JP2008207173A - Production method of inorganic particle, production plant of the same and paper and coated paper using the same - Google Patents

Production method of inorganic particle, production plant of the same and paper and coated paper using the same Download PDF

Info

Publication number
JP2008207173A
JP2008207173A JP2008016385A JP2008016385A JP2008207173A JP 2008207173 A JP2008207173 A JP 2008207173A JP 2008016385 A JP2008016385 A JP 2008016385A JP 2008016385 A JP2008016385 A JP 2008016385A JP 2008207173 A JP2008207173 A JP 2008207173A
Authority
JP
Japan
Prior art keywords
sludge
paper
combustion
inorganic particles
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008016385A
Other languages
Japanese (ja)
Other versions
JP4288532B2 (en
Inventor
Takayuki Kishida
隆之 岸田
Yuichi Ogawa
裕一 小川
Yoshiki Hanabusa
芳樹 花房
Tomohiro Yanagida
智広 柳田
Tetsuya Hirabayashi
哲也 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2008016385A priority Critical patent/JP4288532B2/en
Publication of JP2008207173A publication Critical patent/JP2008207173A/en
Application granted granted Critical
Publication of JP4288532B2 publication Critical patent/JP4288532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Treatment Of Sludge (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for producing high-quality white inorganic particles which can be used effectively as paper making materials such as paper making filler and coating pigment, efficiently and economically on a large scale from paper sludge to be discharged from paper making plants. <P>SOLUTION: When paper sludge S being a raw material is burned in an excess air atmosphere while being transferred in a rotary drum 1 of a rotary kiln K1, the paper sludge is made to pass through a primary combustion section Z1, where the sludge temperature is kept at ≤650°C and an easy-to-burn organic component in the sludge is burned and removed, and a secondary combustion section Z2, where the sludge temperature is kept at 700-850°C and a hard-to-burn organic component in the sludge is burned and removed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に製紙工場から排出される製紙スラッジを原料とし、塗工用顔料や製紙用填料として有用な白色の無機粒子を製造する方法と、その製造プラントと、該無機粒子を用いた紙および塗工紙に関する。   The present invention particularly relates to a method for producing white inorganic particles useful as a coating pigment or a papermaking filler, using paper sludge discharged from a paper mill as a raw material, a production plant thereof, and a paper using the inorganic particles. And coated paper.

近年、産業界全体で環境保全の観点から従来の廃棄対象物を資源として有効活用する動きが強まり、製紙業界においても製紙原料に回収古紙を利用する比率が高まっているが、この古紙利用の増加に伴って製紙工場廃水に含まれるスラッジの処理が大きな課題になっている。この製紙スラッジは、パルプの如き繊維成分、澱粉や合成樹脂接着剤を主とする有機物、塗工紙用顔料の如き無機物などが利用されずに廃水中へ移行したものと、パルプ化工程などで発生するリグニンや微細繊維、古紙由来の製紙用填料や印刷インキ、生物廃水処理工程から生じる余剰汚泥などからなり、古紙処理工程において印刷インキなどを除去する脱墨工程や製紙用材料を回収して洗浄する洗浄工程に由来する固形成分などを含んでいる。   In recent years, there has been an increase in the use of recovered waste paper as a raw material for papermaking in the papermaking industry, and there has been an increase in the use of recovered waste as a resource from the viewpoint of environmental conservation throughout the industry. Accordingly, treatment of sludge contained in paper mill wastewater has become a major issue. This papermaking sludge can be used for pulp components such as fiber components such as pulp, organic substances mainly composed of starch and synthetic resin adhesive, inorganic substances such as pigments for coated paper, etc. It consists of generated lignin and fine fibers, waste paper-derived paper filler and printing ink, excess sludge generated from biological wastewater treatment process, etc., and recovers deinking process and paper-making materials to remove printing ink etc. in waste paper treatment process It contains solid components derived from the cleaning process.

このような製紙スラッジは、従来では産業廃棄物として埋立処分されることが多かったが、最近では流動床炉やストーカ炉などの焼却炉内でスラッジ中の有機成分を燃焼させることにより、エネルギーとしての回収と同時に減容化を図るようにしている。しかるに、製紙スラッジ中には無機物が高比率で含まれるため、燃焼処理してもスラッジ焼却灰が発生することになる。そして、大量に発生するスラッジ焼却灰は、一部がセメント原料、製鉄の酸化防止剤、土壌改良剤などに再利用されているが、大部分は産業廃棄物として埋立処分されているのが現状である。   In the past, such paper sludge was often landfilled as industrial waste, but recently, by burning the organic components in the sludge in an incinerator such as a fluidized bed furnace or a stoker furnace, it is used as energy. The volume is reduced at the same time as the collection. However, the sludge incineration ash is generated even if the combustion treatment is performed because the papermaking sludge contains an inorganic substance in a high ratio. And a large amount of sludge incineration ash is partly reused as cement raw materials, iron manufacturing antioxidants, soil conditioners, etc., but most of them are landfilled as industrial waste. It is.

一方、回収される古紙は、無機成分含量が少ない新聞や上質紙などの非塗工紙系古紙と、無機成分含量が多い雑誌などの塗工紙系古紙との2種に大別され、現状では再生処理が容易な非塗工紙系古紙が主流をなすが、今後の古紙利用率を高める上で必然的に塗工紙系古紙の比率が増すことになり、これに伴ってスラッジ発生量も急増することが予想される。従って、今後は製紙スラッジやその焼却灰を廃棄物として処理することがますます困難になり、また年々高騰している処理費用が紙パルプ工業の収益を圧迫することにもなるから、製紙スラッジを高率で有効利用し得る技術の開発が急務である。   On the other hand, recovered paper is broadly divided into two types: uncoated paper such as newspapers and high-quality paper with low inorganic content, and coated paper such as magazines with high inorganic content. In the case of non-coated paper, which is easy to recycle, the mainstream will be the mainstream, but in order to increase the utilization rate of used paper in the future, the proportion of used paper will inevitably increase. Is expected to increase rapidly. Therefore, it will become increasingly difficult to treat paper sludge and its incinerated ash as waste in the future, and processing costs that are rising year by year will put pressure on the profits of the pulp and paper industry. There is an urgent need to develop technologies that can be used efficiently at high rates.

製紙スラッジの有望な再生用途として、その焼却処理後の無機成分主体のスラッジ焼却灰を製紙用填料や塗工用顔料などの製紙用材料に再利用することが挙げられる。この再利用が実現すれば、大量のスラッジ焼却灰を製紙用材料として消費できるから、産業廃棄物の削減のみならず、古紙利用率の向上にも結び付き、環境対策上の問題が一挙に解消することになる。   A promising recycling application of papermaking sludge is to recycle the sludge incineration ash mainly composed of inorganic components after the incineration treatment to papermaking materials such as papermaking fillers and coating pigments. If this reuse is realized, a large amount of sludge incineration ash can be consumed as a papermaking material, which not only reduces industrial waste, but also improves the wastepaper utilization rate, eliminating environmental problems at once. It will be.

そこで、製紙スラッジの焼却灰を好適な製紙用材料に転化することを目的として、既に様々な方法が提案されている。例えば、製紙スラッジの燃焼処理前に炭化処理を行なう方法として、製紙スラッジを350〜700℃程度で炭化した後、650〜800℃で燃焼処理する方法(特許文献1)、製紙スラッジを低酸素条件下(好ましくは無酸素条件下)600℃未満の温度で炭化処理した後、600〜800℃で燃焼処理する方法(特許文献2)、製紙スラッジを400〜700℃で有機分を炭化し、炭化物を粉砕した後、650〜700℃で有機分を燃焼させる方法(特許文献3)、製紙スラッジを貧酸素状況下1000℃以下で炭化処理した後、450〜1000℃で燃焼処理する方法(特許文献4)、製紙スラッジを貧酸素雰囲気下、400〜700℃で炭化した後、650℃以上で2段階の燃焼処理を行う方法(特許文献5)、製紙スラッジを1基のキルン内で200℃から徐々に昇温して乾燥させ、600℃で炭化させた後に更に昇温して850℃で燃焼処理する方法(特許文献6)などが提案されている。   Therefore, various methods have already been proposed for the purpose of converting the incineration ash of the papermaking sludge into a suitable papermaking material. For example, as a method of performing carbonization treatment before the paper sludge combustion treatment, a method of carbonizing the paper sludge at about 350 to 700 ° C. and then combustion treatment at 650 to 800 ° C. (Patent Document 1), the paper sludge is subjected to low oxygen conditions. A method in which carbonization is performed at a temperature below 600 ° C. (preferably under anaerobic conditions) and then combustion treatment is performed at 600 to 800 ° C. (Patent Document 2). After pulverizing, the method of combusting organic components at 650 to 700 ° C. (Patent Document 3), the paper sludge is carbonized at 1000 ° C. or less under poor oxygen condition, and the method of combusting at 450 to 1000 ° C. (Patent Document) 4) A method in which papermaking sludge is carbonized at 400 to 700 ° C. in an oxygen-poor atmosphere and then subjected to a two-stage combustion process at 650 ° C. or more (Patent Document 5), and one papermaking sludge. In a kiln heated gradually to dry from 200 ° C., such further method for combustion treatment with to 850 ° C. Atsushi Nobori after carbonized (Patent Document 6) it has been proposed in 600 ° C..

一方、製紙スラッジを炭化処理せずに特定条件での燃焼処理を行なう方法として、製紙スラッジを2段階で燃焼処理を行い、その第1段階の燃焼温度を750℃以下、第2段階の燃焼温度を800℃未満とすることにより、製紙用原材料に由来して製紙スラッジ中に含まれる炭酸カルシウムの熱分解を50%未満に抑える方法(特許文献7)、製紙スラッジの中の脱墨スラッジ分を1次燃焼工程がサイクロン炉を用いて700℃以下、燃焼時間10秒以内で燃焼処理し、次いで2次燃焼工程が700℃以下で燃焼処理する方法(特許文献8)、製紙スラッジを800℃で焼却した焼却灰を、500〜1100℃で再度燃焼する方法(特許文献9)などが提案されている。   On the other hand, as a method for performing combustion treatment under specific conditions without carbonizing papermaking sludge, papermaking sludge is subjected to combustion treatment in two stages, the first stage combustion temperature is 750 ° C. or lower, and the second stage combustion temperature. By setting the temperature to less than 800 ° C., a method of suppressing the thermal decomposition of calcium carbonate contained in the papermaking sludge derived from the papermaking raw material to less than 50% (Patent Document 7), the deinking sludge content in the papermaking sludge is reduced. A method in which the primary combustion process uses a cyclone furnace to perform combustion treatment at 700 ° C. or less and within a combustion time of 10 seconds, and then the secondary combustion process performs combustion treatment at 700 ° C. or less (Patent Document 8). A method of burning the incinerated ash after incineration again at 500 to 1100 ° C. (Patent Document 9) has been proposed.

また、以上の方法はすべて製紙スラッジを乾式酸化(所謂、燃焼)するものであるが、乾式酸化と湿式酸化を組み合せてスラッジ焼却灰とする方法として、製紙スラッジを200〜800℃で湿式酸化処理した後に800〜1100℃乾式酸化処理したり,逆に乾式酸化処理後に湿式酸化処理する方法(特許文献10)も提案されている。
特開2005−161239号公報 特許第3563707号 特開2001−262002号公報 特開2002−308619号公報 特開2004−262701号公報 特開2004−176209号公報 特開平10−029818号公報 特許第3831719号 特開平11−310732号公報 特開2001- 026727号公報
In addition, all of the above methods involve dry oxidation (so-called combustion) of paper sludge. As a method of combining dry oxidation and wet oxidation into sludge incinerated ash, the paper sludge is wet oxidized at 200 to 800 ° C. Then, a method of performing a dry oxidation treatment at 800 to 1100 ° C. after that, or a wet oxidation treatment after the dry oxidation treatment (Patent Document 10) has also been proposed.
JP 2005-161239 A Japanese Patent No. 3563707 JP 2001-262002 A JP 2002-308619 A JP 2004-262701 A JP 2004-176209 A Japanese Patent Laid-Open No. 10-029818 Japanese Patent No. 3831719 JP-A-11-310732 Japanese Patent Laid-Open No. 2001-026727

しかしながら、処理を要する製紙スラッジは最終的に1月当たり数百トン〜数千トンにもなることが予想されるが、前記従来の製紙スラッジの各種処理方法では、そのいずれにおいても多量の製紙スラッジを効率的に処理できない上、白色度が高く高品位のスラッジ焼却灰を得ることが困難であった。その理由は、次のように推測される。   However, although it is expected that paper sludge that requires processing will eventually reach several hundred tons to several thousand tons per month, each of the conventional methods for treating paper sludge has a large amount of paper sludge. In addition, it was difficult to obtain sludge incineration ash with high whiteness and high quality. The reason is presumed as follows.

まず、製紙用材料に再利用するスラッジ焼却灰は,白色の紙に配合する上で、できるだけ白色度の高いものが望ましく、そのために白色度低下の要因となる未燃焼の有機成分(所謂、煤、炭などの炭化物)を極力除去することが重要であるが、古紙利用率が高まるほど製紙スラッジに含まれる印刷インキ由来のカーボンブラックが多くなる。しかも、この印刷インキ由来のカーボンブラックは、黒色顔料として取り扱い時の発火、爆発の危険性を除くために、発火しやすい不純物質などが残留しないように入念に炭化処理されているから、元来より非常に燃焼しにくい性状になっている。   First, the sludge incineration ash to be reused for papermaking materials should have as high a whiteness as possible when blended with white paper. Therefore, unburned organic components (so-called soot soot) that cause a decrease in whiteness are desirable. It is important to remove as much carbon carbide as possible, but as the used paper utilization rate increases, the carbon black derived from the printing ink contained in the papermaking sludge increases. In addition, this carbon black derived from printing ink has been carefully carbonized so as not to leave ignitable impurities in order to eliminate the risk of ignition and explosion as a black pigment. It is more difficult to burn.

一方、一般的な有機成分は炭素分子鎖を主とする分子構造をもつが、その分子構造内にカルボキシル基、ヒドロキシル基、エステル基、エーテル基などの官能基があれば、この官能基部分を起点(反応開始点)として熱分解や酸素との化合(発火、酸化、燃焼)が促進される。このため、該官能基を有する有機成分は、比較的低い温度で発火し、その温度を保ったまま充分な酸素を供給することによって容易に燃焼除去できる。また、有機成分の大部分が前記官能基を有していなくても、不純物質などの少量成分として該官能基を有する有機成分が含まれる場合には、この少量の有機成分の官能基部分が熱分解や燃焼の起点になるため、やはり比較的低い温度で発火し、その温度を維持しつつ充分な酸素を供給することで容易に有機成分を燃焼除去できる。   On the other hand, a general organic component has a molecular structure mainly composed of a carbon molecular chain. If there is a functional group such as a carboxyl group, a hydroxyl group, an ester group, or an ether group in the molecular structure, this functional group portion is As a starting point (reaction starting point), thermal decomposition and combination with oxygen (ignition, oxidation, combustion) are promoted. For this reason, the organic component having the functional group ignites at a relatively low temperature, and can be easily burned and removed by supplying sufficient oxygen while maintaining the temperature. In addition, even if the majority of the organic component does not have the functional group, when the organic component having the functional group is included as a minor component such as an impurity, the functional group portion of the small amount of the organic component is Since it becomes the starting point of thermal decomposition and combustion, it is still possible to ignite at a relatively low temperature and to easily remove the organic component by supplying sufficient oxygen while maintaining the temperature.

これに対して、煤や炭に代表される炭化物は、有機成分を貧酸素雰囲気下でいぶし焼き(炭化)して得られるが、その際に炭素分子鎖のほぼ全体が炭素2重結合のグラファイト構造(=C=C=C=C=)に変化し、分子構造内の官能基を殆ど失って非常に発火しにくい状態となるため、高温でなければ発火、燃焼しなくなる。   On the other hand, carbides typified by firewood and charcoal are obtained by baking (carbonizing) organic components in an oxygen-poor atmosphere. At that time, almost all of the carbon molecular chains are graphite with carbon double bonds. Since it changes to a structure (= C = C = C = C =), it loses most of the functional groups in the molecular structure and becomes very difficult to ignite.

しかるに、製紙スラッジの燃焼処理前に炭化処理を行なう前記従来の方法では、古紙の印刷インキ由来のカーボンブラックに加え、製紙スラッジ中の元来は燃焼しやすい有機成分まで炭化処理でわざわざ燃焼しにくい炭化物に変化させることになるから、燃焼処理の観点からは非合理的であり、実際に燃焼効率が悪い上、白色度の高い無機粒子を得ることが困難である。   However, in the conventional method in which the carbonization treatment is performed before the paper sludge combustion treatment, in addition to the carbon black derived from the printing ink of the waste paper, organic carbon components that are easily combustible are not easily burned by the carbonization treatment. Since it is changed to a carbide, it is irrational from the viewpoint of combustion treatment, and actually it is difficult to obtain inorganic particles with high whiteness as well as poor combustion efficiency.

また、本発明者らの研究によれば、有機成分を急激に650℃を越える温度に上昇させると,その分子構造内に含まれていた官能基、およびその周辺部分のみが先に急速に焼失し、もって有機成分は発火・熱分解の起点部分を失って炭化物と類似した非常に燃焼しにくい状態になることが判明している。   Further, according to the study by the present inventors, when the organic component is rapidly raised to a temperature exceeding 650 ° C., only the functional group contained in the molecular structure and its peripheral portion are rapidly burned out first. Thus, it has been found that the organic component loses the starting point of ignition / pyrolysis and becomes very incombustible like carbide.

従って、製紙スラッジを炭化処理せずに2段階の燃焼処理を行う前記従来の方法でも、いずれも第1段階の燃焼温度を650℃を越える温度にするため、有機成分を初期に燃焼しにくい形に変えることになり、やはり非合理的かつ非効率的であると言える。   Therefore, in any of the conventional methods in which the paper-making sludge is subjected to the two-stage combustion treatment without carbonizing, the first-stage combustion temperature exceeds 650 ° C. It can be said that it is irrational and inefficient.

理化学辞典 第4版 岩波書店 においては、純粋な炭酸カルシウムの熱分解は、898℃(解離圧1atm)とされている。しかしながら、JISP8251(2003年)によれば、紙中の炭酸カルシウムについては、前記温度よりも低い約525℃を超えた温度で熱分解を起こすことが実際に知られている。また、既述した第1段階の燃焼温度を750℃以下、第2段階の燃焼温度を800℃未満とする2段階の燃焼処理によって製紙スラッジ中の炭酸カルシウムの熱分解を抑える方法は、一般的に炭酸カルシウム(CaCO3 )が525℃以上で炭酸ガス(CO2 )を離脱して酸化カルシウム(CaO)に転化する性質を持つことからすれば、燃焼温度600℃以上でスラッジ中の有機成分を燃焼除去させながら、その燃焼温度よりも低い温度(525℃)で生じる炭酸カルシウムの熱分解を抑制するという相反的作用を期待することになるから、非効率的にならざるを得ず、所望とする高品位なスラッジ焼却灰を高率で得るには不向きである。 In the Riken Dictionary 4th edition Iwanami Shoten, the thermal decomposition of pure calcium carbonate is 898 ° C (dissociation pressure 1 atm). However, according to JISP8251 (2003), it is actually known that calcium carbonate in paper undergoes thermal decomposition at a temperature exceeding about 525 ° C., which is lower than the above temperature. In addition, a method of suppressing thermal decomposition of calcium carbonate in paper sludge by a two-stage combustion process in which the first stage combustion temperature is 750 ° C. or less and the second stage combustion temperature is less than 800 ° C. is generally used. If calcium carbonate (CaCO 3 ) has the property of releasing carbon dioxide (CO 2 ) and converting to calcium oxide (CaO) at 525 ° C. or higher, the organic components in the sludge can be removed at a combustion temperature of 600 ° C. or higher. Since the reciprocal action of suppressing the thermal decomposition of calcium carbonate that occurs at a temperature lower than the combustion temperature (525 ° C.) is expected while removing it by combustion, it must be inefficient and desired. It is not suitable for obtaining high-quality sludge incineration ash at a high rate.

なお、前記従来の製紙スラッジを乾式酸化と湿式酸化を組み合せて多段酸化処理する方法は、処理工程および処理設備が複雑化するため、処理コストが非常に高く付き、多量の製紙スラッジの燃焼処理には不向きである。   In addition, the conventional method of performing multi-stage oxidation treatment of papermaking sludge by combining dry oxidation and wet oxidation complicates the treatment process and equipment, so that the treatment cost is very high, and it is necessary for combustion treatment of a large amount of papermaking sludge. Is unsuitable.

本発明は、上述の状況に鑑み、製紙工場から排出される製紙スラッジから、製紙用材料の製紙用填料や塗工用顔料などとして有効利用できる高品質の白色の無機粒子を効率よく経済的に且つ大規模に製造する方法及びプラントと該無機粒子を用いた紙および塗工紙を提供することを目的としている。   In view of the above-mentioned situation, the present invention efficiently and economically produces high-quality white inorganic particles that can be effectively used as a papermaking filler or a coating pigment for papermaking materials from papermaking sludge discharged from a papermaking factory. And it aims at providing the method and plant which manufacture on a large scale, and the paper and coated paper using this inorganic particle.

本発明の請求項1に係る無機粒子の製造方法は、製紙スラッジを原料とし、筒型熱処理炉内を移送しつつ燃焼処理を施して無機粒子を製造する方法であって、前記燃焼処理が、過剰空気雰囲気下、スラッジ温度650℃以下でスラッジ中の易燃焼性有機成分を燃焼除去する一次燃焼工程と、過剰空気雰囲気下、スラッジ温度700〜850℃でスラッジ中の難燃焼性有機成分を燃焼除去する二次燃焼工程との、少なくとも2段階の燃焼工程を経ることを特徴としている。   The method for producing inorganic particles according to claim 1 of the present invention is a method for producing inorganic particles by using papermaking sludge as a raw material and carrying out a combustion treatment while being transferred through a cylindrical heat treatment furnace, wherein the combustion treatment comprises: A primary combustion process in which flammable organic components in the sludge are burned and removed under an excess air atmosphere at a sludge temperature of 650 ° C. or lower, and a non-flammable organic component in the sludge is burned at a sludge temperature of 700 to 850 ° C. in an excess air atmosphere. It is characterized in that it undergoes at least two stages of combustion steps with the secondary combustion step to be removed.

また、上記の無機粒子の製造方法において、筒型熱処理炉が回転キルン炉である請求項2の構成、燃焼処理を間接的加熱によって行う請求項3の構成、前記の少なくとも2段階の燃焼工程を1基の筒型熱処理炉の移送行程中に設定する請求項4の構成、筒型熱処理炉の一端の原料供給口側から炉内空気を強制的に排出することにより、同他端の焼成物排出口側から空気を炉内へ吸入する請求項5の構成、焼成物排出口側からの空気吸入に加えて、前記一次燃焼工程から二次燃焼工程への移行部でも空気を炉内へ吸入する請求項6の構成、一次燃焼工程に対する間接的加熱部と、二次燃焼工程に対する間接的加熱部とが分離されてなる請求項7の構成、原料の製紙スラッジにアルカリ金属化合物を添加する請求項9の構成、原料の製紙スラッジが造粒または塊状に成形されてなる請求項9の構成、前記燃焼処理により、原料の製紙スラッジに含まれる炭酸カルシウムの50%以上を分解する請求項10の構成、前記燃焼処理後の焼成物を水に混合、攪拌して懸濁液とする懸濁液化工程と、該懸濁液に二酸化炭素を接触させて炭酸化処理物を得る炭酸化工程と、該炭酸化処理物を粉砕する粉砕工程とを含んでなる請求項11の構成、をそれぞれ好適態様としている。   In the method for producing inorganic particles, the cylindrical heat treatment furnace is a rotary kiln furnace, the structure according to claim 2, the structure according to claim 3 in which the combustion treatment is performed by indirect heating, and the at least two-stage combustion process. The configuration according to claim 4, which is set during the transfer process of one cylindrical heat treatment furnace, the furnace air is forcibly discharged from the raw material supply port side at one end of the cylindrical heat treatment furnace, and the fired product at the other end 6. The structure of claim 5, wherein air is sucked into the furnace from the discharge port side, in addition to air suction from the fired product discharge port side, air is also sucked into the furnace at the transition from the primary combustion process to the secondary combustion process The structure of claim 6, wherein the indirect heating section for the primary combustion process and the indirect heating section for the secondary combustion process are separated from each other. The structure of claim 7, wherein the alkali metal compound is added to the raw papermaking sludge. Item 9 configuration, raw paper sludge The composition according to claim 9 formed into a granulated or lump shape, the composition according to claim 10 in which 50% or more of calcium carbonate contained in the raw papermaking sludge is decomposed by the combustion treatment, and the fired product after the combustion treatment. Mixing with water and stirring to form a suspension to make a suspension, contacting the suspension with carbon dioxide to obtain a carbonated product, and pulverizing the carbonated product Each of the configurations of the eleventh aspect including the following is a preferable aspect.

一方、本発明の請求項12に係る無機粒子の製造プラントは、一端側を原料供給口、他端側を焼成物排出口とする筒型熱処理炉と、その原料供給口へ製紙スラッジを供給する原料供給手段と、供給されたスラッジを焼成物排出口側へ移送する移送手段と、該筒型熱処理炉内を燃焼状態とする間接的加熱手段と、該筒型熱処理炉内を過剰空気雰囲気とする空気供給手段とを備え、前記筒型熱処理炉内に、スラッジ温度650℃以下の一次燃焼区間と、スラッジ温度700〜850℃の二次燃焼区間とが構成され、前記空気供給手段が、筒型熱処理炉の原料供給口近傍に設けた排気口から炉内空気を強制排気することより、同筒型熱処理炉の焼成物排出口近傍に設けた給気口から空気を炉内へ吸入するものとしている。   On the other hand, the inorganic particle manufacturing plant according to claim 12 of the present invention supplies a cylindrical heat treatment furnace having one end side as a raw material supply port and the other end side as a fired product discharge port, and papermaking sludge to the raw material supply port. Raw material supply means, transfer means for transferring the supplied sludge to the fired product outlet, indirect heating means for bringing the inside of the cylindrical heat treatment furnace into a combustion state, and the inside of the cylindrical heat treatment furnace with an excess air atmosphere And a primary combustion section having a sludge temperature of 650 ° C. or lower and a secondary combustion section having a sludge temperature of 700 to 850 ° C. are formed in the cylindrical heat treatment furnace. The air inside the furnace is forcibly exhausted from the exhaust port provided in the vicinity of the raw material supply port of the mold heat treatment furnace, and air is sucked into the furnace from the air supply port provided near the fired product discharge port of the cylindrical heat treatment furnace. It is said.

更に、請求項13の発明に係る紙は、請求項1から11のいずれかに記載の製造方法にて得られた無機粒子を填料として含んでなるものとしている。   Furthermore, the paper according to the invention of claim 13 comprises inorganic particles obtained by the production method according to any of claims 1 to 11 as a filler.

また、請求項14に係る塗工紙は、請求項1から11のいずれかに記載の製造方法にて得られた無機粒子を顔料として含んでなるものとしている。   Moreover, the coated paper which concerns on Claim 14 shall contain the inorganic particle obtained by the manufacturing method in any one of Claim 1 to 11 as a pigment.

請求項1に係る無機粒子の製造方法によれば、原料の製紙スラッジを筒型熱処理炉内で移送しつつ、特定条件で一次燃焼工程と二次燃焼工程の少なくとも2段階の燃焼工程を経て燃焼処理するから、高品質の白色の無機粒子を効率よく大規模に製造することができる。すなわち、まず一次燃焼工程では、過剰空気雰囲気下でスラッジ温度650℃以下での燃焼処理を行うから、まず製紙スラッジ中の有機成分の内の易燃焼性有機成分、つまり分子構造内にカルボキシル基、ヒドロキシル基、エステル基、エーテル基などの官能基を有する有機成分が、該官能基部分を起点とした熱分解及び発火・燃焼の促進により、炭化することなく効率よく燃焼して消失すると共に、この易燃焼性有機成分の燃焼に伴って前記官能基を有さない難燃焼性有機成分の燃焼も進行する。そして、二次燃焼工程では、過剰空気雰囲気下でスラッジ温度700〜850℃での燃焼処理を行うことから、一次燃焼工程の終了時点で残存していた印刷インキ由来のカーボンブラックなどの難燃焼性有機成分も確実に燃焼して消失すると共に、過度の高温燃焼による硬質の焼結物の生成を回避できる。   According to the method for producing inorganic particles according to claim 1, the raw papermaking sludge is transferred in a cylindrical heat treatment furnace and burned through at least two stages of combustion processes of a primary combustion process and a secondary combustion process under specific conditions. Since it processes, a high quality white inorganic particle can be efficiently manufactured on a large scale. That is, first, in the primary combustion process, since a combustion treatment is performed at a sludge temperature of 650 ° C. or less in an excess air atmosphere, first, a readily combustible organic component in the organic components in the papermaking sludge, that is, a carboxyl group in the molecular structure, Organic components having a functional group such as hydroxyl group, ester group, ether group, etc. are combusted and disappeared efficiently without carbonization due to thermal decomposition starting from the functional group portion and promotion of ignition / combustion. Along with the combustion of the readily combustible organic component, the combustion of the incombustible organic component not having the functional group also proceeds. In the secondary combustion process, the combustion treatment is performed at a sludge temperature of 700 to 850 ° C. in an excess air atmosphere, so that it is difficult to burn such as carbon black derived from printing ink remaining at the end of the primary combustion process. The organic components are also surely burned and lost, and generation of a hard sintered product due to excessive high temperature combustion can be avoided.

