JP2008207434A - Blow molding machine with air conditioning - Google Patents

Blow molding machine with air conditioning Download PDF

Info

Publication number
JP2008207434A
JP2008207434A JP2007045813A JP2007045813A JP2008207434A JP 2008207434 A JP2008207434 A JP 2008207434A JP 2007045813 A JP2007045813 A JP 2007045813A JP 2007045813 A JP2007045813 A JP 2007045813A JP 2008207434 A JP2008207434 A JP 2008207434A
Authority
JP
Japan
Prior art keywords
air
temperature
blow
zone
molding machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007045813A
Other languages
Japanese (ja)
Other versions
JP4831353B2 (en
Inventor
Yosuke Matsushita
洋祐 松下
Noboru Sawane
登 澤根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2007045813A priority Critical patent/JP4831353B2/en
Priority to EP08711470.8A priority patent/EP2116353B1/en
Priority to KR1020097017098A priority patent/KR101350703B1/en
Priority to CN2008800059474A priority patent/CN101622119B/en
Priority to US12/528,319 priority patent/US8167601B2/en
Priority to PCT/JP2008/052646 priority patent/WO2008105253A1/en
Publication of JP2008207434A publication Critical patent/JP2008207434A/en
Application granted granted Critical
Publication of JP4831353B2 publication Critical patent/JP4831353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4268Auxiliary operations during the blow-moulding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • B29C49/42845Recycling or reusing of fluid, e.g. pressure
    • B29C49/42855Blowing fluids, e.g. reducing fluid consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/4284Means for recycling or reusing auxiliaries or materials, e.g. blowing fluids or energy
    • B29C49/4286Recycling or reusing of heat energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blow molding machine with air conditioning which can produce bottles with the continuous data of the bottles being the final shape stabilized even when an outside air temperature (temperature in a building) varies. <P>SOLUTION: High-temperature air sucked from a heating zone 1 is filtered by a primary filter 6 and a secondary filter 7, is subjected to heat exchange with a cooling water coil 8, is pressurized/sent by an air blower 10 to generate low temperature air, and part of the low temperature air is returned to a blow zone 2 through a return duct 13. A controller 23, based on the feedback signal of a temperature sensor 18, by driving a primary electromagnetic valve 81 and a secondary electromagnetic valve 91 or a motor 11, or the combination of these, controls the temperature of the low-temperature air returned to the blow zone 2 to be a set temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空調付きブロー成形機、特に、プリフォームを基にしたボトルの二軸延伸ブロー成形において、自身が置かれた環境の温度が変動する場合であっても最終形状であるボトルの計量値を安定させて生産することが可能な空調付きブロー成形機に関する。   The present invention relates to an air-conditioning blow molding machine, and in particular, in biaxial stretch blow molding of a bottle based on a preform, even when the temperature of the environment in which it is placed fluctuates, the final shape of the bottle is measured. The present invention relates to an air-conditioned blow molding machine capable of producing a stable value.

ペットボトル等のプラスチック容器を成形する方法として二軸延伸ブロー成形法が広く用いられている。この成形方法は、射出成形によって得られたプリフォーム(半製品)の胴壁部をヒータによって加熱した後に、その加熱プリフォームを温度調節されたブロー用金型にセットし、その加熱プリフォームの内部に延伸ロッドを挿入し、その延伸ロッドによって加熱プリフォームを軸方向に伸ばしながら同時に延伸ロッドの側面から高圧空気を噴射して半径方向に対しても伸ばしながら成形する方法である。
ところで、上記二軸延伸ブロー成形において、射出金型に結露が生じプリフォームの成形に影響を与えることを防止するために、プリフォームを成形する射出成形ステーションとプリフォームを延伸ブローするブロー成形ステーションとを隔離シートで隔て、更に射出成形ステーションの空気を空調装置によって吸引し、除湿装置を通過させて、乾燥度を高めた空気を再び射出成形ステーションに吹き込むことによって、射出金型に結露が生じることを防止するように構成された射出延伸ブロー成形機の空調装置が知られている(例えば、特許文献1を参照。)。
A biaxial stretch blow molding method is widely used as a method of molding a plastic container such as a PET bottle. In this molding method, the body wall portion of a preform (semi-finished product) obtained by injection molding is heated by a heater, and then the heated preform is set in a temperature-controlled blow mold. This is a method in which a stretching rod is inserted into the interior, and the heating preform is stretched in the axial direction by the stretching rod, and at the same time, high-pressure air is injected from the side surface of the stretching rod to stretch in the radial direction.
By the way, in the above biaxial stretch blow molding, in order to prevent dew condensation on the injection mold and affect the molding of the preform, an injection molding station for molding the preform and a blow molding station for stretching and blowing the preform. Is separated by a separator sheet, and air from the injection molding station is sucked by an air conditioner, passed through a dehumidifying device, and air having a higher degree of dryness is blown into the injection molding station again to cause condensation in the injection mold. An air conditioner for an injection stretch blow molding machine configured to prevent this is known (see, for example, Patent Document 1).

特開2000−202895号公報JP 2000-202895 A

外気温度が変動すると、ブロー成形機が置かれた建屋内の温度が変動し、その結果、ブロー成形機内の雰囲気温度が変化し、プリフォームの加熱温度やブロー成形用の金型の温度が設定温度であるにもかかわらず、最終形状であるボトルの計量値が変化し、安定してボトルを生産することが困難な場合がある。
しかしながら、上記射出延伸ブロー成形機の空調装置では、射出成形ステーションの除湿のみを行い、延伸ブロー成形が行われるブロー成形ステーションの空調管理は行われておらず、依然として外気の温度変動により最終形状のボトルの計量値が変化する問題が内包したままとなっている。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的はプリフォームを基にしたボトルの二軸延伸ブロー成形において、自身が置かれた環境の温度が変動する場合であっても最終形状であるボトルの計量値を安定させて生産することが可能な空調付きブロー成形機を提供することにある。
When the outside air temperature fluctuates, the temperature inside the building where the blow molding machine is placed fluctuates, and as a result, the atmospheric temperature inside the blow molding machine changes, and the preform heating temperature and blow mold temperature are set. Despite the temperature, the measured value of the bottle that is the final shape may change, and it may be difficult to stably produce the bottle.
However, in the air conditioner of the injection stretch blow molding machine, only the dehumidification of the injection molding station is performed, and the air conditioning control of the blow molding station where the stretch blow molding is performed is not performed, and the final shape is still due to the temperature fluctuation of the outside air. The problem of changing the bottle's measured value remains inherent.
Therefore, the present invention has been made in view of the problems of the prior art, and its purpose is to change the temperature of the environment in which it is placed in the biaxial stretch blow molding of a bottle based on a preform. Even if it is a case, it is providing the blow molding machine with an air conditioning which can stabilize and produce the measured value of the bottle which is the last shape.

