens 22 is 14.55 mm, the distance between the objective lens 21 and the condenser lens 22 is 120 mm, and the diameter of the photodetector 24 is 12 mm. The horizontal axis indicates the amount of deviation of the measurement surface from the predetermined position 15 in mm units, and the minus indicates the objective lens 21 side, that is, the Near side from the predetermined position 15. The vertical axis represents the output of the light detector 24 and indicates the position of the center of gravity of the detected beam in mm.
In the graph curve, the position of the center of gravity of the beam is reversed at the predetermined position 15. For example, if the output of the photodetector 24 is positive, the distance between the object to be measured and the objective lens 21 is increased. If the output is stopped at a position where the output of N2 crosses 0 and becomes negative, automatic focusing becomes possible. This position determination method will be referred to as the Near-Far method here.

以上、表面からの反射のみを対象として説明したが、透明体の場合は表面からの反射と共に、透過した光が裏面から反射するのでノイズが発生する。例えば計測対象物がガラス板状のものである場合には、表面の反射率がおおよそ3%程度であるため、ビームの大半は表面を透過し、裏面において同様に3%程度の反射率でビームが反射する。この反射ビームはガラス内部から表面にいたり、そこでまた3%程度が反射する。したがって、入射ビームの0.97×0.03×0.97程度のビームが裏面反射ビームとして、本来の表面反射ビーム50に重畳する。   As described above, only the reflection from the front surface has been described, but in the case of a transparent body, noise is generated because the transmitted light is reflected from the back surface together with the reflection from the front surface. For example, when the object to be measured is a glass plate, the reflectance of the surface is approximately 3%, so that most of the beam is transmitted through the surface, and the beam is also reflected with a reflectance of approximately 3% on the back surface. Is reflected. This reflected beam goes from the inside of the glass to the surface, where about 3% is reflected again. Accordingly, a beam of about 0.97 × 0.03 × 0.97 of the incident beam is superimposed on the original front surface reflected beam 50 as a back surface reflected beam.

図5は、反射率3%、厚さ0.7mm、屈折率1.5のガラス基板における計算シミュレーションの例で、 光検出器24の出力(記号付き曲線)を左目盛りに、表裏面反射の集光レンズ22によって形成されるスポットの遮光板30からの位置(曲線のみ)を右目盛りにプロットしたもので、使用したレンズとその位置関係は図4の場合と同じである。
白丸で表した表面反射ビーム重心は所定位置(図3中符号15)を境に急激にビーム重心位置が反転するのに対して、黒丸で表した裏面反射ビームは横軸の右3/4の領域で常に光軸20に近いプラス側にビームの重心が位置している。黒い四角で表した両反射ビームを合わせた重心位置を見ると、所定位置15の両側で同じ重心位置をとる条件が幅広く存在するため、所定位置15より遠方か否かは広い範囲を走査してからでないと判断できない。また所定位置15付近における変化の割合が小さいため、高精度な位置ずれ検出は期待できない。
Fig. 5 shows an example of a calculation simulation on a glass substrate having a reflectance of 3%, a thickness of 0.7 mm, and a refractive index of 1.5. The position (curve only) of the spot formed by the condenser lens 22 from the light shielding plate 30 is plotted on the right scale, and the used lens and its positional relationship are the same as in the case of FIG.
The center of gravity of the surface reflected beam represented by a white circle abruptly reverses the position of the center of gravity of the beam at a predetermined position (reference numeral 15 in FIG. 3), whereas the back reflected beam represented by a black circle is 3/4 right of the horizontal axis. The center of gravity of the beam is always located on the plus side near the optical axis 20 in the region. Looking at the barycentric position of the two reflected beams represented by the black squares, there are a wide range of conditions for obtaining the same barycentric position on both sides of the predetermined position 15, so whether or not it is far from the predetermined position 15 is scanned over a wide range. It cannot be judged unless it is from. Further, since the rate of change in the vicinity of the predetermined position 15 is small, it is not possible to expect a highly accurate displacement detection.

この例からわかるように、従来のNear-Far方式の位置判定装置、あるいはそれを用いた自動焦点合わせ装置は、ガラスなどの透明で裏面からの反射が無視できない場合には有効に動作させることができなかった。本発明は、従来法では計測が困難であった裏面反射が生じる計測対象についても高い精度で位置判定が可能な位置判定装置を得ることを課題とするものである。   As can be seen from this example, the conventional Near-Far position determination device or the automatic focusing device using it can be operated effectively when the reflection from the back surface cannot be ignored due to the transparency of glass or the like. could not. An object of the present invention is to obtain a position determination device capable of determining a position with high accuracy even for a measurement target in which back surface reflection occurs, which is difficult to measure by the conventional method.

本発明は、上述した従来のNear-Far方式の欠点を克服するためになされた。
裏面反射ビームの挙動を明確にするためには、反射ビームの光学的な挙動を知ることが必要である。
図5において、表面反射ビーム50は、δf=0を境にスポット位置が正から負に変わっている(δfは所定位置15と計測対象物表面10aとの距離)。
ここではδfもスポット位置もレンズから見てδf=0の場合の位置よりも遠い方向を正としているので、δfが負の側すなわちNear側にあるときには、本来焦点を結ぶ位置に至らない状態、すなわち集光レンズ22によって形成されるスポット位置は正の方向であり、遮光板30よりも光検出器24側にある。
従って、検出されるビーム重心は光検出器24の遮光板30側、すなわち図3においては上半円の重心である。図5ではこれはビーム中心位置のプラス側に対応する。δfが0を通ってFar側になると、本来焦点を結ぶ位置を通り越した状態であるので、 検出されるビーム重心は光検出器24の遮光板30と反対側、すなわち図3において下半円に移動する。一方裏面反射ビームは、δf=−0.13付近を境に右側で一貫して集光レンズ22によるスポット位置が正である。光検出器24と遮光板30の間の距離は一般に少なくとも10〜20mm以上であるので、グラフの右3/4の領域ではスポット位置は遮光板30と光検出器24の間にある。
The present invention has been made to overcome the above-mentioned drawbacks of the conventional Near-Far method.
In order to clarify the behavior of the back-surface reflected beam, it is necessary to know the optical behavior of the reflected beam.
In FIG. 5, the spot position of the surface reflected beam 50 changes from positive to negative with δf = 0 as a boundary (δf is the distance between the predetermined position 15 and the measurement object surface 10a).
Here, since both δf and the spot position are positive in the direction farther than the position when δf = 0 when viewed from the lens, when δf is on the negative side, that is, the Near side, a state where the focal point is not originally reached, That is, the spot position formed by the condenser lens 22 is in the positive direction, and is closer to the photodetector 24 than the light shielding plate 30.
Therefore, the detected beam center of gravity is the center of gravity of the upper semicircle in FIG. In FIG. 5, this corresponds to the plus side of the beam center position. When δf passes through 0 and goes to the Far side, it is in a state where the focal point is originally passed, so that the detected beam center of gravity is on the opposite side of the light-shielding plate 30 of the photodetector 24, that is, the lower half circle in FIG. Moving. On the other hand, the back-surface reflected beam has a positive spot position by the condenser lens 22 on the right side of the boundary around δf = −0.13. Since the distance between the light detector 24 and the light shielding plate 30 is generally at least 10 to 20 mm or more, the spot position is between the light shielding plate 30 and the light detector 24 in the region 3/4 to the right of the graph.