従って、得られる無機粒子は、煤や炭などの炭化物を含まないために高白色度で、且つ硬質の焼結物も含まず、製紙用材料である製紙用填料や塗工用顔料に適した高品質なものとなる。また、このような少なくとも2段階の燃焼工程により、高い燃焼効率が得られるから、大量の製紙スラッジを能率よく経済的に処理することが可能となる。   Therefore, the obtained inorganic particles do not contain carbides such as soot and charcoal, so they have high whiteness and do not contain hard sintered products, and are suitable for papermaking fillers and coating pigments that are papermaking materials. High quality. Further, such combustion process of at least two stages can provide high combustion efficiency, so that a large amount of papermaking sludge can be efficiently and economically processed.

また、請求項2の構成では、筒型熱処理炉として回転キルン炉を用いることから、上記一次及び二次の燃焼工程の設定が容易になる。請求項3の構成では、燃焼処理を間接的加熱によって行うから、上記一次及び二次の燃焼工程における温度制御が容易になる。請求項4の構成では、上記一次及び二次の燃焼工程を1基の筒型熱処理炉内で行うから、設備効率及び設備コスト面で有利である。   Moreover, in the structure of Claim 2, since a rotary kiln furnace is used as a cylindrical heat treatment furnace, the setting of the said primary and secondary combustion process becomes easy. In the configuration of claim 3, since the combustion process is performed by indirect heating, the temperature control in the primary and secondary combustion steps is facilitated. In the structure of Claim 4, since the said primary and secondary combustion process is performed within one cylindrical heat processing furnace, it is advantageous at the point of equipment efficiency and equipment cost.

請求項5の構成では、筒型熱処理炉の原料供給口側の排気によって焼成物排出口側から空気を炉内へ吸入するから、炉内での空気の流れと処理物の流れが逆になり、未燃焼の難燃性有機成分が炉の運転状況やスラッジの状況によって煤の如き状態になってたまたま炉内に飛散しても、煤の如き浮遊性物質は空気の流れに乗って原料供給口側へ戻され、あるいは更に排気と共に筒型熱処理炉外へ排出され、もって焼成物への未燃焼の難燃性有機成分の混入が防止されるため、得られる無機粒子の白色度がより高くなる。請求項6の構成では、一次燃焼工程から二次燃焼工程への移行部での吸入空気により、両燃焼工程の過剰空気雰囲気を容易に設定できると共に、その吸入量によって一次燃焼工程の温度を制御できる。請求項7の構成では、一次燃焼工程に対する間接的加熱部と、二次燃焼工程に対する間接的加熱部とが分離しているから、両燃焼工程の温度制御を独立して容易に行える。   In the configuration of claim 5, since air is sucked into the furnace from the fired product discharge port side by the exhaust on the raw material supply port side of the cylindrical heat treatment furnace, the flow of air in the furnace and the flow of the processed material are reversed. Even if the unburned flame-retardant organic components are in a state of soot depending on the operation status of the furnace and sludge, they will fly into the furnace and the floating material such as soot will ride on the air flow to supply the raw material. It is returned to the mouth side, or further discharged to the outside of the cylindrical heat treatment furnace together with the exhaust, so that the unburned flame-retardant organic component is prevented from being mixed into the fired product, so that the whiteness of the resulting inorganic particles is higher Become. In the configuration of claim 6, the intake air at the transition from the primary combustion process to the secondary combustion process can easily set the excess air atmosphere of both combustion processes, and the temperature of the primary combustion process is controlled by the intake amount. it can. In the structure of Claim 7, since the indirect heating part with respect to a primary combustion process and the indirect heating part with respect to a secondary combustion process are isolate | separated, the temperature control of both combustion processes can be performed easily independently.

請求項8の構成では、原料の製紙スラッジにアルカリ金属化合物を添加することから、燃焼工程において該アルカリ金属化合物が一種の触媒的に作用し、有機成分の熱分解及び燃焼がより促進する。請求項9の構成では、原料の製紙スラッジが造粒または塊状に成形されているから、燃焼工程において製紙スラッジと空気との接触性がよくなり、それだけ有機成分の燃焼効率が向上する。   In the structure of claim 8, since the alkali metal compound is added to the raw papermaking sludge, the alkali metal compound acts as a kind of catalyst in the combustion process, and the thermal decomposition and combustion of the organic component are further promoted. According to the ninth aspect of the present invention, since the raw papermaking sludge is granulated or formed into a lump shape, the contactability between the papermaking sludge and air is improved in the combustion process, and the combustion efficiency of the organic components is improved accordingly.

請求項10の構成では、燃焼処理において、原料の製紙スラッジに含まれる炭酸カルシウムの50%以上を熱分解させるから、スラッジ中の有機成分の燃焼除去を最優先させることができ、もって合理的且つ効率的な製紙スラッジ処理を行える。   In the configuration of claim 10, in the combustion treatment, 50% or more of calcium carbonate contained in the raw papermaking sludge is thermally decomposed, and therefore, the combustion removal of organic components in the sludge can be given top priority. Efficient papermaking sludge treatment can be performed.

請求項11の構成では、燃焼処理後の焼成物を水に懸濁させて炭酸ガスを吹込んで炭酸化する後処理を行うことから、原料の製紙スラッジが炭酸カルシウムを含む場合に、燃焼工程で該炭酸カルシウムは熱分解するが、この熱分解後のカルシウム成分を炭酸カルシウムに戻すことができ、もって得られる無機粒子中の熱分解されたカルシウム成分の存在による様々な問題を回避できる。   In the structure of Claim 11, since the post-process which suspends the baked material after a combustion process in water, blows in carbon dioxide, and carbonates is performed, when the papermaking sludge of a raw material contains a calcium carbonate, it is a combustion process. Although the calcium carbonate is thermally decomposed, the calcium component after the thermal decomposition can be returned to calcium carbonate, and various problems due to the presence of the thermally decomposed calcium component in the obtained inorganic particles can be avoided.

一方、請求項12の発明によれば、上記の無機粒子の製造に特に好ましく適用できる製造プラントが提供される。   On the other hand, according to the twelfth aspect of the present invention, there is provided a production plant that can be particularly preferably applied to the production of the inorganic particles.

更に、請求項13の発明に係る紙は、従来では廃棄対象であった製紙工場から排出される製紙スラッジを原料として得られる無機粒子を製紙用填料に含むことから、廃棄物の有効利用と環境保全に貢献する上、該無機粒子が製紙用填料として優れた性能を備えるため、良好な紙品質を持つ。また、請求項14の発明に係る塗工紙は、同様の無機粒子を顔料として含むことから、やはり廃棄物の有効利用と環境保全に貢献すると共に、白色度、平滑度、不透明度等に優れるものとなる。   Furthermore, since the paper according to the invention of claim 13 contains inorganic particles obtained from papermaking sludge discharged from a papermaking factory, which has been conventionally discarded, as a raw material for papermaking, the effective use of waste and the environment In addition to contributing to conservation, the inorganic particles have excellent paper quality as a papermaking filler, and therefore have good paper quality. Further, since the coated paper according to the invention of claim 14 contains the same inorganic particles as a pigment, it also contributes to the effective use of waste and environmental conservation, and is excellent in whiteness, smoothness, opacity, and the like. It will be a thing.

図1に、本発明に係る無機粒子の製造方法の好適なフローチャートを示す。図示の如く、原材料の製紙スラッジは、洗浄→アルカリ金属化合物添加→脱水→乾燥→造粒の各工程からなる前処理を経た上で、一次燃焼工程と二次燃焼工程とからなる少なくとも2段階の燃焼処理に供される。そして、この燃焼処理後の焼成物は、懸濁液化→炭酸化→脱水→分散→粉砕の各工程からなる後処理を経て白色の無機粒子として回収される。   In FIG. 1, the suitable flowchart of the manufacturing method of the inorganic particle which concerns on this invention is shown. As shown in the figure, the raw material papermaking sludge is subjected to pretreatment consisting of washing, alkali metal compound addition, dehydration, drying, granulation, and at least two stages consisting of a primary combustion process and a secondary combustion process. Used for combustion treatment. And the baked product after this combustion treatment is recovered as white inorganic particles through a post-treatment comprising the steps of suspension-> carbonation-> dehydration-> dispersion-> pulverization.

原材料の製紙スラッジは、既述のように、パルプの如き繊維成分、澱粉や合成樹脂接着剤を主とする有機物、塗工紙用顔料の如き無機物などが利用されずに廃水中へ移行したものと、パルプ化工程などで発生するリグニンや微細繊維、古紙由来の製紙用填料や印刷インキ、生物廃水処理工程から生じる余剰汚泥などからなり、古紙処理工程において印刷インキなどを除去する脱墨工程や製紙用原料を回収して洗浄する洗浄工程に由来する固形成分などを含んでいる。また、この製紙スラッジの一部には、再利用困難な低級古紙やそれに付随するプラスチックを主としたRPF(Refused Paper & Plastic Fuel)を含んでいてもよい。   The raw material papermaking sludge, as mentioned above, is the one that has been transferred to wastewater without using fiber components such as pulp, organic substances such as starch and synthetic resin adhesives, and inorganic substances such as pigments for coated paper. Lignin and fine fibers generated in the pulping process, paper-making fillers and printing ink derived from waste paper, excess sludge from the biological wastewater treatment process, etc. It contains solid components and the like derived from the washing process of collecting and washing the papermaking raw material. In addition, a part of the paper sludge may include low-grade waste paper that is difficult to reuse and RPF (Refused Paper & Plastic Fuel) mainly made of plastics accompanying it.

そして、該製紙スラッジ中の有機成分は、パルプや接着剤、前記RPFなどに由来して分子中にカルボキシル基、ヒドロキシル基、エステル基、エーテル基などの官能基を有する易燃焼性のものと、古紙再生における印刷インキ由来のカーボンブラックの如き官能基を殆ど有しない難燃焼性のものとが混在している。一方、該製紙スラッジ中の無機成分(灰分)は、製紙用填料や塗工紙用顔料に由来するカオリン(クレー)および炭酸カルシウムが無機成分全体の約90〜95重量%を占める主成分であるが、タルクや二酸化チタンなどが少量混在している。   And the organic component in the papermaking sludge is derived from pulp, adhesive, RPF, etc., and easily combustible having a functional group such as carboxyl group, hydroxyl group, ester group, ether group in the molecule, Incombustible flame retardants having few functional groups such as carbon black derived from printing ink in used paper recycling are mixed. On the other hand, the inorganic component (ash content) in the papermaking sludge is a main component in which kaolin (clay) and calcium carbonate derived from papermaking filler and coated paper pigment account for about 90 to 95% by weight of the whole inorganic component. However, a small amount of talc and titanium dioxide are mixed.

前記無機成分の主成分であるカオリンと炭酸カルシウムの比率は、処理する古紙の種類などによって多少のばらつきはあるが、概ねカオリン/炭酸カルシウムの重量比で30/70〜70/30の範囲である。また、製紙スラッジ中の有機成分と無機成分の比率は、処理する古紙の種類や脱墨工程の程度によって多少は変動するが、概ね無機成分/有機成分の重量比で30/70〜70/30の範囲である。   The ratio of kaolin and calcium carbonate, the main component of the inorganic component, varies somewhat depending on the type of waste paper to be treated, but is generally in the range of 30/70 to 70/30 by weight ratio of kaolin / calcium carbonate. . The ratio of the organic component and the inorganic component in the papermaking sludge varies somewhat depending on the type of used paper to be treated and the degree of the deinking process, but is generally 30/70 to 70/30 in terms of the weight ratio of the inorganic component / organic component. Range.

本発明では、前記の少なくとも2段階の燃焼処理により、製紙スラッジに含まれる全ての有機成分を確実に燃焼除去する。すなわち、本発明における燃焼処理は、原料の製紙スラッジを筒型熱処理炉内で移送しつつ行うが、その一次燃焼工程を過剰空気雰囲気下でスラッジ温度650℃以下の燃焼条件に、二次燃焼工程を過剰空気雰囲気下でスラッジ温度700〜850℃の燃焼条件に、それぞれ設定するものである。なお、過剰空気雰囲気とは、有機成分の燃焼に対して充分な酸素量を与えて不完全燃焼を生じさせない空気雰囲気を意味する。   In the present invention, all organic components contained in the papermaking sludge are surely burned and removed by the above-described at least two-stage combustion treatment. That is, the combustion treatment in the present invention is performed while transporting the raw papermaking sludge in the cylindrical heat treatment furnace, and the primary combustion process is performed under the excess air atmosphere under the sludge temperature of 650 ° C. or less in the secondary combustion process. Are set to combustion conditions with a sludge temperature of 700 to 850 ° C. in an excess air atmosphere. The excess air atmosphere means an air atmosphere that does not cause incomplete combustion by giving a sufficient amount of oxygen to the combustion of organic components.

まず、一次燃焼工程では、過剰空気雰囲気下で比較的低温の燃焼条件になるから、製紙スラッジ中の易燃焼性有機成分が、分子中の官能基を起点として容易に熱分解・発火し、炭化することなく燃焼して消失する。次の二次燃焼工程では、過剰空気雰囲気下で高温の燃焼条件になるから、一次燃焼工程で燃焼しきらずに残っていた難燃焼性有機成分も確実に燃焼して消失する。このような2段階の燃焼処理では、易燃焼性有機成分を燃焼しにくい炭化物に変化させずに燃焼除去できて合理的であり、製紙スラッジ中の有機成分全体の燃焼除去も短時間で効率よく行える。そして、得られる焼成物は、煤や炭などの未燃焼の有機成分を含まないために白色度が高く、製紙用填料や塗工用顔料の如き製紙用材料に好適に利用できるものとなる。   First, in the primary combustion process, the combustion conditions are relatively low in an excess air atmosphere, so the easily combustible organic components in paper sludge are easily pyrolyzed and ignited starting from the functional group in the molecule, and carbonized. It disappears without burning. In the next secondary combustion step, high-temperature combustion conditions are obtained in an excess air atmosphere, so that the non-combustible organic components remaining without being burned in the primary combustion step are also surely burned and lost. In such a two-stage combustion process, it is reasonable to burn and remove easily combustible organic components without changing them into hard-to-burn carbides, and the entire organic components in paper sludge can be burned and removed efficiently in a short time. Yes. And since the obtained baked product does not contain unburned organic components such as firewood and charcoal, it has high whiteness and can be suitably used for papermaking materials such as papermaking fillers and coating pigments.

なお、一次燃焼工程のスラッジ温度が650℃を越えると、前述したように、易燃焼性有機成分が炭化して難燃焼性有機成分に変化し、燃焼効率が悪化することになる。また、この一次燃焼工程の燃焼温度があまりに低過ぎては易燃焼性有機成分でも熱分解・発火しにくくなって燃焼効率が悪化するため、スラッジ温度の下限を250℃とすることが望ましい。更に、一次燃焼工程の最も好適な焼成条件は、スラッジ温度350〜630℃となる範囲である。   When the sludge temperature in the primary combustion process exceeds 650 ° C., as described above, the easily combustible organic component is carbonized and changed to a hardly combustible organic component, and the combustion efficiency is deteriorated. Further, if the combustion temperature in the primary combustion process is too low, even a readily combustible organic component is difficult to pyrolyze and ignite, and the combustion efficiency deteriorates. Therefore, the lower limit of the sludge temperature is preferably 250 ° C. Furthermore, the most suitable baking conditions of a primary combustion process are the range used as the sludge temperature of 350-630 degreeC.

一方、二次燃焼工程のスラッジ温度が700℃未満になると、難燃焼性有機成分の燃焼に時間がかかり、燃焼効率が悪化することになる。逆に該スラッジ温度が850℃を超える高温燃焼になった場合は、一般的にゲーレナイトと呼ばれる硬質の焼結物の生成によって製紙用材料としての適性が損なわれる。すなわち、このような硬質の焼結物が混入した焼成物から調製した製紙用填料や塗工用顔料に用いた場合、抄紙用ワイヤーや塗工用のブレードなどの製造設備を傷つけて製造操業性を悪化させ、製品品質にも悪影響を与えることになる。しかして、二次燃焼工程の最も好適な焼成条件は、スラッジ温度750〜800℃となる範囲である。   On the other hand, if the sludge temperature in the secondary combustion process is less than 700 ° C., it takes time to burn the non-combustible organic component, and the combustion efficiency deteriorates. On the other hand, when the sludge temperature becomes high temperature combustion exceeding 850 ° C., suitability as a papermaking material is impaired due to generation of a hard sintered material generally called gehlenite. In other words, when used as a paper filler or coating pigment prepared from a fired product mixed with such a hard sintered product, the manufacturing facilities such as paper making wire and coating blade are damaged. Will worsen the product quality. Thus, the most suitable firing conditions for the secondary combustion process are the ranges where the sludge temperature is 750 to 800 ° C.

また、燃焼処理は、上記の一次及び二次燃焼工程からなる2段階で行う以外に、これら一次燃焼工程から二次燃焼工程への移行区間としての燃焼工程を挟んだり、一次及び二次燃焼工程の一方又は両方を更に燃焼温度(スラッジ温度)の異なる複数の燃焼工程に分けたりして、3段階以上とすることも可能である。   In addition to performing the combustion process in the two stages consisting of the primary and secondary combustion processes described above, the combustion process as a transition section from the primary combustion process to the secondary combustion process is sandwiched, or the primary and secondary combustion processes. One or both of these can be further divided into a plurality of combustion steps having different combustion temperatures (sludge temperatures), so that there are three or more stages.

一次燃焼工程の燃焼処理時間は、少なくとも10分以上で8時間以内とすることが好ましく、15分以上で2時間以内とすることが特に好ましく、短過ぎては製紙スラッジ中の易燃焼性有機成分の燃焼除去が不充分になる恐れがあり、長過ぎては熱エネルギーの無駄になる。ともかく全ての易燃焼性有機成分が燃焼除去されるのに充分な時間をかけることが重要である。また、二次燃焼工程の燃焼処理時間は、少なくとも10分以上で8時間以内とすることが好ましく、20分以上で2時間以内とすることが特に好ましく、短過ぎては製紙スラッジ中の難燃焼性有機成分の燃焼除去が不充分になる恐れがあり、長過ぎては熱エネルギーの無駄になる。そして、一次燃焼工程と二次燃焼工程の燃焼処理時間の比率は、一次燃焼工程/二次燃焼工程で1/10〜10/1の範囲とすることが好ましい。   The combustion treatment time of the primary combustion process is preferably at least 10 minutes and within 8 hours, particularly preferably 15 minutes and within 2 hours, and if it is too short, the flammable organic components in the papermaking sludge There is a risk that the removal of combustion will be insufficient, and if it is too long, heat energy will be wasted. In any case, it is important to allow sufficient time for all flammable organic components to burn off. Further, the combustion treatment time of the secondary combustion process is preferably at least 10 minutes or longer and within 8 hours, particularly preferably 20 minutes or longer and within 2 hours, and if it is too short, it is difficult to burn in the papermaking sludge. There is a risk that the burning and removal of the organic component will be insufficient, and if it is too long, the heat energy will be wasted. And it is preferable to make the ratio of the combustion processing time of a primary combustion process and a secondary combustion process into the range of 1/10-10/1 in a primary combustion process / secondary combustion process.

燃焼処理に用いる筒型熱処理炉は、被処理物の移送方式により、ロータリーキルンと称される回転式キルン炉と、スクリュー式キルン炉とがあるが、燃焼効率面から回転式キルン炉が好適である。また、前記の少なくとも2段階の燃焼処理は、1基の筒型熱処理炉内で行う他、段階ごとに異なる複数基の筒型熱処理炉を用いて行うことも可能であるが、当然に1基で行う方が設備効率及び設備コスト面で有利である。   The cylindrical heat treatment furnace used for the combustion treatment includes a rotary kiln furnace called a rotary kiln and a screw kiln furnace depending on the transfer method of the object to be processed, but a rotary kiln furnace is preferable in terms of combustion efficiency. . The at least two-stage combustion treatment can be performed in a single cylindrical heat treatment furnace, or by using a plurality of cylindrical heat treatment furnaces that are different for each stage. It is more advantageous in terms of equipment efficiency and equipment cost.

なお、燃焼処理を前記1基の筒形熱処理炉を用いて行う場合の一次燃焼工程と二次燃焼工程との間に生じる昇温領域、具体的には燃焼温度が650℃から700℃へ上昇する領域については、できるだけ短くすることが好ましく、10分以内とすることが特に好ましい。このように一次燃焼工程と二次燃焼工程との間の昇温領域を短くすることは、筒型熱処理炉の全長短縮によるコンパクト化に繋がり、設備効率及び設備コスト面で有利である。   It should be noted that the temperature rising region generated between the primary combustion process and the secondary combustion process when the combustion treatment is performed using the one cylindrical heat treatment furnace, specifically, the combustion temperature is increased from 650 ° C. to 700 ° C. About the area | region to perform, it is preferable to make it as short as possible, and it is especially preferable to set it as less than 10 minutes. Thus, shortening the temperature rising region between the primary combustion process and the secondary combustion process leads to compactness by shortening the overall length of the cylindrical heat treatment furnace, which is advantageous in terms of equipment efficiency and equipment cost.

筒型熱処理炉の加熱方式としては、直接的加熱方式(内熱式)よりも間接的加熱方式(外熱式)の方が好ましい。すなわち、直接的加熱方式では、処理炉内で熱源ガスを燃焼させるのに大量の空気(酸素)を消費するため、製紙スラッジに含まれる有機成分の燃焼が空気不足で不完全になる懸念がある上、熱源ガスの燃焼によって炉内温度(スラッジ温度)の制御が非常に困難になる。これに対し、間接的加熱方式では、熱源のために炉内空気を消費することがないから、炉内を過剰空気雰囲気に確実に設定できることに加え、外部からの加熱度合を自在に変化できるので、炉内温度の制御が極めて容易になる。   As the heating method of the cylindrical heat treatment furnace, the indirect heating method (external heat method) is preferable to the direct heating method (internal heat method). That is, in the direct heating method, since a large amount of air (oxygen) is consumed to burn the heat source gas in the processing furnace, there is a concern that the combustion of the organic components contained in the papermaking sludge becomes incomplete due to air shortage. Furthermore, the control of the furnace temperature (sludge temperature) becomes very difficult due to the combustion of the heat source gas. On the other hand, the indirect heating method does not consume furnace air for the heat source, so that the inside of the furnace can be reliably set to an excess air atmosphere and the degree of heating from the outside can be freely changed. Control of the furnace temperature becomes extremely easy.

上記の間接的加熱方式における加熱手段としては、電気的ヒータや誘導電流による加熱も可能ではあるが、エネルギーコスト面より、筒型の炉本体を包囲する加熱ジャケット内に、灯油や重油などの燃焼ガス、既存の焼却設備から排出される燃焼排ガス、高温空気、過熱水蒸気などを導入したり、該処理炉の周壁にガスバーナーからの燃焼ガスを吹き付けて加熱する方法が推奨される。また、炉本体内での燃焼処理を経た高温の排気や前処理の乾燥工程からの燃焼排ガスも、当該加熱手段の熱媒や熱源の一部として利用できる。   As a heating means in the above indirect heating method, heating by an electric heater or induction current is possible, but from the viewpoint of energy cost, burning of kerosene, heavy oil, etc. is carried out in a heating jacket surrounding the cylindrical furnace body. A method of introducing gas, combustion exhaust gas discharged from an existing incinerator, high-temperature air, superheated steam, or the like, or spraying combustion gas from a gas burner on the peripheral wall of the processing furnace and heating is recommended. Further, high-temperature exhaust gas that has undergone combustion treatment in the furnace body and combustion exhaust gas from the pretreatment drying step can also be used as part of the heating medium or heat source of the heating means.

筒型熱処理炉の炉本体内への燃焼用空気の供給は、高品質の焼成物を製出する上で、焼成物排出口側から行うことが推奨される。すなわち、焼成物排出口側からの空気供給により、炉本体内での空気の流れ方向が被処理物(製紙スラッジとその焼成物)の移送方向に対して逆向きになり、燃焼に伴って未燃焼の難燃焼性有機成分が煤の如き状態となってたまたま炉内に飛散しても、煤の如き浮遊性物質は空気の流れに乗って原料供給口側へ戻されて燃焼するか、あるいは更に排気に付随して筒型熱処理炉外へ排出されるため、焼成物に黒色の未燃焼の難燃焼性有機成分が混入するのを防止でき、もって白色度の高い焼成物が得られる。しかして、排気に付随して筒型熱処理炉外へ排出される未燃焼の難燃焼性有機成分は、バグフィルターなどで捕集して除去するか、排気と共に適当な加熱手段によって燃焼処理して消失させるのがよい。   In order to produce a high-quality fired product, it is recommended that the supply of combustion air into the furnace body of the cylindrical heat treatment furnace be performed from the fired product outlet side. In other words, the air supply from the fired product outlet side causes the air flow direction in the furnace body to be opposite to the transfer direction of the object to be treated (paper sludge and its fired product). Even if the non-combustible organic component of combustion is scattered in the furnace, which is in the state of soot, the floating substance such as soot is carried back to the raw material supply port side and burns on the air flow, or Further, since the exhaust gas is discharged outside the cylindrical heat treatment furnace, it is possible to prevent the black unburned, non-combustible organic component from being mixed into the fired product, thereby obtaining a fired product with high whiteness. Thus, unburned, non-combustible organic components discharged to the outside of the cylindrical heat treatment furnace accompanying the exhaust are collected and removed with a bag filter or the like, or are combusted with appropriate heating means together with the exhaust. It should be lost.

上述のように炉本体内への燃焼用空気を焼成物排出口側から供給するには、該焼成物排出口側から空気を吹き込んでもよいが、原料供給口側の排気によって空気を吸入する方法が好適である。すなわち、原料供給口側から強制的に排気することによって炉内が負圧になるから、焼成物排出口の近傍に給気口を設けておけば、該負圧によって空気が給気口から自動的に炉内へ吸入される。しかして、このような原料供給口側の排気による空気供給では、排気量によって空気供給量を容易に制御できると共に、安定した空気流によって長い炉本体の全長にわたって空気を確実に行き渡らせることができる。   As described above, in order to supply combustion air into the furnace main body from the fired product discharge port side, air may be blown from the fired product discharge port side, but air is sucked by exhaust on the raw material supply port side. Is preferred. That is, because the furnace is negatively exhausted by forcibly exhausting from the raw material supply port side, if an air supply port is provided in the vicinity of the fired product discharge port, air is automatically discharged from the air supply port by the negative pressure. Inhaled into the furnace. Thus, in such air supply by exhaust on the raw material supply port side, the air supply amount can be easily controlled by the exhaust amount, and air can be reliably distributed over the entire length of the long furnace body by a stable air flow. .

