JP2008205410A - Led device and illumination device provided with the same - Google Patents

Led device and illumination device provided with the same Download PDF

Info

Publication number
JP2008205410A
JP2008205410A JP2007043075A JP2007043075A JP2008205410A JP 2008205410 A JP2008205410 A JP 2008205410A JP 2007043075 A JP2007043075 A JP 2007043075A JP 2007043075 A JP2007043075 A JP 2007043075A JP 2008205410 A JP2008205410 A JP 2008205410A
Authority
JP
Japan
Prior art keywords
led chip
light
wavelength conversion
led
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007043075A
Other languages
Japanese (ja)
Other versions
JP5056064B2 (en
Inventor
Ryoji Yokoya
良二 横谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007043075A priority Critical patent/JP5056064B2/en
Publication of JP2008205410A publication Critical patent/JP2008205410A/en
Application granted granted Critical
Publication of JP5056064B2 publication Critical patent/JP5056064B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED device capable of inhibiting an occurrence of glare caused by a direct-light component coming from an LED chip. <P>SOLUTION: The LED device comprises an LED chip 21; a wiring board 22 having the LED chip 21 mounted thereon and also provided with wirings to feed electric power to the LED chip 21; a first reflection member 24 provided facing the LED chip 21 and reflects light emitted from the LED chip 21 to the lateral direction of the LED chip 21; and a wavelength conversion member 23 provided laterally of the LED chip 21, which is excited by the light reflected on the first reflection member 24 to perform wavelength conversion of light and transmits the light provided through the wavelength conversion to radiate the light in the direction of transmission. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、LED装置及びそれを備えた照明装置に関するものである。   The present invention relates to an LED device and a lighting device including the LED device.

従来、LEDチップの上面から光を取り出し、その光をLEDチップの上方に設けたレンズで集光して配光制御を行う照明装置が知られている(例えば、特許文献1参照)。また、従来、レンズを用いることなく、LEDチップの上面から出射された光をLEDチップの外周側に設けた反射板を用いて配光制御を行う照明装置も知られている(例えば、特許文献2参照)。
特開2006−278309号公報 特開2006−107851号公報
2. Description of the Related Art Conventionally, there is known an illumination device that takes out light from the upper surface of an LED chip and collects the light with a lens provided above the LED chip to perform light distribution control (for example, see Patent Document 1). Conventionally, there is also known an illumination device that performs light distribution control using a reflector that is provided on the outer peripheral side of an LED chip without using a lens (see, for example, Patent Documents). 2).
JP 2006-278309 A JP 2006-107851 A

しかしながら、特許文献1に記載のものでは、照射方向に向けてLED装置から直射光が出射されるために、直射光によるグレアが発生する。また、特許文献2に記載のものでは、LEDチップから出射された光の一部は反射板で反射されて照射方向に出射されるものの、反射板を介さずに直接照射対象に向けて出射する直射光成分も存在するため、やはりグレアの問題を生じる。   However, in the thing of patent document 1, since direct light is radiate | emitted from an LED apparatus toward an irradiation direction, the glare by a direct light generate | occur | produces. Moreover, in the thing of patent document 2, although a part of light radiate | emitted from LED chip is reflected by a reflecting plate and is radiate | emitted in an irradiation direction, it radiate | emits directly toward an irradiation object without passing through a reflecting plate. Since there is also a direct light component, the problem of glare also occurs.

本願発明は、上記問題に鑑みなされたものであり、LEDチップからの直射光成分によるグレアの発生を抑制することが可能なLED装置及びそれを用いた照明装置を提供することを主たる目的とするものである。   This invention is made | formed in view of the said problem, and makes it a main objective to provide the LED device which can suppress generation | occurrence | production of the glare by the direct light component from an LED chip, and an illuminating device using the same. Is.

以下、上記課題を解決するのに有効な手段等につき説明する。なお以下では、理解を容易にするため、発明の実施の形態において対応する構成例を括弧書きで適宜示すが、この括弧書きで示した具体的構成例に限定されるものではない。   Hereinafter, means effective for solving the above-described problems will be described. In the following, for easy understanding, a corresponding configuration example in the embodiment of the invention is appropriately shown in parentheses, but is not limited to the specific configuration example shown in parentheses.