δf=0.1付近における光路図を図6に示す。計測対象物表面10aはわずかにFar側にあるため、表面反射ビーム50は対物レンズ21によってわずかに収束され、集光レンズ22で遮光板30よりわずかに手前に光検出器側表面反射スポット55を結ぶ。従って光検出器24に至る表面反射ビーム50は上半分が遮蔽され、検出されるビーム中心は下の半円の重心位置となる。
一方計測対象物裏面10bによる裏面反射スポット62は所定位置15より遙かにFar側にあるため、裏面反射ビーム60は対物レンズ21によって集光レンズ22より手前に一旦中間裏面反射スポット64を結び、集光レンズ22によって遮光板30と光検出器24の中間に光検出器側裏面反射スポット65を結ぶ。すなわち光検出器24に至る裏面反射ビームは下半分が遮蔽され、検出されるビーム中心は上の半円の重心位置となる。この重心位置は光軸20に近いが、集光された状態であるためビーム強度が大きい。
An optical path diagram in the vicinity of δf = 0.1 is shown in FIG. Since the measurement object surface 10 a is slightly on the Far side, the surface reflected beam 50 is slightly converged by the objective lens 21, and the light-detector side surface reflected spot 55 is formed slightly before the light shielding plate 30 by the condenser lens 22. tie. Accordingly, the upper half of the surface reflected beam 50 reaching the photodetector 24 is shielded, and the detected beam center is the center of gravity of the lower semicircle.
On the other hand, since the back surface reflection spot 62 due to the measurement object back surface 10b is far from the predetermined position 15, the back surface reflection beam 60 is temporarily connected to the intermediate back surface reflection spot 64 before the condenser lens 22 by the objective lens 21. The condenser lens 22 connects a photodetector-side back surface reflection spot 65 between the light shielding plate 30 and the photodetector 24. That is, the lower half of the back-surface reflected beam that reaches the photodetector 24 is shielded, and the detected beam center is the center of gravity of the upper half circle. Although the center of gravity is close to the optical axis 20, the beam intensity is high because the light is focused.

光検出器24で検出されるビーム重心位置は、上記表面反射ビーム及び裏面反射ビームそれぞれの重心位置とビーム強度の相関値として得られる。すなわち、
ビーム重心位置=(表面反射ビーム重心位置×表面反射ビーム強度+裏面反射ビーム重心位置×裏面反射ビーム強度)/(表面反射ビーム強度+裏面反射ビーム強度)
であるので、表・裏面反射ビームを合わせたビーム中心は大きく上側にずれることになる。図5の中央から右側にかけて、表・裏面反射ビームを合わせたビーム重心が+側にずれて山形になっているのはこのためである。
The barycentric position of the beam detected by the photodetector 24 is obtained as a correlation value between the barycentric position and the beam intensity of each of the front surface reflected beam and the back surface reflected beam. That is,
Beam center of gravity position = (surface reflection beam center of gravity position x surface reflection beam intensity + back surface reflection beam gravity center position x back surface reflection beam intensity) / (surface reflection beam intensity + back surface reflection beam intensity)
Therefore, the center of the beam including the front and back reflection beams is greatly shifted upward. This is why the beam center of gravity of the front and back reflection beams is shifted to the + side from the center to the right side of FIG.

図7は、計測対象物10に照射ビーム40が入射するときの模式図である。
光軸20上の点42が照射ビーム40が焦点を結ぶ位置で、ここが計測対象物表面10aが本来位置すべき所定位置15と光軸20の交点である。実際には照射ビームスポット42に向かって照射ビーム40が収束するが、図の簡略のため角度αiで入射する照射ビーム41のみ図示する。
計測対象物の厚さをtとし、その表面は所定位置15より対物レンズ21から見て遠方δfにあるとする。照射ビームは照射ビームスポット42でいったん焦点を結び、そこから発散光となって計測対象物表面10aで光軸20との交点を中心とする円形領域を照射する。入射ビーム41の計測対象物表面10aにおける位置は光軸20からhinの距離にある表面反射点51で、約3%のビームは反射し反射ビーム50のように進む。入射ビーム41のうちの約97%は計測対象物内部に進む。このとき計測対象物の屈折率をnとすると、屈折角αrはSnellの法則により

Figure 2008209119
と表される。
一方入射ビーム41の表面入射位置hinは幾何学的に
Figure 2008209119
と表される。
ここで、δfは所定位置15からのずれで、対物レンズ21から離れる方向すなわちFar側を正としている。表面反射点51で計測対象物内部に進んだ光束は、裏面の裏面反射点61で透過成分と反射成分に分かれるが、ここで問題にしている裏面反射ビームは裏面反射点61で反射した後表面の表面射出点63に至ってここで透過して、図7中裏面反射ビーム60のごとく進む成分である。この光束は、図中に破線で示したように、光軸20上の裏面反射スポット62を光源をして発散するかのように進む。計測対象物表面10aから測った裏面反射スポット62の位置δsは、光軸20から測った表面射出点63の位置houtを用いて
Figure 2008209119
と表すことができる。表面反射点51と表面射出点63の間の距離は
Figure 2008209119
であるから、δsは所定位置15からのずれδf、屈折率n、計測対象物の厚さtおよび入射角aiを用いて
Figure 2008209119
と表される。 FIG. 7 is a schematic diagram when the irradiation beam 40 is incident on the measurement object 10.
A point 42 on the optical axis 20 is a position where the irradiation beam 40 is focused, and this is an intersection of the predetermined position 15 where the measurement target surface 10a should be originally positioned and the optical axis 20. Actually, the irradiation beam 40 converges toward the irradiation beam spot 42, but only the irradiation beam 41 incident at an angle αi is shown for simplicity of the drawing.
It is assumed that the thickness of the measurement object is t, and the surface thereof is in the distance δf from the predetermined position 15 when viewed from the objective lens 21. The irradiation beam is once focused at the irradiation beam spot 42, and then becomes a divergent light, and irradiates a circular area centering on the intersection with the optical axis 20 on the measurement object surface 10 a. The position of the incident beam 41 on the measurement object surface 10 a is a surface reflection point 51 at a distance of “hin” from the optical axis 20, and approximately 3% of the beam is reflected and proceeds like a reflected beam 50. About 97% of the incident beam 41 travels into the measurement object. At this time, if the refractive index of the measurement object is n, the refraction angle αr is determined by Snell's law.
Figure 2008209119
It is expressed.
On the other hand, the surface incident position hin of the incident beam 41 is geometrically
Figure 2008209119
It is expressed.
Here, δf is a deviation from the predetermined position 15, and the direction away from the objective lens 21, that is, the Far side is positive. The light beam that has traveled to the inside of the measurement object at the front surface reflection point 51 is divided into a transmission component and a reflection component at the back surface reflection point 61 on the back surface. This is a component that reaches the front surface emission point 63 and passes there and travels like a back surface reflected beam 60 in FIG. As indicated by a broken line in the figure, this light beam travels as if it diverges using the back surface reflection spot 62 on the optical axis 20 as a light source. The position δs of the back surface reflection spot 62 measured from the measurement target surface 10 a is used by using the position hout of the surface emission point 63 measured from the optical axis 20.
Figure 2008209119
It can be expressed as. The distance between the surface reflection point 51 and the surface emission point 63 is
Figure 2008209119
Therefore, δs is obtained by using the deviation δf from the predetermined position 15, the refractive index n, the thickness t of the measurement object, and the incident angle a i.
Figure 2008209119
It is expressed.

計測対象物を0.5mm、対物レンズ21焦点距離を9mmとしたときの裏面反射スポット62の位置δfと計測対象表面10aの所定位置15からのずれδfの関係を図8のグラフに示した。これからわかるように、δfの絶対値が小さい領域では、裏面反射ビーム60の仮想光源である裏面反射スポット62の位置は対物レンズ21から見て本来の計測対象表面よりFar側にあり、また照射ビーム40のうち入射角の大きい成分の裏面反射スポット62の方が計測対象表面に近い。これは、入射角の大きい照射ビーム成分の方が表面反射ビームとの区別がしにくいということを示している。すなわち、入射角の大きい照射光成分が、図5において説明した高精度計測の阻害要因として大きな役割を果たしていることがわかる。     FIG. 8 is a graph showing the relationship between the position δf of the back surface reflection spot 62 and the deviation δf of the measurement target surface 10a from the predetermined position 15 when the measurement object is 0.5 mm and the focal length of the objective lens 21 is 9 mm. As can be seen, in the region where the absolute value of δf is small, the position of the back surface reflection spot 62, which is the virtual light source of the back surface reflected beam 60, is far from the original measurement target surface when viewed from the objective lens 21, and the irradiation beam The rear surface reflection spot 62 with a component having a large incident angle out of 40 is closer to the surface to be measured. This indicates that the irradiation beam component having a large incident angle is more difficult to distinguish from the surface reflection beam. That is, it can be seen that the irradiation light component having a large incident angle plays a large role as an impediment to the high-accuracy measurement described in FIG.