上記の空気供給量は、炉本体内を過剰空気雰囲気とする上で、製紙スラッジに含まれる有機成分の完全燃焼に要する理論酸素量に対し、1.1〜5倍の酸素量を与える量に設定することが好ましく、特に2〜5倍の酸素量を与える量が望ましい。この空気供給量が少な過ぎては、炉本体内を過剰空気雰囲気にすることが困難になり、有機成分の不完全燃焼で残留した炭化物によって焼成物の白色度が低下する恐れがある。また、逆に空気供給量が多過ぎては、供給空気によって炉内が過度に冷やされるため、燃焼温度を維持する上で加熱手段による加熱度合を強める必要があり、それだけエネルギーコストが嵩むことになる。しかして、この燃焼用の空気は、有機成分を充分に燃焼させる酸素を含んでおればよいから、通常の外気よりも二酸化炭素の含有量が多いものでも支障はない。   The above air supply amount is an amount that gives an oxygen amount 1.1 to 5 times the theoretical oxygen amount required for complete combustion of the organic components contained in the papermaking sludge in the furnace body in an excess air atmosphere. It is preferable to set, and an amount that gives an oxygen amount 2 to 5 times is particularly desirable. If the air supply amount is too small, it becomes difficult to make the furnace body have an excess air atmosphere, and the whiteness of the fired product may be lowered by the carbide remaining due to incomplete combustion of the organic components. On the other hand, if the air supply amount is too large, the inside of the furnace will be excessively cooled by the supply air, so it is necessary to increase the degree of heating by the heating means in order to maintain the combustion temperature, and the energy cost will increase accordingly. Become. Therefore, since this combustion air only needs to contain oxygen that sufficiently burns organic components, there is no problem even if the content of carbon dioxide is larger than that of normal outside air.

本発明方法による製紙スラッジの好適な燃焼処理状態が現出すれば、一次燃焼工程では、スラッジ中の有機成分の大部分を占める多量の易燃焼性有機成分が充分な酸素の存在下で炎を上げて燃焼し、この燃焼が当該一次燃焼工程の1/2〜2/3まで連続する状態となる。同じく二次燃焼工程では、残留した難燃性有機成分が燃焼するが、その含有量が少ないために炎を上げることはなくとも、700〜850℃の高温であるためにスラッジが灼熱しながら持続的に燃焼する状態となる。   If a suitable combustion treatment state of the papermaking sludge according to the method of the present invention appears, in the primary combustion process, a large amount of easily combustible organic components, which occupy most of the organic components in the sludge, will burn in the presence of sufficient oxygen. It burns up, and this combustion is in a state that continues from 1/2 to 2/3 of the primary combustion process. Similarly, in the secondary combustion process, the remaining flame-retardant organic components are burned, but since the content is small, the flame is not raised, but the high temperature of 700 to 850 ° C keeps the sludge burning up. It will be in a state of burning.

図2は本発明に用いる筒型熱処理炉の第一構成例である間接的加熱方式の回転式キルン炉K1を模式的に示す縦断側面図である。図示のように、この回転式キルン炉K1は、炉本体である横円筒型の回転胴1の外周が加熱ジャケット2で包囲されており、該回転胴1の一端の原料供給口1a側に、排気口3とやや離間して原料投入口4とが設けられると共に、この原料投入口4と回転胴1の原料供給口1aとの間に、スクリューフィーダーの如き原料供給手段5が配設され、また回転胴1の他端の焼成物排出口1bに臨んで、給気口6Aと焼成物取出口7とが設けられている。   FIG. 2 is a vertical side view schematically showing an indirect heating type rotary kiln furnace K1 which is a first structural example of a cylindrical heat treatment furnace used in the present invention. As shown in the figure, the rotary kiln furnace K1 has an outer periphery of a horizontal cylindrical rotary drum 1 that is a furnace body surrounded by a heating jacket 2, and on the raw material supply port 1a side of one end of the rotary drum 1, A raw material input port 4 is provided at a distance from the exhaust port 3, and a raw material supply means 5 such as a screw feeder is disposed between the raw material input port 4 and the raw material supply port 1 a of the rotary drum 1. An air supply port 6 </ b> A and a fired product outlet 7 are provided facing the fired product discharge port 1 b at the other end of the rotating drum 1.

そして、加熱ジャケット2内には、一次燃焼用及び二次燃焼用の2系統の間接的加熱手段8A,8Bにより、それぞれの熱風ブロア81を介して送出される熱風が各々複数本のバルブ付き放出口82…から、原料供給口1a側の前部加熱空間2aと焼成物排出口1b側の後部加熱空間2bとに分けて導入される。また、排気口3には排気ファンの如き排気手段9が介装されており、その稼働によって破線矢印aで示すように回転胴1内の空気が排気されると共に、この排気に伴う減圧作用で給気口6Aより外部の空気が回転胴1内へ吸入される。10は排気口3の下流側に設けた排気循環ブロアである。   In the heating jacket 2, hot air sent through the hot air blowers 81 is released by a plurality of indirect heating means 8A and 8B for primary combustion and secondary combustion, respectively. From the outlets 82, the front heating space 2a on the raw material supply port 1a side and the rear heating space 2b on the fired product discharge port 1b side are separately introduced. In addition, an exhaust means 9 such as an exhaust fan is interposed in the exhaust port 3, and the air in the rotary drum 1 is exhausted as shown by the broken line arrow a due to its operation, and the decompression action accompanying this exhaust is performed. Outside air is sucked into the rotary drum 1 through the air supply port 6A. Reference numeral 10 denotes an exhaust circulation blower provided on the downstream side of the exhaust port 3.

なお、回転胴1は、厳密な図示を省略しているが、原料供給口1a側から焼成物排出口1b側に向かって非常に緩やかな下り勾配に傾斜しており、この回転胴1の傾斜と回転により、内部の被処理物が重力作用で原料供給口1a側から焼成物排出口1b側へ徐々に移動するようになっている。   Although the rotary cylinder 1 is not illustrated strictly, the rotary cylinder 1 is inclined to a very gentle downward slope from the raw material supply port 1a side to the fired product discharge port 1b side. As a result of the rotation, the internal workpiece is gradually moved from the raw material supply port 1a side to the fired product discharge port 1b side by gravity.

上記構成の回転式キルン炉K1によって製紙スラッジSの燃焼処理を行うには、実線矢印bで示すように、原料投入口4に投入された原料の製紙スラッジSを、原料供給手段5によって回転胴1の原料供給口1aへ送り込み、該回転胴1の回転によって焼成物排出口1b側へ移送する過程で、加熱ジャケット2内へ導入される熱風による間接加熱により、当該スラッジS中の有機成分を既述焼成条件の一次燃焼工程と二次燃焼工程の2段階で燃焼させる。   In order to perform the combustion treatment of the papermaking sludge S by the rotary kiln furnace K1 having the above configuration, as shown by the solid line arrow b, the papermaking sludge S of the raw material charged into the raw material charging port 4 is rotated by the raw material supply means 5 by the rotating drum. In the process of feeding to the raw material supply port 1a and transferring to the fired product discharge port 1b side by the rotation of the rotary drum 1, the organic components in the sludge S are removed by indirect heating with hot air introduced into the heating jacket 2. Combustion is performed in two stages, the primary combustion process and the secondary combustion process described above.

すなわち、この2段階の燃焼処理は、排気手段9の稼働による排気口3からの排気に伴う給気口6Aからの空気の吸入により、回転胴1内全体を過剰空気雰囲気に維持しつつ、2系統の間接的加熱手段8A,8Bから加熱ジャケット2内の前部加熱空間2aと後部加熱空間2bに各々導入される熱風の温度と導入速度によって加熱度合を調整し、図中の仮想線cで分かつように、その前部加熱空間2aに対応した回転胴1内の前側領域を一次燃焼区間Z1としてスラッジ温度650℃以下(好適には650℃以下で250℃以上、最適には350〜630℃)に制御すると共に、後部加熱空間2bに対応した回転胴1内の後側領域を二次燃焼区間Z2としてスラッジ温度700〜850℃(好適には750〜800℃)に制御する。   That is, the two-stage combustion process is performed while the entire interior of the rotary drum 1 is maintained in an excess air atmosphere by the intake of air from the air supply port 6A accompanying the exhaust from the exhaust port 3 due to the operation of the exhaust means 9. The heating degree is adjusted by the temperature and the introduction speed of the hot air introduced from the indirect heating means 8A, 8B of the system to the front heating space 2a and the rear heating space 2b in the heating jacket 2, respectively, and is represented by a virtual line c in the figure. As can be seen, the sludge temperature of 650 ° C. or less (preferably 650 ° C. or less, 250 ° C. or more, optimally 350 to 630 ° C.) is defined as a primary combustion zone Z1 corresponding to the front heating space 2a. ), And the rear region in the rotary drum 1 corresponding to the rear heating space 2b is controlled as a secondary combustion zone Z2 to a sludge temperature of 700 to 850 ° C. (preferably 750 to 800 ° C.).

これにより、製紙スラッジSは、一次燃焼区間Z1を通過する過程で含有する易燃焼性有機成分が炭化することなく燃焼除去され、次いで二次燃焼区間Z2を通過する過程で含有する難燃焼性有機成分が燃焼除去され、もって未燃焼の有機成分ならびに硬質の焼結物を含まない高白色度の焼成物として、回転胴1の焼成物排出口1bから排出され、焼成物取出口7を通して炉外に取り出される。   As a result, the paper-making sludge S is combusted and removed without carbonizing the easily combustible organic components contained in the process of passing through the primary combustion zone Z1, and then contained in the process of passing through the secondary combustion zone Z2. The components are burned and removed, and are discharged from the fired product discharge port 1b of the rotary drum 1 as a high-whiteness fired product that does not contain unburned organic components and hard sintered products. To be taken out.

なお、両燃焼区間Z1,Z2における処理時間(通過時間)は、回転胴1の回転速度と傾斜度合によって設定すればよい。また、回転胴1内における両燃焼区間Z1,Z2の長さ比率は、前述の如く一次燃焼工程/二次燃焼工程で1/10〜10/1の範囲とすることが好ましいが、2系統の間接的加熱手段8A,8Bから加熱ジャケット2内へそれぞれ熱風を導入する領域の大きさの相対比率によって任意に調整できる。しかして、両燃焼区間Z1,Z2の燃焼温度(スラッジ温度)を制御するための温度計測には、熱電対や赤外線温度センサーを始めとする様々な計測手段を利用できるが、作動の信頼性とコスト面より熱電対が好適である。   In addition, what is necessary is just to set the processing time (passing time) in both combustion area Z1, Z2 with the rotational speed and inclination degree of the rotary drum 1. FIG. Further, the length ratio of both combustion sections Z1 and Z2 in the rotary drum 1 is preferably in the range of 1/10 to 10/1 in the primary combustion process / secondary combustion process as described above. The indirect heating means 8A, 8B can be arbitrarily adjusted according to the relative ratio of the size of the region where hot air is introduced into the heating jacket 2 respectively. Therefore, various measuring means such as a thermocouple and an infrared temperature sensor can be used for temperature measurement for controlling the combustion temperature (sludge temperature) in both combustion sections Z1 and Z2. A thermocouple is preferable in terms of cost.

一方、排気口3からの排気は、燃焼による高温状態であるから、排気循環ブロアー10によって熱風循環系へ送られ、図1のフローチャートで示す前処理の乾燥工程における熱源としたり、間接的加熱手段8A,8Bの熱風又は熱源の一部として循環利用される。なお、間接的加熱手段8A,8Bの熱風やその熱源には、前処理の乾燥工程などからの燃焼排ガスも利用可能である。   On the other hand, since the exhaust from the exhaust port 3 is in a high temperature state due to combustion, it is sent to the hot air circulation system by the exhaust circulation blower 10 and used as a heat source in the pretreatment drying step shown in the flowchart of FIG. It is recycled as a part of the hot air or heat source of 8A and 8B. In addition, combustion exhaust gas from a pretreatment drying step or the like can be used for the hot air of the indirect heating means 8A and 8B and its heat source.

図3は、本発明に用いる筒型熱処理炉の第二構成例である間接的加熱方式の回転式キルン炉K2を模式的に示す縦断側面図であり、既述の図2で示す第一構成例の回転式キルン炉K1と共通する構成要素には同一符号を附している。この回転式キルン炉K2は、第一構成例の回転式キルン炉K1とほぼ同様の構成であるが、加熱ジャケット2内の前部加熱空間2aと後部加熱空間2bとが仕切り部材11によって遮断されている。なお、この仕切り部材11としては、金属、陶磁器、煉瓦などの燃焼処理の高温に耐え得る材料を所要形状に整形加工したものが用いられる。   FIG. 3 is a longitudinal side view schematically showing a rotary kiln furnace K2 of an indirect heating system which is a second configuration example of the cylindrical heat treatment furnace used in the present invention, and the first configuration shown in FIG. 2 described above. Constituent elements common to the example rotary kiln furnace K1 are denoted by the same reference numerals. The rotary kiln furnace K2 has substantially the same configuration as the rotary kiln furnace K1 of the first configuration example, but the front heating space 2a and the rear heating space 2b in the heating jacket 2 are blocked by the partition member 11. ing. In addition, as this partition member 11, what shape | molded the material which can endure the high temperature of combustion processes, such as a metal, ceramics, and bricks, into a required shape is used.

この第二構成例の回転式キルン炉K2では、間接的加熱手段8Aによって加熱ジャケット2内の前部加熱空間2aへ導入される比較的温度の低い熱風と、間接的加熱手段8Bによって加熱ジャケット2内の後部加熱空間2bへ導入される高温の熱風とが混じり合わないため、回転胴1内の一次燃焼区間Z1と二次燃焼区間Z2の熱処理温度の制御がより容易になり、両区間Z1,Z2の温度差を安定に維持できて高品質の焼成物が得られると共に、両区間Z1,Z2の間で温度が変化する移行領域の長さを短くできるから、回転胴1内に占める一次及び二次燃焼工程の領域の比率が高くなり、それだけ回転胴1をコンパクトに構成できて設備コストの低減に繋がるという利点がある。   In the rotary kiln furnace K2 of this second configuration example, hot air having a relatively low temperature introduced into the front heating space 2a in the heating jacket 2 by the indirect heating means 8A and the heating jacket 2 by the indirect heating means 8B. Since high-temperature hot air introduced into the rear heating space 2b is not mixed, it becomes easier to control the heat treatment temperatures in the primary combustion zone Z1 and the secondary combustion zone Z2 in the rotary drum 1, and both zones Z1, The temperature difference of Z2 can be stably maintained and a high-quality fired product can be obtained, and the length of the transition region in which the temperature changes between both sections Z1 and Z2 can be shortened. There is an advantage that the ratio of the area of the secondary combustion process becomes high, and the rotary drum 1 can be made compact accordingly, leading to a reduction in equipment cost.

図4は、本発明に用いる筒型熱処理炉の第三構成例である間接的加熱方式の回転式キルン炉K3を模式的に示す縦断側面図であり、既述の図2及び図3で示す第一及び第二構成例の回転式キルン炉K1,K2と共通する構成要素には同一符号を附している。この第三構成例の回転式キルン炉K3は、回転胴1の外周が原料供給口1a側と焼成物排出口1b側とに分離した加熱ジャケット2A,2Bで包囲され、両加熱ジャケット2A,2Bの境界部分に中間の給気口6Bが設けられている。   FIG. 4 is a longitudinal side view schematically showing an indirect heating type rotary kiln furnace K3 which is a third structural example of the cylindrical heat treatment furnace used in the present invention, and is shown in FIGS. 2 and 3 described above. Constituent elements common to the rotary kiln furnaces K1 and K2 of the first and second configuration examples are denoted by the same reference numerals. The rotary kiln furnace K3 of the third configuration example is surrounded by heating jackets 2A and 2B in which the outer periphery of the rotary drum 1 is separated into the raw material supply port 1a side and the fired product discharge port 1b side. An intermediate air supply port 6B is provided at the boundary portion.

この回転式キルン炉K3では、前記第一及び第二構成例の回転式キルン炉K1,K2と同様に、2系統の間接的加熱手段8A,8Bによる熱風を両加熱ジャケット2A,2B内の各加熱空間2a,2bに別々に導入することにより、その前部加熱空間2aに対応した回転胴1内の前側領域がスラッジ温度650℃以下(好適には650℃以下で250℃以上、最適には350〜630℃)の一次燃焼区間Z1に、同じく後部加熱空間2bに対応した回転胴1内の後側領域がスラッジ温度700〜850℃(好適には750〜800℃)の二次燃焼区間Z2に、それぞれ設定される。   In this rotary kiln furnace K3, similarly to the rotary kiln furnaces K1 and K2 of the first and second configuration examples, hot air from two systems of indirect heating means 8A and 8B is supplied to each of the heating jackets 2A and 2B. By introducing the heating spaces 2a and 2b separately, the front region in the rotary drum 1 corresponding to the front heating space 2a has a sludge temperature of 650 ° C or lower (preferably 650 ° C or lower and 250 ° C or higher, optimally In the primary combustion zone Z1 of 350 to 630 ° C., the secondary combustion zone Z2 in which the rear region in the rotary drum 1 corresponding to the rear heating space 2b is sludge temperature 700 to 850 ° C. (preferably 750 to 800 ° C.). Respectively.

しかるに、この回転式キルン炉K3においては、排気手段9によって回転胴1内の空気を原料供給口1a近傍の排気口3から強制的に排気し、これに伴って回転胴1内に生じた負圧により外部から空気を吸入するが、焼成物排出口1b側と中間の2ヶ所に給気口6A,6Bをそれぞれ設けている。このため、両給気口6A,6Bからの吸入により、回転胴1内では給気口6Aからの空気流a1に中間位置で給気口6Bからの空気流a2が加わり、両空気流a1,a2を合流した空気流a3が回転胴1内の一次燃焼区間を通って排気口3から排出される。   However, in this rotary kiln furnace K3, the air in the rotary drum 1 is forcibly exhausted from the exhaust port 3 near the raw material supply port 1a by the exhaust means 9, and the negative generated in the rotary drum 1 as a result. Air is sucked in from the outside by pressure, and air supply ports 6A and 6B are provided at two places on the fired product discharge port 1b side and in the middle. For this reason, the air flow a2 from the air supply port 6B is added to the air flow a1 from the air supply port 6A in the rotary drum 1 at the intermediate position by the suction from both the air supply ports 6A and 6B. An air flow a3 that joins a2 passes through the primary combustion section in the rotary drum 1 and is discharged from the exhaust port 3.

このように、回転胴1内への燃焼用空気の供給を焼成物排出口1b側の給気口6Aと中間の給気口6Bの2ヶ所から行う構成とすれば、一次燃焼工程が行われる回転胴1内の一次燃焼区間Z1へ充分に酸素を含んだ新鮮な空気( 外気) が供給されるから、一次燃焼区間Z1での過剰空気雰囲気が安定に維持され、もって製紙スラッジSに含まれる易燃焼性有機成分を炭化させることなく確実に燃焼除去できる。また、一次燃焼区間Z1には燃焼処理温度が高い二次燃焼区間Z2の空気流が移動してくるが、中間の給気口6Bを通じて温度の低い空気(外気)を供給することにより、一次燃焼区間Z1を設定した比較的低い燃焼温度に安定して維持し易くなる。なお、このような給気口を手動や遠隔操作にて開口度を調整可能にすることが燃焼温度を安定に制御する上で好ましい。   As described above, when the combustion air is supplied into the rotary drum 1 from the two locations of the air supply port 6A on the fired product discharge port 1b side and the intermediate air supply port 6B, the primary combustion process is performed. Since fresh air (outside air) sufficiently containing oxygen is supplied to the primary combustion zone Z1 in the rotary drum 1, the excess air atmosphere in the primary combustion zone Z1 is stably maintained, and is thus included in the papermaking sludge S. Easily burn and remove easily combustible organic components without carbonization. In addition, the air flow in the secondary combustion zone Z2 having a high combustion processing temperature moves to the primary combustion zone Z1, but the primary combustion is performed by supplying low temperature air (outside air) through the intermediate air supply port 6B. It becomes easy to stably maintain a relatively low combustion temperature in which the section Z1 is set. In order to stably control the combustion temperature, it is preferable that the opening degree of the air supply port can be adjusted manually or remotely.

図5は、上記第三構成例の回転式キルン炉K3における回転胴1部分の構造例を示す。この回転胴1は、径が異なる円筒体1A,1Bを、径小の円筒体1Aが原料供給口1a側になる形で、一部重なるように同心に配置した構造を有しており、その重なり部分に構成される環状間隙を中間の空気供給口6Bとしている。この場合、原料供給口1aに供給された製紙スラッジSは、回転胴1全体の回転によって矢印bで示すように径小の円筒体1A内及び径大の円筒体1B内を順次移動する過程で有機成分を燃焼除去され、焼成物排出口1bから排出される。また、回転胴1内には、排気手段9(図4参照)による強制的な排気により、焼成物排出口1b側の給気口6Aからの空気流a1に加えて、中間の給気口6Bからの空気流a2としても新鮮な空気が吸入される。   FIG. 5 shows an example of the structure of the rotary drum 1 in the rotary kiln furnace K3 of the third configuration example. The rotating drum 1 has a structure in which cylindrical bodies 1A and 1B having different diameters are arranged concentrically so that they partially overlap such that the small diameter cylindrical body 1A is on the raw material supply port 1a side. An annular gap formed in the overlapping portion is an intermediate air supply port 6B. In this case, the papermaking sludge S supplied to the raw material supply port 1a is sequentially moved in the small-diameter cylindrical body 1A and the large-diameter cylindrical body 1B as indicated by an arrow b by the rotation of the entire rotary drum 1. The organic component is burned and removed and discharged from the fired product outlet 1b. In addition, in the rotary drum 1, in addition to the air flow a <b> 1 from the air supply port 6 </ b> A on the fired product discharge port 1 b side by forced exhaust by the exhaust means 9 (see FIG. 4), the intermediate air supply port 6 </ b> B Fresh air is also sucked in as the air flow a2 from the air.

なお、第三構成例の回転式キルン炉K3のような回転胴1の中間位置からの空気供給には、図5に例示した以外の種々の構造を採用できる。   Various structures other than those illustrated in FIG. 5 can be adopted for air supply from the intermediate position of the rotary drum 1 such as the rotary kiln furnace K3 of the third configuration example.

本発明に用いる筒型熱処理炉の炉本体としては、既述の第一〜第三構成例の回転式キルン炉K1〜K3における回転胴1のような横円筒型に限らず、内部に仕切りや隔壁を設けることにより、内部を複数の区分室に区画した多分割構造や多胴多室構造とした回転胴も採用可能である。これら多分割構造や多胴多室構造とした回転胴の例を図6〜図8に示す。なお、これら図6〜図8はいずれも、横長の回転胴の長手方向に対して直交する方向の断面図(径方向断面図)であり、図の上下方向が実際の上下方向に一致している。   The furnace body of the cylindrical heat treatment furnace used in the present invention is not limited to the horizontal cylindrical type such as the rotary drum 1 in the rotary kiln furnaces K1 to K3 of the first to third configuration examples described above, By providing the partition wall, it is possible to adopt a rotating cylinder having a multi-divided structure or a multi-cylinder multi-chamber structure in which the inside is divided into a plurality of compartments. Examples of the rotary cylinder having the multi-divided structure or the multi-cylinder multi-chamber structure are shown in FIGS. 6 to 8 are all cross-sectional views (radial cross-sectional views) in a direction orthogonal to the longitudinal direction of the horizontally long rotating drum, and the vertical direction of the drawings coincides with the actual vertical direction. Yes.

図6(a)に示す回転胴1は、略6角形外殻12aを有する6分割隔壁構造であり、その内部が断面六方放射状をなす隔壁12bによって断面正三角形の6個の区分室13…に分割されている。図6(b)は、製紙スラッジSの造粒物を供給した同回転胴1が矢印d方向に回転している場合の、各区分室13における該製紙スラッジSの積層・ 堆積状態を示している。   6 (a) has a six-partitioned partition structure having a substantially hexagonal outer shell 12a. The partition 12b has a hexagonal section in the inside and is divided into six compartments 13 having a regular triangular section. It is divided. FIG. 6 (b) shows the state of lamination and deposition of the papermaking sludge S in each compartment 13 when the rotating cylinder 1 supplied with the granulated material of the papermaking sludge S is rotated in the direction of the arrow d. Yes.

図7(a)に示す回転胴1は、6本の管部14…をドーナツ板状の管部固定部材15によって略円環状に束ねた6胴型多胴構造であり、6本の管部14…に囲まれた中央の空洞部16が管部固定部材15の中心孔15aを通して軸心方向に連通している。図7(b)は、製紙スラッジSの造粒物を供給した同回転胴1が矢印d方向に回転している場合の、各管部14における該製紙スラッジSの積層・ 堆積状態を示している。   The rotating cylinder 1 shown in FIG. 7A has a six-cylinder multi-cylinder structure in which six pipe parts 14 are bundled in a substantially annular shape by a donut plate-like pipe part fixing member 15. A central cavity 16 surrounded by 14... Communicates in the axial direction through the center hole 15 a of the tube fixing member 15. FIG. 7 (b) shows the state of lamination / deposition of the papermaking sludge S in each pipe section 14 when the rotating cylinder 1 supplied with the granulated material of the papermaking sludge S is rotated in the direction of the arrow d. Yes.

図8(a)に示す回転胴1は、12分割隔壁構造であり、二重管をなす内筒部17aと外筒部17bとの間の環状空間を12枚の隔壁17c…で放射状に仕切ることにより、12個の区分室18…を形成しており、内筒部17aの内側は空洞部16をなしている。図8(b)は、製紙スラッジSの造粒物を供給した同回転胴1が矢印d方向に回転している場合の、各区分室18における該製紙スラッジSの積層・ 堆積状態を示している。   The rotating drum 1 shown in FIG. 8A has a 12-partitioned partition structure, and the annular space between the inner cylinder part 17a and the outer cylinder part 17b forming a double pipe is radially divided by 12 partition walls 17c. Thus, twelve compartments 18 are formed, and the inside of the inner cylindrical portion 17a forms a hollow portion 16. FIG. 8 (b) shows the state of lamination and deposition of the papermaking sludge S in each compartment 18 when the rotating cylinder 1 to which the granulated material of the papermaking sludge S has been rotated in the direction of the arrow d. Yes.

これら図6〜図8に例示したように、横長の回転胴1を多分割構造や多胴多室構造とすれば、供給される製紙スラッジSが複数の区分室や胴部に少量ずつ分配されることになるから、全体が単一の炉内空間をなす単なる横円筒型の回転胴に比較して、当該回転胴1内の移送過程における被処理物(製紙スラッジS,焼成物)の堆積厚さが格段に小さくなると共に、回転胴1の回転に伴う被処理物の攪拌作用が強くなり、有機成分を燃焼させるための空気(酸素)と被処理物との接触効率が著しく向上し、もって有機成分の燃焼効率が飛躍的に高まり、高品質の焼成物ひいては無機粒子が得られる。   As illustrated in FIGS. 6 to 8, if the horizontally long rotating drum 1 has a multi-divided structure or a multi-cylinder multi-chamber structure, the supplied papermaking sludge S is distributed little by little to a plurality of compartments or torso parts. Therefore, as compared with a simple horizontal cylindrical rotary drum that forms a single furnace space as a whole, deposition of objects to be treated (paper sludge S, fired product) during the transfer process in the rotary drum 1 While the thickness is remarkably reduced, the stirring action of the object to be processed accompanying the rotation of the rotary drum 1 is strengthened, and the contact efficiency between air (oxygen) for burning organic components and the object to be processed is remarkably improved. As a result, the combustion efficiency of the organic component is dramatically increased, and high-quality fired products and inorganic particles can be obtained.

なお、このような多分割構造や多胴多室構造における移送経路の分割数は、上記の作用効果を充分に発揮させる上で、少なくとも6以上とすることが推奨される。また、回転胴の分割構造は、図6〜図8に例示した構造に限らず、例えば特願2006−252751号に紹介されている18分割型、24分割型、36分割型などの多分割隔壁構造や、特願2006−279813号に紹介されている多胴型構造の各管状部材に対して隔壁あるいは仕切りを設けて、総分割数として6〜126分割した多胴・多分割構造とした回転胴構造など、種々の構造が可能である。更に、これらのような回転胴、および管状部材の内部を隔壁で複数の区分室に区画する構造の他に、隔壁に類似した形状の回動型攪拌翼を回転胴内、および管状部材内に非固定状態に挿入することにより、回転胴内を複数の区分室に分割し、該回転胴内に供給される製紙スラッジSを複数の区分室に分配させるようにしてもよい。   In addition, it is recommended that the number of divisions of the transfer path in such a multi-divided structure or a multi-cylinder multi-chamber structure is at least 6 or more in order to sufficiently exhibit the above-described effects. Further, the divided structure of the rotary drum is not limited to the structure illustrated in FIGS. 6 to 8, and is, for example, a multi-partition partition such as an 18-part type, a 24-part type, or a 36-part type introduced in Japanese Patent Application No. 2006-252751 Rotation of a multi-cylinder / multi-divided structure in which a partition or partition is provided for each tubular member of the multi-cylinder structure introduced in Japanese Patent Application No. 2006-279813, and the total number of divisions is 6 to 126. Various structures, such as a trunk structure, are possible. Further, in addition to the rotating drum and the structure in which the inside of the tubular member is divided into a plurality of compartments by a partition wall, a rotary stirring blade having a shape similar to the partition wall is provided in the rotating drum and the tubular member. By inserting in a non-fixed state, the inside of the rotary drum may be divided into a plurality of compartments, and the papermaking sludge S supplied into the rotary drum may be distributed to the plurality of compartments.