上記課題を解決するために、請求項1記載の発明では、LEDチップ(LEDチップ21)と、前記LEDチップが実装されるとともに前記LEDチップに給電するための配線を備えた配線基板(配線基板22)と、前記LEDチップの出射面に対向して設けられ、当該LEDチップから出射された光を前記LEDチップとの間に形成される空間の側方に反射する第1反射部材(第1反射部材24)と、前記LEDチップの側方に設けられ、前記LEDチップから出射された光の一部を波長変換して透過させるとともに、当該波長変換されて透過した光と波長変換されずに透過した光とが合成された光を放射する波長変換部材(波長変換部材23)とを備えることを特徴としている。   In order to solve the above-mentioned problem, in the invention according to claim 1, a wiring board (wiring board) having an LED chip (LED chip 21) and a wiring for mounting the LED chip and supplying power to the LED chip. 22) and a first reflecting member (first) for reflecting the light emitted from the LED chip to the side of the space formed between the LED chip and the light emitting surface of the LED chip. The reflection member 24) is provided on the side of the LED chip, and a part of the light emitted from the LED chip is wavelength-converted and transmitted, and the wavelength-converted and transmitted light is not wavelength-converted. It is characterized by comprising a wavelength conversion member (wavelength conversion member 23) that emits light synthesized with the transmitted light.

これによると、LED装置はLEDチップの出射面に対向した第1反射部材を備えており、LEDチップから発せられた光は第1反射部材によってLEDチップ及び第1反射部材の側方に反射される。この結果、LEDチップから外部に直接照射される直射光成分を抑制することが可能であるので、直射光成分によるグレアの発生を抑制することが可能となる。   According to this, the LED device includes the first reflecting member facing the emitting surface of the LED chip, and the light emitted from the LED chip is reflected to the side of the LED chip and the first reflecting member by the first reflecting member. The As a result, it is possible to suppress the direct light component directly irradiated to the outside from the LED chip, and thus it is possible to suppress the occurrence of glare due to the direct light component.

請求項2に記載の発明では、前記波長変換部材を筒状に形成し、前記LEDチップを包囲するように配設することを特徴としている。これにより、第1反射部材でLEDチップの側方に反射された光を波長変換部材に効率よく入射させることが可能となり、好適に波長変換を行うことが可能となる。   According to a second aspect of the present invention, the wavelength conversion member is formed in a cylindrical shape and is disposed so as to surround the LED chip. As a result, the light reflected to the side of the LED chip by the first reflecting member can be efficiently incident on the wavelength conversion member, and the wavelength conversion can be suitably performed.

請求項3に記載の発明では、前記筒状の波長変換部材を前記配線基板に当接させるとともに前記第1反射部材を前記筒状の波長変換部材に当接させることを特徴としている。   The invention according to claim 3 is characterized in that the cylindrical wavelength conversion member is brought into contact with the wiring substrate and the first reflecting member is brought into contact with the cylindrical wavelength conversion member.

波長変換部材に入射した光の一部は波長変換部材に吸収され、波長変換部材が発熱する。そして、波長変換部材が発熱すると波長変換部材の内側に配設されているLEDチップからの放熱を阻害する。LEDチップの放熱が阻害されると、LEDチップの温度上昇の原因となるため、LEDチップの発光効率が低下するとともにLEDチップの寿命信頼性にも悪影響を及ぼす虞がある。この点、本発明では、波長変換部材は配線基板及び第1反射部材に当接して設けられているため、波長変換部材で発生した熱を配線基板及び第1反射部材を通して放出させることができる。この結果、LEDチップの温度上昇を抑制することができるので、LEDチップの発光効率を向上することが可能となるとともにLEDチップの寿命信頼性を向上することができる。   Part of the light incident on the wavelength conversion member is absorbed by the wavelength conversion member, and the wavelength conversion member generates heat. When the wavelength conversion member generates heat, heat dissipation from the LED chip disposed inside the wavelength conversion member is hindered. If the heat dissipation of the LED chip is hindered, it causes the temperature of the LED chip to rise, so that the light emission efficiency of the LED chip is lowered and the life reliability of the LED chip may be adversely affected. In this regard, in the present invention, since the wavelength conversion member is provided in contact with the wiring board and the first reflection member, heat generated by the wavelength conversion member can be released through the wiring board and the first reflection member. As a result, since the temperature rise of the LED chip can be suppressed, the light emission efficiency of the LED chip can be improved and the lifetime reliability of the LED chip can be improved.