これらの結果から、
1.裏面反射ビーム60は、対物レンズ21によって本来の計測対象表面からの表面反射ビーム50より大きく収束するので、対物レンズ21の後方光軸20上に中心付近の光を遮る中間遮光板を設けることにより、裏面反射ビーム60の影響を軽減できる(請求項1〜5)
2.対物レンズ21に入射する計測対象物10からの反射光の角度の大きい成分を制限することにより、裏面反射ビーム60の影響を軽減できる(請求項6,7)
という2点の知見を得ることができる。
From these results,
1. The back-surface reflected beam 60 is converged by the objective lens 21 so as to be larger than the surface-reflected beam 50 from the original measurement target surface. Therefore, by providing an intermediate light shielding plate on the rear optical axis 20 of the objective lens 21 that blocks light near the center. The influence of the back surface reflected beam 60 can be reduced (claims 1 to 5).
2. By limiting the component having a large angle of the reflected light from the measurement object 10 incident on the objective lens 21, the influence of the back surface reflected beam 60 can be reduced (Claims 6 and 7).
Two points of knowledge can be obtained.

この発明は、計測対象物の位置が所定の位置範囲内か否かを判定する装置であって、計測対象物表面に対してその光軸が略垂直に保持された対物レンズと、該対物レンズを通して前記所定位置に集光する照明光を照射する照明装置と、該対物レンズの光軸と光学的に等価な軸上に設置され計測対象物によって反射されて対物レンズを照明光とは逆方向に透過した光束を集光する集光レンズと、該集光レンズの後焦点面上において光軸上もしくは光軸直近を通る直線を境界として後焦平面の略半分を遮蔽する遮光板と、該遮光板の光進行方向に置かれかつ到達した光の分布から強度中心位置(ビーム重心位置)を算出する光検出器と、該光検出器の出力から所定の位置に対する計測対象物の位置の遠近を判定する位置判定装置と、前記対物レンズと前記遮光板との中間の光軸上の少なくとも1箇所に光軸を略対称軸とする領域を通り前記光検出器に至る光束の一部を遮蔽する中間遮光板を有するものとして構成する。   The present invention is an apparatus for determining whether the position of a measurement object is within a predetermined position range, an objective lens whose optical axis is held substantially perpendicular to the surface of the measurement object, and the objective lens An illuminating device that irradiates illumination light that is condensed at the predetermined position through, and an object that is installed on an optically equivalent axis to the optical axis of the objective lens and is reflected by the measurement object to reverse the objective lens to the illumination light A condensing lens that condenses the light beam transmitted through the light-shielding plate, a light-shielding plate that shields approximately half of the back focal plane on the back focal plane of the condensing lens, with a straight line passing on or near the optical axis as a boundary; A photodetector that calculates the intensity center position (beam centroid position) from the distribution of light that is placed in the light traveling direction of the light shielding plate and has reached, and the perspective of the position of the measurement object relative to a predetermined position from the output of the photodetector And a position determination device for determining the objective lens Constituting as having an intermediate light shielding plate for shielding a portion of the intermediate light flux reaching the region of the optical axis substantially symmetrical axis as the optical detector in at least one location on the optical axis and the light shielding plate and.

前記中間遮光板は、ビームの重心位置に基づいて計測対象物の位置と所定の位置のずれを判定する際にノイズとなるビームを遮蔽することを目的とするものである。したがって、この目的が達成しえる範囲において、その形状、大きさ、位置、数を適宜決定することができる。
例えば、中間遮光板をビームの直径よりも小さな直径の円板として、その中心を光軸にほぼ一致させて設置したり(請求項2)、中間遮蔽板をビームの直径よりも短い短辺の矩形として、その長手方向を前記遮光板の遮蔽境界と略平行となるように、かつ両長辺間の中心を光軸にほぼ一致させて設置する態様(請求項3)がある。
The intermediate light shielding plate is intended to shield a beam that becomes noise when determining a deviation between a position of a measurement object and a predetermined position based on a barycentric position of the beam. Therefore, the shape, size, position, and number can be appropriately determined within a range in which this object can be achieved.
For example, the intermediate light shielding plate is a disk having a diameter smaller than the diameter of the beam, and the center is substantially aligned with the optical axis (Claim 2), or the intermediate shielding plate has a short side shorter than the beam diameter. There is a mode in which the rectangular shape is installed such that its longitudinal direction is substantially parallel to the shielding boundary of the light shielding plate and the center between both long sides is substantially coincident with the optical axis (Claim 3).

中間遮光板の位置は、対物レンズから、対物レンズ焦点距離の8倍以上離れた位置であることが好ましい(請求項4)。
前記中間遮光板の大きさは、遮光板による遮蔽境界と垂直な方向の最大幅が、対物レンズ有効径もしくは対物レンズ主面位置における照射ビーム径の1/20以上かつ1/4以下の範囲内であることが好ましい(請求項5)。
The position of the intermediate light shielding plate is preferably a position away from the objective lens by at least 8 times the focal length of the objective lens.
The size of the intermediate light shielding plate is such that the maximum width in the direction perpendicular to the shielding boundary by the light shielding plate is within the range of 1/20 or more and 1/4 or less of the effective diameter of the objective lens or the irradiation beam diameter at the objective lens main surface position. (Claim 5).

上記中間遮光板に加えて、対物レンズに入射する裏面反射光の入射角を制限することも有効である。その手法として、対物レンズの計測対象物側前面あるいは対物レンズ内部のレンズ有効径を決定しうる位置に、レンズ外縁部を通る入射光成分の少なくとも一部を遮蔽するための開口絞り(以下「対物レンズ絞り」という。)を設けることが考えられる。この対物レンズ絞りの具体的な態様としては、光軸を略中心とする円形開口を有する絞り(請求項6)、光軸を略中心としかつ開口部長辺が前記遮光板の遮光境界と略平行であるような長方形の開口を有する絞り(請求項7)などがある。
上記のようにして測定されたデータに基づき計測対象物の所定位置とのずれを検出し、公知の駆動機構と連動させて計測対象物の位置を変化させることができようにすることが好ましい(請求項8)。
In addition to the intermediate light shielding plate, it is also effective to limit the incident angle of the back surface reflected light incident on the objective lens. As a technique, an aperture stop (hereinafter referred to as “objective aperture”) that shields at least a part of the incident light component passing through the outer edge of the objective lens at a position where the effective lens diameter on the measurement object side of the objective lens or inside the objective lens can be determined. It is conceivable to provide a “lens aperture”. As a specific mode of this objective lens stop, a stop having a circular opening substantially centered on the optical axis (Claim 6), the optical axis substantially centered, and the long side of the opening is substantially parallel to the light shielding boundary of the light shielding plate. There is a diaphragm having a rectangular opening such as (Claim 7).
It is preferable to detect the deviation of the measurement object from the predetermined position based on the data measured as described above, and to change the position of the measurement object in conjunction with a known drive mechanism ( Claim 8).

図9は、半径0.5mmの円形の中間遮光板1枚を、対物レンズ21主面から集光レンズ22側に70mm〜120mmの位置に、円の中心が光軸20に一致するように装入した場合の光検出器24の出力を計算機シミュレーションした結果である。対物レンズの焦点距離は、図5,図8と同じ9mmである。また、遮光板を入れない状態は実線のみで表されている。
この図に示されるように、対物レンズ後方90mmの位置に中間遮光板を装入すると、δf=0の両側で光検出器の出力値の範囲を分離することができる。すなわち検出されるビーム重心(表面反射ビームと裏面反射ビームとの総合値)の位置が−0.9mmより+側ならばNear側、−2mmより−側ならばFar側であると判定することができる。これは、図6における中間裏面反射スポット64の近傍に中間遮光板が置かれたため、表・裏面反射ビームのビーム径の違いによって、裏面反射ビームの強度が相対的に大きく減少し、光検出器24によって検出されるビーム重心に占める表面反射ビーム50の重心位置の割合が増加したためである。
中間遮光板が対物レンズ後方70mmの位置の場合には、δf=0付近の場合の裏面反射ビームを遮蔽しきれないため、Far-Nearの分離ができない。また、中間遮光板が対物レンズ後方100mm以上の位置の場合には、よりNear側で中間遮光板が機能するため、Far側において十分な遮蔽効果が得られない。
In FIG. 9, one circular intermediate light shielding plate having a radius of 0.5 mm is mounted at a position of 70 mm to 120 mm from the main surface of the objective lens 21 toward the condenser lens 22 so that the center of the circle coincides with the optical axis 20. This is a result of computer simulation of the output of the photodetector 24 when it is turned on. The focal length of the objective lens is 9 mm as in FIGS. Further, the state where the light shielding plate is not inserted is represented by only a solid line.
As shown in this figure, when an intermediate light shielding plate is inserted at a position 90 mm behind the objective lens, the output value range of the photodetector can be separated on both sides of δf = 0. That is, if the position of the detected beam center of gravity (the total value of the front surface reflected beam and the back surface reflected beam) is on the + side from −0.9 mm, it is determined to be the Near side; it can. This is because the intermediate light-shielding plate is placed in the vicinity of the intermediate back surface reflection spot 64 in FIG. 6, and the intensity of the back surface reflection beam is relatively reduced due to the difference in the beam diameter between the front and back surface reflection beams. This is because the ratio of the centroid position of the surface reflected beam 50 to the centroid of the beam detected by 24 has increased.
When the intermediate light shielding plate is located 70 mm behind the objective lens, the back-surface reflected beam in the vicinity of δf = 0 cannot be shielded, so that Far-Near separation cannot be performed. In addition, when the intermediate light shielding plate is at a position of 100 mm or more behind the objective lens, the intermediate light shielding plate functions more on the near side, so that a sufficient shielding effect cannot be obtained on the far side.