前記目的を達成するために請求項1に記載の空調付きブロー成形機では、プリフォームを加熱する加熱ゾーンと、該プリフォームを二軸に延伸ブローするブローゾーンとを備え、更に該加熱ゾーンには吸込口および該ブローゾーンには吹出口が各々配設されて成るブロー成形機であって、前記加熱ゾーンから吸引した空気を濾過し清浄な空気とし、該空気を更に前記吹出口において一定の温度/温度範囲かつ一定の流量/流量範囲となるように温度調節かつ流量調節し、該空気の一部又は全部を該吹出口から前記ブローゾーンへ再び戻して該ブローゾーンから前記加熱ゾーンの方向へ連続して流すことにより該加熱ゾーン及び該ブローゾーンの各雰囲気温度を一定に保持することを特徴とする。
上記空調付きブロー成形機では、加熱ゾーンから吸引し濾過した清浄な空気の一部又は全部を、吹出口において一定の温度および一定の流量にまで温度調節かつ流量調節した後にブローゾーンへ再び供給しブローゾーンから加熱ゾーンへ連続して流すことにより、ブローゾーン及び加熱ゾーンの各雰囲気温度を一定に保つようにする。このように一定の温度および一定の流量に調節された空気による冷却は、水冷等の間接冷却と違い、対象物に直接接触して熱を奪うため、冷却効率が非常に高くなる。それに加えて、その空気の流れをブローゾーンから加熱ゾーンへと整流することにより、対流による伝熱の影響を最小限に抑え、安定してブローゾーン及び加熱ゾーンの各雰囲気温度を一定に保つことが出来るようになる。また、加熱ゾーンから吸引した空気は濾過された清浄な状態になっているため、装置が置かれた建屋内にそのまま放出することが可能となる。従って、建屋内を陽圧に保持したい場合は、その空気の一部を建屋内に放出することにより、建屋内の空調管理も併せて行うことが出来るようになる。その結果、建屋内の温度が変動する場合であっても、最終形状のボトルの計量値が安定すると共に、ブローゾーン及び加熱ゾーンの温度管理ならびに建屋内の陽圧保持にかかるトータルのランニングコストが低減するようになる。また、清浄な空気をブローゾーンから加熱ゾーンへ連続して流すことは、本成形機内の清浄クリーン化も好適に達成されることになる。
In order to achieve the above object, the air-conditioning blow molding machine according to claim 1, further comprising: a heating zone for heating the preform; and a blow zone for stretching and blowing the preform biaxially; Is a blow molding machine in which a suction port and a blow-out port are respectively provided in the blow zone, and the air sucked from the heating zone is filtered into clean air, and the air is further fixed at the blow-out port. Adjust the temperature and flow rate so that the temperature / temperature range and a constant flow rate / flow rate range are obtained, and return part or all of the air from the blowout port to the blow zone again to the direction of the heating zone from the blow zone The atmospheric temperature of each of the heating zone and the blow zone is kept constant by continuously flowing into the heating zone.
In the above blow molding machine with air conditioning, a part or all of the clean air sucked and filtered from the heating zone is temperature-adjusted to a constant temperature and a constant flow rate at the outlet and then supplied again to the blow zone. By continuously flowing from the blow zone to the heating zone, the ambient temperatures of the blow zone and the heating zone are kept constant. In this way, cooling with air adjusted to a constant temperature and a constant flow rate, unlike indirect cooling such as water cooling, directly takes heat away from the object, resulting in a very high cooling efficiency. In addition, by rectifying the air flow from the blow zone to the heating zone, the influence of heat transfer by convection is minimized, and the ambient temperature of the blow zone and heating zone is kept constant. Will be able to. Moreover, since the air sucked from the heating zone is in a filtered and clean state, it can be discharged as it is into the building where the apparatus is placed. Therefore, when it is desired to keep the building at a positive pressure, it is possible to perform air conditioning management in the building by releasing a part of the air into the building. As a result, even if the temperature in the building fluctuates, the measured value of the final shape bottle is stabilized, and the total running cost for temperature management in the blow zone and heating zone and for maintaining positive pressure in the building is reduced. It will be reduced. In addition, by continuously flowing clean air from the blow zone to the heating zone, clean cleaning in the molding machine can be suitably achieved.

請求項2に記載の空調付きブロー成形機では、前記加熱ゾーンから吸引された空気は、流量調節機能を備えた第1冷却手段と対向し、更に送風手段によって圧送されながら前記第1冷却手段と熱交換を行うように構成されていることとした。
上記空調付きブロー成形機では、上記構成とすることにより、加熱ゾーンから吸引した高温の空気と第1冷却手段との間で熱交換を行う際に、第1冷却手段または送風手段のいずれか一方または双方を操作することにより、熱交換の熱伝達量を操作することが可能となり、その結果、精度の良い空気の温度制御が出来るようになる。
In the blow molding machine with air conditioning according to claim 2, the air sucked from the heating zone is opposed to the first cooling means having a flow rate adjusting function, and further while being pumped by the blowing means, the first cooling means It was configured to perform heat exchange.
In the above blow molding machine with air conditioning, when the heat exchange is performed between the high-temperature air sucked from the heating zone and the first cooling means, either the first cooling means or the blowing means is adopted. Alternatively, by operating both, it becomes possible to control the heat transfer amount of heat exchange, and as a result, it becomes possible to control the temperature of the air with high accuracy.