また、図7及び図8に示すように、軸心方向に沿う空洞部16を設けた多分割構造や多胴構造の回転胴1を採用する場合、外側からの間接的加熱に加えて、空洞部16を利用して内側(中心側)からも間接的加熱を行うようにすれば、より精度よく燃焼温度を制御できる上、より高い熱処理効率を達成できる。この内側からの間接的加熱手段としては、既述した外側からの間接的加熱手段と同様の種々の熱媒及び熱源を採用できる。   As shown in FIGS. 7 and 8, when the multi-divided structure or the rotary cylinder 1 having a multi-cylinder structure provided with the cavity 16 along the axial direction is used, in addition to indirect heating from the outside, the cavity If the indirect heating is also performed from the inside (center side) using the part 16, the combustion temperature can be controlled with higher accuracy and higher heat treatment efficiency can be achieved. As the indirect heating means from the inside, various heating media and heat sources similar to the indirect heating means from the outside described above can be adopted.

図9は本発明に用いる筒型熱処理炉の第四構成例である間接的加熱方式の回転式キルン炉K4を模式的に示す縦断側面図であり、既述の図2〜図4で示す第一〜第三構成例の回転式キルン炉K1〜K3と共通する構成要素には同一符号を附している。   FIG. 9 is a longitudinal sectional side view schematically showing an indirect heating type rotary kiln furnace K4 which is a fourth structural example of the cylindrical heat treatment furnace used in the present invention, and is shown in FIGS. 2 to 4 described above. Constituent elements common to the rotary kiln furnaces K1 to K3 of the first to third configuration examples are denoted by the same reference numerals.

この回転式キルン炉K4では、回転胴1が既述の図7,図8に示すような軸心方向に沿う空洞部16を有するものからなり、回転胴1の外側から加熱する間接的加熱手段8A、8Bに加えて、空洞部16にも回転胴1を内側から加熱する間接的加熱手段8C、8Dを備えている。これら内側用の間接的加熱手段8C,8Dは、それぞれの熱風ブロア81を介して送出される熱風を、外部から給気口6Aを通して空洞部16内へ挿通された配管の各々複数の放出口82から、空洞部16内における原料供給口1a側の前部加熱空間16aと、焼成物排出口1b側の後部加熱空間16bとに分けて導入するようになっている。しかして、図9の仮想線cで前後に分かつように、空洞部16内の前部加熱空間16aは、加熱ジャケット2内の間接的加熱手段8Aによる熱風が導入される前部加熱空間2aに対応し、同じく後部加熱空間16bは加熱ジャケット2内の間接的加熱手段8Bによる熱風が導入される後部加熱空間2bに対応している。   In this rotary kiln furnace K4, the rotary drum 1 has a hollow portion 16 along the axial direction as shown in FIGS. 7 and 8, and the indirect heating means for heating from the outside of the rotary drum 1 is used. In addition to 8A and 8B, the cavity 16 is also provided with indirect heating means 8C and 8D for heating the rotary drum 1 from the inside. These indirect heating means 8C and 8D for the inside are each a plurality of discharge ports 82 of the pipes through which hot air sent through the respective hot air blowers 81 is inserted from the outside into the cavity 16 through the air supply port 6A. Thus, the front heating space 16a on the raw material supply port 1a side and the rear heating space 16b on the fired product discharge port 1b side in the hollow portion 16 are introduced separately. Thus, as divided by the phantom line c in FIG. 9, the front heating space 16a in the cavity 16 is formed into the front heating space 2a into which hot air by the indirect heating means 8A in the heating jacket 2 is introduced. Correspondingly, similarly, the rear heating space 16b corresponds to the rear heating space 2b into which hot air by the indirect heating means 8B in the heating jacket 2 is introduced.

従って、この回転式キルン炉K4による製紙スラッジSの燃焼処理では、内外の前部加熱空間16a,2aに挟まれた回転胴1内の前側領域を一次燃焼区間Z1として、間接的加熱手段8A、8Cによる内外からの間接的加熱により、スラッジ温度650℃以下(好適には650℃以下で250℃以上、最適には350〜630℃)に設定する。また、同じく内外の後部加熱空間16b,2bに挟まれた回転胴1内の後側領域は、間接的加熱手段8B、8Dによる内外からの間接的加熱により、二次燃焼区間Z2としてスラッジ温度700〜850℃(好適には750〜800℃)に設定する。   Therefore, in the combustion process of the papermaking sludge S by the rotary kiln furnace K4, the indirect heating means 8A, with the front region in the rotary drum 1 sandwiched between the inner and outer front heating spaces 16a and 2a as the primary combustion zone Z1, The sludge temperature is set to 650 ° C. or lower (preferably 650 ° C. or lower, 250 ° C. or higher, optimally 350 to 630 ° C.) by indirect heating from inside and outside by 8C. Similarly, the rear region in the rotary drum 1 sandwiched between the inner and outer rear heating spaces 16b and 2b is subjected to indirect heating from the inside and outside by the indirect heating means 8B and 8D as a secondary combustion zone Z2 and a sludge temperature 700. It is set to ˜850 ° C. (preferably 750 to 800 ° C.).

なお、この第四構成例の回転式キルン炉K4のように、回転胴1の軸心方向に沿う空洞部16を利用して内側からも間接加熱する場合に、外側の間接加熱と同様に一次燃焼用と二次燃焼用の2系統の間接加熱手段8C,8Dを採用すれば、その内側からの間接加熱による熱処理効率の向上に加え、一次燃焼工程(一次燃焼区間Z1)と二次燃焼工程(一次燃焼区間Z2)の燃焼処理温度の制御がより容易になるという利点がある。   In addition, as in the case of the rotary kiln furnace K4 of the fourth configuration example, when the indirect heating is performed from the inside using the hollow portion 16 along the axial direction of the rotating drum 1, the primary is applied similarly to the indirect heating on the outside. If two indirect heating means 8C and 8D for combustion and secondary combustion are employed, in addition to improving heat treatment efficiency by indirect heating from the inside, a primary combustion process (primary combustion zone Z1) and a secondary combustion process There is an advantage that the control of the combustion processing temperature in (primary combustion section Z2) becomes easier.

前記の如き燃焼処理においては、原料の製紙スラッジに含まれていた炭酸カルシウムが熱分解(脱炭酸)するが、その分解率は燃焼処理前の炭酸カルシウム全量の50%以上とするのがよく、特に該分解率を90%以上、更に好ましくは実質的に100%とすることが好ましい。これは、本発明では、上記熱分解後のカルシウム成分を後述する後処理の炭酸化工程で全て元の炭酸カルシウムに戻せるため、燃焼処理での炭酸カルシウムの分解を抑える必要がなく、もって燃焼処理を炭酸カルシウムの熱分解温度525℃よりも高い温度として有機成分の燃焼除去を優先的に行えることによる。燃焼処理における炭酸カルシウムの分解率が50%未満であると、前にも述べたように、二次燃焼工程において燃焼温度700℃以上でスラッジ中の有機成分を燃焼除去させながら、その燃焼温度よりも低い温度525℃程度から生じる炭酸カルシウムの熱分解を抑制するという相反する作用を期待することになるので、非効率的にならざるを得ず、所望とする高品位なスラッジ焼却灰を高率で得るには不向きとなる。   In the combustion treatment as described above, calcium carbonate contained in the raw paper sludge is thermally decomposed (decarbonated), and the decomposition rate is preferably 50% or more of the total amount of calcium carbonate before the combustion treatment, In particular, the decomposition rate is preferably 90% or more, more preferably substantially 100%. In the present invention, since the calcium component after the thermal decomposition can be returned to the original calcium carbonate in the post-treatment carbonation step described later, it is not necessary to suppress the decomposition of the calcium carbonate in the combustion treatment, and thus the combustion treatment. This is because it is possible to preferentially burn and remove organic components at a temperature higher than the thermal decomposition temperature of calcium carbonate of 525 ° C. When the decomposition rate of calcium carbonate in the combustion treatment is less than 50%, as described above, the organic component in the sludge is burned and removed at the combustion temperature of 700 ° C. or higher in the secondary combustion process, and the combustion temperature is higher than the combustion temperature. However, since it is expected to have a contradictory effect of suppressing the thermal decomposition of calcium carbonate generated from a low temperature of about 525 ° C., it must be inefficient, and the desired high-grade sludge incineration ash has a high rate. It is unsuitable to get in.

次に、原料の製紙スラッジSに対し、上述した燃焼処理に供する前に施す各種の前処理について、既述の図1のフローチャートで示す工程順に説明する。なお、最初の洗浄工程は原料とする製紙スラッジに水洗を施すものである。   Next, various pretreatments performed on the raw paper sludge S before being subjected to the above-described combustion treatment will be described in the order of steps shown in the flowchart of FIG. In the first cleaning step, the papermaking sludge used as a raw material is washed with water.

〔原料スラッジ〕
まず、原料の製紙スラッジは、前記したように、パルプ化工程、紙製造工程、古紙再生工程などの各種工程から排出されるが、古紙再生工程からのスラッジについては、脱墨工程の前段工程である離解工程の白水からのスラッジを回収することが推奨される。これは、離解工程の白水からのスラッジ回収により、以降の脱墨工程、漂白処理、洗浄処理の負荷が軽減され、もって古紙処理コストの低減に加え、排水処理の負荷も小さくなることによる。また、白色度の低い古紙原料からのスラッジ回収では、古紙再生工程における脱墨処理及び浮選処理を充分に行って、難燃焼性有機成分となるカーボンブラックなどを含むインク粒子をできるだけ事前にスラッジから除去しておくのがよい。
[Raw material sludge]
First, as described above, raw paper sludge is discharged from various processes such as pulping process, paper manufacturing process, waste paper recycling process, etc., but sludge from waste paper recycling process is the first stage of deinking process. It is recommended to collect sludge from white water from a disaggregation process. This is because sludge recovery from white water in the disaggregation process reduces the load of the subsequent deinking process, bleaching process, and cleaning process, thereby reducing the waste paper processing cost in addition to reducing the waste paper processing cost. Also, when recovering sludge from wastepaper raw materials with low whiteness, the ink particles containing carbon black, which is a flame-retardant organic component, are sludged as much as possible by sufficiently performing deinking and flotation in the wastepaper recycling process. It is good to remove from.

〔アルカリ金属化合物添加工程〕
これは、本発明者らが見出した前処理技術であり、原料とする製紙スラッジに対してアルカリ金属化合物を添加することにより、後の燃焼処理においてアルカリ金属が有機成分の熱分解及び燃焼に対して一種の触媒的に作用し、もって燃焼効率が向上する。そして、このような作用効果は、易燃焼性有機成分に対しては無論のこと、熱分解・発火の起点となる官能基に乏しい難燃焼性有機成分に対しても有効に働くことが判明している。
[Alkali metal compound addition step]
This is a pretreatment technique found by the present inventors. By adding an alkali metal compound to the papermaking sludge as a raw material, the alkali metal can be used for the thermal decomposition and combustion of organic components in the subsequent combustion treatment. It acts as a kind of catalyst and improves combustion efficiency. And it has been found that such effects are effective not only for flammable organic components, but also for non-flammable organic components that lack a functional group that is the starting point of thermal decomposition and ignition. ing.

添加するアルカリ金属化合物としては、特に制約はないが、水に対する溶解性やアルカリ金属の安全性(劇毒物性)などの面から、ナトリウム又はカリウムの水酸化物及び炭酸塩が好ましい。これに対し、塩化ナトリウムや塩化カリウムなどのハロゲン化物、更には硝酸ナトリウムや硝酸カリウムの如き硝酸塩、硫酸ナトリウムや硫酸カリウムの如き硫酸塩などのアルカリ金属強酸塩類は、アルカリ金属化合物としての燃焼効率の向上効果はあるものの、燃焼処理過程でハロゲン化水素(塩化水素)や硝酸、硫酸などの強酸類が発生し、筒型熱処理炉を構成する金属材質を腐蝕する恐れがあるために望ましくない。また、これらアルカリ金属化合物は、粒状や粉末状の固形形態と水溶液形態のいずれでもよく、脱水処理前のスラッジを含む排水中や脱水処理後のスラッジに添加すればよいが、添加の均一性と添加量調整の容易さより、水溶液形態で脱水処理前に原料スラッジに添加する方法や乾燥処理前のスラッジに噴霧する方法などが好適である。   The alkali metal compound to be added is not particularly limited, but sodium or potassium hydroxides and carbonates are preferable from the viewpoints of solubility in water and alkali metal safety (fulminant physical properties). In contrast, halides such as sodium chloride and potassium chloride, and nitrates such as sodium nitrate and potassium nitrate, and strong alkali metal salts such as sodium sulfate and potassium sulfate improve combustion efficiency as alkali metal compounds. Although effective, strong acids such as hydrogen halide (hydrogen chloride), nitric acid, and sulfuric acid are generated during the combustion treatment process, which is undesirable because it may corrode the metal material constituting the cylindrical heat treatment furnace. In addition, these alkali metal compounds may be in a granular or powdery solid form or an aqueous solution form, and may be added to wastewater containing sludge before dehydration treatment or sludge after dehydration treatment. From the viewpoint of ease of adjustment of the addition amount, a method of adding to the raw material sludge before dehydration in the form of an aqueous solution, a method of spraying on the sludge before drying, and the like are preferable.

製紙スラッジに対するアルカリ金属化合物の添加量は、アルカリ金属水酸化物の場合、スラッジ絶乾重量100重量部に対して、絶乾重量で0.001〜5.0重量部の範囲が好ましく,特に同0.1〜1.0重量部の範囲が最適である。しかして、この添加量が少な過ぎては充分な作用効果が得られない。逆に該添加量が多過ぎては、無駄になる上、アルカリ金属化合物が水酸化物である場合に、過剰のアルカリによってスラッジのpHが強いアルカリ性となり、スラッジの取り扱いにも注意が必要となるために好ましくない。   In the case of alkali metal hydroxide, the addition amount of the alkali metal compound to the papermaking sludge is preferably in the range of 0.001 to 5.0 parts by weight with respect to 100 parts by weight of the sludge absolutely dry weight. The range of 0.1 to 1.0 parts by weight is optimal. Therefore, if this addition amount is too small, a sufficient effect cannot be obtained. On the contrary, if the added amount is too large, it is wasted and, when the alkali metal compound is a hydroxide, the pH of the sludge becomes strong due to excess alkali, and care must be taken in handling the sludge. Therefore, it is not preferable.

〔脱水工程〕
製紙スラッジ含有排水から、濾過、遠心分離、加圧脱水、圧搾等により、所要の含水率の製紙スラッジを得るものである。好適な脱水装置として、スクリュープレスと称される加圧・圧搾脱水装置やデンカターと称される遠心脱水装置がある。
[Dehydration process]
Paper sludge having a required moisture content is obtained from paper sludge-containing wastewater by filtration, centrifugation, pressure dehydration, squeezing and the like. As a suitable dehydrating apparatus, there is a pressurizing / squeezing dehydrating apparatus called a screw press and a centrifugal dehydrating apparatus called a denkater.

〔乾燥工程〕
製紙スラッジの水分を蒸発させて固形分濃度を高めるものである。すなわち、本発明においては、燃焼処理する際の製紙スラッジの固形分濃度は、特に限定されないが、熱エネルギー効率を高め、また装置をコンパクト化する観点から、なるべく高い方がよく、特に70質量%以上とすることが好ましい。しかるに、前記の脱水工程のみでは、脱水装置機の能力によって異なるものの、固形分濃度は概ね5〜60質量%程度であるため、更に乾燥処理して固形分濃度を高めることが推奨される。
[Drying process]
The water content of the papermaking sludge is evaporated to increase the solid content concentration. That is, in the present invention, the solid content concentration of the papermaking sludge at the time of the combustion treatment is not particularly limited, but it is preferably as high as possible from the viewpoint of increasing thermal energy efficiency and downsizing the apparatus, and particularly 70% by mass. The above is preferable. However, although only the above-mentioned dehydration step varies depending on the capacity of the dehydrator, the solid content concentration is about 5 to 60% by mass, and therefore it is recommended to further increase the solid content concentration by drying treatment.

このような乾燥工程に用いる乾燥機としては、特に限定はなく、例えば、直接加熱型ロータリーキルン、間接加熱型ロータリーキルン、気流乾燥機、流動層乾燥機、回転・通気回転乾燥機等を用いることができる。また、これら乾燥機の熱源として前述した燃焼処理の排熱を使用することにより、エネルギーコストを低減することが可能である。   The dryer used in such a drying step is not particularly limited, and for example, a direct heating rotary kiln, an indirect heating rotary kiln, an air flow dryer, a fluidized bed dryer, a rotary / aeration rotary dryer, or the like can be used. . Moreover, it is possible to reduce energy cost by using the exhaust heat of the combustion process mentioned above as a heat source of these dryers.

乾燥処理の温度は、気流乾燥機や回転・通気回転乾燥機のような熱風を利用して乾燥させる装置においては、スラッジの燃焼や炭化を防止するために熱風温度を500℃以下とすることが好ましく、250℃以下とすることが特に好ましい。この熱風温度が高過ぎては、スラッジが発火し、その際の燃焼条件が適切でなければ、易燃焼性の有機成分が炭化して難燃焼性に変化する懸念がある。   The temperature of the drying process may be set to 500 ° C. or less in an apparatus that uses hot air such as an air dryer or a rotary / aeration rotary dryer to prevent sludge combustion and carbonization. It is preferably 250 ° C. or less. If this hot air temperature is too high, sludge is ignited, and if the combustion conditions at that time are not appropriate, there is a concern that the readily combustible organic component is carbonized and changed to incombustible.

〔造粒工程〕
前記乾燥後の製紙スラッジを適当な手段で適度な粒子サイズに成形するものである。すなわち、本発明で原料とする製紙スラッジは、筒型熱処理炉内を移送しつつ空気(酸素)と接触して有機成分を燃焼できる形態及び粒子サイズであればよいが、細か過ぎると堆積層が高密度化し、その層内に空気が入り込みにくくなり、逆に塊状のような粗大になっても塊状物内部まで空気が行き渡りにくくなり、共に有機成分の燃焼性が悪化して未燃焼炭化物による焼成物の白色度の低下を招くため、ある程度の大きさに造粒することが好ましい。
[Granulation process]
The paper sludge after drying is formed into an appropriate particle size by an appropriate means. That is, the papermaking sludge used as a raw material in the present invention may be in a form and particle size that can burn organic components in contact with air (oxygen) while being transferred in a cylindrical heat treatment furnace, but if it is too fine, the deposited layer will be Density increases, making it difficult for air to enter the layer, and conversely, even if it becomes coarse like a lump, it becomes difficult for air to reach the inside of the lump, both of which deteriorate the combustibility of organic components and fire with unburned carbide In order to reduce the whiteness of the product, it is preferable to granulate to a certain size.

造粒手段としては、ブリケットマシンやローラーコンパクターの如き圧縮成形機、ディスクペレッターの如き押出成形機、及び転動造粒法や攪拌造粒法等によってペレット造粒する一般的な造粒方法の他、脱水処理後の含水した製紙スラッジを乾燥装置や筒型熱処理炉置へ投入する際に、スクリューフィーダの如き剪断作用のある搬送装置を用いて搬送を兼ねて造粒したり、乾燥工程中での製紙スラッジの搬送運動を利用して造粒することも可能である。   Granulation means include compression molding machines such as briquette machines and roller compactors, extrusion molding machines such as disk pelleters, and general granulation methods that granulate pellets by rolling granulation method, stirring granulation method, etc. In addition, when the dehydrated water-containing papermaking sludge is put into a drying device or a cylindrical heat treatment furnace, it is granulated for transportation using a shearing device such as a screw feeder, or during the drying process It is also possible to carry out granulation using the paper sludge transporting motion in

なお、造粒の粒子サイズとしては、長さ又は直径で2〜30mm程度の範囲が好適であり、3〜20mmの範囲が更に好適である。この範囲を外れて例えば1mm程度の粒子サイズにした場合は、燃焼の際に周囲の空気と充分に接触できず、未燃焼になり易くなる。また、30mmを越えると中心部まで完全に燃焼させることが困難になってくる。造粒の粒子形状としては、円柱状、球状、楕円、三角形、その他の多角形や、凹凸を有するもの等、特に制約はない。   The granulated particle size is preferably in the range of about 2 to 30 mm in length or diameter, and more preferably in the range of 3 to 20 mm. When the particle size is out of this range, for example, about 1 mm, it cannot be sufficiently brought into contact with the surrounding air during combustion, and becomes unburned easily. Further, if it exceeds 30 mm, it becomes difficult to completely burn up to the center. The particle shape of the granulation is not particularly limited, such as a columnar shape, a spherical shape, an ellipse, a triangle, other polygonal shapes, or those having irregularities.

次に、前記の燃焼処理にて得られた焼成物に対する各種の後処理について、既述の図1のフローチャートで示す工程順に説明する。   Next, various post-treatments for the fired product obtained by the combustion treatment will be described in the order of steps shown in the flowchart of FIG.

〔懸濁液化工程・炭酸化工程〕
燃焼処理にて得られた焼成物を水に混合・攪拌して懸濁液とし、この懸濁液中に炭酸ガスを吹き込んで焼成物を炭酸化処理する。これは、原料の製紙スラッジに炭酸カルシウムを含む場合、燃焼処理において炭酸カルシウム(CaCO3 )が熱分解され、その熱分解されたカルシウム成分を含む無機粒子を製紙用填料や塗工用顔料等の製紙用材料に用いた際、アルカリ性が非常に強くなったり、粘度の上昇や顔料の分散不良等を生じたりする懸念があるため、燃焼処理後のカルシウム成分を懸濁液化で水和物に変換し、更に炭酸化処理して炭酸カルシウムに戻すものである。
[Suspension process / Carbonation process]
The fired product obtained by the combustion treatment is mixed and stirred in water to form a suspension, and carbon dioxide gas is blown into the suspension to carbonize the fired product. This is because when the raw paper sludge contains calcium carbonate, the calcium carbonate (CaCO 3 ) is pyrolyzed in the combustion process, and the inorganic particles containing the pyrolyzed calcium component are used as paper filler, coating pigment, etc. When used in papermaking materials, there is a concern that the alkalinity will become extremely strong, increase in viscosity, poor pigment dispersion, etc., so the calcium component after combustion treatment will be converted into a hydrate by suspension. Further, the carbonic acid is treated to return to calcium carbonate.

懸濁液化工程は、上述のように燃焼処理で熱分解したカルシウム成分を炭酸カルシウムに戻す前に一旦水和物に変換することが目的であるから、特に条件的な制約はないが、低い処理温度では懸濁液化に長時間を要する一方、高い処理温度では温度維持のための加熱コストが嵩んで不経済であるため、処理温度を20〜80℃とすることが好ましく、40〜60℃とすることが特に好ましい。因みに、処理温度が60℃程度であれば、懸濁液化を60分程度で完了できる。また、懸濁液の固形分濃度は、後続する炭酸化工程における炭酸化処理を効率的に行い、また懸濁液の粘度を低く維持して流動攪拌性や送液性を良好に維持する上で、5〜20質量%とすることが好ましい。   The suspension process is intended to convert the calcium component thermally decomposed by the combustion treatment as described above into a hydrate once before returning it to calcium carbonate. While it takes a long time to make a suspension at a temperature, the heating temperature for maintaining the temperature is high and uneconomical at a high processing temperature, so the processing temperature is preferably 20 to 80 ° C., and 40 to 60 ° C. It is particularly preferable to do this. Incidentally, if the treatment temperature is about 60 ° C., the suspension can be completed in about 60 minutes. In addition, the solid content concentration of the suspension can efficiently perform the carbonation treatment in the subsequent carbonation step, and maintain the viscosity of the suspension low to maintain good fluidity and fluidity. And it is preferable to set it as 5-20 mass%.

炭酸化工程では、焼成物の懸濁液に対して炭酸ガスを吹き込むが、高純度の二酸化炭素ガスは不経済であるため、工業的には二酸化炭素濃度としては5〜40容量%程度、特に好適には10〜35容量%程度の二酸化炭素含有ガスを用いるのがよい。このような二酸化炭素含有ガスとしては、例えば、スラッジ燃焼排ガス、石灰石焼成排ガス、石灰焼成排ガス、ゴミ焼却排ガス、発電ボイラー排ガス、或いはパルプ製造工程で用いられる苛性化炭酸カルシウム焼成キルンからの排出ガス等、種々の燃焼排ガスを適当な手段で除塵して用いることができる。なお、吹き込みガスの二酸化炭素濃度が低過ぎては、炭酸化に長時間を要し、それだけ無機粒子の生産性が低下する一方、高い二酸化炭素濃度に設定するには調製コストが高く付く。   In the carbonation step, carbon dioxide is blown into the suspension of the fired product. However, since high purity carbon dioxide gas is uneconomical, industrially, the carbon dioxide concentration is about 5 to 40% by volume. Preferably, about 10 to 35% by volume of carbon dioxide-containing gas is used. Examples of such carbon dioxide-containing gas include sludge combustion exhaust gas, limestone firing exhaust gas, lime firing exhaust gas, waste incineration exhaust gas, power generation boiler exhaust gas, exhaust gas from causticized calcium carbonate firing kiln used in pulp manufacturing process, etc. Various combustion exhaust gases can be used after dust removal by an appropriate means. If the carbon dioxide concentration of the blown gas is too low, carbonation takes a long time, and the productivity of inorganic particles decreases accordingly. On the other hand, a high preparation cost is required to set a high carbon dioxide concentration.

炭酸化工程での炭酸ガスの吹き込み量は、焼成物中の熱分解されたカルシウム成分固形物1kgに対し、二酸化炭素ガスとして0.5〜15リットル/分の割合が好適であり、少な過ぎては炭酸化に時間を要して無機粒子の生産性を低下させ、逆に多過ぎては吹き込み用の動力負荷が大きくなって不経済である。また、炭酸化の際の焼成物懸濁液の温度(炭酸化反応温度)は、30〜80℃程度、特に40〜70℃の範囲がよく、低過ぎては炭酸化反応の効率が低下し、逆に高過ぎても二酸化炭素ガスが懸濁液中に充分に溶解しなくなって炭酸化反応の効率低下を招く。   The amount of carbon dioxide blown in the carbonation step is preferably 0.5 to 15 liters / minute as carbon dioxide gas with respect to 1 kg of pyrolyzed calcium component solids in the fired product, and is too small. Takes time to reduce the productivity of inorganic particles. On the other hand, too much carbon dioxide increases the power load for blowing and is uneconomical. Moreover, the temperature (carbonation reaction temperature) of the calcined product suspension at the time of carbonation is preferably about 30 to 80 ° C, particularly 40 to 70 ° C. On the other hand, even if it is too high, the carbon dioxide gas is not sufficiently dissolved in the suspension, leading to a reduction in the efficiency of the carbonation reaction.

なお、炭酸化工程では、製出させる炭酸カルシウムを所望の結晶形状とするために、焼成物懸濁液中に当該結晶形状を持つ炭酸カルシウムの種結晶を添加してもよい。   In the carbonation step, in order to make calcium carbonate to be produced into a desired crystal shape, a seed crystal of calcium carbonate having the crystal shape may be added to the fired product suspension.

前記のように焼成物を炭酸化して得られた炭酸化処理物は、製紙用填料に適した粒子径の大きい白色の無機粒子となっているから、炭酸化処理物の懸濁液をそのまま製紙用填料としてパルプなどの製紙用原材料に配合して用いることもできる。   Since the carbonated product obtained by carbonating the fired product as described above is white inorganic particles having a large particle size suitable for a papermaking filler, the suspension of the carbonated product is directly used for papermaking. It can also be used as a filler for papermaking raw materials such as pulp.