請求項4に記載の発明では、前記第1反射部材を金属で形成することを特徴としている。第1反射部材を金属で形成することにより、波長変換部材の熱が第1反射部材全体に伝達されやすく、第1反射部材の全体から効率よく放熱することができる。   The invention according to claim 4 is characterized in that the first reflecting member is made of metal. By forming the first reflecting member from metal, the heat of the wavelength conversion member is easily transmitted to the entire first reflecting member, and can be efficiently radiated from the entire first reflecting member.

請求項5に記載の発明では、前記第1反射部材における反LEDチップ側に放熱フィン(放熱フィン24c)を設けることを特徴としている。第1反射部材における反LEDチップ側に放熱フィンを形成することにより、第1反射部材から反LEDチップ側への放熱性をより向上させることができる。   The invention according to claim 5 is characterized in that a heat radiating fin (heat radiating fin 24c) is provided on the anti-LED chip side of the first reflecting member. By forming the heat radiation fin on the anti-LED chip side of the first reflecting member, the heat dissipation from the first reflecting member to the anti-LED chip side can be further improved.

請求項6に記載の発明では、配線基板と前記波長変換部材とで囲まれた空間に光透過性の樹脂(樹脂25)を充填し、当該樹脂内に前記LEDチップが埋設されていることを特徴としている。LEDチップの出射面と当該出射面と接する媒質との境界面においては、LEDチップから発せられた光の一部が全反射する。そのため、LEDチップから発せられる光の一部は外部に取り出されていない。この点本発明では、LEDチップが光透過性の樹脂で埋められている。ここで、樹脂の屈折率は空気の屈折率よりも大きい。そのため、LEDチップの出射面を樹脂と接触させた場合と空気と接触させた場合とを比較すると、樹脂と接触させた場合の方が境界面における光の全反射の割合が低くなる。この結果、LEDチップを光透過性の樹脂で埋めることにより光の取出効率を向上することが可能となる。   In the invention according to claim 6, a space surrounded by the wiring board and the wavelength conversion member is filled with a light transmissive resin (resin 25), and the LED chip is embedded in the resin. It is a feature. A part of the light emitted from the LED chip is totally reflected at the boundary surface between the emitting surface of the LED chip and the medium in contact with the emitting surface. Therefore, a part of the light emitted from the LED chip is not extracted outside. In this regard, in the present invention, the LED chip is filled with a light transmissive resin. Here, the refractive index of the resin is larger than the refractive index of air. Therefore, comparing the case where the emission surface of the LED chip is brought into contact with the resin and the case where it is brought into contact with the air, the proportion of total reflection of light at the boundary surface is lower when the LED chip is brought into contact with the resin. As a result, it is possible to improve the light extraction efficiency by filling the LED chip with a light transmissive resin.

請求項7に記載の発明では、前記配線基板には凹部(実装部21a)が形成されており、前記LEDチップが前記凹部に実装されるとともに、前記凹部の内周面(第2反射部22b)は前記波長変換部材から放射された光を所定の放射方向に反射する反射面を形成していることを特徴としている。   In the invention according to claim 7, a recess (mounting portion 21 a) is formed in the wiring board, the LED chip is mounted in the recess, and an inner peripheral surface (second reflecting portion 22 b) of the recess. ) Is characterized in that a reflection surface is formed that reflects light emitted from the wavelength conversion member in a predetermined radiation direction.

配線基板に形成した凹部にLEDチップを実装することにより、配線基板が筐体部を兼ねたパッケージ構造のLED装置を構成することが可能となり、パッケージとしてのLED装置の体格を小型化することが可能となる。また、配線基板に形成した凹部の内周面に第2反射部を形成している。これにより、LEDチップの側方に放射された光を所定の放射方向に反射する第2反射部を含めたパッケージを小型化することが可能となる。   By mounting the LED chip in the recess formed in the wiring board, it becomes possible to configure an LED device having a package structure in which the wiring board also serves as a housing part, and the size of the LED device as a package can be reduced in size. It becomes possible. Moreover, the 2nd reflection part is formed in the internal peripheral surface of the recessed part formed in the wiring board. As a result, it is possible to reduce the size of the package including the second reflecting portion that reflects the light emitted to the side of the LED chip in a predetermined radiation direction.