請求項3に記載の空調付きブロー成形機では、前記第1冷却手段は、別途設けられた流量調節機能を備えた第2冷却手段と熱交換を行うように構成されていることとした。
上記空調付きブロー成形機では、上記構成とすることにより、第1冷却手段が高温の空気から奪った熱は第2冷却手段によって好適に回収されるため、第1冷却手段の温度上昇が好適に抑制され、その結果、第1冷却手段と高温の空気との間の熱交換が好適に成され、精度良い空気の温度制御が出来るようになる。
In the blow molding machine with air conditioning according to claim 3, the first cooling means is configured to exchange heat with a second cooling means having a separately provided flow rate adjusting function.
In the above blow molding machine with air conditioning, by adopting the above configuration, the heat taken by the first cooling means from the high-temperature air is preferably recovered by the second cooling means. As a result, heat exchange between the first cooling means and the high-temperature air is suitably performed, and the temperature of the air can be accurately controlled.

請求項4に記載の空調付きブロー成形機では、前記送風手段から下流の流路は複数の流路に分岐され、一の分岐流路は前記ブローゾーンに帰還されるように構成されていることとした。
上記空調付きブロー成形機では、上記構成とすることにより、ブローゾーン及び加熱ゾーンの冷却に使用された清浄な空気の再利用が出来るようになる。
In the blow molding machine with air conditioning according to claim 4, the flow path downstream from the air blowing means is branched into a plurality of flow paths, and one branch flow path is configured to be returned to the blow zone. It was.
In the blow molding machine with air conditioning, the above-described configuration enables the reuse of clean air used for cooling the blow zone and the heating zone.

請求項5に記載の空調付きブロー成形機では、前記ブローゾーンに帰還される一の分岐流路は流量調節手段を備えていることとした。
上記空調付きブロー成形機では、上記構成とすることにより、一定流量に調節された一定温度の清浄な空気をブローゾーンへ再び供給することが出来るようになる。
In the blow molding machine with air conditioning according to claim 5, one branch flow path returned to the blow zone is provided with a flow rate adjusting means.
With the above-described blow molding machine with air conditioning, it is possible to supply clean air having a constant temperature adjusted to a constant flow rate to the blow zone again by adopting the above configuration.

請求項6に記載の空調付きブロー成形機では、前記複数の分岐流路を流れる複数の空気流の内、少なくとも一の空気流は自身の置かれた建屋内に放出されるように構成されていることとした。
上記空調付きブロー成形機では、上記構成とすることにより、成形機が設置されている建屋内の温度管理または圧力管理等も併せて行うことが出来るようになる。
The blow molding machine with air conditioning according to claim 6, wherein at least one of the plurality of airflows flowing through the plurality of branch passages is discharged into a building in which the airflow is placed. It was decided that
In the above blow molding machine with air conditioning, by adopting the above configuration, temperature management or pressure management of the building in which the molding machine is installed can be performed together.

請求項7に記載の空調付きブロー成形機では、前記吹出口から戻される空気の温度制御は、温度センサからの帰還信号を基に前記第1冷却手段および前記第2冷却手段または前記送風手段あるいはこれらの組み合わせを操作する制御手段によって行われるように構成されていることとした。
上記空調付きブロー成形機では、上記構成とすることにより、精度良い空気の温度制御が成されるようになる。
In the blow molding machine with air conditioning according to claim 7, the temperature control of the air returned from the air outlet is performed based on a feedback signal from a temperature sensor, the first cooling means and the second cooling means or the blower means or The control means for operating these combinations is configured to be performed.
In the air-conditioning blow molding machine, the above-described configuration enables accurate temperature control of the air.