中間遮光板の効果は、対物レンズの焦点距離、対物レンズの開口数、計測対象物の厚さ、屈折率および中間遮光板の大きさなどの依存しており、その位置や大きさの範囲を一義的に決定することは困難である。図10は図9と同条件で、対物レンズの焦点距離を10mmにした場合の計算機シミュレーションの結果である。
図9において中間遮光板が有効に作用していた90mmの位置では、δf=0付近では効果がなく、計測対象物表面の位置δf=0.09mm以降で裏面反射ビームを遮っている。このグラフから、中間遮光板はどの位置であっても、計測対象物表面位置全域にわたって、裏面反射ビームを除去することはできないことがわかる。
一方、中間遮光板が110mmの位置にある場合には、δf=0.13mm以降では十分な裏面反射ビーム除去効果は得られないが、中間遮光板が90mmの位置のときには除去できなかったδf=-0.05〜+0.13の範囲で裏面反射ビームを除去することができる。これは、2枚またはそれ以上の中間遮光板を異なる位置に装入し、計測対処物表面の位置範囲に応じて裏面反射ビームの除去をそれぞれの中間遮光板に担わせればよいということを示している。
特に問題となるのは、Far側のビーム重心位置が裏面反射ビームの影響で+側に引き上げられてしまうことであるので、Far側の曲線が引き下げられるべき領域において、これを引き上げる要因となる裏面反射ビームを2枚以上の中間遮光板に分担させて遮蔽すればよいことになる。
図10の例では、グラフの右半分で曲線の持ち上がりが重なり合わない組み合わせ、すなわち半径0.5mmの中間遮光板を80mmまたは90mmの位置と110mmの位置に1枚ずつ、あるいは100mmの位置と120mmの位置に1枚ずつ装入すれば、δf=0の両側で光検出器の出力の値が分離される。この結果、光検出器によるビーム重心判定位置が−0.18mm以上ならNear側、−0.24mm以下ならFar側であると判定することが可能になる。
The effect of the intermediate shading plate depends on the focal length of the objective lens, the numerical aperture of the objective lens, the thickness of the measurement object, the refractive index, and the size of the intermediate shading plate. It is difficult to determine uniquely. FIG. 10 shows the result of computer simulation when the focal length of the objective lens is 10 mm under the same conditions as in FIG.
In FIG. 9, at the position of 90 mm where the intermediate light shielding plate is effectively acting, there is no effect near δf = 0, and the back surface reflected beam is blocked after the position δf = 0.09 mm on the surface of the measurement object. From this graph, it can be seen that the back-surface reflected beam cannot be removed over the entire area of the surface of the measurement object regardless of the position of the intermediate light shielding plate.
On the other hand, when the intermediate light shielding plate is at a position of 110 mm, a sufficient back surface reflected beam removal effect cannot be obtained after δf = 0.13 mm, but δf = not removed when the intermediate light shielding plate is at a position of 90 mm. The back surface reflected beam can be removed in the range of -0.05 to +0.13. This indicates that two or more intermediate light shielding plates may be loaded at different positions, and each intermediate light shielding plate should be responsible for removing the back surface reflected beam according to the position range of the surface to be measured. ing.
Particularly problematic is that the position of the center of gravity of the beam on the Far side is raised to the + side due to the influence of the back-surface reflected beam, and therefore the back surface that causes the Far-side curve to be pulled up in the region to be lowered. The reflected beam may be shielded by sharing it with two or more intermediate light shielding plates.
In the example of FIG. 10, the right half of the graph is a combination in which the lifting of the curves does not overlap, that is, an intermediate light shielding plate having a radius of 0.5 mm, one at 80 mm or 90 mm and 110 mm, or 100 mm and 120 mm. 1 at a time, the output values of the photodetector are separated on both sides of δf = 0. As a result, it is possible to determine that the beam center of gravity determination position by the photodetector is near side if it is −0.18 mm or more, and the far side if it is −0.24 mm or less.

発明者らは、計算機シミュレーションによって、様々な条件について検討した結果、中間遮光板の位置については、対物レンズ後方の対物レンズ焦点距離の8倍以上の位置が適切であることを見いだした。この範囲は、中間遮光板が複数枚の場合にも、それぞれの中間遮光板について成り立つ。
また大きさについては、遮光板の遮光境界に直角な方向に大きいほど効果が高いが、本来計測の対象となる表面反射ビームを遮蔽する影響も大きくなるため、限界がある。
As a result of examining various conditions by computer simulation, the inventors have found that the position of the intermediate light-shielding plate is appropriate to be at least eight times the focal length of the objective lens behind the objective lens. This range holds for each intermediate light shielding plate even when there are a plurality of intermediate light shielding plates.
As for the size, the effect is higher as it is larger in the direction perpendicular to the light shielding boundary of the light shielding plate, but there is a limit because the influence of shielding the surface reflected beam that is originally the object of measurement becomes larger.

図11は、中間遮光板の半径を0.2mmから1.2mmまで変えたときのビーム重心位置の変化を示したグラフで、対物レンズの焦点距離は9mm、開口数は0.5、対物レンズから中間遮光板までの距離は、図9で望ましい結果が得られた90mmに固定した。また対物レンズ主面における照射ビーム半径は6mmとした。この結果から、半径が0.2mmでは、所定位置からのずれδfが0から0.8の範囲でしか有効に働いていないが、中間遮光板の半径がそれ以外の場合は横軸全域にわたって中間遮光板の効果が認められる。   FIG. 11 is a graph showing the change of the center of gravity of the beam when the radius of the intermediate light shielding plate is changed from 0.2 mm to 1.2 mm. The focal length of the objective lens is 9 mm, the numerical aperture is 0.5, and the objective lens. The distance from the intermediate light-shielding plate was fixed at 90 mm, which gave the desired result in FIG. The irradiation beam radius on the main surface of the objective lens was 6 mm. From this result, when the radius is 0.2 mm, the displacement δf from the predetermined position works effectively only in the range of 0 to 0.8, but when the radius of the intermediate light shielding plate is other than that, it is intermediate over the entire horizontal axis. The effect of the light shielding plate is recognized.