なお、請求項8に記載のように、請求項1から請求項6のいずれか一項に記載のLED装置LED装置の外周側に、前記波長変換部材から放射された光を所定の放射方向に反射する第2反射部材(第2反射部材30)を設けることで照明装置(照明装置10)を構成することが可能である。これにより、直射光成分によるグレアを抑制するとともに所望の反射方向に配光制御することが可能な照明装置を構成することが可能である。   In addition, as described in claim 8, light emitted from the wavelength conversion member is emitted in a predetermined radiation direction on the outer peripheral side of the LED device LED device according to any one of claims 1 to 6. The illumination device (illumination device 10) can be configured by providing the second reflection member (second reflection member 30) that reflects. Thereby, it is possible to configure an illumination device capable of suppressing glare due to a direct light component and controlling light distribution in a desired reflection direction.

また、請求項9に記載の発明のように、光透過性の板状体からなり、一方側の面(LED配設面132)に凹部(凹部133)が形成された導光部材(導光部材130)と、前記凹部内に配設され、当該凹部から前記導光部材の面に沿った方向に光を出射する請求項1から請求項6のいずれか一項に記載のLED装置とを備えて照明装置(照明装置110)を構成することが可能である。これにより、直射光成分によるグレアを抑制することが可能な面発光式の照明装置を構成することが可能である。   In addition, as in the ninth aspect of the invention, the light guide member (light guide) is formed of a light-transmitting plate-like body and has a recess (recess 133) formed on one surface (LED disposition surface 132). A member 130) and the LED device according to any one of claims 1 to 6, wherein the LED device is disposed in the recess and emits light from the recess in a direction along a surface of the light guide member. It is possible to comprise the illuminating device (illuminating device 110). Accordingly, it is possible to configure a surface-emitting illumination device that can suppress glare due to direct light components.

本願発明においては、LEDチップから外部に直接照射される直射光成分を抑制することが可能であるので、直射光成分によるグレアの発生を抑制することが可能となる。

In the present invention, it is possible to suppress the direct light component directly irradiated from the LED chip to the outside, and thus it is possible to suppress the occurrence of glare due to the direct light component.

[第1実施形態]
以下、本発明にかかる照明装置を具体化した一実施の形態を図面に基づいて説明する。図1は本発明に係る照明装置の縦断面図である。図2は図1における要部の拡大図である。
[First Embodiment]
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying a lighting device according to the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view of a lighting device according to the present invention. FIG. 2 is an enlarged view of a main part in FIG.

図1及び図2に示すように、本発明の照明装置10は、LEDチップ21、配線基板22、波長変換部材23及び第1反射部材24を有するLED装置20と、LED装置20の外周側に設けられた第2反射部材30とを含んで構成されている。   As shown in FIGS. 1 and 2, the illumination device 10 of the present invention includes an LED device 20 having an LED chip 21, a wiring substrate 22, a wavelength conversion member 23, and a first reflection member 24, and an outer peripheral side of the LED device 20. The second reflection member 30 is provided.

LEDチップ21は、例えば、窒化ガリウム系化合物半導体やセレン化亜鉛等で形成され、青色光を発するものである。なお、LEDチップ21の素子構造については周知であるので、詳細な説明は省略する。配線基板22は、絶縁基板上に所定の電気配線パターンが形成されたものである。絶縁基板はアルミニウムや銅等の良熱伝導体からなる基材の表面にセラミック膜等の絶縁層を設けて形成されている。配線パターンは絶縁層を介して基材に固着された銅箔層を、所定の回路パターンにエッチング加工して形成される。上記LEDチップ21は、その電極部が配線パターンに接続されて電源から給電されるように、配線基板22上に実装される。   The LED chip 21 is made of, for example, a gallium nitride compound semiconductor or zinc selenide, and emits blue light. Since the element structure of the LED chip 21 is well known, detailed description thereof is omitted. The wiring board 22 is obtained by forming a predetermined electrical wiring pattern on an insulating substrate. The insulating substrate is formed by providing an insulating layer such as a ceramic film on the surface of a base material made of a good heat conductor such as aluminum or copper. The wiring pattern is formed by etching a copper foil layer fixed to a base material through an insulating layer into a predetermined circuit pattern. The LED chip 21 is mounted on the wiring board 22 so that the electrode part is connected to the wiring pattern and is fed from the power source.