本発明の空調付きブロー成形機によれば、加熱ゾーンから吸引・濾過され吹出口において一定の温度および一定の流量に調節された清浄な空気の一部又は全部をブローゾーンへ再び戻し、ブローゾーンから加熱ゾーンに連続して流すことにより、ブローゾーン及び加熱ゾーンの各雰囲気温度を一定に保持することが出来るようになる。これにより、外気温度(建屋内の温度)が変動する場合であっても、最終形状のボトルの計量値が安定し、ボトルの安定生産が可能となる。また、ブローゾーンへ戻される空気は加熱ゾーンを通り高温空気となって、吸込口から吸引されて第1冷却手段との間で熱交換を行い、更に送風手段によって圧送され低温空気となって、再利用されるように構成されている。一方、再利用されない残りの低温空気は建屋内に放出されるように構成されている。これにより、本成形機が設置されている建屋内の温度管理または圧力管理等も併せて行うことが出来るようになる。結果、ブローゾーン及び加熱ゾーンの温度管理ならびに建屋内の温度管理等にかかるトータルのランニングコストが低減するようになる。更に、ブローゾーンの吹出口から流出する空気は濾過された清浄な空気であり、その清浄な空気がブローゾーンから加熱ゾーンへ連続して供給されるため、ブローゾーンおよび加熱ゾーンの清浄クリーン化が好適に達成される。
また、ブローゾーンへ戻される空気の温度調節は、第1冷却手段および第2冷却手段の操作、または送風手段の操作あるいはこれらを適宜組み合わせた形態で成されるため、精度良く成されることになる。
According to the air-conditioning blow molding machine of the present invention, a part or all of clean air sucked and filtered from the heating zone and adjusted to a constant temperature and a constant flow rate at the outlet is returned to the blow zone. By continuously flowing from the heating zone to the heating zone, it is possible to keep the atmospheric temperatures of the blow zone and the heating zone constant. Thereby, even when the outside air temperature (the temperature in the building) fluctuates, the measured value of the final shape bottle is stabilized, and the bottle can be stably produced. Further, the air returned to the blow zone passes through the heating zone and becomes high-temperature air, is sucked from the suction port and performs heat exchange with the first cooling means, and is further pumped by the blowing means to become low-temperature air. It is configured to be reused. On the other hand, the remaining low-temperature air that is not reused is configured to be discharged into the building. Thereby, temperature management or pressure management of the building in which the molding machine is installed can be performed together. As a result, the total running cost for the temperature management of the blow zone and the heating zone and the temperature management of the building is reduced. Furthermore, the air flowing out from the blow zone outlet is clean, filtered air, and the clean air is continuously supplied from the blow zone to the heating zone. Preferably achieved.
In addition, the temperature of the air returned to the blow zone is adjusted with high accuracy because the operation of the first cooling means and the second cooling means, the operation of the air blowing means, or a combination of these is appropriately performed. Become.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明の空調付きブロー成形機100を示す構成説明図である。
この空調付きブロー成形機100は、プリフォームPをヒータHによって予熱を行う加熱ゾーン1と、予熱したプリフォームPを金型Mへセットし延伸ロッドR及び高圧ガスによって二軸延伸ブロー成形を施すブローゾーン2と、これらのゾーンを覆うハウジング3と、加熱ゾーン1の高温空気を吸引する吸込口4と、吸込口4から流入した高温空気が流れる高温ダクト5と、その高温空気を濾過する粗目の1次フィルタ6と、同細目の2次フィルタ7と、高温空気から熱を奪う冷却水が流れる、第1冷却手段としての冷却水コイル8と、その冷却水の流量を調節する1次電磁弁81と、冷却水が奪った熱量を回収する冷水が流れる、第2冷却手段としての冷水コイル9と、その冷水の流量を調節する2次電磁弁91と、低温空気を下流へ送り出す送風手段としての送風機10と、送風機を駆動する電動機11と、低温空気が流れる低温ダクト12と、ブローゾーンへ通じる戻りダクト13と、ブローゾーンへ流れる低温空気の流量を調節する1次流調弁14と、建屋内へ通じる抽気ダクト15と、建屋内へ放出する低温空気の流量を調節する2次流調弁16と、低温空気が流出する吹出口17と、ブローゾーンへ流入する低温空気の温度を計測するイン側温度センサ18と、加熱ゾーンから流出する高温空気の温度を計測するアウト側温度センサ19と、イン側温度センサ18及びアウト側温度センサ19からの計測信号を取り込んでその温度測定値を表示すると共にユーザが設定温度を入力するイン側温度モニタ20およびアウト側温度モニタ21と、戻りダクト13を流れる流量を計測する流量計22と、温度測定値と設定温度との偏差に基づいて1次電磁弁81,2次電磁弁91および電動機11の回転数を制御する制御手段としての制御装置23とを具備して構成されている。なお、図示の都合上、冷水コイル9は冷却水コイル8と並列に高温空気と対向するように描かれているが、実際は高温空気と対向せずに冷却水コイル8と熱交換を行う形態で配設されている。
FIG. 1 is a configuration explanatory view showing an air-conditioning blow molding machine 100 of the present invention.
This blow molding machine 100 with air conditioning is a heating zone 1 in which the preform P is preheated by a heater H, and the preheated preform P is set in a mold M and biaxially stretched blow molding is performed by a stretching rod R and high-pressure gas. Blow zone 2, housing 3 covering these zones, suction port 4 for sucking high-temperature air in heating zone 1, high-temperature duct 5 through which high-temperature air flowing in from suction port 4 flows, and coarseness for filtering the high-temperature air Primary filter 6, the same secondary filter 7, cooling water coil 8 as a first cooling means through which cooling water that takes heat away from high-temperature air flows, and a primary electromagnetic that adjusts the flow rate of the cooling water The cooling water coil 9 as the second cooling means, the secondary electromagnetic valve 91 for adjusting the flow rate of the cooling water, and the low temperature air are sent downstream. A blower 10 serving as a blowing means to be discharged, an electric motor 11 that drives the blower, a low-temperature duct 12 through which low-temperature air flows, a return duct 13 that leads to a blow zone, and a primary flow control that adjusts the flow rate of low-temperature air flowing into the blow zone A valve 14, a bleed duct 15 leading to the building, a secondary flow regulating valve 16 for adjusting the flow rate of the low-temperature air discharged into the building, an outlet 17 through which the low-temperature air flows out, and a low-temperature air flowing into the blow zone The in-side temperature sensor 18 for measuring the temperature of the air, the out-side temperature sensor 19 for measuring the temperature of the high-temperature air flowing out from the heating zone, and the measurement signals from the in-side temperature sensor 18 and the out-side temperature sensor 19 are taken in. The in-side temperature monitor 20 and the out-side temperature monitor 21 for displaying the temperature measurement value and inputting the set temperature by the user, and the return duct 13 flow. A flow meter 22 for measuring the quantity, and a control device 23 as a control means for controlling the number of revolutions of the primary solenoid valve 81, the secondary solenoid valve 91 and the electric motor 11 based on the deviation between the measured temperature value and the set temperature. It is comprised. For convenience of illustration, the chilled water coil 9 is drawn so as to face the high temperature air in parallel with the cooling water coil 8, but in actuality, heat exchange with the cooling water coil 8 is performed without facing the high temperature air. It is arranged.

加熱ゾーン1とブローゾーン2とは、気体の流入出が可能な簡易仕切Sによって仕切られ、空気の流れはブローゾーン2から加熱ゾーン1へ向かうように構成されている。また、後述するように、吹出口17から流出する空気は、その温度および流量が一定に保持された清浄な空気であり、その空気を連続して流すことにより、ブローゾーン2及び加熱ゾーン1の各雰囲気温度を一定に保持することが出来るようになる。従って、従来のブロー成形機に見られた、加熱温度や金型の温度が一定に制御されているにもかかわらず、外気温度の変動により、最終形状のボトルの計量値が変化するという問題は起きにくくなる。   The heating zone 1 and the blow zone 2 are partitioned by a simple partition S that allows gas to flow in and out, and the air flow is configured to go from the blow zone 2 to the heating zone 1. Further, as will be described later, the air flowing out from the blowout port 17 is clean air whose temperature and flow rate are kept constant, and by continuously flowing the air, the air in the blow zone 2 and the heating zone 1 Each atmospheric temperature can be kept constant. Therefore, the problem that the measured value of the final shape bottle changes due to fluctuations in the outside air temperature, despite the fact that the heating temperature and the mold temperature are controlled to be constant, as found in conventional blow molding machines, It becomes difficult to get up.

また、濾過され、温度調節および流量調節された空気を抽気して抽気ダクト15を介して建屋内に放出することにより、建屋内の陽圧保持に寄与することが出来るようになる。   Further, the filtered, temperature-adjusted and flow-adjusted air is extracted and discharged into the building through the extraction duct 15, thereby contributing to maintaining positive pressure in the building.

吹出口17からブローゾーン2へ戻される空気は、例えば20℃に保持され、ブローゾーン2から加熱加熱ゾーン1へ流れる過程で、熱を享受し、吸込口4の近傍では例えば50〜55℃にまで昇温している。その昇温した高温空気は高温ダクト5を通り、1次フィルタ6および2次フィルタ7を通過し、所定の清浄度レベルまで浄化される。   The air returned from the blower outlet 17 to the blow zone 2 is maintained at, for example, 20 ° C. and enjoys heat in the process of flowing from the blow zone 2 to the heating / heating zone 1, and is, for example, 50 to 55 ° C. in the vicinity of the suction port 4. The temperature has increased to. The heated hot air passes through the high temperature duct 5, passes through the primary filter 6 and the secondary filter 7, and is purified to a predetermined cleanliness level.