図12は、中間遮光板の半径を変えたときに、表面反射ビームと裏面反射ビームの光検出器に到達する量を、計算機シミュレーションによって求めた結果である。対物レンズから中間遮光板までの距離は90mm、照射ビーム半径を6mmとし、中間遮光板の半径を0.25mmから1.5mmまで変えた。縦軸は光検出器に到達するビーム量で、中間遮光板が無いときのビーム量を1とした。横軸は所定位置15からのずれδfである。各曲線は、曲線が下に行くほど中間遮光板によって遮られる量が多いことを表している。
中間遮光板半径が0.25mmでは、δf=0〜0.12mmの範囲で、裏面反射ビームが大きく減少しており、図11の結果と対応している。一方、中間遮光板半径が1.5mmのときの表面反射ビーム量を見ると、δf=−0.2〜−0.03mmの範囲で0になっている。すなわち、本来の信号である表面反射ビームが、この範囲では中間遮光板によってすべて遮られてしまうことを意味している。中間遮光板半径1.25mmのときでもδf=−0.2mmにおいては表面反射ビームの90%が遮られてしまっている。
これらの結果から、この光学的条件では、照射ビーム半径6mmに対して、中間遮光板半径は0.3mm程度以上、1.2mm程度以下でなければならないということがわかる。この数値は、光学条件によって変化するが、さまざまな条件でシミュレーションした結果、中間遮光板の半径を、対物レンズで取り込む反射ビームおよび裏面反射ビームの径の、1/20以上かつ1/4以下にすれば、裏面反射ビームの遮蔽効果が得られ、かつ検出に必要な表面反射ビーム量を確保できることがわかった。
FIG. 12 shows the results of calculating the amounts of the front surface reflected beam and the back surface reflected beam that reach the photodetector when the radius of the intermediate light shielding plate is changed by computer simulation. The distance from the objective lens to the intermediate light shielding plate was 90 mm, the irradiation beam radius was 6 mm, and the radius of the intermediate light shielding plate was changed from 0.25 mm to 1.5 mm. The vertical axis represents the amount of beam reaching the photodetector, and the amount of beam when there is no intermediate light shielding plate is 1. The horizontal axis is the deviation δf from the predetermined position 15. Each curve represents that as the curve goes down, the amount blocked by the intermediate light shielding plate increases.
When the intermediate light shielding plate radius is 0.25 mm, the back-surface reflected beam is greatly reduced in the range of δf = 0 to 0.12 mm, which corresponds to the result of FIG. On the other hand, when the amount of the surface reflected beam when the radius of the intermediate light shielding plate is 1.5 mm is 0, it is 0 in the range of δf = −0.2 to −0.03 mm. That is, it means that the surface reflected beam, which is the original signal, is blocked by the intermediate light shielding plate in this range. Even when the radius of the intermediate light shielding plate is 1.25 mm, 90% of the surface reflected beam is blocked at δf = −0.2 mm.
From these results, it can be seen that, under this optical condition, the radius of the intermediate light shielding plate must be about 0.3 mm or more and about 1.2 mm or less with respect to the irradiation beam radius of 6 mm. This value varies depending on the optical conditions, but as a result of simulation under various conditions, the radius of the intermediate shading plate is 1/20 or more and 1/4 or less of the diameter of the reflected beam and back-surface reflected beam captured by the objective lens. As a result, it was found that the shielding effect of the back surface reflected beam can be obtained and the amount of the surface reflected beam necessary for detection can be secured.

この発明によれば、中間遮蔽板によって測定対象物の裏面で反射する光の少なくとも一部を遮蔽することができる。また、中間遮蔽板と、先に述べた対物レンズに入射する反射光の角度を制限する対物レンズ絞りを併用することにより、一層多くの裏面反射光を遮蔽することができる。その結果、遮光板を通過する光束のノイズが減少し、測定対象物がガラスのような透光性のものであっても、測定対象物の位置がNear側であるかFar側であるかを正確に検出することができる。
また、計測対象物表面の画像を同時に観察する応用例も考えられる。この場合には光検出器に至る光と、画像観察用撮像素子に至る光とは波長域(一般には可視光)を分ける必要がある。画像観察では、対物レンズに入射する角度を制限すると分解能が低下する。そこで、画像観察用の光は透過し、位置計測用の光は透過しない素材を用いれば、高精度な位置判定と高分解能画像観察が両立する。
According to this invention, at least a part of the light reflected on the back surface of the measurement object can be shielded by the intermediate shielding plate. Further, by using the intermediate shielding plate together with the objective lens stop for limiting the angle of the reflected light incident on the objective lens described above, it is possible to shield more back surface reflected light. As a result, the noise of the light beam passing through the light shielding plate is reduced, and even if the measurement object is translucent like glass, it is possible to determine whether the measurement object is on the near side or the far side. It can be detected accurately.
In addition, an application example in which an image of the surface of the measurement object is observed simultaneously is also conceivable. In this case, it is necessary to divide the wavelength range (generally visible light) between the light reaching the photodetector and the light reaching the image observation imaging device. In image observation, if the angle incident on the objective lens is limited, the resolution decreases. Therefore, if a material that transmits light for image observation and does not transmit light for position measurement is used, both high-accuracy position determination and high-resolution image observation are compatible.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

以下、本発明の一実施例を図13により説明する。
ここでは、対物レンズ21と集光レンズ22の中間(ビームスプリタ23と集光レンズ22の間)に、光軸20をほぼ中心とする円形の中間遮光板31を装入した。本図では、計測物表面10aは所定位置15よりややFar側にあるので、表面反射ビームは対物レンズ21でわずかに収束されて集光レンズ22に入射する。集光レンズ22によって形成される検出器側表面反射スポット55は、後側焦点位置である遮光板30の位置よりも集光レンズ22側に位置する。従って、図の上側のビームが遮光板で遮られ、ビーム重心位置は下半円ビームの重心位置となる。
An embodiment of the present invention will be described below with reference to FIG.
In this case, a circular intermediate light shielding plate 31 having the optical axis 20 as the center is inserted between the objective lens 21 and the condenser lens 22 (between the beam splitter 23 and the condenser lens 22). In this figure, since the measurement object surface 10 a is slightly far from the predetermined position 15, the surface reflected beam is slightly converged by the objective lens 21 and enters the condenser lens 22. The detector-side surface reflection spot 55 formed by the condenser lens 22 is located closer to the condenser lens 22 than the position of the light shielding plate 30 that is the rear focal position. Therefore, the upper beam in the figure is blocked by the light shielding plate, and the center of gravity of the beam becomes the center of gravity of the lower semicircular beam.

裏面反射スポット62の位置は、表面反射スポット52よりもFar側にあるため、対物レンズ21によってより早く収束し、中間裏面反射スポット64に向けてフォーカスする。中間遮光板31は中間裏面反射スポット64の手前に位置させてあり、この中間遮蔽板31によって裏面反射ビーム60の全部もしくは大部分がこれに遮られ、光検出器24には到達しない。このため、計測の傷害となる裏面反射ビームは有効に除去され、高精度な位置判定が可能である。
計測対象物10と対物レンズ21の距離は1例しか図示してないが、Near-Farの広い範囲で裏面反射ビーム60を遮蔽できる。
Since the position of the back surface reflection spot 62 is on the Far side with respect to the front surface reflection spot 52, it converges more quickly by the objective lens 21 and is focused toward the intermediate back surface reflection spot 64. The intermediate light shielding plate 31 is positioned in front of the intermediate back surface reflection spot 64, and all or most of the back surface reflected beam 60 is blocked by the intermediate shielding plate 31 and does not reach the photodetector 24. For this reason, the back-surface reflected beam that causes measurement damage is effectively removed, and highly accurate position determination is possible.
Although only one example of the distance between the measurement object 10 and the objective lens 21 is illustrated, the back surface reflected beam 60 can be shielded in a wide range of Near-Far.

図14は、本構成によって得られた実際の実験データである。図10結果と比較すると、中間遮光板の有無の傾向はきわめてよく一致しており、中間遮光板が有効に作用していることがわかる。   FIG. 14 shows actual experimental data obtained by this configuration. Compared with the results shown in FIG. 10, the tendency of the presence or absence of the intermediate light shielding plate is very well matched, and it can be seen that the intermediate light shielding plate acts effectively.