〔脱水工程・分散工程・粉砕工程〕
前記の炭酸化工程から得られた炭酸化処理物を脱水処理したのち、分散及び粉砕処理することにより、塗工紙用顔料として適した微細な白色の無機粒子の高濃度スラリーを得る。その脱水工程では、既述の前処理における脱水工程と同様に、炭酸化処理物の懸濁液から、濾過、遠心分離、加圧脱水、圧搾等により、所要の含水率の炭酸化処理物とする。そして、次の分散工程では、脱水されたケーキ状の炭酸化処理物に水分を加えて高濃度スラリーとするが、その分散操作には通常の分散処理で行われている攪拌、解砕、分散などの各種手法を採用できる。また、この分散操作に際して分散剤を添加することにより、無機粒子が良好な分散状態になり、製紙用材料としての品質及び取り扱い性が向上する。このような分散剤としては、製紙用材料の製造の際に用いられる一般的な分散剤を使用でき、その具体例としてポリアクリル酸ナトリウム等の合成高分子系の分散剤が挙げられる。
[Dehydration process / Dispersion process / Crushing process]
The carbonation product obtained from the carbonation step is dehydrated and then dispersed and pulverized to obtain a high-concentration slurry of fine white inorganic particles suitable as a pigment for coated paper. In the dehydration step, as in the above-described dehydration step in the pretreatment, the carbonation-treated product having a required water content is obtained from the suspension of the carbonated treatment product by filtration, centrifugation, pressure dehydration, pressing, and the like. To do. In the next dispersion step, water is added to the dehydrated cake-like carbonated product to obtain a high-concentration slurry. The dispersion operation involves stirring, crushing, and dispersion performed in a normal dispersion process. Various methods such as can be adopted. In addition, by adding a dispersing agent during the dispersing operation, the inorganic particles are in a favorable dispersed state, and the quality and handleability as a papermaking material are improved. As such a dispersant, a general dispersant used in the production of a papermaking material can be used, and specific examples thereof include synthetic polymer dispersants such as sodium polyacrylate.

好適に用いることができる分散装置として、混合容器が自転し、アジテータのような攪拌工具が別駆動で回転する分散機、例えば日本アイリッヒ製のインテンシブミキサを用いるのが好ましい。このように、攪拌工具が駆動するだけでなく、混合容器も回転する分散装置を用いれば、容器内の脱水ケーキが複雑に動き、激しい内部せん断力が発生するため、分散スラリーの粘度が低くなると想定される。なお、混合容器の自転方向は、攪拌工具と同じ方向、逆方向のどちらを採用することも可能である。さらに、容器内部の原料固着を防ぐためにスクレーパーを配置しておくのがよい。   As a dispersing apparatus that can be suitably used, it is preferable to use a dispersing machine in which a mixing container rotates and a stirring tool such as an agitator rotates by another drive, for example, an intensive mixer manufactured by Nihon Eirich. In this way, if a dispersing device that not only drives the stirring tool but also rotates the mixing container is used, the dewatered cake in the container moves in a complex manner, and intense internal shearing force is generated, so the viscosity of the dispersed slurry decreases. is assumed. In addition, it is possible to employ | adopt either the same direction as a stirring tool, or a reverse direction as the rotation direction of a mixing container. Furthermore, it is preferable to arrange a scraper in order to prevent the material from sticking inside the container.

上記のような分散装置を用いた好ましい分散方法としては、粘度の高い硬いペースト状で混練した後に分散剤並びに希釈水を添加し、スラリー化することで粘度が低い分散スラリーを得ることができる。なお、分散させる炭酸化処理物は、脱水後のケーキ状のまま、あるいは少量の分散剤を添加して形で用いることが好ましい。これは、炭酸化処理物を硬い状態で混合することで、攪拌工具からの強力なせん断力により炭酸化処理物がほぐされ、スラリーの粘度がより低下すると推定されることによる。なお、ケーキ状の炭酸化処理物の大きさは、分散装置に投入することができる大きさであれば問題はなく、特に解砕機等で細かく解砕する必要はない。   As a preferable dispersing method using the dispersing apparatus as described above, a dispersion slurry having a low viscosity can be obtained by kneading in a hard paste form having a high viscosity and then adding a dispersant and dilution water to form a slurry. The carbonation-treated product to be dispersed is preferably used in the form of a cake after dehydration or by adding a small amount of a dispersant. This is because it is presumed that by mixing the carbonated product in a hard state, the carbonated product is loosened by a strong shearing force from the stirring tool, and the viscosity of the slurry is further reduced. The size of the cake-like carbonated product is not a problem as long as it can be put into a dispersing device, and it is not particularly necessary to pulverize it finely with a pulverizer or the like.

なお、炭酸化工程を経た炭酸化処理物の懸濁液は、脱水処理する前に振動篩等の篩でろ過処理するのがよく、更に該ろ過処理の前に液体サイクロンを用いた分級処理を行うことが好ましい。すなわち、前記のろ過処理により、炭酸化処理物中に混入するα−クオーツなどの珪素を含む粒子や粗大粒子が除去されるから、抄紙用ワイヤーの摩耗を低減できる。また、該ろ過処理前に液体サイクロンによる分級処理を行えば、後続するろ過処理の篩の目詰まりを防止できるという利点がある。   The suspension of the carbonated product that has undergone the carbonation step is preferably filtered through a sieve such as a vibrating sieve before dehydration, and further subjected to classification using a liquid cyclone before the filtration. Preferably it is done. That is, by the filtration process, particles containing silicon such as α-quartz and coarse particles mixed in the carbonized product and coarse particles are removed, so that the wear of the papermaking wire can be reduced. Moreover, if the classification process by a liquid cyclone is performed before this filtration process, there exists an advantage that clogging of the sieve of the subsequent filtration process can be prevented.

粉砕工程では、前記の分散処理後の無機粒子を粉砕して微粒子化することにより、該無機粒子を塗工用顔料として好適な高品質の白色無機粒子とする。この粉砕工程の粉砕装置としては、製紙用材料の製造において一般的に用いられるサンドミル、湿式ボールミル、振動ミル、攪拌槽型ミル、流通管型ミル、コボールミルなどを使用できる。   In the pulverization step, the inorganic particles after the dispersion treatment are pulverized into fine particles, whereby the inorganic particles are made high-quality white inorganic particles suitable as a coating pigment. As a pulverizer for this pulverization step, a sand mill, a wet ball mill, a vibration mill, a stirring tank type mill, a flow tube type mill, a coball mill and the like generally used in the manufacture of papermaking materials can be used.

この無機粒子の大きさ(粒子径)は、レーザー回折粒度分布測定による平均粒子径(D50)として、最終的に0.1〜20μmとすることが好ましく、塗工用顔料として用いる場合には0.3〜5μm、内添填料として用いる場合には3〜15μmとすることが特に好ましい。   The size (particle diameter) of the inorganic particles is preferably 0.1 to 20 μm as an average particle diameter (D50) by laser diffraction particle size distribution measurement, and is 0 when used as a coating pigment. .3 to 5 .mu.m, and particularly preferably 3 to 15 .mu.m when used as an internal filler.

本発明によって製紙スラッジを原料として得られる無機粒子は、白色度が高く、且つ硬質の焼結物を含まないため、上述のようにそのまま製紙用填料や塗工用顔料などの製紙用材料として使用できると共に、炭酸カルシウム、タルク、カオリン、焼成カオリン、二酸化チタン、サチンホワイト、シリカ等の製紙用材料として用いられる各種無機顔料に混合して使用できる。   Inorganic particles obtained from papermaking sludge as a raw material according to the present invention have high whiteness and do not contain a hard sintered material, and thus are used as papermaking materials such as papermaking fillers and coating pigments as described above. In addition, it can be used by mixing with various inorganic pigments used as papermaking materials such as calcium carbonate, talc, kaolin, calcined kaolin, titanium dioxide, satin white, and silica.

〔得られた無機粒子の用途〕
本発明方法により得られる無機粒子(以下、「本発明の無機粒子」と呼ぶ)は、主として、炭酸化処理により新たに析出した炭酸カルシウム粒子と、カオリンが熱処理により変性した非晶質成分粒子とで構成されている。なお、この非晶質成分は焼成カオリンによく似た性質を示す。このため、本発明の無機粒子は、焼成カオリンと炭酸カルシウムの各々の特長である不透明度、平滑度、高吸油度、およびインキ乾燥性に優れ、そのまま製紙用填料、塗工紙用顔料などの製紙用材料として使用できる。
[Use of the obtained inorganic particles]
The inorganic particles obtained by the method of the present invention (hereinafter referred to as “inorganic particles of the present invention”) are mainly composed of calcium carbonate particles newly precipitated by carbonation treatment and amorphous component particles in which kaolin is modified by heat treatment. It consists of This amorphous component shows properties similar to those of calcined kaolin. For this reason, the inorganic particles of the present invention are excellent in opacity, smoothness, high oil absorption, and ink drying, which are the characteristics of each of calcined kaolin and calcium carbonate, and are used as paper fillers, coated paper pigments, etc. It can be used as a papermaking material.

本発明の無機粒子の特徴を最大限に有効活用できる用途としては、不透明度および平滑度が発現し難く、白色度も要求されるオフセット印刷、グラビア印刷等の各種印刷用紙がある。本発明の無機粒子の用途としては、例えば、(1)坪量が75g/m2以下の非塗工印刷用紙または塗工用原紙の内添填料(以下、「第1の用途」と呼ぶ)、(2)坪量が75g/m2以下の片面あたり1層塗工された微塗工〜軽量塗工紙(A3塗工紙、B3塗工紙)の塗工用顔料(以下、「第2の用途」と呼ぶ)の他、嵩高性、高被覆性(平滑性)、インキ乾燥性等が要求される洋紙として、(3)片面あたり2層塗工の塗工紙(A2塗工紙、B2塗工紙)、アート紙(A0塗工紙、B0塗工紙、A1塗工紙、B1塗工紙)などの塗工用顔料(以下、「第3の用途」と呼ぶ)などが挙げられる。以下、これら三つの態様について説明する。 Applications that can make the most effective use of the characteristics of the inorganic particles of the present invention include various printing papers such as offset printing and gravure printing that are less likely to exhibit opacity and smoothness and that also require whiteness. Examples of the use of the inorganic particles of the present invention include (1) an internal filler for non-coated printing paper or base paper for coating having a basis weight of 75 g / m 2 or less (hereinafter referred to as “first use”). (2) Pigment for coating of fine coating to light weight coated paper (A3 coated paper, B3 coated paper) coated with one layer per side having a basis weight of 75 g / m 2 or less (hereinafter referred to as “No. As a paper that requires bulkiness, high coverage (smoothness), ink drying properties, etc. (3) coated paper with two layers per side (A2 coated paper) , B2 coated paper), art paper (A0 coated paper, B0 coated paper, A1 coated paper, B1 coated paper) and other coating pigments (hereinafter referred to as “third use”). Can be mentioned. Hereinafter, these three aspects will be described.

(1)第一の用途(内添填料としての用途)
本発明の無機粒子は、填料として単独または他の製紙用填料とともに用いることができる(以下、これらを総称して「本発明の填料」と呼ぶ)。他の製紙用填料としては、クレー、焼成クレー、ケイソウ土、タルク、カオリン、焼成カオリン、デラミカオリン、重質炭酸カルシウム、軽質炭酸カルシウム、パルプ製造プロセスの苛性化工程から生成する炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、二酸化チタン、酸化亜鉛、酸化ケイ素、非晶質シリカ、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、水酸化亜鉛等の無機填料、尿素−ホルマリン樹脂、ポリスチレン樹脂、フェノール樹脂、微小中空粒子などの有機填料等が挙げられる。本発明の無機粒子は、これらの填料の中から選択される1種以上の填料とともに使用することができる。
(1) First use (use as internal filler)
The inorganic particles of the present invention can be used alone or together with other paper-making fillers (hereinafter, these are collectively referred to as “the filler of the present invention”). Other fillers for papermaking include clay, calcined clay, diatomaceous earth, talc, kaolin, calcined kaolin, delaminated kaolin, heavy calcium carbonate, light calcium carbonate, calcium carbonate and magnesium carbonate produced from the causticizing step of the pulp manufacturing process. , Barium carbonate, titanium dioxide, zinc oxide, silicon oxide, amorphous silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, zinc hydroxide and other inorganic fillers, urea-formalin resin, polystyrene resin, phenol resin, fine Examples include organic fillers such as hollow particles. The inorganic particles of the present invention can be used with one or more fillers selected from these fillers.

本発明の無機粒子を他の製紙用填料とともに用いる場合の配合量は、特に制限しないが、原料コスト低減の観点からは、填料総量に対して10質量%以上含有させるのが好ましい。   The blending amount when the inorganic particles of the present invention are used together with other papermaking fillers is not particularly limited, but is preferably 10% by mass or more based on the total amount of fillers from the viewpoint of reducing raw material costs.

本発明の填料の内填紙中の含有率(灰分)は、特に制限はないが、1質量%未満の場合には、目的とする不透明度等の紙質が低くなるおそれがあり、30質量%を超える場合には、引き裂き強さ、紙の層間強度、およびブリスタ等の紙質が低下するおそれがある。従って、本発明の填料の含有率は1〜30質量%の範囲とするのが好ましい。特に好ましいのは5〜20質量%である。この範囲で含有させることにより、紙の散乱表面積を増加させて、紙の不透明性を高めることができる。   The content (ash content) in the inner paper of the filler of the present invention is not particularly limited, but if it is less than 1% by mass, the paper quality such as the target opacity may be lowered, and 30% by mass. If it exceeds 1, tear strength, interlaminar strength of paper, and paper quality such as blisters may be deteriorated. Therefore, the content of the filler of the present invention is preferably in the range of 1 to 30% by mass. Particularly preferred is 5 to 20% by mass. By containing in this range, the scattering surface area of paper can be increased and the opacity of paper can be enhanced.

本発明の填料を内添する紙のパルプ原料には、特に制限はなく、通常、紙の製造に使用される公知の製紙用パルプを使用することができる。具体的には、広葉樹材、針葉樹材の制限はなく両者の原料から得られるパルプとして、サルファイトパルプ、クラフトパルプ、ソーダパルプ等のケミカルパルプ、砕木パルプ、リファイナーパルプ砕木パルプ、サーモメカニカルパルプ、ケミサーモメカニカルパルプ、ケミグランドパルプ、セミケミカルパルプ等の機械パルプ、楮、三椏、麻等の非木材パルプ、および新聞古紙、印刷古紙、雑誌古紙、OA古紙等の古紙を原料とする脱墨パルプが挙げられる。これらのパルプから選択される1種以上に、本発明の填料を混合して抄紙することができる。   There are no particular limitations on the paper pulp raw material to which the filler of the present invention is internally added, and known paper pulps that are generally used for paper production can be used. Specifically, there are no restrictions on hardwood and softwood, and pulp obtained from both raw materials includes chemical pulp such as sulfite pulp, kraft pulp, soda pulp, groundwood pulp, refiner pulp groundwood pulp, thermomechanical pulp, chemi Deinked pulp made from raw paper such as thermo-mechanical pulp, chemi-ground pulp, semi-chemical pulp, non-wood pulp such as straw, sardine, hemp, etc., as well as waste paper such as newspaper waste, printed waste paper, magazine waste paper, and OA waste paper Can be mentioned. Paper can be made by mixing the filler of the present invention with one or more selected from these pulps.

本発明の填料をパルプ原料に添加する際には、パルプ原料を充分に攪拌しながら製紙用填料を添加することが好ましい。その際の撹拌速度は100〜5000rpm程度とすることが好ましい。   When adding the filler of this invention to a pulp raw material, it is preferable to add the filler for paper manufacture, fully stirring a pulp raw material. The stirring speed at that time is preferably about 100 to 5000 rpm.

パルプ原料に添加する際の本発明の填料の濃度は、パルプ原料に混合してから抄紙されるため、抄紙機のインレット濃度の範囲内となるような濃度とすればよい。パルプ原料への本発明の填料の添加は、出来る限り抄紙機の直前で行うのが望ましい。これは、カチオン性高分子等の歩留り向上剤の添加によって凝集形成させた本発明の填料のフロック(凝集粒子)が剪断力等により破壊されるのを抑制し、製紙用填料が凝集状態を維持したままで紙に内添させるためである。   The concentration of the filler of the present invention at the time of adding to the pulp raw material may be set to a concentration that falls within the range of the inlet concentration of the paper machine since papermaking is performed after mixing with the pulp raw material. It is desirable to add the filler of the present invention to the pulp raw material as much as possible immediately before the paper machine. This prevents the flocs (aggregated particles) of the filler of the present invention formed by agglomeration by the addition of a yield improver such as a cationic polymer from being destroyed by shearing force, etc., and the paper filler is maintained in an agglomerated state. This is to add it to the paper as it is.

パルプ原料には、本発明の填料の他、通常の抄紙で用いられる添加剤、例えば、サイズ剤、消泡剤、スライムコントロール剤、染料、着色顔料、蛍光染料、乾燥紙力増強剤、湿潤紙力増強剤、濾水性向上剤、定着剤及び歩留り向上剤等を、適宜必要に応じて添加することができる。   In addition to the filler of the present invention, pulp raw materials include additives used in normal papermaking, such as sizing agents, antifoaming agents, slime control agents, dyes, coloring pigments, fluorescent dyes, dry paper strength enhancers, and wet paper. A force enhancer, a drainage improver, a fixing agent, a yield improver, and the like can be appropriately added as necessary.

かくして調製された紙料は、目的に応じた公知の抄紙機によって抄造することができる。湿式抄紙機としては、例えば、丸網式抄紙機、短網式抄紙機、長網式抄紙機、ツインワイヤー式抄紙機等の商業規模の抄紙機を用いることができる。   The paper stock thus prepared can be made by a known paper machine according to the purpose. As the wet paper machine, for example, a commercial paper machine such as a round net paper machine, a short net paper machine, a long net paper machine, or a twin wire paper machine can be used.

本発明の填料を内添した紙の表面には、紙力、塗工適性、印刷適性等を改善または向上させるために一般的に用いられる各種デンプン類、ポリビニルアルコール類、ポリアクリルアミド類、各種表面サイズ剤等を主体とする塗被液を塗布することも可能である。   Various types of starches, polyvinyl alcohols, polyacrylamides, various surfaces generally used for improving or improving paper strength, coating suitability, printability, etc. It is also possible to apply a coating liquid mainly composed of a sizing agent or the like.

上記の塗被液に対しては、塗工用に一般的に使用される各種顔料として、重質炭酸カルシウム、軽質炭酸カルシウム、タルク、クレー、カオリン、二酸化チタン、合成シリカ、水酸化アルミニウム等の無機顔料、およびポリスチレン樹脂、尿素ホルムアルデヒド樹脂等の合成高分子微粒子等の1種以上を必要に応じて配合することができる。なお、本発明の無機粒子を配合することも可能である。   For the above coating solutions, various pigments commonly used for coating include heavy calcium carbonate, light calcium carbonate, talc, clay, kaolin, titanium dioxide, synthetic silica, aluminum hydroxide, etc. One or more inorganic pigments and synthetic polymer fine particles such as polystyrene resin and urea formaldehyde resin can be blended as necessary. In addition, it is also possible to mix | blend the inorganic particle of this invention.

本発明の填料を内添した紙の坪量については、特に限定はないが、所望する効果が発揮されるのは、40〜200g/m2 程度の範囲である。特に、40〜75g/m2程度の範囲とする場合に、本発明の効果が顕著となる。ただし、この範囲を越えた板紙、カード等の厚紙へ当然ながら添加できる。 The basis weight of the paper internally added with filler of the present invention is not particularly limited, the desired effect is exerted is in the range of about 40~200g / m 2. In particular, the effect of the present invention becomes remarkable when the range is about 40 to 75 g / m 2 . However, it can of course be added to cardboard such as paperboard and card exceeding this range.

このようにして抄造された紙は、本発明の無機粒子を含んでいるために、紙の白色度、不透明度および平滑度に優れており、そのまま印刷用紙、筆記用紙、事務用紙等の非塗工紙として使用できるほか、塗工用原紙としても好適に使用できる。   Since the paper thus produced contains the inorganic particles of the present invention, the paper is excellent in whiteness, opacity and smoothness, and is directly uncoated such as printing paper, writing paper and office paper. In addition to being usable as a working paper, it can also be suitably used as a base paper for coating.

(2)第2の用途(塗工用顔料としての用途)
本発明の無機粒子は、塗工用顔料として、単独または他の塗工用顔料とともに用いることができる(以下、これらを総称して「本発明の顔料」と呼ぶ)。他の塗工用顔料としては、重質炭酸カルシウム、軽質炭酸カルシウム、パルプ製造プロセスの苛性化工程から生成する炭酸カルシウム、カオリン、焼成カオリン、サチンホワイト、タルク、酸化チタン、水酸化アルミニウム、アルミナ、ゼオライト、シリカ、酸化亜鉛、活性白土、珪藻土、硫酸バリウム、硫酸カルシウム等の無機顔料、および密実型、中空型、お椀型、ドーナツ型などの各種プラスチックピグメント、バインダピグメント等が挙げられる。本発明の無機粒子は、これらの顔料から選択される1種以上とともに使用することができる。
(2) Second application (application as a pigment for coating)
The inorganic particles of the present invention can be used alone or together with other coating pigments as a coating pigment (hereinafter collectively referred to as “the pigment of the present invention”). Other coating pigments include heavy calcium carbonate, light calcium carbonate, calcium carbonate produced from the causticizing step of the pulp manufacturing process, kaolin, calcined kaolin, satin white, talc, titanium oxide, aluminum hydroxide, alumina, Examples thereof include inorganic pigments such as zeolite, silica, zinc oxide, activated clay, diatomaceous earth, barium sulfate, and calcium sulfate, and various plastic pigments such as solid type, hollow type, bowl type, and donut type, and binder pigments. The inorganic particles of the present invention can be used with one or more selected from these pigments.

本発明の無機粒子を他の製紙用顔料とともに用いる場合の配合量は、特に制限しないが、原料コスト低減の観点からは、顔料の総量中の10質量%以上を占める範囲で含有させることが好ましい。   The blending amount when the inorganic particles of the present invention are used together with other papermaking pigments is not particularly limited. However, from the viewpoint of reducing raw material costs, it is preferable that the amount is 10% by mass or more in the total amount of the pigment. .

本発明の顔料には、塗工紙用の一般的な接着剤が添加され塗工紙用塗被液とされるが、この接着剤には特に制限はなく、例えば、分散液型接着剤として、アクリル系、スチレン−アクリル系、スチレン−ブタジエン系、酢酸ビニル−アクリル系、ブタジエン−メチルメタクリル系、酢酸ビニル−ブチルアクリレート系等の各種共重合体ラテックス、水溶性接着剤として、酸化澱粉、エーテル化澱粉、エステル化澱粉、酵素変性澱粉等の各種変性澱粉、カゼイン、ポリビニルアルコール、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ポリアクリル酸、ポリアクリルアミド等が挙げられる。これらの接着剤から選択される1種以上を使用することができる。   In the pigment of the present invention, a general adhesive for coated paper is added to form a coating liquid for coated paper, but this adhesive is not particularly limited, and for example, as a dispersion type adhesive Copolymer latexes such as acrylic, styrene-acrylic, styrene-butadiene, vinyl acetate-acrylic, butadiene-methylmethacrylate, vinyl acetate-butylacrylate, water-soluble adhesives, oxidized starch, ether Examples thereof include various modified starches such as modified starch, esterified starch and enzyme-modified starch, casein, polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, polyacrylic acid, and polyacrylamide. One or more selected from these adhesives can be used.

上記接着剤は、本発明の顔料100質量部あたり5〜50質量部含有させるのが好ましい。接着剤の配合量が本発明の顔料100質量部あたり5質量部未満であると、顔料塗工層の強度が低下して、ストリーク、スクラッチ、ピッキング等の問題を引き起こす。逆に接着剤の上記配合量が50質量部を超えると、顔料塗工層の強度は充分に発現されるものの、平滑性の低下、インキ乾燥性の悪化等の問題が生じる。接着剤のより好ましい配合量は、本発明の顔料100質量部あたり8〜30質量部である。   The adhesive is preferably contained in an amount of 5 to 50 parts by mass per 100 parts by mass of the pigment of the present invention. When the blending amount of the adhesive is less than 5 parts by mass per 100 parts by mass of the pigment of the present invention, the strength of the pigment coating layer is lowered, causing problems such as streak, scratch, and picking. On the other hand, when the blending amount of the adhesive exceeds 50 parts by mass, the strength of the pigment coating layer is sufficiently expressed, but problems such as a decrease in smoothness and a deterioration in ink drying property occur. A more preferable blending amount of the adhesive is 8 to 30 parts by mass per 100 parts by mass of the pigment of the present invention.

なお、上記塗工紙用塗被液中には、本発明の効果が損なわれない範囲で、サイズ剤、染料、増粘剤、保水剤、流動変性剤、耐水化剤、pH調整剤、消泡剤、潤滑剤、防腐剤、界面活性剤、導電剤、離型剤など一般に使用されている添加剤を添加してもよい。   In the coating liquid for the coated paper, a sizing agent, a dye, a thickener, a water retention agent, a flow modifier, a water resistance agent, a pH adjuster, an erasing agent are used as long as the effects of the present invention are not impaired. Commonly used additives such as a foaming agent, a lubricant, a preservative, a surfactant, a conductive agent, and a release agent may be added.

本発明の顔料を用いて、坪量75g/m2以下の片面あたり1層塗工の塗工紙を調製する際には通常の塗工方式を用いることができる。塗工方式としては、例えば、2本ロールサイズプレス、ゲートロールサイズプレスコーター、メタリングサイズプレスコーター、シムサイザー等のトランスファーロールコーター、エアナイフコーター、ブレードコーター、バーコーター、カーテンコーター、ダイコーター、スプレーコーターなどが挙げられる。特に、複数のロールを介してアプリケーターロールに塗工液を転写し、このアプリケーターロールに所定量付着した塗工液を原紙表面に付与する塗工方式である、トランスファーロールコーター方式を採用するのが好ましい。 When preparing the coated paper of 1 layer coating per single side | surface with a basic weight of 75 g / m < 2 > or less using the pigment of this invention, a normal coating system can be used. Coating methods include, for example, two roll size presses, gate roll size press coaters, metering size press coaters, transfer roll coaters such as shim sizers, air knife coaters, blade coaters, bar coaters, curtain coaters, die coaters, spray coaters. Etc. In particular, the transfer roll coater method is employed, which is a coating method in which a coating liquid is transferred to an applicator roll through a plurality of rolls and a predetermined amount of the coating liquid adhered to the applicator roll is applied to the surface of the base paper. preferable.

トランスファーロールコーターは、前計量塗工方式とも呼ばれ、原紙に塗工する前に塗工液を所定量に調整することを特徴としている。このため、原紙に付着させた塗工液を掻き取る塗工方式(後計量塗工方式)であるブレードコーター、バーブレードコーターなどと比較して、コーター条件設定が容易であり、ブレード等の消耗部品の交換が不要である。このため、安定した塗工条件をできるので、長時間安定操業が可能である。そのほか、ストリーク欠陥が少ないこと、1000m/min以上での高速塗工が可能であること、原紙の両面に同時に塗工層を設けることができること等の利点もあるため、生産性を大幅に向上させ、塗工紙を安価に製造できる。   The transfer roll coater is also called a pre-metering coating method, and is characterized by adjusting the coating liquid to a predetermined amount before coating on the base paper. For this reason, compared to blade coaters and bar blade coaters that use a coating method (post-measuring coating method) to scrape off the coating liquid adhering to the base paper, it is easier to set the coater conditions and wear the blades, etc. There is no need to replace parts. For this reason, since stable coating conditions can be achieved, stable operation for a long time is possible. In addition, there are advantages such as few streak defects, high-speed coating at 1000 m / min or more, and the ability to provide coating layers on both sides of the base paper at the same time, greatly improving productivity. Coated paper can be manufactured at low cost.

トランスファーロールコーターには、オンマシンコーターおよびオフマシンコーターの各種方式があるが、いずれの方式を採用してもよい。なお、オンマシンコーターとは、原紙の製造機(抄紙機など)上に設置されて原紙の製造と同じラインで塗工するコーター設置形式であり、オフマシンコーターとは、原紙の製造機とは別に設置され、製造された原紙を一旦巻き取った後に、別ラインに設置したコーターで塗工する設置形式である。生産効率を向上させてコストダウンを図る点では、オンマシン方式のトランスファーロールコーターを用いるのが好ましい。   There are various types of transfer roll coaters, an on-machine coater and an off-machine coater, and any method may be adopted. An on-machine coater is a type of coater that is installed on a base paper production machine (such as a paper machine) and applied on the same line as the base paper. The off-machine coater is a base paper production machine. This is an installation type in which a base paper that has been separately installed and manufactured is once wound up and then coated with a coater installed in a separate line. In terms of improving production efficiency and reducing costs, it is preferable to use an on-machine type transfer roll coater.