所定の清浄度レベルまで浄化された高温空気は、冷却水コイル8と接触しながら自身の熱を冷却水コイル8に与えると同時に冷却水コイル8からは冷熱を受け、更に送風機10によって圧送されて約20℃まで低下した低温空気となって、低温ダクト12を流れる。そして、低温ダクト12を流れる低温空気は、その一部が戻りダクト13を通りブローゾーン2へ再び戻り、その残りの低温空気は、抽気ダクト15を通り建屋内に放出される。なお、ブローゾーン2へ戻される空気の温度はイン側温度センサ18によって計測され、その計測信号はイン側温度モニタ20および制御装置23へ送信される。計測信号を受信したイン側温度モニタ20は温度指示を行い、他方、制御装置23は、その温度指示と設定温度の偏差をチェックし偏差が生じる場合は、1次電磁弁81を駆動して冷却水コイル8を流れる冷却水の流量を調節して高温空気と冷却水コイルの熱伝達量を増減させ、イン側温度センサ18の指示値が設定温度近傍となるように制御する。なお、制御装置23は1次電磁弁81を駆動して冷却水コイル8の流量を変える場合は、冷却水コイル8の余剰熱を冷水コイル9により回収させるために、その1次電磁弁81の駆動に合わせて2次電磁弁91を駆動して冷水コイル9の冷水の流量を増減させる。   The high temperature air purified to a predetermined cleanliness level gives its own heat to the cooling water coil 8 while being in contact with the cooling water coil 8, and at the same time receives cold heat from the cooling water coil 8 and is further pumped by the blower 10. The low-temperature air is lowered to about 20 ° C. and flows through the low-temperature duct 12. A part of the low-temperature air flowing through the low-temperature duct 12 returns to the blow zone 2 through the return duct 13, and the remaining low-temperature air is discharged into the building through the extraction duct 15. The temperature of the air returned to the blow zone 2 is measured by the in-side temperature sensor 18, and the measurement signal is transmitted to the in-side temperature monitor 20 and the control device 23. The in-side temperature monitor 20 that has received the measurement signal gives a temperature instruction. On the other hand, the control device 23 checks the deviation between the temperature instruction and the set temperature, and if a deviation occurs, drives the primary solenoid valve 81 to cool it. The flow rate of the cooling water flowing through the water coil 8 is adjusted to increase or decrease the heat transfer amount between the high-temperature air and the cooling water coil, and control is performed so that the indicated value of the in-side temperature sensor 18 is close to the set temperature. When the control device 23 drives the primary electromagnetic valve 81 to change the flow rate of the cooling water coil 8, in order to recover the excess heat of the cooling water coil 8 by the cooling water coil 9, The secondary electromagnetic valve 91 is driven in accordance with the driving to increase or decrease the flow rate of the cold water in the cold water coil 9.

一方、ブローゾーン2へ戻される低温空気の流量の調節は、1次流調弁14の開度の調節によって成される。その開度の調節は、流量計22の指示値に基づいて手動によって成されても良く、流量計22の計測信号を制御装置23に帰還させて制御装置23によって1次流調弁14の開度調節が自動的に行われるように構成しても良い。また、低温空気の残りについても、その流量の調節は同様な手法によって2次流調弁16の開度の調節によって成される。   On the other hand, the flow rate of the low-temperature air returned to the blow zone 2 is adjusted by adjusting the opening degree of the primary flow control valve 14. The adjustment of the opening degree may be made manually based on the indicated value of the flow meter 22, and the measurement signal of the flow meter 22 is fed back to the control device 23 to open the primary flow regulating valve 14 by the control device 23. You may comprise so that degree adjustment may be performed automatically. Further, the flow rate of the remaining low-temperature air is adjusted by adjusting the opening degree of the secondary flow control valve 16 in the same manner.

また、加熱ゾーン1の雰囲気温度は、アウト側温度センサ19によって計測され、その計測信号はアウト側温度モニタ21および制御装置23へ送信される。計測信号を受信したアウト側温度モニタ21は温度指示を行い、他方、制御装置23は、その温度指示と設定温度の偏差をチェックし偏差が生じる場合は、例えば電動機11のインバータINVを操作して送風機10の風量を調節し低温空気の流量を増減して、アウト側温度センサ19の指示値が設定温度近傍となるように制御する。   Further, the ambient temperature of the heating zone 1 is measured by the out-side temperature sensor 19, and the measurement signal is transmitted to the out-side temperature monitor 21 and the control device 23. The out-side temperature monitor 21 that has received the measurement signal gives a temperature instruction. On the other hand, the control device 23 checks the deviation between the temperature instruction and the set temperature, and if a deviation occurs, for example, operates the inverter INV of the motor 11. The air flow rate of the blower 10 is adjusted to increase or decrease the flow rate of the low-temperature air, and the indicated value of the out-side temperature sensor 19 is controlled to be close to the set temperature.

なお、本実施形態では冷水コイル9は、高温空気と対向せずに冷却水コイル8との間で熱交換を行っているが、それに限らずに高温空気と対向して高温空気との間で熱交換を行うように構成しても良い。この場合、高温空気の熱は、冷却水コイル8および冷水コイル9の双方によって好適に回収されることになる。   In the present embodiment, the cold water coil 9 exchanges heat with the cooling water coil 8 without facing the high temperature air, but is not limited thereto, and is opposed to the high temperature air with the high temperature air. You may comprise so that heat exchange may be performed. In this case, the heat of the high temperature air is suitably recovered by both the cooling water coil 8 and the cooling water coil 9.