図15は、本発明の第2の実施例で、対物レンズ21の後方(ビームスプリタ23と集光レンズ22の間)に第1の中間遮光板31aと第2の中間遮光板31bを設けたものである。表面反射ビーム50aおよび裏面反射ビーム60aはそれぞれFar側の表面反射ビーム、裏面反射ビームを、表面反射ビーム50bおよび裏面反射ビーム60bはそれぞれNear側の表面反射ビーム、裏面反射ビームを表しているが、計測対象物表面10a、 計測対象物裏面10b、表面反射スポット42、裏面反射スポット62等、説明に直接影響しない部分は、煩雑になることを避けるためFar側しか図には記載されていない。
Far側における表面反射ビーム50aは、対物レンズ21でわずかに収束されて集光レンズ22に入射し、集光レンズ22によって遮光板30の手前に検出器側表面反射スポット55aが形成される。これに対して裏面反射スポット62の位置は、表面反射スポット52よりもFar側にあるため、対物レンズ21によってより早く収束し、中間遮光板31aによって大部分がこれに遮られる。従って、光検出器24に裏面反射ビーム60aの大部分は到達しない。しかし表面反射ビーム50aの中間遮光板31aの位置におけるビーム径は、中間遮光板31aの径より数倍大きいため、表面反射ビーム50aの強度の低下は少ない。従って、光検出器24で検出されるビーム重心位置は下側となり、測定対象物はFar側であると判定することができる。
FIG. 15 shows a second embodiment of the present invention, in which a first intermediate light shielding plate 31a and a second intermediate light shielding plate 31b are provided behind the objective lens 21 (between the beam splitter 23 and the condenser lens 22). Is. The front surface reflected beam 50a and the back surface reflected beam 60a represent the front surface reflected beam and the back surface reflected beam on the Far side, respectively. The front surface reflected beam 50b and the back surface reflected beam 60b represent the front surface reflected beam and the back surface reflected beam on the Near side, respectively. The parts that do not directly affect the explanation, such as the measurement object surface 10a, the measurement object back surface 10b, the front surface reflection spot 42, and the back surface reflection spot 62, are shown only in the Far side in order to avoid complication.
The surface-reflected beam 50 a on the Far side is slightly converged by the objective lens 21 and enters the condenser lens 22, and a detector-side surface reflection spot 55 a is formed in front of the light shielding plate 30 by the condenser lens 22. On the other hand, since the position of the back surface reflection spot 62 is on the Far side with respect to the front surface reflection spot 52, it converges more quickly by the objective lens 21 and is largely blocked by the intermediate light shielding plate 31a. Therefore, most of the back surface reflected beam 60a does not reach the photodetector 24. However, since the beam diameter of the surface reflected beam 50a at the position of the intermediate light shielding plate 31a is several times larger than the diameter of the intermediate light shielding plate 31a, the intensity of the surface reflected beam 50a is hardly lowered. Therefore, the center of gravity of the beam detected by the photodetector 24 is on the lower side, and it can be determined that the measurement object is on the Far side.

一方Near側における表面反射ビーム50bは、対物レンズ21でわずかに発散して集光レンズ22に入射し、集光レンズ22によって遮光板30の奥に検出器側表面反射スポット55bが形成される。これに対して裏面反射ビーム60bは、対物レンズ21によって表面反射ビーム50bより早く収束する。しかし、Far側のときよりは収束の度合いが小さいので、中間遮光板31aの位置に於いてはまだ大きな径を有し、中間遮光板31aでは十分除去することができない。
そこで第2の中間遮光板31bを中間遮光板31aより集光レンズ22側に設けることにより、裏面反射ビーム60bを除去する。ここでも表面反射ビーム50bの中間遮光板31aおよび中間遮光板31bの位置におけるビーム径は、中間遮光板31aおよび中間遮光板31bの径より数倍大きいため、表面反射ビーム50bの強度の低下は少ない。従って、光検出器24で検出されるビーム重心位置は上側となり、測定対象物はNear側であると判定することができる(図16参照)。
On the other hand, the surface-reflected beam 50 b on the Near side is slightly diverged by the objective lens 21 and enters the condenser lens 22, and a detector-side surface reflection spot 55 b is formed in the back of the light shielding plate 30 by the condenser lens 22. On the other hand, the back surface reflected beam 60b is converged earlier by the objective lens 21 than the front surface reflected beam 50b. However, since the degree of convergence is smaller than that at the Far side, the intermediate light shielding plate 31a still has a large diameter and cannot be sufficiently removed by the intermediate light shielding plate 31a.
Therefore, the back surface reflected beam 60b is removed by providing the second intermediate light shielding plate 31b closer to the condenser lens 22 than the intermediate light shielding plate 31a. Also here, since the beam diameters of the surface reflected beam 50b at the positions of the intermediate light shielding plate 31a and the intermediate light shielding plate 31b are several times larger than the diameters of the intermediate light shielding plate 31a and the intermediate light shielding plate 31b, the decrease in the intensity of the surface reflected beam 50b is small. . Therefore, the position of the center of gravity of the beam detected by the photodetector 24 is on the upper side, and it can be determined that the measurement object is on the Near side (see FIG. 16).

図17は、本発明の第3の実施例である。
これは、図13における中間遮蔽板31の別の形態の例である。対物レンズ21と集光レンズ22の中間に装入する中間遮光板31は円形ではなく、長手方向が遮光板30の遮光境界と略平行で、その遮光境界と垂直方向の長さが対物レンズ21の開口数で決まる径の1/20以上かつ1/4以下であるような矩形を有していることが特徴である。全体構成は図13と同じであるので、中間遮光板31を光の進行方向に見た図を示した。
図中ハッチングを施した矩形の部分が遮光板30で,表面反射ビーム50の外縁、裏面反射ビーム60の外縁および矩形の中間遮光板31のみが描かれている。この図からわかるように、表面反射ビ−ム50の遮られる領域の割合に対して、裏面反射ビーム60が遮られる領域の割合の方が遙かに大きいため、裏面反射ビーム60が有効に除去され、表面反射ビームの大部分は残存する。
円形の中間遮光板と比較すると、表面反射ビーム50を遮る影響がやや大きいという短所があるが、製造が容易であること、光学系内への設置が容易である。また、円形の中間遮光板の場合は光検出器におけるビームの形状は中心部分の欠けた半円であるのに対して、矩形とした場合は円の中心を通る帯状の部分が欠けた形状の上又は下半分となる。そのために、矩形の中間遮光板では中心に近い幅の広い部分が欠ける。そのために矩形とした場合には半円形とした場合よりもビームの上・下の重心位置の分離がより明確になるというメリットを有している。
この形態の中間遮蔽板は図13の構成に限ることなく使用することができる。
FIG. 17 shows a third embodiment of the present invention.
This is an example of another form of the intermediate shielding plate 31 in FIG. The intermediate light shielding plate 31 inserted between the objective lens 21 and the condenser lens 22 is not circular, the longitudinal direction is substantially parallel to the light shielding boundary of the light shielding plate 30, and the length in the direction perpendicular to the light shielding boundary is the objective lens 21. It is characterized by having a rectangle that is 1/20 or more and 1/4 or less of the diameter determined by the numerical aperture. Since the overall configuration is the same as that in FIG. 13, a view of the intermediate light shielding plate 31 viewed in the light traveling direction is shown.
In the figure, the hatched rectangular portion is the light shielding plate 30, and only the outer edge of the front surface reflected beam 50, the outer edge of the back surface reflected beam 60, and the rectangular intermediate light shielding plate 31 are drawn. As can be seen from this figure, since the ratio of the area where the back surface reflected beam 60 is blocked is much larger than the ratio of the area where the surface reflecting beam 50 is blocked, the back surface reflected beam 60 is effectively removed. And most of the surface reflected beam remains.
Compared with a circular intermediate light shielding plate, there is a disadvantage that the influence of shielding the surface reflection beam 50 is somewhat large, but it is easy to manufacture and is easy to install in the optical system. In the case of a circular intermediate shading plate, the shape of the beam in the photodetector is a semicircle lacking the central portion, whereas in the case of a rectangular shape, the shape of the band-like portion passing through the center of the circle is missing. The upper or lower half. For this reason, the rectangular intermediate light shielding plate lacks a wide portion close to the center. Therefore, the rectangular shape has an advantage that the separation of the center of gravity position above and below the beam becomes clearer than the semicircular shape.
The intermediate shielding plate of this form can be used without being limited to the configuration of FIG.