上記塗工紙用塗被液の粘度は、ハーキュレス粘度を5〜30mPa・sにすることが好ましい。塗被液のハーキュレス粘度が5mPa・s未満であると、充分な塗工量を得ることができなくなるおそれがあり、ハーキュレス粘度が30mPa・sを超えると、例えば、トランスファーロールコーターによる塗工時にはジャンピングと呼ばれる塗被液が飛散する不具合が生じ、例えば、ブレードコーターによる塗工時にはストリークが生じて塗工不良となるおそれがあるからである。   The viscosity of the coating paper coating solution is preferably 5 to 30 mPa · s. If the Hercules viscosity of the coating solution is less than 5 mPa · s, there is a possibility that a sufficient coating amount cannot be obtained. This is because there is a problem that the coating liquid called “Scatter” is scattered, and for example, streaks may occur during coating with a blade coater, resulting in poor coating.

なお、ハーキュレス粘度とは、流体(塗被液)に対して高いズリ速度を与えたときの流体の粘度であり、本件明細書においては、Tappi T648準拠し、ハーキュレス粘度計(回転子:Fボブ)を用い、回転数8800rpmの条件で測定した粘度を意味する。上記塗工紙用塗被液のハーキュレス粘度を前記範囲とすると、トランスファーロールコーターによる高速塗工を安定して行うことが可能になる。   The Hercules viscosity is the viscosity of a fluid when a high shear rate is applied to the fluid (coating liquid). In this specification, a Hercules viscometer (rotor: F Bob) conforms to Tappi T648. ) And the viscosity measured under the condition of a rotational speed of 8800 rpm. When the Hercules viscosity of the coating paper coating solution is in the above range, high-speed coating with a transfer roll coater can be stably performed.

ハーキュレス粘度の調整方法としては、例えば、塗工紙用塗被液に使用する各顔料の平均粒子径、濃度などの調整、塗工紙用塗被液へ添加する接着剤の配合量の調整、増粘剤、保水剤、流動変性剤などの種類、配合量などの調節が挙げられる。これらの何れを採用してもよい。   As a method for adjusting the Hercules viscosity, for example, adjustment of the average particle diameter and concentration of each pigment used in the coating paper coating solution, adjustment of the blending amount of the adhesive added to the coating paper coating solution, Examples include thickeners, water retention agents, flow modifiers, and the like, and adjustment of the blending amount. Any of these may be adopted.

上記塗工紙用塗被液の塗工量(乾燥後塗工量)は、原紙の片面当り2〜7g/m2 とするのが好ましい。塗工量が2g/m2 未満であると、塗工ムラが生じ、原紙表面に塗工層を均一に形成 しにくく、塗工量が7g/m2を超えると、乾燥負荷が過大となって操業性が低下するおそれがあるからである。 The coating amount (coating amount after drying) of the coating paper coating solution is preferably 2 to 7 g / m 2 per side of the base paper. When the coating amount is less than 2 g / m 2 , coating unevenness occurs, and it is difficult to form a coating layer uniformly on the surface of the base paper. When the coating amount exceeds 7 g / m 2 , the drying load becomes excessive. This is because the operability may be reduced.

トランスファーロールコーターによって塗工する場合には、上記塗工紙用塗被液中の固形分濃度を10〜60%とすることが好ましい。上記塗工紙用塗被液中の固形分濃度が10%未満の場合には十分な塗工量を確保できなくなるおそれがあり、60%を超える場合には、上記塗工紙用塗被液の粘度が過大となり、塗工量の制御が困難になるなどの実用上の問題が生じるおそれがあるからである。特に好ましい固形分濃度の範囲は、30〜50%である。   When coating by a transfer roll coater, the solid content concentration in the coating paper coating solution is preferably 10 to 60%. If the solid content concentration in the coating paper coating liquid is less than 10%, a sufficient coating amount may not be ensured. If it exceeds 60%, the coating paper coating liquid is used. This is because there is a possibility that practical problems such as an excessively high viscosity and difficulty in controlling the coating amount may occur. A particularly preferred solid content concentration range is 30 to 50%.

塗工紙用の原紙としては、木材セルロース繊維を原料とする一般的な塗工用原紙を用いることができる。塗工用原紙に用いる木材セルロースとしては抄紙用パルプを用いることができ、具体的には、広葉樹材、針葉樹材の制限はなく両者の原料から得られるパルプとして、サルファイトパルプ、クラフトパルプ、ソーダパルプ等のケミカルパルプ、砕木パルプ、リファイナーパルプ砕木パルプ、サーモメカニカルパルプ、ケミサーモメカニカルパルプ、ケミグランドパルプ、セミケミカルパルプ等の機械パルプ、楮、三椏、麻等の非木材パルプ、および新聞古紙、印刷古紙、雑誌古紙、OA古紙等の古紙を原料とする脱墨パルプが挙げられ、前記各種パルプを単独、または2種類以上を併用して抄紙した原紙を用いることができる。   As the base paper for the coated paper, a general base paper for coating made of wood cellulose fiber can be used. Pulp for papermaking can be used as the wood cellulose used for the base paper for coating. Specifically, there are no restrictions on hardwood materials and softwood materials, and pulps obtained from both raw materials include sulfite pulp, kraft pulp, soda. Pulp and other chemical pulp, groundwood pulp, refiner pulp groundwood pulp, thermomechanical pulp, chemithermomechanical pulp, chemical pulp such as semi-chemical pulp, non-wood pulp such as straw, miso, hemp, etc. Examples include deinked pulp made from used paper such as used printed paper, magazine used paper, and OA used paper, and base papers made from the above-mentioned various pulps alone or in combination of two or more types can be used.

前記塗工用原紙には、本発明の填料または前掲の製紙用填料として通常使用されている各種填料を添加することができ、また、通常の塗工用原紙の抄紙で用いられる前掲の添加剤を必要に応じて添加することができる。   To the base paper for coating, various fillers usually used as the filler of the present invention or the above-mentioned papermaking filler can be added, and the above-mentioned additives used in the papermaking of normal base paper for coating Can be added as needed.

本発明において、無機粒子を含む塗工用顔料を用いた第2用途の塗工紙の坪量については特に限定はないが、被覆性、表面平滑性、嵩高性、光沢度、インキ乾燥性等の効果が顕著になるのは、40〜75g/m2程度の範囲とする場合である。 In the present invention, the basis weight of the coated paper for the second use using the coating pigment containing inorganic particles is not particularly limited, but the covering property, surface smoothness, bulkiness, glossiness, ink drying property, etc. The effect of is remarkable when the range is about 40 to 75 g / m 2 .

上記塗工用塗被液を原紙に塗工した後は、塗被層を乾燥させ、塗工紙を得る。この乾燥方法としては、例えば、蒸気加熱ヒーター、ガスヒーター、赤外線ヒーター、電気ヒーター、熱風加熱ヒーター、マイクロウェーブ、シリンダードライヤー等の通常の方法を任意に選択して使用することができる。塗工紙は、乾燥後、さらに必要に応じて、後加工として所望の面質、白紙光沢となるように加圧平滑化処理が施された後、巻取り製品もしくは枚葉製品として仕上げてもよい。加圧平滑化処理方法としては、スーパーカレンダー、グロスカレンダー、マットカレンダー、ソフトカレンダー等を任意に選択して使用することができる。   After the coating liquid for coating is applied to the base paper, the coating layer is dried to obtain a coated paper. As the drying method, for example, a normal method such as a steam heater, a gas heater, an infrared heater, an electric heater, a hot air heater, a microwave, or a cylinder dryer can be arbitrarily selected and used. The coated paper, after drying, may be finished as a rolled product or a single-wafer product after being subjected to pressure smoothing so as to have the desired surface quality and white paper gloss as post-processing, if necessary. Good. As the pressure smoothing method, a super calendar, gloss calendar, mat calendar, soft calendar, etc. can be arbitrarily selected and used.

(3)第3の用途(塗工用顔料としての用途)
片面2層塗工の塗工紙、アート紙には白色度、平滑度および不透明度に加えて、嵩高性、高被覆性(平滑性)、インキ乾燥性等の各種性能が要求される。これらの性能を満たすために、本発明の顔料を下塗り層および上塗り層の一方又は双方に配合することができる。特に、下塗り層に配合することが好ましい。これは、本発明の無機粒子が焼成カオリンとよく似た性質を有するものであり、この無機粒子を顔料塗工層に配合すると塗工紙の嵩高性、インキ吸収性、およびインキ乾燥性が向上させることができ、特に原紙面に近い下塗り層に対して本無機粒子を配合することにより、前記効果を顕著、かつ効果的に発現させることができる。
(3) Third use (use as a coating pigment)
In addition to whiteness, smoothness and opacity, various performances such as bulkiness, high coverage (smoothness), and ink drying properties are required for coated paper and art paper with single-sided two-layer coating. In order to satisfy these performances, the pigment of the present invention can be blended in one or both of the undercoat layer and the overcoat layer. In particular, it is preferable to mix in the undercoat layer. This is because the inorganic particles of the present invention have properties similar to those of calcined kaolin, and when these inorganic particles are blended in the pigment coating layer, the bulkiness, ink absorbability and ink drying properties of the coated paper are improved. In particular, by blending the present inorganic particles with an undercoat layer close to the base paper surface, the above effect can be remarkably and effectively exhibited.

下塗り層、上塗り層ともに、本発明の無機粒子の顔料の総量に対する配合量は第2の用途の場合と同様である。ただし、下塗り層に用いる顔料としては、平均粒子径1.2μm以上の顔料が顔料の総量に対して40質量%以上含まれていることが好ましい。下塗り層の顔料の総量に対する平均粒子径1.2μm以上の顔料の配合量が40質量%未満の場合、下塗り層の平滑度が高くなりすぎてストリークを誘発してしまうおそれがあるからである。なお、顔料の平均粒子径は、大きすぎると、所望とする平滑性、白紙光沢等が発現しにくくなるので、5μm以下のものを使用するのが好ましい。   In both the undercoat layer and the overcoat layer, the blending amount of the inorganic particles of the present invention with respect to the total amount of pigment is the same as in the second application. However, as a pigment used for the undercoat layer, it is preferable that a pigment having an average particle diameter of 1.2 μm or more is contained in an amount of 40% by mass or more based on the total amount of the pigment. This is because when the blending amount of the pigment having an average particle diameter of 1.2 μm or more with respect to the total amount of the pigment in the undercoat layer is less than 40% by mass, the smoothness of the undercoat layer becomes too high and streaks may be induced. In addition, if the average particle diameter of the pigment is too large, desired smoothness, white paper gloss, and the like are difficult to be exhibited. Therefore, it is preferable to use a pigment having an average particle diameter of 5 μm or less.

上塗り層および下塗り層の顔料に添加する接着剤の種類及び上塗り層の顔料に添加する接着剤の配合量は、第2の用途の場合と同様である。また、塗工紙用塗被液には、サイズ剤等の助剤を添加できることも第2の用途の場合と同様である。ただし、下塗り層の顔料に添加する水溶性接着剤の配合量は、本発明の顔料100質量部あたり6質量部以下とすることが好ましい。これを超えて配合すると、水溶性接着剤が本発明の顔料によって形成された塗工層空隙の連接部分に埋められ、塗工層空隙による吸収が阻害されて、インキ吸収性、インキ乾燥性等が低下するおそれがあるからである。   The kind of the adhesive added to the pigment of the topcoat layer and the undercoat layer and the blending amount of the adhesive added to the pigment of the topcoat layer are the same as in the second application. Further, as in the case of the second application, an auxiliary agent such as a sizing agent can be added to the coating paper coating solution. However, the blending amount of the water-soluble adhesive added to the pigment of the undercoat layer is preferably 6 parts by mass or less per 100 parts by mass of the pigment of the present invention. When blended beyond this, the water-soluble adhesive is buried in the connected portion of the coating layer gap formed by the pigment of the present invention, the absorption by the coating layer gap is hindered, the ink absorbability, the ink drying property, etc. It is because there exists a possibility that it may fall.

下塗り層の塗工方式については、第2の用途の場合と同様である。ただし、上塗り層の塗布方式については、第2の用途で掲げた塗布方式のうち、ブレードコーター方式を採用するのが特に好ましい。下塗り層においてトランスファーロールコーター方式を採用することにより、前述のように、下塗り層の平滑性を適度に保ちつつ、塗工紙の生産性・操業性を向上でき、また上塗り層においてブレードコーター方式を用いることにより、上塗り層の平滑性を最大限に発現させることができ、これらによって白紙光沢度、印刷の均一性、印刷再現性などを向上させることができる。   The coating method for the undercoat layer is the same as in the second application. However, regarding the coating method of the topcoat layer, it is particularly preferable to employ the blade coater method among the coating methods listed in the second application. By adopting the transfer roll coater method in the undercoat layer, as described above, it is possible to improve the productivity and operability of the coated paper while maintaining the smoothness of the undercoat layer. By using it, the smoothness of the overcoat layer can be expressed to the maximum, and these can improve the glossiness of blank paper, the uniformity of printing, the print reproducibility, and the like.

下塗り層、上塗り層ともに塗工紙用塗被液の粘度は、第2の用途の場合と同様に、ハーキュレス粘度(8800rpm)を5〜30mPa・sにすることが好ましい。その理由も前掲の通りである。   The viscosity of the coating paper coating solution for both the undercoat layer and the overcoat layer is preferably set to a Hercules viscosity (8800 rpm) of 5 to 30 mPa · s, as in the second application. The reason is also as described above.

下塗り層および上塗り層のそれぞれについての塗工紙用塗被液の塗工量(乾燥塗工量)は、原紙片面当り2〜12g/m2 とし、2層塗工によって原紙の少なくとも片面に、乾燥塗工量(片面あたりの総塗工量)が4〜24g/m2 となるように塗布・乾燥することが好ましい。各塗工 層の塗工量が2g/m2未満では、塗工ムラが生じ、塗工層を均一に形成しにくく、各塗工層の 塗工量が12g/m2を超えると、乾燥負荷が過大となって操業性が低下するおそれがあるから である。 The coating amount of the coating paper coating solution (dry coating amount) for each of the undercoat layer and the topcoat layer is 2 to 12 g / m 2 per one side of the base paper, and is applied to at least one side of the base paper by the two-layer coating. It is preferable to apply and dry so that the dry coating amount (total coating amount per side) is 4 to 24 g / m 2 . When the coating amount of each coating layer is less than 2 g / m 2 , coating unevenness occurs, and it is difficult to form the coating layer uniformly. When the coating amount of each coating layer exceeds 12 g / m 2 , the coating layer is dried. This is because the operability may be reduced due to an excessive load.

下塗り層をトランスファーロールコーターによって塗工する場合の塗工紙用塗被液中の固形分濃度については、第2の用途の場合と同様、10〜60%とすることが好ましい。ただし、上塗り層をブレードコーターによって塗工する場合の塗工紙用塗被液の固形分濃度は、30〜65%とすることが好ましい。上記塗工紙用塗被液中の固形分濃度が30%未満の場合には十分な塗工量を確保できなくなる、十分な平滑性が発現しなくなるなどのおそれがあり、65%を超える場合には、顔料塗被液の粘度が過大となり、ストリークの発生や塗工量の制御が困難になるなど、実用上の問題が生じるおそれがあるからである。特に好ましいのは40〜60%である。   About the solid content concentration in the coating liquid for coated paper when the undercoat layer is applied by a transfer roll coater, it is preferably 10 to 60% as in the second application. However, it is preferable that the solid content concentration of the coating liquid for coating paper when the topcoat layer is applied by a blade coater is 30 to 65%. If the solid content concentration in the coating paper coating solution is less than 30%, a sufficient coating amount may not be secured, and sufficient smoothness may not be exhibited. This is because the viscosity of the pigment coating solution becomes excessive, which may cause practical problems such as streak generation and difficulty in controlling the coating amount. Particularly preferred is 40 to 60%.

塗工紙用原紙の原料、内添する填料および助剤については、第2の用途の場合と同様である。本発明において、無機粒子を含む塗工用顔料を用いた塗工紙の坪量については特に限定はないが、所望する効果が発揮されるのは、40〜200g/m2 程度の範囲である。特に40〜100g/m2 程度の範囲とする場合に、本発明の効果が顕著となる。ただし、この範囲を越えた板紙、カード等の厚紙へ当然ながら添加できる。 The raw material of the base paper for coated paper, the filler added internally, and the auxiliary agent are the same as in the case of the second application. In the present invention, the basis weight of the coated paper using the coating pigment containing inorganic particles is not particularly limited, but the desired effect is exhibited in a range of about 40 to 200 g / m 2. . In particular, when the range is about 40 to 100 g / m 2 , the effect of the present invention becomes remarkable. However, it can of course be added to cardboard such as paperboard and card exceeding this range.

〔実施例・比較例〕
以下に、実施例、比較例を挙げて本発明を具体的に説明するが、勿論、本発明はそれらに限定されるものではない。なお、特に断らない限り、例中の部及び%はそれぞれ質量部及び質量%を示す。
[Examples and Comparative Examples]
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, the part and% in an example show a mass part and mass%, respectively.

実施例1
洋紙、板紙の抄紙機および塗工機、さらに脱墨パルプ化設備を有する製紙工場の廃水を廃水処理クラリファイヤーで分離して得られた固形分および活性汚泥処理などの余剰汚泥からなる製紙スラッジを原料とし、脱水機を用いて固形分約50%まで脱水したのち、乾燥機を用いて固形分約75%になるように乾燥し、次いでディスクペレッターを用いて直径約5mm、長さ約15mmのペレットに造粒成形し、前処理を終えた。そして、この前処理後の製紙スラッジ造粒物を、既述の図3で示す第二構成例の回転キルン炉K2(高砂工業製の外熱式ロータリーキルン、回転胴の径300mm,長さ2400mm)を用いて燃焼処理した。
Example 1
Paper sludge consisting of solids and surplus sludges such as activated sludges obtained by separating wastewater from paper mills with paper and paperboard machines and coating machines, as well as paper mills with deinking pulping equipment, using a wastewater treatment clarifier The raw material is dehydrated to about 50% solids using a dehydrator, dried to a solid content of about 75% using a dryer, and then about 5 mm in diameter and about 15 mm in length using a disk pelleter. The pellets were granulated and formed, and the pretreatment was finished. Then, the paper sludge granulated product after the pretreatment is a rotary kiln furnace K2 (Takasago Kogyo Co., Ltd., externally heated rotary kiln, diameter of rotary cylinder 300 mm, length 2400 mm) shown in FIG. Was used for combustion treatment.

この燃焼処理では、原料の製紙スラッジ造粒物をホッパを用いて3.5Kg/ hの供給速度で原料投入口4から供給し、原料供給手段5であるスクリューフィーダーによって回転胴1の原料供給口1aに送り込み、該回転胴1内を移送しつつ、一次燃焼区間Z1及び二次燃焼区間Z2での2段階の燃焼処理を行った。そして、両燃焼区間Z1,Z2では、図示を省略した燃焼ボイラーからの燃焼ガスを熱源として、間接的加熱手段8A,8Bによる加熱ジャケット2の前部及び後部加熱空間2a,2bへの該燃焼ガスの導入量で熱処理温度を制御し、一次燃焼区間Z1をスラッジ温度600℃で処理時間(スラッジ滞留時間)を約40分、二次燃焼区間Z2をスラッジ温度800℃で処理時間を約90分に設定した。一方、排気手段9の排気ファンによって回転胴1内から燃焼排ガスを100L/分(空気温度20℃換算)で排出し、これに伴う減圧作用で排気口3から排出される排ガスと同量の外気を給気口6Aから吸入し、もって回転胴1内全体を常に過剰空気雰囲気に維持した。   In this combustion process, raw material papermaking sludge granulated material is supplied from a raw material input port 4 at a supply rate of 3.5 Kg / h by using a hopper, and a raw material supply port of the rotary drum 1 by a screw feeder as a raw material supply means 5. The two-stage combustion process was performed in the primary combustion zone Z1 and the secondary combustion zone Z2 while being fed into 1a and transferred through the rotary drum 1. In both combustion sections Z1 and Z2, the combustion gas from the combustion boiler (not shown) is used as a heat source to the front and rear heating spaces 2a and 2b of the heating jacket 2 by the indirect heating means 8A and 8B. The heat treatment temperature is controlled by the amount introduced, the treatment time in the primary combustion zone Z1 is 600 ° C. and the treatment time (sludge residence time) is about 40 minutes, and the treatment time in the secondary combustion zone Z2 is 800 ° C. and the treatment time is about 90 minutes. Set. On the other hand, combustion exhaust gas is exhausted from the rotary drum 1 by the exhaust fan of the exhaust means 9 at 100 L / min (air temperature converted to 20 ° C.), and the same amount of outside air as exhaust gas exhausted from the exhaust port 3 due to the decompression action associated therewith. Was sucked from the air supply port 6A, and the entire inside of the rotary drum 1 was always maintained in an excess air atmosphere.

この燃焼処理で得られた焼成物の組成をX線回折によって調べた結果、硬質の高温焼結物(ゲーレナイト)は含まれておらず、燃焼処理前の製紙スラッジに含有されていた炭酸カルシウムは全て分解していた。また、炭酸カルシウム以外の成分では、カオリンが全て非晶質に変化していたが、タルクは全く変化していなかった。   As a result of examining the composition of the fired product obtained by this combustion treatment by X-ray diffraction, the hard high-temperature sintered product (Gerenite) was not included, and the calcium carbonate contained in the papermaking sludge before the combustion treatment was All were disassembled. Moreover, in the components other than calcium carbonate, kaolin was all changed to amorphous, but talc was not changed at all.

次いで、前記燃焼処理によって得られた焼成物を懸濁液化槽(消和槽)を用いて60℃の温水と混合し、この懸濁液化槽の温度を60℃に保持しながら60分間攪拌して、固形分濃度が約12%の焼成物懸濁液を調製した。そして、この焼成物懸濁液10kgを炭酸化反応槽に仕込み、この炭酸化反応槽の温度を60℃に保持しつつ、懸濁液中に25容量%の二酸化炭素含有ガスを20リットル/分で吹き込みながら60分間攪拌を行って炭酸化処理した。この炭酸化処理後の無機粒子の組成をX線回折で調べた結果、燃焼処理によって分解していたカルシウム成分の全量が炭酸カルシウムまで転化していた。   Next, the fired product obtained by the combustion treatment was mixed with warm water at 60 ° C. using a suspension tank (dissolving tank), and stirred for 60 minutes while maintaining the temperature of the suspension tank at 60 ° C. Thus, a fired product suspension having a solid concentration of about 12% was prepared. Then, 10 kg of the calcined product suspension was charged into a carbonation reaction tank, and while maintaining the temperature of the carbonation reaction tank at 60 ° C., 25 vol% carbon dioxide-containing gas was added to the suspension at 20 liter / min. The carbonation was carried out by stirring for 60 minutes while blowing. As a result of examining the composition of the inorganic particles after the carbonation treatment by X-ray diffraction, the total amount of calcium components decomposed by the combustion treatment was converted to calcium carbonate.

次に、前記炭酸化処理にて得られた炭酸化処理物の懸濁液をフィルタープレスで脱水処理し、得られた固形分濃度が約48%のケーキ状の炭酸化処理物をコーレスミキサーにて水に分散させることにより、固形分濃度が約46%の白色の無機粒子スラリーを調製した。なお、この分散させる水には、分散剤としてポリアクリル酸系分散剤(商品名:アロンT−50、東亜合成株式会社製)を炭酸化処理物の固形分100重量部に対して1.0重量部添加した。そして、最後にサンドグラインダーを用いて上記の無機粒子スラリーを湿式粉砕し、塗工用顔料に適した微粒子状の白色無機粒子を得た。   Next, the suspension of the carbonation-treated product obtained by the carbonation treatment is dehydrated with a filter press, and the cake-like carbonation-treated product having a solid content concentration of about 48% is put into a coreless mixer. By dispersing in water, a white inorganic particle slurry having a solid content concentration of about 46% was prepared. In addition, in this water to disperse, a polyacrylic acid type dispersing agent (trade name: Aron T-50, manufactured by Toa Gosei Co., Ltd.) is used as a dispersing agent in an amount of 1.0 with respect to 100 parts by weight of the solid content of the carbonized product. Part by weight was added. Finally, the above inorganic particle slurry was wet-ground using a sand grinder to obtain fine white inorganic particles suitable for a coating pigment.

実施例2
燃焼処理における一次燃焼区間Z1のスラッジ温度を450℃とした以外は、前記実施例1と同様にして白色無機粒子を得た。
Example 2
White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the primary combustion zone Z1 in the combustion treatment was 450 ° C.

実施例3
原料の製紙スラッジを直径約15mm、長さ約15mmのペレットに造粒成形した以外は、前記実施例1と同様にして白色無機粒子を得た。
Example 3
White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 15 mm and a length of about 15 mm.

実施例4
乾燥処理前の製紙スラッジに対して水酸化ナトリウムを添加することにより、スラッジ固形分100部に対して約0.01部の水酸化ナトリウムを含有させた以外は、前記実施例1と同様にして白色無機粒子を得た。
Example 4
Except for adding about 0.01 part of sodium hydroxide to 100 parts of sludge solid content by adding sodium hydroxide to the papermaking sludge before drying treatment, the same as in Example 1 above. White inorganic particles were obtained.

実施例5
乾燥処理前の製紙スラッジに対して水酸化ナトリウムを添加することにより、スラッジ固形分100部に対して約1部の水酸化ナトリウムを含有させると共に、燃焼処理における一次燃焼区間Z1及び二次燃焼区間Z2の各処理時間をそれぞれ30分及び70分に短縮した以外は、前記実施例1と同様にして白色無機粒子を得た。
Example 5
By adding sodium hydroxide to the papermaking sludge before drying, about 1 part of sodium hydroxide is added to 100 parts of sludge solids, and the primary combustion zone Z1 and secondary combustion zone in the combustion treatment White inorganic particles were obtained in the same manner as in Example 1 except that each treatment time of Z2 was shortened to 30 minutes and 70 minutes, respectively.

実施例6
フィルタープレスで脱水処理したケーキ状の炭酸化処理物をインテシブミキサ(日本アイリッヒ株式会社製)で分散した以外は、実施例1と同様にして白色無機粒子を得た。
Example 6
White inorganic particles were obtained in the same manner as in Example 1 except that the cake-like carbonated product that had been dehydrated with a filter press was dispersed with an intensive mixer (manufactured by Japan Eirich Co., Ltd.).

比較例1
燃焼処理における一次燃焼区間Z1と二次燃焼区間Z2のスラッジ温度を共に600℃とし、もって燃焼処理全体を1段階(燃焼処理時間として130分)にした以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 1
Except that the sludge temperature in the primary combustion zone Z1 and the secondary combustion zone Z2 in the combustion process is both 600 ° C. and that the entire combustion process is performed in one stage (130 minutes as the combustion processing time), the same as in Example 1 above. White inorganic particles were obtained.

比較例2
燃焼処理における一次燃焼区間Z1と二次燃焼区間Z2のスラッジ温度を共に700℃とし、もって燃焼処理全体を1段階(燃焼処理時間として130分)にした以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 2
Except that the sludge temperature in the primary combustion zone Z1 and the secondary combustion zone Z2 in the combustion process is both 700 ° C., and the entire combustion process is performed in one stage (the combustion process time is 130 minutes), the same as in Example 1 above. White inorganic particles were obtained.

比較例3
燃焼処理における一次燃焼区間Z1と二次燃焼区間Z2のスラッジ温度を共に800℃とし、もって燃焼処理全体を1段階(燃焼処理時間として130分)にした以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 3
Except for setting the sludge temperature in the primary combustion zone Z1 and the secondary combustion zone Z2 in the combustion process to 800 ° C. and making the entire combustion process one stage (130 minutes as the combustion process time), the same as in Example 1 above. White inorganic particles were obtained.

比較例4
燃焼処理における一次燃焼区間Z1と二次燃焼区間Z2のスラッジ温度を共に900℃とし、もって燃焼処理全体を1段階(燃焼処理時間として130分)にした以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 4
Except that both the sludge temperature in the primary combustion zone Z1 and the secondary combustion zone Z2 in the combustion processing are set to 900 ° C. and the entire combustion processing is performed in one stage (combustion processing time is 130 minutes), the same as in the first embodiment. White inorganic particles were obtained.

比較例5
燃焼処理における一次燃焼区間Z1のスラッジ温度を200℃とした以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 5
White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the primary combustion zone Z1 in the combustion treatment was 200 ° C.

比較例6
燃焼処理における一次燃焼区間Z1のスラッジ温度を660℃とした以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 6
White inorganic particles were obtained in the same manner as in Example 1 except that the sludge temperature in the primary combustion zone Z1 in the combustion treatment was 660 ° C.