以上、上記空調付きブロー成形機100によれば、加熱ゾーン1から吸引・濾過され吹出口17において一定の温度および一定の流量に調節された清浄な空気の一部又は全部をブローゾーン2へ再び戻し、ブローゾーン2から加熱ゾーン1に連続して流すことにより、ブローゾーン2及び加熱ゾーン1の各雰囲気温度を一定に保持することが出来るようになる。これにより、外気温度が変動する場合であっても、最終形状のボトルの計量値が安定し、ボトルの安定生産が可能となる。また、ブローゾーン2へ戻される空気は加熱ゾーン1を通り高温空気となって、吸込口4から吸引されて冷却水コイル8との間で熱交換を行い、更に送風機10によって圧送され低温空気となって、再利用されるように構成されている。一方、再利用されない残りの低温空気は建屋内に放出されるように構成されている。これにより、本成形機100が設置されている建屋内の温度管理または圧力管理等も併せて行うことが出来るようになる。結果、ブローゾーン2及び加熱ゾーン1の温度管理ならびに建屋内の温度管理等にかかるトータルのランニングコストが低減するようになる。更に、ブローゾーン2の吹出口17から流出する空気は濾過された清浄な空気であり、その清浄な空気がブローゾーン2から加熱ゾーン1へ連続して供給されるため、ブローゾーン2および加熱ゾーン1の清浄クリーン化が好適に達成される。
また、ブローゾーン2へ戻される空気の温度調節は、冷却水コイル8の冷却水の流量調節および冷水コイル9の冷水の流量調節、または送風機10の風量の調節あるいはこれらを適宜組み合わせた形態で成されるため、精度良く行われることになる。
As described above, according to the blow molding machine 100 with the air conditioner, a part or all of clean air sucked and filtered from the heating zone 1 and adjusted to a constant temperature and a constant flow rate at the blowout port 17 is returned to the blow zone 2 again. By returning and continuously flowing from the blow zone 2 to the heating zone 1, it becomes possible to keep the atmospheric temperatures of the blow zone 2 and the heating zone 1 constant. Thereby, even when the outside air temperature fluctuates, the measured value of the final shape bottle is stabilized, and stable production of the bottle becomes possible. Further, the air returned to the blow zone 2 passes through the heating zone 1 and becomes high-temperature air, is sucked from the suction port 4 and exchanges heat with the cooling water coil 8, and is further pumped by the blower 10 to be fed with the low-temperature air. It is configured to be reused. On the other hand, the remaining low-temperature air that is not reused is configured to be discharged into the building. Thereby, temperature management or pressure management of the building where the molding machine 100 is installed can be performed together. As a result, the total running cost for the temperature management of the blow zone 2 and the heating zone 1 and the temperature management of the building is reduced. Furthermore, since the air flowing out from the blowout port 17 of the blow zone 2 is filtered clean air, and the clean air is continuously supplied from the blow zone 2 to the heating zone 1, the blow zone 2 and the heating zone No. 1 clean and clean is preferably achieved.
The temperature of the air returned to the blow zone 2 is adjusted by adjusting the flow rate of the cooling water in the cooling water coil 8 and the flow rate of the cooling water in the cooling water coil 9, adjusting the air volume of the blower 10, or a combination thereof. Therefore, it is performed with high accuracy.

その他の実施形態として、上記吸込口4〜吹出口17〜制御装置23までの空調装置を、加熱ゾーン1とブローゾーン2に対し、別個独立に配設し各雰囲気温度を一定に保持するように構成しても良い。   As another embodiment, the air conditioners from the inlet 4 to the outlet 17 to the controller 23 are arranged separately and independently with respect to the heating zone 1 and the blow zone 2 so as to keep each ambient temperature constant. It may be configured.

本発明の空調付きブロー成形機100は、プラスチックボトル等の二軸延伸ブロー成形を初めとするハウジング(保護カバー)内で行われる工程であって、ハウジング内の正確な温度コントロールが求められる工程に対して好適に適用することが出来る。   The air-conditioning blow molding machine 100 of the present invention is a process performed in a housing (protective cover) including biaxial stretch blow molding of a plastic bottle or the like, and a process that requires accurate temperature control in the housing. The present invention can be preferably applied.

本発明の空調付きブロー成形機を示す構成説明図である。It is composition explanatory drawing which shows the blow molding machine with an air conditioning of this invention.

符号の説明Explanation of symbols

1 加熱ゾーン
2 ブローゾーン
3 ハウジング
4 吸込口
5 高温ダクト
6 1次フィルタ
7 2次フィルタ
8 冷却水コイル
9 冷水コイル
10 送風機
11 電動機
12 低温ダクト
13 戻りダクト
14 1次流調弁
15 抽気ダクト
16 2次流調弁
17 吹出口
18 イン側温度センサ
19 アウト側温度センサ
20 イン側温度モニタ
21 アウト側温度モニタ
22 流量計
23 制御装置
100 空調付きブロー成形機
1 Heating Zone 2 Blow Zone 3 Housing 4 Suction Port 5 High Temperature Duct 6 Primary Filter 7 Secondary Filter 8 Cooling Water Coil 9 Cold Water Coil 10 Blower 11 Electric Motor 12 Low Temperature Duct 13 Return Duct 14 Primary Flow Control Valve 15 Extraction Duct 16 2 Next flow control valve 17 Outlet 18 Inner side temperature sensor 19 Outer side temperature sensor 20 Inner side temperature monitor 21 Out side temperature monitor 22 Flow meter 23 Control device 100 Blow molding machine with air conditioning

Claims (7)