図18は、本発明の第4の実施例である。これは、対物レンズ211と集光レンズ22の間に中間遮光板31を設けた第1の実施例に加えて、対物レンズ21の前面に計測対象物の表裏面から反射されたビームの対物レンズ21に対する取り込み角を制限するために、円形開口絞り32(対物レンズ絞り)を対物レンズ21の前面に設けたことが特徴である。
図10においては、1枚の中間遮光板31ではδf=0を境に、光検出器24の出力範囲をNear側とFar側で分離することができなかった。このときの対物レンズ21の開口数(N.A.)は0.5であったが、本実施例では対物レンズ絞り32によって開口数を0.3程度に制限し、それ以外の条件は同一である。
結果は、中間遮光板31の位置が85mmから105mmの広い範囲で1枚の中間遮光板31でNear−Farの分離が可能になった。開口数を制限したことによる効果の特徴は、δfの全域で光検出器24の出力が光軸に近い+側に引き寄せられる影響が小さくなったことである。これは、図7において説明したとおり、 計測にとって最も大きな阻害要因は照射ビーム40のうちの入射角の大きい成分が裏面反射したものであるが、これを円形開口絞りで除去したことによる(図19参照)。
なお、対物レンズ絞りは、絞り量を可変とすることができることは勿論である。
FIG. 18 shows a fourth embodiment of the present invention. This is because, in addition to the first embodiment in which the intermediate light shielding plate 31 is provided between the objective lens 211 and the condenser lens 22, the objective lens of the beam reflected from the front and back surfaces of the measurement object on the front surface of the objective lens 21. In order to limit the capture angle with respect to 21, a circular aperture stop 32 (objective lens stop) is provided in front of the objective lens 21.
In FIG. 10, the output range of the photodetector 24 cannot be separated on the Near side and the Far side with δf = 0 as a boundary with one intermediate light shielding plate 31. The numerical aperture (NA) of the objective lens 21 at this time was 0.5, but in this embodiment, the numerical aperture is limited to about 0.3 by the objective lens stop 32, and other conditions are the same.
As a result, Near-Far separation can be performed with one intermediate light shielding plate 31 in a wide range of the position of the intermediate light shielding plate 31 from 85 mm to 105 mm. A feature of the effect obtained by limiting the numerical aperture is that the influence of the output of the photodetector 24 being drawn toward the + side close to the optical axis is reduced over the entire range of Δf. As described with reference to FIG. 7, this is because the largest impediment to the measurement is that the component having a large incident angle of the irradiation beam 40 is reflected from the back surface, but this is removed by the circular aperture stop (FIG. 19). reference).
Needless to say, the aperture of the objective lens can be made variable.

以上説明してきたように、本発明によれば、裏面反射がある透明性計測対象物において、計測の傷害となる裏面反射ビームを、対物レンズの後方に装入した1枚以上の中間遮光板もしくは対物レンズに計測対象物裏面から反射して入射するビ−ムの角度を制限する円形開口絞りもしくはその両者を用いることにより、裏面反射ビームの影響を有効に除去することが可能となり、計測表面との距離を高精度に判定することが可能になる。   As described above, according to the present invention, in the transparent measurement object with back reflection, one or more intermediate light-shielding plates or back-reflection beams that cause measurement damage are inserted behind the objective lens. By using a circular aperture stop that restricts the angle of the beam that is reflected from the back of the object to be measured and incident on the objective lens, or both of them, it is possible to effectively remove the influence of the back surface reflected beam. Can be determined with high accuracy.

従来のNear-Far型位置判定装置の判定原理を説明するための模式図である。It is a schematic diagram for demonstrating the determination principle of the conventional Near-Far type position determination apparatus. 従来のNear-Far型位置判定装置の判定原理を説明するための第2の模式図である。FIG. 10 is a second schematic diagram for explaining a determination principle of a conventional Near-Far type position determination device. 従来のNear-Far型位置判定装置の判定原理を説明するための第3の模式図である。FIG. 10 is a third schematic diagram for explaining a determination principle of a conventional Near-Far type position determination device. 従来のNear-Far型位置判定装置の測定結果の問題のない例を示すグラフである。It is a graph which shows the example without a problem of the measurement result of the conventional Near-Far type position determination apparatus. 従来のNear-Far型位置判定装置では測定ができない例を示す図グラフである。It is a graph which shows the example which cannot measure with the conventional Near-Far type | mold position determination apparatus. 従来のNear-Far型位置判定装置における裏面反射ビームを含むビームの進路を示す図である。It is a figure which shows the course of the beam containing the back surface reflected beam in the conventional Near-Far type position determination apparatus. 透明性の測定対象物における表・裏面反射を詳細に説明する図である。It is a figure explaining the front and back surface reflection in the measuring object of transparency in detail. 裏面反射による反射スポット位置が、照射ビームの入射角に依存し、入射角の大きい成分がより大きな悪影響を及ぼすことを示す図である。It is a figure which shows that the reflected spot position by back surface reflection is dependent on the incident angle of an irradiation beam, and a component with a large incident angle has a big bad influence. 中間遮光板を装入することによって裏面反射ビームを有効に除去でき、位置判定が可能になることを示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows that a back surface reflected beam can be removed effectively by inserting an intermediate | middle light-shielding plate, and a position determination is attained. 複数の中間遮光板によって測定対象物との距離の範囲ごとに裏面反射ビームを有効に除去でき、位置の判定が可能になることを示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows that a back surface reflected beam can be effectively removed for every range of distance with a measuring object with a plurality of intermediate shading plates, and a position can be determined. 中間遮光板の半径とビーム重心との関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the radius of an intermediate | middle light-shielding plate, and a beam gravity center. 中間遮蔽板の半径とビーム強度の関係を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the relationship between the radius of an intermediate shielding board, and beam intensity. 対物レンズ21と集光レンズ22の中間に、中間遮光板31を装入した位置判定装置の最も基本的な一実施例の模式図である。FIG. 2 is a schematic diagram of a most basic example of a position determination device in which an intermediate light shielding plate 31 is inserted between an objective lens 21 and a condenser lens 22; 本発明の基本的な実施例によって得られた計測データのグラフである。It is a graph of the measurement data obtained by the basic Example of this invention. 対物レンズ21と集光レンズ22の中間に、第1および第2の中間遮光板31a,31bを装入した、本発明の第2の実施例の模式図である。FIG. 4 is a schematic diagram of a second embodiment of the present invention in which first and second intermediate light shielding plates 31a and 31b are inserted between the objective lens 21 and the condenser lens 22. 中間遮光板を二枚組み合わせた場合のビーム重心位置を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the beam gravity center position at the time of combining two intermediate | middle light shielding plates. 中間遮光板の形状を矩形にしたもので、本発明の第3の実施例である。This is a third embodiment of the present invention in which the shape of the intermediate light shielding plate is rectangular. 対物レンズ21と集光レンズ22の中間に中間遮光板31を装入し、さらに対物レンズの物体側入射部に円形開口を有する絞りを設けた、本発明の第4の実施例の模式図Schematic diagram of the fourth embodiment of the present invention, in which an intermediate light shielding plate 31 is inserted between the objective lens 21 and the condenser lens 22, and a stop having a circular opening is provided at the object side incident portion of the objective lens. 第4の実施例におけるビーム重心の変化を示すシミュレーション結果のグラフである。It is a graph of the simulation result which shows the change of the beam gravity center in a 4th Example.

符号の説明Explanation of symbols

10 計測対象物
10a 計測対象物表面
10b 計測対象物裏面
15 所定位置
20 光軸
21 対物レンズ
22 集光レンズ
23 ビームスプリッタ
24 光検出器
25 照射光源
26 絞り
27 照射レンズ
30 遮光板
31 中間遮光板
31a 中間遮光板
31b 中間遮光板
32 対物レンズ絞り
40 照射ビーム
40a 照射ビーム
40b 照射ビーム
41 照射ビーム
42 照射ビームスポット
50 表面反射ビーム
50a 表面反射ビーム
50b 表面反射ビーム
51 表面反射点
52 表面反射スポット
55 検出器側表面反射スポット
55a 検出器側表面反射スポット
55b 検出器側表面反射スポット
60 裏面反射ビーム
60a 裏面反射ビーム
60b 裏面反射ビーム
61 裏面反射点
62 裏面反射スポット
63 表面射出点
64 中間裏面反射スポット
65 検出器側裏面反射スポット
DESCRIPTION OF SYMBOLS 10 Measurement object 10a Measurement object surface 10b Measurement object back surface 15 Predetermined position 20 Optical axis 21 Objective lens 22 Condensing lens 23 Beam splitter 24 Photo detector 25 Irradiation light source 26 Diaphragm 27 Irradiation lens 30 Light shielding plate 31 Intermediate light shielding plate 31a Intermediate light shielding plate 31b Intermediate light shielding plate 32 Objective lens stop 40 Irradiation beam 40a Irradiation beam 40b Irradiation beam 41 Irradiation beam spot 50 Irradiation beam spot 50a Surface reflection beam 50b Surface reflection beam 50b Surface reflection beam 51 Surface reflection spot 52 Surface reflection spot 55 Detector Side surface reflection spot 55a Detector side surface reflection spot 55b Detector side surface reflection spot 60 Back surface reflection beam 60a Back surface reflection beam 60b Back surface reflection beam 61 Back surface reflection point 62 Back surface reflection spot 63 Surface exit point 64 Intermediate back surface reflection spot 65 Vessel side back reflection spot

Claims (8)