比較例7
燃焼処理における一次燃焼工程と二次燃焼工程を2基の回転キルン炉を用いて個別に行うと共に、一次燃焼工程では回転キルン炉の回転胴内への空気供給を停止して貧酸素雰囲気下で燃焼処理(炭化処理)した以外は、前記実施例1と同様にして白色無機粒子を得た。
Comparative Example 7
In the combustion process, the primary combustion process and the secondary combustion process are separately performed using two rotary kiln furnaces. In the primary combustion process, the air supply to the rotary drum of the rotary kiln furnace is stopped and the atmosphere is in an oxygen-poor atmosphere. White inorganic particles were obtained in the same manner as in Example 1 except that the combustion treatment (carbonization treatment) was performed.

参考例1
原料の製紙スラッジを直径約1mm、長さ約5mmのペレットに造粒成形した以外は、前記実施例1と同様にして白色無機粒子を得た。
Reference example 1
White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 1 mm and a length of about 5 mm.

参考例2
原料の製紙スラッジを直径約30mm、長さ約30mmのペレットに造粒成形した以外は、前記実施例1と同様にして白色無機粒子を得た。
Reference example 2
White inorganic particles were obtained in the same manner as in Example 1 except that the raw paper sludge was granulated and formed into pellets having a diameter of about 30 mm and a length of about 30 mm.

以上の実施例と比較例および参考例について、燃焼処理の一次燃焼工程得られる焼成物の白色度、二次燃焼工程で得られる焼成物の白色度と未燃焼炭化物の有無、最終的に得られる無機粒子の白色度と硬質焼結物の有無、スラリー粘度及び総合評価、についてそれぞれ調べた結果を、各処理条件と共に後記表1に記載する。なお、各項目の測定及び評価は次の通りである。   About the above examples, comparative examples, and reference examples, the whiteness of the fired product obtained in the primary combustion process of the combustion treatment, the whiteness of the fired product obtained in the secondary combustion process, and the presence or absence of unburned carbide, are finally obtained. The results of examining the whiteness of the inorganic particles, the presence or absence of the hard sintered product, the slurry viscosity, and the comprehensive evaluation are shown in Table 1 below together with each processing condition. In addition, measurement and evaluation of each item are as follows.

〔白色度〕
燃焼処理による焼成物の約10gを、乳鉢で粗い粒子がなくなるまで磨り潰した後、粉体錠剤成形機(理化学電気工業社製 Cat9302/30型)を用いて圧力100kNにて30秒加圧して成形した。次いで、この成形試料の白色度を、分光白色度測色計(スガ試験機社製 SC−10WT型)を用いてJIS P8148(2001年)に準拠して測定した。
[Whiteness]
About 10 g of the fired product obtained by the combustion treatment is ground in a mortar until there are no coarse particles, and then pressed for 30 seconds at a pressure of 100 kN using a powder tablet molding machine (Cata9302 / 30 type, manufactured by RIKEN ELECTRIC CO., LTD.). Molded. Subsequently, the whiteness of this molded sample was measured based on JIS P8148 (2001) using a spectral whiteness colorimeter (SC-10WT type, manufactured by Suga Test Instruments Co., Ltd.).

〔未燃焼炭化物の有無〕
上記白色度の測定では焼成物を粉砕しているが、その焼成物の粉砕前における未燃焼炭化物の残存状態を目視観察し、次の3段階で評価した。
○・・・焼成物粒子の内奥部及び外部共に、未燃焼炭化物がない
△・・・焼成物粒子の内奥部に未燃焼炭化物が残留している
×・・・焼成物粒子の内奥部及び外部共に、未燃焼炭化物が残留している
[Presence of unburned carbide]
In the measurement of the whiteness, the fired product was pulverized. The remaining state of unburned carbide before pulverization of the fired product was visually observed and evaluated in the following three stages.
○: There is no unburned carbide in the inner and outer parts of the fired particles. △ ... Unburned carbide remains in the inner part of the fired particles. Unburned carbide remains in both the external and external parts

〔硬質焼結物の有無〕
乳鉢で粗い粒子がなくなるまで磨り潰した無機粒子試料について、X線回折装置(MO3XHF 前出)を用いて、40KV、20mA、回折角測定範囲:〜50度の条件で測定し、硬質焼結物(ゲーレナイト)の有無を調べた。この硬質焼結物の「なし」は品質が優れ、「有り」は品質が劣ることになる。
[With or without hard sintered product]
A sample of inorganic particles ground in a mortar until no coarse particles disappeared, measured using an X-ray diffractometer (MO3XHF, supra) under the conditions of 40 KV, 20 mA, diffraction angle measurement range: ˜50 degrees, and hard sintered product The presence or absence of (Gerlenite) was examined. “None” of this hard sintered product is excellent in quality, and “Yes” is inferior in quality.

〔B型粘度測定〕
調製したスラリーを攪拌機で攪拌し、30秒静置後、B型回転粘度計BM型(株式会社東京計器製)を用いて、60回転の粘度を測定した。
[B type viscosity measurement]
The prepared slurry was stirred with a stirrer and allowed to stand for 30 seconds, and then a viscosity at 60 rotations was measured using a B-type rotational viscometer BM type (manufactured by Tokyo Keiki Co., Ltd.).

〔総合評価〕
試料の無機粒子について、前記白色度や硬質焼結物の有無のデータから製紙用材料としての品質を総合的に次の3段階で評価した。なお、白色度は最終的に得られる無機粒子の段階で78%未満を品質未達とする。
○・・・白色度が充分に高く、硬質焼結物も含んでいない
△・・・白色度はやや低いが、硬質焼結物を含んでいない
×・・・白色度が不足か、硬質焼結物を含むか、の一方及び両方









































〔Comprehensive evaluation〕
About the inorganic particle of the sample, the quality as a papermaking material was comprehensively evaluated in the following three stages from the data on the whiteness and the presence or absence of a hard sintered product. The whiteness is less than 78% at the stage of the finally obtained inorganic particles.
○ ・ ・ ・ Whiteness is sufficiently high and hard sintered material is not included △ ・ ・ ・ Whiteness is slightly low, but hard sintered material is not included × ・ ・ ・ Whiteness is insufficient or hard sintered One or both of the inclusions









































Figure 2008207173
Figure 2008207173

表1の結果から、製紙スラッジを原料として本発明の製造方法によって得られる無機粒子は、特定条件での2段階の燃焼処理を経ることから、高白色度で硬質焼結物を含まず、塗工用顔料や製紙用填料などの製紙用材料として充分に再利用できる高い品質を備えることが明らかである。これに対し、各種温度での1段階の燃焼処理を経て得られる無機粒子(比較例1〜4)、2段階でも一次燃焼工程の熱処理温度が低過ぎたり高過ぎる燃焼処理を経て得られる無機粒子(比較例5,6)、2段階における一次燃焼工程を貧酸素雰囲気とした燃焼処理を経て得られる無機粒子(比較例7)では、白色度が低かったり、硬質焼結物を含むことにより、製紙用材料として使用困難であることが判る。また、原料とする製紙スラッジの造粒物があまりにも小さ過ぎたり(参考例1),逆にあまりにも大き過ぎたり(参考例2)する場合は、得られる無機粒子の品質が劣る結果になることも示唆される。   From the results shown in Table 1, the inorganic particles obtained by the production method of the present invention using papermaking sludge as a raw material are subjected to a two-stage combustion treatment under specific conditions. It is clear that it has a high quality that can be sufficiently reused as papermaking materials such as industrial pigments and papermaking fillers. In contrast, inorganic particles obtained through a one-stage combustion process at various temperatures (Comparative Examples 1-4), inorganic particles obtained through a combustion process in which the heat treatment temperature in the primary combustion process is too low or too high in two stages (Comparative Examples 5 and 6) In inorganic particles (Comparative Example 7) obtained through a combustion process in which the primary combustion process in two stages is performed in an oxygen-poor atmosphere, the whiteness is low or a hard sintered material is included. It turns out that it is difficult to use as a papermaking material. Moreover, when the granulated material of the papermaking sludge used as a raw material is too small (reference example 1), and conversely too large (reference example 2), it results in inferior quality of the obtained inorganic particles. It is also suggested.

〔燃焼処理後の炭酸カルシウム分解率〕
次に、表1に挙げた項目以外の評価として、各実施例について、燃焼処理後の炭酸カルシウム分解率を、以下i)〜vi)の手順にて燃焼処理前の製紙スラッジ中の炭酸カルシウムとスラッジ焼成物中の残存炭酸カルシウムの量等を求めて評価した。その結果、全ての実施例のX線回折測定において炭酸カルシウムのピークが認められず、燃焼処理工程においてスラッジ焼成物中の炭酸カルシウムは全て分解していた。このため、下記手順を基に求めた全実施例におけるスラッジ焼成物中の炭酸カルシウム量(A)は、スラッジ焼成物1g当たり0.0g(0質量%)であり、したがって下記算出式を基に求めた全実施例における燃焼処理後の炭酸カルシウムの分解率は全て100%であった。
[Calcium carbonate decomposition rate after combustion treatment]
Next, as evaluations other than the items listed in Table 1, for each example, the decomposition rate of calcium carbonate after the combustion treatment is determined by the following steps i) to vi) and the calcium carbonate in the papermaking sludge before the combustion treatment. The amount of calcium carbonate remaining in the fired sludge was determined and evaluated. As a result, no calcium carbonate peak was observed in the X-ray diffraction measurements of all the examples, and all the calcium carbonate in the sludge fired product was decomposed in the combustion treatment step. For this reason, the amount of calcium carbonate (A) in the sludge fired product in all examples obtained based on the following procedure is 0.0 g (0% by mass) per 1 g of the sludge fired product. In all the obtained examples, the decomposition rate of calcium carbonate after the combustion treatment was 100%.

i)カルサイト炭酸カルシウムの検量線の作成
結晶構造がカルサイトの炭酸カルシウム(奥多摩工業社製 タマパール222H)に対して、内部標準物質として酸化亜鉛(キシダ化学社製 試薬特級)を、重量比1:5、1:1、5:1となるようにそれぞれ混合した。次いで、各混合物について、乳鉢を用いて充分に磨り潰したのちに、X線回折装置(マックスサイエンス社製 MO3XHF)を用いて、40KV、20mA、回折角測定範囲5〜50度の条件で測定し、カルサイト炭酸カルシウムと酸化亜鉛のそれぞれのX線回折100%ピーク面積を基にして、カルサイト炭酸カルシウムの検量線を作成した。
i) Preparation of calibration curve for calcite calcium carbonate Zinc oxide (reagent special grade made by Kishida Chemical Co., Ltd.) as an internal standard substance with respect to calcium carbonate having a crystal structure of calcite (Tama Pearl 222H made by Okutama Kogyo Co., Ltd.) : 5, 1: 1, 5: 1. Next, after each mixture was sufficiently ground using a mortar, it was measured using an X-ray diffractometer (MO3XHF manufactured by Max Science) under the conditions of 40 KV, 20 mA, and a diffraction angle measurement range of 5 to 50 degrees. Based on the X-ray diffraction 100% peak areas of calcium calcite and zinc oxide, a calibration curve of calcium calcite was prepared.

ii)アラゴナイト炭酸カルシウムの検量線の作成
結晶構造がアラゴナイトの炭酸カルシウム(奥多摩工業社製タマパール123)を用いた以外は、前記カルサイト炭酸カルシウムの検量線作成と同様にして、アラゴナイト炭酸カルシウムの検量線を作成した。
ii) Preparation of calibration curve of aragonite calcium carbonate Calibration of aragonite calcium carbonate was carried out in the same manner as the calibration curve of calcite calcium carbonate except that calcium carbonate having a crystal structure of aragonite (Tama Pearl 123 manufactured by Okutama Kogyo Co., Ltd.) was used. Created a line.

iii)燃焼処理前の製紙スラッジ中の炭酸カルシウムの定量
秤量した絶乾の製紙スラッジに対して、秤量した酸化亜鉛(試薬特級 前出)を添加混合した。次いで、該混合物について、乳鉢を用いて充分に磨り潰したのちに、X線回折装置(MO3XHF 前出)を用いて、40KV、20mA、回折角測定範囲5〜50度の条件で測定し、酸化亜鉛に対するカルサイト炭酸カルシウム及びアラゴナイト炭酸カルシウムのX線回折100%ピーク面積を求め、前記した各炭酸カルシウムの検量線を基にして、製紙スラッジ1g中に含まれる炭酸カルシウム量(g)を算出した。
iii) Quantification of calcium carbonate in papermaking sludge before combustion treatment Weighed zinc oxide (reagent grade above) was added and mixed to the weighed absolute dry papermaking sludge. Next, the mixture was sufficiently ground using a mortar, then measured using an X-ray diffractometer (MO3XHF, supra) at 40 KV, 20 mA, a diffraction angle measurement range of 5 to 50 degrees, and oxidized. X-ray diffraction 100% peak areas of calcium calcite carbonate and aragonite calcium carbonate with respect to zinc were determined, and the amount of calcium carbonate (g) contained in 1 g of papermaking sludge was calculated based on the calibration curve of each calcium carbonate described above. .

iv)製紙スラッジの灰分の測定
秤量した絶乾の製紙スラッジを、マッフル炉を用いて実施例における回転キルン炉の各燃焼処理条件と同条件となるように燃焼処理し、得られたスラッジ焼成物の重量を秤量し、下式によってスラッジの灰分含有量(%)を測定した。
灰分含有量(%)=(スラッジ焼成物重量/絶乾の製紙スラッジ重量)×100
iv) Measurement of ash content of paper sludge Burned sludge fired product obtained by burning the weighed dry paper sludge using a muffle furnace so as to be the same as each combustion treatment condition of the rotary kiln furnace in the examples. The ash content (%) of sludge was measured by the following formula.
Ash content (%) = (weight of sludge burned product / weight of paper drying sludge) × 100

v)スラッジ焼成物中の炭酸カルシウムの定量
秤量したスラッジ焼成物に対して、秤量した酸化亜鉛(試薬特級 前出)を添加混合した。次いで、該混合物について、乳鉢を用いて充分に磨り潰したのちに、X線回折装置(MO3XHF 前出)を用いて、40KV、20mA、回折角測定範囲5〜50度の条件で測定し、酸化亜鉛に対するカルサイト炭酸カルシウム及びアラゴナイト炭酸カルシウムのX線回折100%ピーク面積を求め、前記した各炭酸カルシウムの検量線を基にして、スラッジ焼成物1g中に含まれる炭酸カルシウム量(g)を算出した。
v) Quantitative determination of calcium carbonate in the calcined sludge The weighed sludge calcined product was added and mixed with a weighed zinc oxide (reagent special grade mentioned above). Next, the mixture was sufficiently ground using a mortar, then measured using an X-ray diffractometer (MO3XHF, supra) at 40 KV, 20 mA, a diffraction angle measurement range of 5 to 50 degrees, and oxidized. Obtain 100% peak area of X-ray diffraction of calcium calcite carbonate and aragonite calcium carbonate with respect to zinc, and calculate the amount of calcium carbonate (g) contained in 1 g of the sludge fired product based on the calibration curve of each calcium carbonate described above. did.

vi)燃焼処理後の炭酸カルシウムの分解率
スラッジ焼成物1g中の炭酸カルシウム量(g)をA、製紙スラッジ1g中の炭酸カルシウム量(g)をB、灰分含有量(%)をCとし、下式によって燃焼処理後の炭酸カルシウムの分解率を算出した。
炭酸カルシウム分解率(%)=100−〔A×(C/100)〕÷B×100
vi) Decomposition rate of calcium carbonate after combustion treatment The amount of calcium carbonate (g) in 1 g of the sludge fired product is A, the amount of calcium carbonate (g) in 1 g of papermaking sludge is B, and the ash content (%) is C. The decomposition rate of calcium carbonate after the combustion treatment was calculated by the following equation.
Calcium carbonate decomposition rate (%) = 100− [A × (C / 100)] ÷ B × 100

〔炭酸カルシウム未再生化物の有無〕
更に、表1に挙げた項目以外の評価として、各実施例で最終的に得られた無機粒子について、乳鉢で粗い粒子がなくなるまで磨り潰した無機粒子試料を、X線回折装置(MO3XHF 前出)を用いて、40KV、20mA、回折角測定範囲5〜50度の条件で測定し、炭酸カルシウム未再生化物と想定される酸化カルシウム及び水酸化カルシウムの有無を調べた。その結果、全実施例の無機粒子は、炭酸カルシウム未再生化物を含まず、いずれも品質的に優れていることが判った。
[Presence / absence of unregenerated calcium carbonate]
Furthermore, as an evaluation other than the items listed in Table 1, the inorganic particles finally obtained in each example were ground in an mortar until coarse particles disappeared, and an X-ray diffractometer (MO3XHF ) Was used under the conditions of 40 KV, 20 mA, and diffraction angle measurement range of 5 to 50 degrees, and the presence or absence of calcium oxide and calcium hydroxide assumed to be calcium carbonate unregenerated was examined. As a result, it was found that the inorganic particles of all the examples did not contain the unregenerated product of calcium carbonate, and all were excellent in quality.

本発明の白色無機粒子を製紙用填料に用いた場合の効果を確認するべく、下記の実験を行った。   In order to confirm the effect when the white inorganic particles of the present invention were used as a filler for papermaking, the following experiment was conducted.

実施例7
実施例6において得られた脱水処理前の無機粒子(平均粒子径12.8μm)30%および軽質炭酸カルシウム(商品名:TP−121、奥多摩工業社製、平均粒子径6μm)70%を混合して、固形分濃度10%の填料懸濁液を調製した。
Example 7
30% inorganic particles (average particle size 12.8 μm) obtained in Example 6 and 70% light calcium carbonate (trade name: TP-121, manufactured by Okutama Kogyo Co., Ltd., average particle size 6 μm) before mixing were mixed. Thus, a filler suspension having a solid content concentration of 10% was prepared.

一方、広葉樹晒クラフトパルプ(LBKP)60%および古紙再生パルプ40%から成る混合パルプのスラリー(パルプ濃度2.5%)を調製した。次いでパルプ絶乾質量あたりの添加量として、カチオン化澱粉(商品名:王子エースK100、王子コーンスターチ社製)0.8部、硫酸アルミニウム(Al2(SO43・18H2O)0.5部、アルキルケテンダイマー(商品名:SPK903、荒川化学工業社製)0.1部および前記填料懸濁液を原紙灰分としての填料の添加量が約13質量%となるように、前記パルプスラリーに対して、パルプスラリーを攪拌しながらそれぞれ2分毎に順次添加して充分に混合した後、このパルプスラリーを固形分濃度0.5%となるように希釈し試料とした。 On the other hand, a mixed pulp slurry (pulp concentration of 2.5%) composed of 60% hardwood bleached kraft pulp (LBKP) and 40% recycled recycled paper pulp was prepared. Subsequently, as an addition amount per pulp dry mass, 0.8 parts of cationized starch (trade name: Oji Ace K100, manufactured by Oji Cornstarch Co., Ltd.), aluminum sulfate (Al 2 (SO 4 ) 3 · 18H 2 O) 0.5 Parts of the alkyl ketene dimer (trade name: SPK903, manufactured by Arakawa Chemical Industries) and the pulp slurry so that the amount of filler added as base paper ash is about 13% by mass. On the other hand, the pulp slurry was sequentially added every 2 minutes with stirring and mixed well, and then the pulp slurry was diluted to a solid content concentration of 0.5% to prepare a sample.

次いでこの試料を用いて、実験用角形手抄きシートマシン(東西精機社製)によって風乾坪量69g/m2 のシートに抄いた後、温度100℃のシリンダードライヤーによって乾燥させて手抄きシートを調製した。この手抄きシートを23℃、50%RH環境下で24時間調湿したのち、実験用マシンカレンダー(熊谷理機工業社製)を用いて線圧10kg/cmにて1回通紙仕上げ処理して無機粒子内添紙を得た。 Next, this sample was used to make a sheet with an air-dry basis weight of 69 g / m 2 using a laboratory square hand-made sheet machine (manufactured by Tozai Seiki Co., Ltd.) and then dried with a cylinder dryer at a temperature of 100 ° C. Was prepared. The hand-sheet is conditioned at 23 ° C and 50% RH for 24 hours, and then finished once with a laboratory calender (manufactured by Kumagai Riki Kogyo Co., Ltd.) at a linear pressure of 10 kg / cm. Thus, an inorganic particle-containing paper was obtained.

参考例3
軽質炭酸カルシウム(商品名:TP−121、奥多摩工業社製、平均粒子径6μm)100%として、固形分濃度10%に調製した填料懸濁液を用いたこと以外は、実施例7と同様にして無機粒子内添紙を得た。
Reference example 3
As in Example 7, except that a light calcium carbonate (trade name: TP-121, manufactured by Okutama Kogyo Co., Ltd., average particle diameter of 6 μm) was used as a filler suspension prepared to a solid content concentration of 10%. Thus, an inorganic particle-containing paper was obtained.

参考例4
タルク(商品名:SK−2、東洋化成社製、平均粒子径12.8μm)100%として、固形分濃度10%の填料懸濁液を調製した。なお、この参考例4では、手抄き填料内添紙を作製せず、填料分散液のワイヤー磨耗度測定のみを行っている。
Reference example 4
A filler suspension having a solid content concentration of 10% was prepared as 100% talc (trade name: SK-2, manufactured by Toyo Kasei Co., Ltd., average particle diameter: 12.8 μm). In Reference Example 4, hand-filled filler-added paper was not prepared, and only the wire wear degree of the filler dispersion was measured.

実施例7および参考例3、4について、下記の方法により、填料分散液のワイヤー磨耗度、紙の灰分、坪量、厚さ、密度、平滑度、白色度および不透明度を調査した。その結果を表2に示す。   About Example 7 and Reference Examples 3 and 4, the wire abrasion degree of the filler dispersion, paper ash content, basis weight, thickness, density, smoothness, whiteness and opacity were investigated by the following methods. The results are shown in Table 2.

〔填料分散液のワイヤー磨耗度〕
ワイヤー摩耗試験機(王子工営製)を使用し、固形分濃度:5%の填料分散液をポンプ循環させながら、試験条件(加重=650g,ワイヤー=プラスチックワイヤ/SS−40…日本フィルコン社製を使用,試験時間=3時間)で摩耗度試験を行い、減量したワイヤーの重量(mg)をもってワイヤー摩耗度とした。数値が大きい程、ワイヤー摩耗性が大きいことを示す。
[Wire wear degree of filler dispersion]
Using a wire abrasion tester (manufactured by Oji Koei Co., Ltd.) and pumping a filler dispersion with a solid content of 5%, the test conditions (weight = 650 g, wire = plastic wire / SS-40, manufactured by Nippon Filcon Co., Ltd.) Use, test time = 3 hours), the wear degree test was performed, and the weight (mg) of the reduced wire was used as the wire wear degree. It shows that wire abrasion property is so large that a numerical value is large.

〔紙の灰分〕
ISO2144に準拠して、紙の灰分を測定した。
[Paper ash]
The ash content of the paper was measured according to ISO2144.

〔紙の坪量〕
ISO536に準拠して、紙の坪量を測定した。
[Basis weight of paper]
The basis weight of the paper was measured according to ISO536.

〔紙の厚さ、および密度(緊度)〕
ISO534に準拠して、紙の厚さ、および密度(緊度)を測定した。
[Paper thickness and density (strength)]
According to ISO534, the thickness and density (tensity) of the paper were measured.

〔紙の平滑度(PPS平滑度)〕
パーカープリントサーフ(PPS)表面平滑度試験機(機種名:MODEL M−569型、Messmer Buchel社製、英国)を用い、バッキングディスク:ソフトラバー、クランプ圧力:0.98MPaの条件で、5回平滑度測定を行い、その平均値を求めた。
[Smoothness of paper (PPS smoothness)]
Using a Parker Print Surf (PPS) surface smoothness tester (model name: MODEL M-569, manufactured by Messmer Buchel, UK), smoothing 5 times under the conditions of backing disk: soft rubber, clamping pressure: 0.98 MPa Was measured and the average value was determined.

〔紙の白色度〕
ISO2470に準拠して、紙の白色度を測定した。
[Whiteness of paper]
The whiteness of the paper was measured according to ISO 2470.

〔紙の不透明度〕
ISO2471に準拠して、紙の不透明度を測定した。















[Opacity of paper]
The opacity of the paper was measured according to ISO 2471.















Figure 2008207173
Figure 2008207173

表2に示すように、実施例7の無機粒子内添紙では、参考例3の無機粒子内添紙に比べて、嵩高であり、不透明度も良好であった。   As shown in Table 2, the inorganic particle-containing paper of Example 7 was bulky and had good opacity as compared with the inorganic particle-added paper of Reference Example 3.

本発明の白色無機粒子を軽量塗工紙用顔料に用いた場合の効果を確認するべく、下記の実験を行った。   In order to confirm the effect when the white inorganic particles of the present invention were used as a pigment for lightweight coated paper, the following experiment was conducted.

実施例8
実施例6において得られた無機粒子(平均粒子径1.5μm)40%と、平均粒子径0.3μmのカオリン(商品名:ミラグロスJ、エンゲルハード社製)20%および平均粒子径1.3μmの重質炭酸カルシウム(商品名:ハイドロカーブK−9、備北粉化製)40%を配合した顔料100部に対して、ポリアクリル酸ナトリウム分散剤(商品名:アロンT50、東亜合成社製)を0.05部添加し、コーレス分散機で水中に前記顔料を分散して顔料スラリーを得た。この顔料スラリー100部に対して、スチレン−ブタジエン共重合体ラテックス(商品名:OJ1000、JSR社製)10部(固形分)、予め糊化した酸化澱粉(商品名:王子エースB、王子コーンスターチ製)6部(固形分)を添加して混合攪拌し、最終的に固形分濃度が56%であり、かつハーキュレス粘度が17mPa・sである軽量塗工紙用顔料塗被液を調製した。
Example 8
40% inorganic particles (average particle size 1.5 μm) obtained in Example 6, 20% kaolin (trade name: Milagros J, manufactured by Engelhard) with an average particle size of 0.3 μm and an average particle size of 1.3 μm Polyacrylic acid sodium dispersant (trade name: Aron T50, manufactured by Toa Gosei Co., Ltd.) with respect to 100 parts of pigment containing 40% of heavy calcium carbonate (trade name: Hydrocurve K-9, manufactured by Bihoku Powder) Was added in an amount of 0.05 parts, and the pigment was dispersed in water with a Coreless disperser to obtain a pigment slurry. 10 parts (solid name) of styrene-butadiene copolymer latex (trade name: OJ1000, manufactured by JSR), pregelatinized oxidized starch (trade name: Oji Ace B, manufactured by Oji Corn Starch) ) 6 parts (solid content) was added and mixed and stirred to finally prepare a light weight coated paper pigment coating solution having a solid content concentration of 56% and a Hercules viscosity of 17 mPa · s.

この軽量塗工紙用顔料塗被液を、坪量52g/m2の上質原紙の両面に、ゲートロールコーターを用いて塗工速度600m/minで塗工し、乾燥させて両面塗工紙を得た。塗工量(固形分)は片面あたり7g/m2であった。得られた塗工紙には更にスーパーカレンダー処理を行い、両面1層軽量塗工紙を得た。 This light-weight coated paper pigment coating solution is applied to both sides of a high-quality base paper having a basis weight of 52 g / m 2 at a coating speed of 600 m / min using a gate roll coater and dried to obtain a double-side coated paper. Obtained. The coating amount (solid content) was 7 g / m 2 per side. The obtained coated paper was further subjected to a super calendar process to obtain a double-sided, one-layer lightweight coated paper.

参考例5
平均粒子径0.3μmのカオリン(商品名:ミラグロスJ、前出)50%および平均粒子径1.3μmの重質炭酸カルシウム(商品名:ハイドロカーブK−9、前出)50%から成る顔料を用い、最終的に固形分濃度が59%であり、かつハーキュレス粘度が20mPa・sである軽量塗工紙用顔料塗被液を調製したこと以外は、本発明例8と同様にして両面1層軽量塗工紙を得た。
Reference Example 5
A pigment comprising 50% kaolin (trade name: Milagros J, supra) with an average particle size of 0.3 μm and 50% heavy calcium carbonate (trade name: Hydrocurve K-9, supra) with an average particle size of 1.3 μm 1 was used in the same manner as in Example 8 except that a light-weight coated paper pigment coating solution having a solid content concentration of 59% and a Hercules viscosity of 20 mPa · s was prepared. A layer lightweight coated paper was obtained.