プリフォームを加熱する加熱ゾーンと、該プリフォームを二軸に延伸ブローするブローゾーンとを備え、更に該加熱ゾーンには吸込口および該ブローゾーンには吹出口が各々配設されて成るブロー成形機であって、前記加熱ゾーンから吸引した空気を濾過し清浄な空気とし、該空気を更に前記吹出口において一定の温度/温度範囲かつ一定の流量/流量範囲となるように温度調節かつ流量調節し、該空気の一部又は全部を該吹出口から前記ブローゾーンへ再び戻して該ブローゾーンから前記加熱ゾーンの方向へ連続して流すことにより該加熱ゾーン及び該ブローゾーンの各雰囲気温度を一定に保持することを特徴とする空調付きブロー成形機。   Blow molding comprising a heating zone for heating a preform and a blow zone for stretching and blowing the preform biaxially, and further comprising a suction port in the heating zone and a blow-out port in the blow zone. The air sucked from the heating zone is filtered to obtain clean air, and the air is further adjusted in temperature and flow rate so as to have a constant temperature / temperature range and a constant flow rate / flow rate range at the outlet. Then, a part or all of the air is returned again from the outlet to the blow zone and continuously flows in the direction from the blow zone to the heating zone so that the ambient temperature of the heating zone and the blow zone is kept constant. A blow molding machine with air conditioning characterized by being held in the air. 前記加熱ゾーンから吸引された空気は、流量調節機能を備えた第1冷却手段と対向し、更に送風手段によって圧送されながら前記第1冷却手段と熱交換を行うように構成されている請求項1に記載の空調付きブロー成形機。   The air sucked from the heating zone is opposed to a first cooling means having a flow rate adjusting function, and is configured to exchange heat with the first cooling means while being pumped by a blowing means. The blow molding machine with air conditioning described in 1. 前記第1冷却手段は、別途設けられた流量調節機能を備えた第2冷却手段と熱交換を行うように構成されている請求項2に記載の空調付きブロー成形機。   The blow molding machine with air conditioning according to claim 2, wherein the first cooling means is configured to exchange heat with a second cooling means having a flow rate adjusting function provided separately. 前記送風手段から下流の流路は複数の流路に分岐され、一の分岐流路は前記ブローゾーンに帰還されるように構成されている請求項1から3の何れかに記載の空調付きブロー成形機。   4. The air-conditioned blow according to claim 1, wherein a flow path downstream from the blowing unit is branched into a plurality of flow paths, and one branched flow path is returned to the blow zone. Molding machine. 前記ブローゾーンに帰還される一の分岐流路は流量調節手段を備えている請求項4に記載の空調付きブロー成形機。   The blow molding machine with air conditioning according to claim 4, wherein the one branch flow path returned to the blow zone includes a flow rate adjusting means. 前記複数の分岐流路を流れる複数の空気流の内、少なくとも一の空気流は自身の置かれた建屋内に放出されるように構成されている請求項4又は5に記載の空調付きブロー成形機。   The blow molding with air conditioning according to claim 4 or 5, wherein at least one of the plurality of air flows flowing through the plurality of branch flow paths is discharged into a building in which the air flow is placed. Machine. 前記吹出口から戻される空気の温度制御は、温度センサからの帰還信号を基に前記第1冷却手段および前記第2冷却手段または前記送風手段あるいはこれらの組み合わせを操作する制御手段によって行われるように構成されている請求項1から6の何れかに記載の空調付きブロー成形機。   Control of the temperature of the air returned from the air outlet is performed by control means for operating the first cooling means, the second cooling means, the air blowing means, or a combination thereof based on a feedback signal from a temperature sensor. The blow molding machine with air conditioning according to any one of claims 1 to 6, wherein the blow molding machine is configured with air conditioning.
JP2007045813A 2007-02-26 2007-02-26 Blow molding machine with air conditioning Active JP4831353B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007045813A JP4831353B2 (en) 2007-02-26 2007-02-26 Blow molding machine with air conditioning
EP08711470.8A EP2116353B1 (en) 2007-02-26 2008-02-18 Blow molding machine with air conditioning
KR1020097017098A KR101350703B1 (en) 2007-02-26 2008-02-18 Blow molding machine with air conditioning
CN2008800059474A CN101622119B (en) 2007-02-26 2008-02-18 Blow molding machine with air conditioning
US12/528,319 US8167601B2 (en) 2007-02-26 2008-02-18 Blow molding machine with air conditioning
PCT/JP2008/052646 WO2008105253A1 (en) 2007-02-26 2008-02-18 Blow molding machine with air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007045813A JP4831353B2 (en) 2007-02-26 2007-02-26 Blow molding machine with air conditioning

Publications (2)

Publication Number Publication Date
JP2008207434A true JP2008207434A (en) 2008-09-11
JP4831353B2 JP4831353B2 (en) 2011-12-07

Family

ID=39784159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007045813A Active JP4831353B2 (en) 2007-02-26 2007-02-26 Blow molding machine with air conditioning

Country Status (2)

Country Link
JP (1) JP4831353B2 (en)
CN (1) CN101622119B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207435A (en) * 2007-02-26 2008-09-11 Toyo Seikan Kaisha Ltd Blow molding machine with air conditioning function
WO2011154447A1 (en) * 2010-06-10 2011-12-15 Sidel Participations Container manufacturing plant comprising an air recycling circuit and recycling method
WO2011154450A1 (en) * 2010-06-10 2011-12-15 Sidel Participations Assembly for the production of containers by means of a plant comprising an air recycling circuit and recycling method
WO2011154294A1 (en) 2010-06-10 2011-12-15 Sidel Participations Method of recycling air containing a sterilizing agent, and container manufacturing plant comprising an air recycling circuit
EP2247429B1 (en) 2008-03-06 2014-01-08 KHS Corpoplast GmbH Method and device for blow-molding containers
KR20140043858A (en) * 2012-10-02 2014-04-11 휴글엘렉트로닉스가부시키가이샤 Gas purifying facility
JP2014088869A (en) * 2012-10-02 2014-05-15 Hugle Electronics Inc Gas purification device
JP2014094561A (en) * 2012-10-22 2014-05-22 Krones Ag Blow molding machine with clean room and drying unit for supplying air
JP2014193752A (en) * 2013-03-13 2014-10-09 Krones Ag Device and method for handling at least one container
JP2015523923A (en) * 2012-05-21 2015-08-20 スィデル・パルティスィパスィヨン Container manufacturing plant with a robot configured to intervene in at least two units
TWI610715B (en) * 2012-10-02 2018-01-11 Hugle Electronics Inc Gas purification device
JP2018051904A (en) * 2016-09-28 2018-04-05 サントリーホールディングス株式会社 Container manufacturing facility and container manufacturing method
JP2018535895A (en) * 2015-09-11 2018-12-06 クロネス アーゲー Device for providing clean air in a beverage filling facility
CN112178456A (en) * 2020-09-29 2021-01-05 梁丽彬 Industrial waste heat recovery device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20130121A1 (en) * 2013-02-28 2014-08-29 Ne E Automazione S P A HEATING SYSTEM FOR CONTAINER PREFORMATIONS
CN105799140B (en) * 2016-04-27 2017-11-07 湖南奥润塑料制品有限公司 A kind of production of bottles waste heat gas waste heat recovery and water-cooling circulating device
CN111372691B (en) * 2017-12-25 2022-04-19 三得利控股株式会社 Preform coating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202895A (en) * 1999-01-13 2000-07-25 Nissei Asb Mach Co Ltd Air conditioner of injection stretch blow molding machine
JP2004306512A (en) * 2003-04-09 2004-11-04 Toyo Seikan Kaisha Ltd Apparatus for heating and crystallizing saturated polyester hollow object
JP2008068494A (en) * 2006-09-13 2008-03-27 Nippon Canpack:Kk Blow molding machine system
JP2008207435A (en) * 2007-02-26 2008-09-11 Toyo Seikan Kaisha Ltd Blow molding machine with air conditioning function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074708C (en) * 1996-07-24 2001-11-14 株式会社开拓 Biaxial orientation molding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202895A (en) * 1999-01-13 2000-07-25 Nissei Asb Mach Co Ltd Air conditioner of injection stretch blow molding machine
JP2004306512A (en) * 2003-04-09 2004-11-04 Toyo Seikan Kaisha Ltd Apparatus for heating and crystallizing saturated polyester hollow object
JP2008068494A (en) * 2006-09-13 2008-03-27 Nippon Canpack:Kk Blow molding machine system
JP2008207435A (en) * 2007-02-26 2008-09-11 Toyo Seikan Kaisha Ltd Blow molding machine with air conditioning function