計測対象物の位置が所定の位置範囲内か否かを判定する装置であって、計測対象物表面に対してその光軸が略垂直に保持された対物レンズと、該対物レンズを通して照明光を前記所定位置に集光する照明装置と、該対物レンズ光軸と光学的に等価な軸上に設置され計測対象物によって反射しさらに対物レンズを照明光とは逆方向に透過したビームを集光する集光レンズと、該集光レンズの後焦点面上において光軸上もしくは光軸直近を通る直線を境界として後焦平面の半分を遮蔽する遮光板と、該遮光板の光進行方向に置かれかつ到達した光の強度の分布から強度中心位置を算出する光検出器とを備えた位置判定装置において、前記対物レンズと前記遮光板の中間の光軸上の少なくとも1箇所に光軸を略対称軸とする領域を通り前記光検出器に至るビームの中央部を遮蔽する中間遮光板を有することを特徴とする位置判定装置。 An apparatus for determining whether the position of a measurement object is within a predetermined position range, an objective lens whose optical axis is held substantially perpendicular to the surface of the measurement object, and illumination light through the objective lens An illuminating device that collects light at the predetermined position, and a beam that is installed on an optically equivalent axis to the objective lens optical axis and is reflected by the measurement object and further passes through the objective lens in the direction opposite to the illumination light. A condensing lens, a light shielding plate that shields half of the back focal plane with a straight line passing on or near the optical axis on the rear focal plane of the condensing lens, and a light traveling direction of the light shielding plate. And a photodetector for calculating an intensity center position from the distribution of the intensity of the light that has arrived, wherein the optical axis is substantially at least at one place on the optical axis between the objective lens and the light shielding plate. To the photodetector through the region of symmetry A position determination device having an intermediate light shielding plate that shields a central portion of a beam that reaches. 中間遮光板の少なくとも1枚が、光軸がその対称軸とほぼ一致し、ビームの直径よりも小径の円形であることを特徴とする請求項1に記載の位置判定装置。 2. The position determination device according to claim 1, wherein at least one of the intermediate light shielding plates has a circular shape whose optical axis substantially coincides with the symmetry axis and whose diameter is smaller than the diameter of the beam. 中間遮光板の少なくとも1枚が、その長手方向が前記遮光板の遮蔽境界と略平行となるように置かれかつ光軸がその対称軸とほぼ一致し、短辺がビームの直径よりも短い矩形であることを特徴とする請求項1又は2のいずれかに記載の位置判定装置。 A rectangle in which at least one of the intermediate light shielding plates is placed so that its longitudinal direction is substantially parallel to the shielding boundary of the light shielding plate, the optical axis substantially coincides with the symmetry axis, and the short side is shorter than the beam diameter. The position determination apparatus according to claim 1, wherein the position determination apparatus is a position determination apparatus. 中間遮光板の位置が、対物レンズから対物レンズ焦点距離の8倍以上であることを特徴とする請求項1から3のいずれかに記載の位置判定装置。 The position determination device according to any one of claims 1 to 3, wherein the position of the intermediate light shielding plate is at least eight times the focal length of the objective lens from the objective lens. 中間遮光板の遮光板遮蔽境界と垂直な方向の最大幅が、対物レンズ有効径もしくは対物レンズ主面位置における照射ビーム径の1/20以上かつ1/4以下の範囲内であることを特徴とする請求項1から4のいずれかに記載の位置判定装置。 The maximum width of the intermediate light shielding plate in the direction perpendicular to the light shielding plate shielding boundary is within the range of 1/20 or more and 1/4 or less of the effective diameter of the objective lens or the irradiation beam diameter at the objective lens main surface position. The position determination apparatus according to any one of claims 1 to 4. 対物レンズの計測対象物側に、光軸を略中心とする円形開口を有する絞りを設け、該絞りの開口部周辺が前記光検出器に至る波長域の光を遮蔽する素材であることを特徴とする請求項1から5のいずれかに記載の位置判定装置。 A stop having a circular aperture substantially centered on the optical axis is provided on the measurement object side of the objective lens, and the periphery of the aperture of the stop is a material that shields light in the wavelength region that reaches the photodetector. The position determination device according to claim 1. 対物レンズの計測対象物側に、光軸を略中心としかつ開口部長辺が前記遮光板の遮光境界と略平行であるような長方形の開口を有する絞りを設け、該絞りの開口部周辺が前記光検出器に至る波長域の光を遮蔽する素材であることを特徴とする請求項1から6のいずれかに記載の位置判定装置。 Provided on the object side of the objective lens is a stop having a rectangular opening with the optical axis substantially in the center and the long side of the opening being substantially parallel to the light-shielding boundary of the light-shielding plate. The position determination device according to any one of claims 1 to 6, wherein the position determination device is a material that blocks light in a wavelength range that reaches the photodetector. 位置判定装置の判定結果に応じて計測対象物との相対的な位置関係を変化させる駆動機構を有することを特徴とする請求項1から7のいずれかに記載の位置判定装置。 The position determination apparatus according to claim 1, further comprising a drive mechanism that changes a relative positional relationship with the measurement object in accordance with a determination result of the position determination apparatus.
JP2007043500A 2007-02-23 2007-02-23 Position determining device Pending JP2008209119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043500A JP2008209119A (en) 2007-02-23 2007-02-23 Position determining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043500A JP2008209119A (en) 2007-02-23 2007-02-23 Position determining device

Publications (1)

Publication Number Publication Date
JP2008209119A true JP2008209119A (en) 2008-09-11

Family

ID=39785561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043500A Pending JP2008209119A (en) 2007-02-23 2007-02-23 Position determining device

Country Status (1)

Country Link
JP (1) JP2008209119A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142462A (en) * 1991-11-18 1993-06-11 Olympus Optical Co Ltd Focusing device
JPH10142489A (en) * 1996-11-15 1998-05-29 Toray Ind Inc Method and device for focus detection
JPH10162375A (en) * 1996-11-29 1998-06-19 Mitsutoyo Corp Focusing servo mechanism
JP2002310623A (en) * 2001-04-06 2002-10-23 Fotonikusu:Kk Surface shape measuring method and surface shape measuring instrument
JP2006184777A (en) * 2004-12-28 2006-07-13 Nikon Corp Focus detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142462A (en) * 1991-11-18 1993-06-11 Olympus Optical Co Ltd Focusing device
JPH10142489A (en) * 1996-11-15 1998-05-29 Toray Ind Inc Method and device for focus detection
JPH10162375A (en) * 1996-11-29 1998-06-19 Mitsutoyo Corp Focusing servo mechanism
JP2002310623A (en) * 2001-04-06 2002-10-23 Fotonikusu:Kk Surface shape measuring method and surface shape measuring instrument
JP2006184777A (en) * 2004-12-28 2006-07-13 Nikon Corp Focus detector

Similar Documents

Publication Publication Date Title
JP4760564B2 (en) Pattern shape defect detection method and detection apparatus
EP2426457A2 (en) Inspection device for defect inspection
WO2016188378A1 (en) Measurement device and measurement method for thin film provided with transparent substrate
JP2008032659A (en) Optical system for particle analyzer, and particle analyzer using it
WO2005015120A3 (en) Method and arrangement for focusing detection in an optical measurement and method and arrangement for migitating the effect of surface reflection
CN107561007A (en) A kind of measured thin film apparatus and method
JPH11257917A (en) Reflection type optical sensor
CN107782732B (en) Automatic focusing system, method and image detection instrument
MX2015004934A (en) Facility for measuring the thickness of the wall of containers.
JPH0743110A (en) Two-stage detecting type non-contact positioning device
JP7411682B2 (en) Light sheet microscopy and methods for determining the refractive index of objects in the sample space
JP2003500692A (en) Scanning device mainly for sensing the fluorescent layer
JP5337419B2 (en) Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor
JP6142996B2 (en) Via shape measuring device and via inspection device
JP2008209119A (en) Position determining device
KR101447857B1 (en) Particle inspectiing apparatus for lens module
JP2012212018A (en) Focal point maintenance device and microscope device
ES2883932T3 (en) Optical measurement of surface roughness
KR102163216B1 (en) Optical detecting device and control method the same
JP2004144502A (en) Liquid level detection system
JPH03276005A (en) Shape measuring device
JP2010164354A (en) Autocollimator
JP2016114602A (en) Surface shape measurement device, and defect determination device
JP2008032669A5 (en)
JPH0821798A (en) Method and apparatus for detecting foreign matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626