実施例8および参考例5について、上記の方法により紙の坪量、厚さ、密度、平滑度、白色度および不透明度を調査し、更に、下記の方法により、顔料塗被液のハーキュレス粘度、ならびに、紙の白紙光沢度、印刷光沢度、印刷強度およびインキ乾燥性を調べた。
その結果を表3に示す。
About Example 8 and Reference Example 5, the basis weight, thickness, density, smoothness, whiteness and opacity of the paper were investigated by the above method, and the Hercules viscosity of the pigment coating solution was further determined by the following method. In addition, the white paper glossiness, printing glossiness, printing strength, and ink drying properties of the paper were examined.
The results are shown in Table 3.

〔顔料塗被液のハーキュレス粘度〕
ハーキュレスハイシェア粘度計(熊谷理機工業製)を用いて、Fボブによる8800rpm時の粘度(mPa・s)を測定した。
[Hercules viscosity of pigment coating solution]
Using a Hercules high shear viscometer (manufactured by Kumagai Riki Kogyo Co., Ltd.), the viscosity (mPa · s) with F Bob at 8800 rpm was measured.

〔紙の白紙光沢度〕
ISO 8254−1 Part1(1999)(JIS P8142)に準拠して、75度における紙の白紙面の光沢度(白紙光沢度)を測定した。
[Blank gloss of paper]
In accordance with ISO 8254-1 Part 1 (1999) (JIS P8142), the glossiness (blank paper glossiness) of the white paper surface at 75 degrees was measured.

〔紙の印刷光沢度〕
RI−II型印刷試験機(明製作所製)を用い、オフセット印刷用インク(商品名:Fusion−G 墨 Sタイプ、大日本インキ化学社製)を0.7cc使用して各軽量塗工紙に印刷を施し、印刷物を24時間静置乾燥した。その後、JIS Z8741に準拠して、各軽量塗工紙の印刷面の60度における光沢度(印刷光沢度)を測定した。
[Paper glossiness of paper]
Using a RI-II type printing tester (Meiji Seisakusho) and 0.7cc of offset printing ink (trade name: Fusion-G ink S type, manufactured by Dainippon Ink & Chemicals) on each lightweight coated paper Printing was performed, and the printed material was left to dry for 24 hours. Then, based on JIS Z8741, the glossiness (printing glossiness) at 60 degree | times of the printing surface of each lightweight coated paper was measured.

〔紙の印刷強度〕
RI印刷試験機にて、印刷インキ(商品名:紙試験用SD50 紅、東洋インキ社製)を0.6cc使用して印刷を行い、印刷面のピッキングの程度を目視評価した。ただし、表中の各記号の意味は、下記の通りである。
○:ピッキングが全く発生せず、表面強度が良好である。
△:ピッキングが少し発生しており、表面強度がやや劣る。
×:ピッキングが多く発生しており、表面強度がかなり劣る。
[Paper printing strength]
Using an RI printing tester, printing was carried out using 0.6 cc of printing ink (trade name: SD50 for paper testing, manufactured by Toyo Ink Co., Ltd.), and the degree of picking on the printed surface was visually evaluated. However, the meaning of each symbol in the table is as follows.
○: Picking does not occur at all and the surface strength is good.
Δ: A little picking occurs, and the surface strength is slightly inferior.
X: A lot of picking occurs and the surface strength is considerably inferior.

〔紙のインキ乾燥性〕
RI印刷試験機にて、印刷インキ(商品名:Fusion−G 墨 Sタイプ、前出)を1.0cc使用して印刷を行い、3分後に白紙(商品名:ユポFPG−80、ユポ・コーポレーション社製)と印刷面を重ねて、再度RI印刷試験機にてニップし、白紙に転写したインキの濃度(裏移り汚れ)を目視評価した。ただし、白紙に転写したインキ濃度(裏移り汚れ)が高濃度なほど、紙のインキ乾燥性が遅いことを示す。表中の各記号の意味は、下記の通りである。
○:白紙への裏移り汚れがほとんどなく、インキ乾燥性が良好である。
△:白紙への裏移り汚れが少し発生しており、インキ乾燥性がやや劣る。
×:白紙への裏移り汚れが多く発生しており、インキ乾燥性がかなり劣る。
[Ink dryness of paper]
Using an RI printing tester, printing was performed using 1.0 cc of printing ink (trade name: Fusion-G black S type, supra), and a blank sheet (trade name: YUPO FPG-80, YUPO Corporation) after 3 minutes. The printed surface was overlapped, and the print surface was nipped again with an RI printing tester, and the density of ink transferred to white paper (back-off stain) was visually evaluated. However, the higher the ink density (transfer stain) transferred to the white paper, the slower the ink drying property of the paper. The meaning of each symbol in the table is as follows.
○: There is almost no set-off stain on the white paper, and the ink drying property is good.
Δ: Slightly transferred to the white paper, and the ink drying property is slightly inferior.
X: A lot of set-off stains on white paper is generated, and the ink drying property is considerably inferior.

Figure 2008207173
Figure 2008207173

表3に示すように、実施例8の軽量塗工紙は、参考例5の軽量塗工紙に比べて、低緊度であり、高い平滑性、および不透明度を有し、しかも、インキ乾燥性も良好であった。   As shown in Table 3, the light-weight coated paper of Example 8 is less viscous than the light-weight coated paper of Reference Example 5, has high smoothness and opacity, and is ink-dried. The property was also good.

本発明の白色無機粒子を2層塗工紙用顔料に用いた場合の効果を確認するべく、下記の実験を行った。   In order to confirm the effect when the white inorganic particles of the present invention were used as a pigment for a two-layer coated paper, the following experiment was conducted.

実施例9
実施例6において得られた無機粒子(平均粒子径1.5μm)30%と、平均粒子径2.0μmの重質炭酸カルシウム(商品名:ハイドロカーブK−6、備北粉化社製)70%とを配合した顔料100部に対して、ポリアクリル酸ナトリウム分散剤(商品名:アロンT50、東亜合成社製)を0.05部添加し、コーレス分散機で水中に前記顔料を分散して顔料スラリーを得た。この顔料スラリー100部に対して、スチレン−ブタジエン共重合体ラテックス(商品名:OJ1000、前出)6部(固形分)、予め糊化した酸化澱粉(商品名:王子エースB、王子コーンスターチ製)4部(固形分)を添加して混合攪拌し、最終的に固形分濃度が59%であり、かつハーキュレス粘度が21mPa・sの下塗り層用塗被液を調製した。
Example 9
30% of inorganic particles (average particle size of 1.5 μm) obtained in Example 6 and 70% of heavy calcium carbonate having an average particle size of 2.0 μm (trade name: Hydrocurve K-6, manufactured by Bihoku Powdered Company) 0.05 parts of sodium polyacrylate dispersant (trade name: Aron T50, manufactured by Toa Gosei Co., Ltd.) is added to 100 parts of the pigment blended with the above, and the pigment is dispersed in water with a Coreless disperser. A slurry was obtained. To 100 parts of this pigment slurry, 6 parts of styrene-butadiene copolymer latex (trade name: OJ1000, supra) (solid content), pre-gelatinized oxidized starch (trade name: Oji Ace B, manufactured by Oji Corn Starch) 4 parts (solid content) was added, mixed and stirred, and finally a coating solution for an undercoat layer having a solid content concentration of 59% and a Hercules viscosity of 21 mPa · s was prepared.

一方、平均粒子径1.3μmの重質炭酸カルシウム(商品名:ハイドロカーブK−9、前出)40%および平均粒子径0.3μmのカオリン(商品名:ミラグロスJ、前出)60%からなる顔料100部に対して、ポリアクリル酸ナトリウム分散剤(商品名:アロンT50、東亜合成社製)を0.05部添加し、コーレス分散機で水中に前記顔料を分散して顔料スラリーを得た。この顔料スラリー100部に対して、スチレン−ブタジエン共重合体ラテックス(商品名:OJ1000、前出)11部(固形分)、予め糊化した酸化澱粉(商品名:王子エースB、王子コーンスターチ製)2部(固形分)を添加して混合攪拌し、最終的に固形分濃度が62%であり、かつハーキュレス粘度が23mPa・sの上塗り層用塗被液を調製した。   On the other hand, from heavy calcium carbonate having an average particle size of 1.3 μm (trade name: Hydrocurve K-9, supra) and kaolin having an average particle size of 0.3 μm (trade name: Milagros J, supra) from 60% 0.05 part of a sodium polyacrylate dispersant (trade name: Aron T50, manufactured by Toa Gosei Co., Ltd.) is added to 100 parts of the resulting pigment, and the pigment is dispersed in water with a Coreless disperser to obtain a pigment slurry. It was. For 100 parts of this pigment slurry, 11 parts of styrene-butadiene copolymer latex (trade name: OJ1000, supra) (solid content), pre-gelatinized oxidized starch (trade name: Oji Ace B, manufactured by Oji Corn Starch) 2 parts (solid content) was added and mixed and stirred to finally prepare a top layer coating solution having a solid content concentration of 62% and a Hercules viscosity of 23 mPa · s.

下塗り層用塗被液を、坪量52g/m2の上質原紙の両面に、ゲートロールコーターを用いて塗工速度600m/minで塗工し、乾燥させて両面塗工紙を得た。塗工量(固形分)は片面あたり7g/m2であった。次いで、下塗り塗被液を塗工した塗工紙に、上塗り層用塗被液を、片面あたりの乾燥塗工量が9g/m2 になるようにブレードコーターを用いて塗工速度600m/minで片面ずつ順次塗工、乾燥した後、スーパーカレンダー処理を行い、両面2層塗工紙を作製した。 The undercoat layer coating solution was applied to both surfaces of a high-quality base paper having a basis weight of 52 g / m 2 using a gate roll coater at a coating speed of 600 m / min and dried to obtain a double-sided coated paper. The coating amount (solid content) was 7 g / m 2 per side. Next, a coating speed of 600 m / min is applied to the coated paper coated with the undercoat coating liquid using a blade coater so that the dry coating amount per side is 9 g / m 2. After coating and drying one side at a time, super calendering was performed to prepare a double-sided two-layer coated paper.

参考例6
平均粒子径2.0μmの重質炭酸カルシウム(商品名:ハイドロカーブK−6)100%から成る顔料を用い、最終的に固形分濃度が61%であり、かつハーキュレス粘度が22mPa・sである下塗り層用塗被液を調製したこと以外は、実施例9と同様にして両面2層塗工紙を得た。
Reference Example 6
Using a pigment made of 100% heavy calcium carbonate (trade name: Hydrocurve K-6) with an average particle size of 2.0 μm, the solid content concentration is finally 61% and the Hercules viscosity is 22 mPa · s. A double-sided two-layer coated paper was obtained in the same manner as in Example 9 except that the undercoat layer coating solution was prepared.

実施例9および参考例6について、上記の方法により顔料塗被液のハーキュレス粘度、紙の坪量、厚さ、密度、平滑度、白紙光沢度、白色度および不透明度、印刷光沢度、印刷強度ならびにインキ乾燥性を調査した。その結果を表4に示す。


















For Example 9 and Reference Example 6, Hercules viscosity of pigment coating solution, basis weight of paper, thickness, density, smoothness, white paper gloss, whiteness and opacity, print gloss, print strength by the above methods In addition, the ink drying property was investigated. The results are shown in Table 4.


















Figure 2008207173
Figure 2008207173

表4に示すように、実施例9の両面2層塗工紙は、参考例6の両面2層塗工紙に比べて、低緊度であり、高い平滑性、光沢度および不透明度を有し、しかも、インキ乾燥性も良好であった。   As shown in Table 4, the double-sided, two-layer coated paper of Example 9 has a low tension and high smoothness, glossiness and opacity compared to the double-sided, two-layer coated paper of Reference Example 6. Moreover, the ink drying property was also good.

本発明に係る無機粒子の製造方法の一例を示すフローチャート。The flowchart which shows an example of the manufacturing method of the inorganic particle which concerns on this invention. 本発明に用いる回転キルン炉の第一構成例を示す模式縦断側面図。The schematic longitudinal cross-sectional side view which shows the 1st structural example of the rotary kiln furnace used for this invention. 同回転キルン炉の第二構成例を示す模式縦断側面図。The model longitudinal cross-sectional side view which shows the 2nd structural example of the rotation kiln furnace. 同回転キルン炉の第三構成例を示す模式縦断側面図。The model longitudinal cross-sectional side view which shows the 3rd structural example of the rotation kiln furnace. 同第三構成例における回転胴の構造例を示す模式斜視図。The model perspective view which shows the structural example of the rotating drum in the same 3rd structural example. 同回転キルン炉に用いる6分割隔壁構造の回転胴を示す縦断正面図。The longitudinal cross-sectional front view which shows the rotary trunk | drum of 6 division partition structure used for the same rotation kiln furnace. 同回転キルン炉に用いる6胴型多胴構造の回転胴を示す縦断正面図。The longitudinal cross-sectional front view which shows the rotary cylinder of the 6 cylinder type multi-cylinder structure used for the same rotation kiln furnace. 同回転キルン炉に用いる12分割隔壁構造の回転胴を示す縦断正面図。The longitudinal cross-sectional front view which shows the rotary drum of the 12 division | segmentation partition structure used for the rotation kiln furnace. 同回転キルン炉の第四構成例を示す模式縦断側面図。The model longitudinal cross-sectional side view which shows the 4th structural example of the rotation kiln furnace.

符号の説明Explanation of symbols

1 ・・・・・・ 回転胴
1A ・・・・・ 回転胴1を構成する径小の円筒体
1B ・・・・・ 回転胴1を構成する径大の円筒体
1a ・・・・・ 原料供給口
1b ・・・・・ 焼成物排出口
2 ・・・・・・ 加熱ジャケット
2A ・・・・・ 分離した加熱ジャケット(前部加熱用)
2B ・・・・・ 分離した加熱ジャケット(後部加熱用)
2a ・・・・・ 前部加熱空間
2b ・・・・・ 後部加熱空間
3 ・・・・・・ 排気口
4 ・・・・・・ 原料投入口
5 ・・・・・・ 原料供給手段
6A,6B・・・ 給気口
7 ・・・・・・ 焼成物取出口
8A,8C・・・ 間接的加熱手段(一次燃焼用)
8B,8D・・・ 間接的加熱手段(二次燃焼用)
81 ・・・・・ 熱風ブロアー
82 ・・・・・ 熱風放出口
9 ・・・・・・ 排気手段
10 ・・・・・ 排気循環ブロアー
11 ・・・・・ 仕切り部材
12a ・・・・ 外殻
12b ・・・・ 隔壁
13 ・・・・・ 区分室
14 ・・・・・ 管部
15 ・・・・・ 管部固定部材
15a ・・・・ 中心孔
16 ・・・・・ 空洞部
16a ・・・・ 空洞部16内の前部加熱空間
16b ・・・・ 空洞部16内の後部加熱空間
17a ・・・・ 内筒部
17b ・・・・ 外筒部
17c ・・・・ 隔壁
a ・・・・・・ 空気が流れる方向
a1 ・・・・・ 給気口6Aからの空気流
a2 ・・・・・ 給気口6Bからの空気流
a3 ・・・・・ 空気流a1,a2が合流した空気流
b ・・・・・・ 製紙スラッジの進行方向
c ・・・・・・ 仮想線
d ・・・・・・ 回転方向
K1〜K4・・・ 回転キルン炉
S ・・・・・・ 製紙スラッジ
Z1 ・・・・・ 一次燃焼区間
Z2 ・・・・・ 二次燃焼区間
DESCRIPTION OF SYMBOLS 1 ... Rotary cylinder 1A ... Small diameter cylindrical body 1B which comprises the rotary cylinder 1 ... Large diameter cylindrical body 1a which comprises the rotary cylinder 1 ... Raw material Supply port 1b ··· Fired product discharge port 2 ··· Heating jacket 2A ··· Separated heating jacket (for front heating)
2B: Separate heating jacket (for rear heating)
2a ... front heating space 2b ... rear heating space 3 ... exhaust port 4 ... raw material inlet 5 ... raw material supply means 6A, 6B: Air supply port 7: Burned product outlet 8A, 8C: Indirect heating means (for primary combustion)
8B, 8D ... Indirect heating means (for secondary combustion)
81 ... Hot air blower 82 ... Hot air discharge port 9 ... Exhaust means 10 ... Exhaust circulation blower 11 ... Partition member 12a ... Outer shell 12b ··· Partition 13 ··· Division chamber 14 ··· Pipe portion 15 ··· Tube portion fixing member 15a ··· Center hole 16 ··· Hollow portion 16a ··· ··· Front heating space 16b in the cavity portion 16 ··· Rear heating space 17a in the cavity portion 16 ··· Inner tube portion 17b ··· Outer tube portion 17c ··· Partition wall a ··· ... Air flow direction a1 ... Air flow a2 from air supply port 6A ... Air flow from air supply port 6B a3 ... Air combined with airflows a1 and a2 Flow b ··· Direction of papermaking sludge c ··· Virtual line d ··· Rotation direction K1 K4 ··· rotary kiln furnace S ······ paper sludge Z1 ····· primary combustion zone Z2 ····· secondary combustion zone

Claims (14)

製紙スラッジを原料とし、筒型熱処理炉内を移送しつつ燃焼処理を施して無機粒子を製造する方法であって、
前記燃焼処理が、過剰空気雰囲気下、スラッジ温度650℃以下でスラッジ中の易燃焼性有機成分を燃焼除去する一次燃焼工程と、過剰空気雰囲気下、スラッジ温度700〜850℃でスラッジ中の難燃焼性有機成分を燃焼除去する二次燃焼工程との、少なくとも2段階の燃焼工程を経ることを特徴とする無機粒子の製造方法。
A method for producing inorganic particles by using papermaking sludge as a raw material and performing a combustion treatment while being transferred in a cylindrical heat treatment furnace,
The combustion treatment includes a primary combustion step in which flammable organic components in the sludge are burned and removed in an excess air atmosphere at a sludge temperature of 650 ° C. or less, and a difficult combustion in the sludge in an excess air atmosphere at a sludge temperature of 700 to 850 ° C. A method for producing inorganic particles, wherein the method comprises at least two stages of combustion steps, including a secondary combustion step of burning and removing volatile organic components.
筒型熱処理炉が回転キルン炉である請求項1記載の無機粒子の製造方法。   The method for producing inorganic particles according to claim 1, wherein the cylindrical heat treatment furnace is a rotary kiln furnace. 燃焼処理を間接的加熱によって行う請求項1又は2記載の無機粒子の製造方法。   The manufacturing method of the inorganic particle of Claim 1 or 2 which performs a combustion process by indirect heating. 前記の少なくとも2段階の燃焼工程を1基の筒型熱処理炉の移送行程中に設定する請求項1から3のいずれか一項に記載の無機粒子の製造方法。   The method for producing inorganic particles according to any one of claims 1 to 3, wherein the at least two stages of combustion processes are set during a transfer process of one cylindrical heat treatment furnace. 筒型熱処理炉の一端の原料供給口側から炉内空気を強制的に排出することにより、同他端の焼成物排出口側から空気を炉内へ吸入する請求項1から4のいずれか一項に記載の無機粒子の製造方法。   5. The air according to claim 1, wherein air in the furnace is forcibly discharged from the raw material supply port side at one end of the cylindrical heat treatment furnace, and air is sucked into the furnace from the fired product discharge port side at the other end. The manufacturing method of the inorganic particle as described in claim | item. 焼成物排出口側からの空気吸入に加えて、前記一次燃焼工程から二次燃焼工程への移行部でも空気を炉内へ吸入する請求項5記載の無機粒子の製造方法。   6. The method for producing inorganic particles according to claim 5, wherein air is sucked into the furnace at the transition from the primary combustion step to the secondary combustion step in addition to air suction from the fired product discharge port side. 一次燃焼工程に対する間接的加熱部と、二次燃焼工程に対する間接的加熱部とが分離されてなる請求項3から6のいずれか一項に記載の無機粒子の製造方法。   The method for producing inorganic particles according to any one of claims 3 to 6, wherein an indirect heating part for the primary combustion process and an indirect heating part for the secondary combustion process are separated. 原料の製紙スラッジにアルカリ金属化合物を添加する請求項1から7のいずれか一項に記載の無機粒子の製造方法。   The method for producing inorganic particles according to any one of claims 1 to 7, wherein an alkali metal compound is added to the raw papermaking sludge. 原料の製紙スラッジが造粒または塊状に成形されてなる請求項1から8のいずれか一項に記載の無機粒子の製造方法。   The method for producing inorganic particles according to any one of claims 1 to 8, wherein the raw papermaking sludge is granulated or formed into a lump shape. 前記燃焼処理により、原料の製紙スラッジに含有される炭酸カルシウムの50%以上を分解する請求項1から9のいずれか一項に記載の無機粒子の製造方法。   The method for producing inorganic particles according to any one of claims 1 to 9, wherein 50% or more of calcium carbonate contained in the raw papermaking sludge is decomposed by the combustion treatment. 前記燃焼処理後の焼成物を水に混合、攪拌して懸濁液とする懸濁液化工程と、この懸濁液に二酸化炭素を接触させて炭酸化処理物を得る炭酸化処理工程と、該炭酸化処理物を粉砕する粉砕工程とを含んでなる請求項1から10のいずれか一項に記載の無機粒子の製造方法。   A suspension process for mixing the fired product after the combustion treatment with water and stirring to obtain a suspension; a carbonation treatment process for obtaining a carbonated product by bringing carbon dioxide into contact with the suspension; and The manufacturing method of the inorganic particle as described in any one of Claim 1 to 10 including the crushing process of grind | pulverizing a carbonation processed material. 一端側を原料供給口、他端側を焼成物排出口とする筒型熱処理炉と、その原料供給口へ製紙スラッジを供給する原料供給手段と、供給されたスラッジを焼成物排出口側へ移送する移送手段と、該筒型熱処理炉内を燃焼状態とする間接的加熱手段と、該筒型熱処理炉内を過剰空気雰囲気とする空気供給手段とを備え、
前記筒型熱処理炉内に、スラッジ温度650℃以下の一次燃焼区間と、スラッジ温度700〜850℃の二次燃焼区間とが構成され、
前記空気供給手段が、筒型熱処理炉の原料供給口近傍に設けた排気口から炉内空気を強制排気することより、同筒型熱処理炉の焼成物排出口近傍に設けた給気口から空気を炉内へ吸入するものである無機粒子の製造プラント。
A cylindrical heat treatment furnace having one end side as a raw material supply port and the other end side as a fired product discharge port, raw material supply means for supplying papermaking sludge to the raw material supply port, and transferring the supplied sludge to the fired product discharge port side Transfer means, indirect heating means for bringing the inside of the cylindrical heat treatment furnace into a combustion state, and air supply means for making the inside of the cylindrical heat treatment furnace an excess air atmosphere,
In the cylindrical heat treatment furnace, a primary combustion section having a sludge temperature of 650 ° C. or less and a secondary combustion section having a sludge temperature of 700 to 850 ° C. are configured,
The air supply means forcibly exhausts the air in the furnace from an exhaust port provided in the vicinity of the raw material supply port of the cylindrical heat treatment furnace, so that air is supplied from an air supply port provided in the vicinity of the fired product discharge port of the cylindrical heat treatment furnace. A plant for producing inorganic particles that is used to inhale the gas into the furnace.
請求項1から11のいずれか一項に記載の製造方法にて得られた無機粒子を填料として含んでなる紙。   A paper comprising inorganic particles obtained by the production method according to any one of claims 1 to 11 as a filler. 請求項1から11のいずれか一項に記載の製造方法にて得られた無機粒子を顔料として含んでなる塗工紙。   A coated paper comprising inorganic particles obtained by the production method according to any one of claims 1 to 11 as a pigment.
JP2008016385A 2007-01-29 2008-01-28 Manufacturing method and manufacturing plant of inorganic particles, and paper and coated paper using the inorganic particles Active JP4288532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016385A JP4288532B2 (en) 2007-01-29 2008-01-28 Manufacturing method and manufacturing plant of inorganic particles, and paper and coated paper using the inorganic particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007018332 2007-01-29
JP2008016385A JP4288532B2 (en) 2007-01-29 2008-01-28 Manufacturing method and manufacturing plant of inorganic particles, and paper and coated paper using the inorganic particles

Publications (2)

Publication Number Publication Date
JP2008207173A true JP2008207173A (en) 2008-09-11
JP4288532B2 JP4288532B2 (en) 2009-07-01

Family

ID=39783939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016385A Active JP4288532B2 (en) 2007-01-29 2008-01-28 Manufacturing method and manufacturing plant of inorganic particles, and paper and coated paper using the inorganic particles

Country Status (1)

Country Link
JP (1) JP4288532B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059578A (en) * 2008-09-04 2010-03-18 Daio Paper Corp Coated paper using reclaimed filler
JP2010090491A (en) * 2008-10-06 2010-04-22 Daio Paper Corp Method for producing recycled particle
JP2010174057A (en) * 2009-01-27 2010-08-12 Oji Paper Co Ltd Method for manufacturing inorganic particle
JP2011098277A (en) * 2009-11-05 2011-05-19 Daio Paper Corp Regenerated particle production method and regenerated particle
JP2011184240A (en) * 2010-03-09 2011-09-22 Nippon Paper Industries Co Ltd Method for producing calcium oxide using lime cake
CN108300502A (en) * 2018-04-02 2018-07-20 大庆高新区百世环保科技开发有限公司 A kind of ultra-clean processing thermal desorption device of oily sludge object
KR101903564B1 (en) * 2018-01-31 2018-11-13 한국지질자원연구원 Method of recycling by-products from papermaking process
CN110586251A (en) * 2019-10-14 2019-12-20 浙江环科万顺新材料有限公司 Carbon material dry-process ultrafine grinding device and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059578A (en) * 2008-09-04 2010-03-18 Daio Paper Corp Coated paper using reclaimed filler
JP2010090491A (en) * 2008-10-06 2010-04-22 Daio Paper Corp Method for producing recycled particle
JP2010174057A (en) * 2009-01-27 2010-08-12 Oji Paper Co Ltd Method for manufacturing inorganic particle
JP2011098277A (en) * 2009-11-05 2011-05-19 Daio Paper Corp Regenerated particle production method and regenerated particle
JP2011184240A (en) * 2010-03-09 2011-09-22 Nippon Paper Industries Co Ltd Method for producing calcium oxide using lime cake
KR101903564B1 (en) * 2018-01-31 2018-11-13 한국지질자원연구원 Method of recycling by-products from papermaking process
US10774471B2 (en) 2018-01-31 2020-09-15 Korea Institute Of Geoscience And Mineral Resource Method of recycling by-product generated in papermaking process
CN108300502A (en) * 2018-04-02 2018-07-20 大庆高新区百世环保科技开发有限公司 A kind of ultra-clean processing thermal desorption device of oily sludge object
CN110586251A (en) * 2019-10-14 2019-12-20 浙江环科万顺新材料有限公司 Carbon material dry-process ultrafine grinding device and method
CN110586251B (en) * 2019-10-14 2024-05-14 浙江环科万顺新材料有限公司 Dry-method ultrafine grinding device and method for carbon materials

Also Published As

Publication number Publication date
JP4288532B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4288532B2 (en) Manufacturing method and manufacturing plant of inorganic particles, and paper and coated paper using the inorganic particles
JP5056378B2 (en) Coated white paperboard
JP5135675B2 (en) Method for producing inorganic particles
JP5297696B2 (en) Newspaper and newspaper production method
JP4239034B2 (en) Manufacturing method of inorganic particles and manufacturing plant thereof
WO2007136113A1 (en) Inorganic particle and production method thereof and production plant thereof and paper using it
JP4257550B2 (en) Method for producing white inorganic particles
JP5446284B2 (en) Method for producing inorganic particles
JP2009286857A (en) Method for producing white inorganic particle
JP2010077555A (en) Coated liner and corrugated sheet using the same
JP4952540B2 (en) Coated paper for gravure printing
JP2010236141A (en) Coated multiply cardboard
JP2003119695A (en) Printing coated paper
JP4329865B1 (en) Method for producing inorganic particles
JP5468285B2 (en) Manufacturing method of coated paper
JP5508739B2 (en) Kraft paper for bag making
JP5615506B2 (en) Newspaper
JP4329870B1 (en) Method for producing inorganic particles
JP4952539B2 (en) Coating liner and cardboard using the same
JP5346237B2 (en) Cold offset printing paper containing papermaking filler
JP5525212B2 (en) Method for producing silica composite regenerated particles
JP4831163B2 (en) Method for producing coated paper
JP2012241304A (en) Coated paper for printing and method for producing the same
JP2010065357A (en) Coated liner and corrugated sheet using the same
JP5346235B2 (en) Cold offset printing paper containing papermaking filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081003

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Ref document number: 4288532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5