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207435A (en) * 2007-02-26 2008-09-11 Toyo Seikan Kaisha Ltd Blow molding machine with air conditioning function
US9545748B2 (en) 2008-03-06 2017-01-17 Khs Corpoplast Gmbh Method and device for blow-molding containers
EP2247429B1 (en) 2008-03-06 2014-01-08 KHS Corpoplast GmbH Method and device for blow-molding containers
FR2961126A1 (en) * 2010-06-10 2011-12-16 Sidel Participations CONTAINER MANUFACTURING FACILITY WITH AIR RECYCLING CIRCUIT AND RECYCLING METHOD
US9844896B2 (en) 2010-06-10 2017-12-19 Sidel Participations Method of recycling air containing a sterilizing agent, and container manufacturing plant comprising an air recycling circuit
WO2011154294A1 (en) 2010-06-10 2011-12-15 Sidel Participations Method of recycling air containing a sterilizing agent, and container manufacturing plant comprising an air recycling circuit
FR2961125A1 (en) * 2010-06-10 2011-12-16 Sidel Participations AIR RECYCLING METHOD COMPRISING A STERILIZING AGENT AND CONTAINER MANUFACTURING PLANT COMPRISING AN AIR RECYCLING CIRCUIT
JP2013528133A (en) * 2010-06-10 2013-07-08 スィデル・パルティスィパスィヨン Container manufacturing apparatus having air reuse circuit and reuse method
WO2011154450A1 (en) * 2010-06-10 2011-12-15 Sidel Participations Assembly for the production of containers by means of a plant comprising an air recycling circuit and recycling method
FR2961124A1 (en) * 2010-06-10 2011-12-16 Sidel Participations ASSEMBLY FOR THE PRODUCTION OF CONTAINERS USING AN INSTALLATION COMPRISING AN AIR RECYCLING CIRCUIT AND RECYCLING METHOD
WO2011154447A1 (en) * 2010-06-10 2011-12-15 Sidel Participations Container manufacturing plant comprising an air recycling circuit and recycling method
US9409661B2 (en) 2010-06-10 2016-08-09 Sidel Participations Container manufacturing plant comprising an air recycling circuit and recycling method
JP2015523923A (en) * 2012-05-21 2015-08-20 スィデル・パルティスィパスィヨン Container manufacturing plant with a robot configured to intervene in at least two units
JP2014088869A (en) * 2012-10-02 2014-05-15 Hugle Electronics Inc Gas purification device
KR20140043858A (en) * 2012-10-02 2014-04-11 휴글엘렉트로닉스가부시키가이샤 Gas purifying facility
TWI610715B (en) * 2012-10-02 2018-01-11 Hugle Electronics Inc Gas purification device
KR101969545B1 (en) * 2012-10-02 2019-04-17 휴글엘렉트로닉스가부시키가이샤 Gas purifying facility
JP2014094561A (en) * 2012-10-22 2014-05-22 Krones Ag Blow molding machine with clean room and drying unit for supplying air
JP2014193752A (en) * 2013-03-13 2014-10-09 Krones Ag Device and method for handling at least one container
JP2018535895A (en) * 2015-09-11 2018-12-06 クロネス アーゲー Device for providing clean air in a beverage filling facility
JP2018051904A (en) * 2016-09-28 2018-04-05 サントリーホールディングス株式会社 Container manufacturing facility and container manufacturing method
CN112178456A (en) * 2020-09-29 2021-01-05 梁丽彬 Industrial waste heat recovery device

Also Published As

Publication number Publication date
CN101622119B (en) 2012-06-06
JP4831353B2 (en) 2011-12-07
CN101622119A (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4831353B2 (en) Blow molding machine with air conditioning
KR101350703B1 (en) Blow molding machine with air conditioning
CN101925784B (en) Indoor unit and air conditioning apparatus including the same
SE0002690L (en) Apparatus and method for temperature control and ventilation of a seat
JP6253459B2 (en) Ventilator for air conditioning
CN106457976A (en) Humidifying device for vehicle
KR20130121021A (en) Hot-air circulation type heating apparatus
JP2009216332A (en) Precision air conditioner
KR101951397B1 (en) Hot-air generating apparatus for dryer
CN103922212A (en) Method and system for keeping constant temperature and constant humidity of elevator
JP5004540B2 (en) Blow molding machine system
JP7037095B2 (en) air conditioner
JP5116819B2 (en) Method and system for controlling dew point temperature in local low dew point chamber
JP2007003107A (en) Air conditioning system for accurately performing temperature control in local space
JP2007525252A (en) Equipment equipped with machines for manufacturing tablets for treatment in particular
JP3672096B2 (en) Air conditioning controller for clean room precision environment chamber
FI110280B (en) Air conditioning method and air conditioning system
CN106893790A (en) Can easily be accommodated the conditioning drying machines of temperature and humidity
KR970065013A (en) Temperature-controlled heating, ventilation and / or air conditioning equipment for vehicles
JP7323302B2 (en) air conditioning system
CN110226070A (en) Air conditioner
KR20150006513A (en) Airconditioning system for ship and control mehtod thereof
JP2009202734A (en) Vehicular air conditioner
CN106662359A (en) Indoor unit for air conditioning device
JP2004276505A (en) Blown film manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4831353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350