波長変換部材23は透明なシリコーン樹脂を基材とし、青色光で励起されて黄色光を発する蛍光体が均一に混ぜ込まれた材料で形成されている。波長変換部材23は円筒状に形成されており、配線基板22上におけるLEDチップ21を包囲する位置に接着剤で固定されている。波長変換部材23においては、入射された光の一部は波長変換部材23の内周面において反射されるとともに、入射された光の残りは波長変換部材23を透過する。また、波長変換部材23を透過する光の一部は波長変換されるが残りは波長変換されることなく透過する。   The wavelength conversion member 23 is made of a material in which a transparent silicone resin is used as a base material and a phosphor that is excited by blue light and emits yellow light is uniformly mixed. The wavelength conversion member 23 is formed in a cylindrical shape, and is fixed to the position surrounding the LED chip 21 on the wiring board 22 with an adhesive. In the wavelength conversion member 23, a part of the incident light is reflected on the inner peripheral surface of the wavelength conversion member 23, and the remaining incident light is transmitted through the wavelength conversion member 23. A part of the light transmitted through the wavelength conversion member 23 is wavelength-converted, but the rest is transmitted without being wavelength-converted.

第1反射部材24はアクリル、ポリカ又はABS等の樹脂により形成され、LEDチップ21の上方においてLEDチップ21の出射面に対向して配設されている。第1反射部材24はLEDチップ21の中央を通る光軸Aに対して軸対象に形成されている。具体的には、図2に示すように、第1反射部材24は約1/4の円弧を光軸A回りに回転させ、LEDチップ21に接近するほど小径となるような回転体形状をしている。第1反射部材24は、LEDチップ21との対向する側が反射面部24aとなっており、この反射面部24aの表面はアルミ又は銀の蒸着若しくはメッキ等による鏡面処理(高反射処理)がなされている。第1反射部材24はその先端部がLEDチップ21側に向けられるとともに外周縁部24bが円筒状の波長変換部材23の上端部に接着剤で固定されている。第1反射部材24を上述のように形成することにより、LEDチップ21から反射面部24aに入射された光をLEDチップ21及び第1反射部材24の側方に反射させることが可能となっている。なお、第1反射部材24を波長変換部材23上に配設した状態で反射面部24aの先端部がLEDチップ21と接触しないように各部の寸法が設定されている。   The first reflecting member 24 is made of a resin such as acrylic, polycarbonate, or ABS, and is disposed above the LED chip 21 so as to face the emission surface of the LED chip 21. The first reflecting member 24 is formed as an axis object with respect to the optical axis A passing through the center of the LED chip 21. Specifically, as shown in FIG. 2, the first reflecting member 24 has a rotating body shape in which an approximately ¼ arc is rotated around the optical axis A and the diameter becomes smaller as the LED chip 21 is approached. ing. The first reflecting member 24 has a reflecting surface portion 24a on the side facing the LED chip 21, and the surface of the reflecting surface portion 24a is subjected to mirror surface treatment (high reflection processing) by vapor deposition or plating of aluminum or silver. . The tip of the first reflecting member 24 is directed to the LED chip 21 side, and the outer peripheral edge 24 b is fixed to the upper end of the cylindrical wavelength conversion member 23 with an adhesive. By forming the first reflecting member 24 as described above, it is possible to reflect the light incident on the reflecting surface portion 24a from the LED chip 21 to the sides of the LED chip 21 and the first reflecting member 24. . In addition, the dimension of each part is set so that the front-end | tip part of the reflective surface part 24a may not contact the LED chip 21 in the state which has arrange | positioned the 1st reflective member 24 on the wavelength conversion member 23. FIG.

配線基板22、波長変換部材23及び第1反射部材24で囲まれて形成された空間には、シリコーン又はエポキシ等の透明な樹脂25が充填されている。すなわち、LEDチップ21は透明な樹脂25で埋められた状態となっている。   A space surrounded by the wiring substrate 22, the wavelength conversion member 23, and the first reflection member 24 is filled with a transparent resin 25 such as silicone or epoxy. That is, the LED chip 21 is filled with the transparent resin 25.

第2反射部材30は、配線基板22上における波長変換部材23の外周部に接着剤等で固定されている。第2反射部材30はアクリル、ポリカ又はABS等の樹脂により略放物面状に形成されている。詳述すると、図1に示すように、LEDチップ21の光軸Aを含む任意の断面において波長変換部材23の左右両側にそれぞれ現れる各曲線が波長変換部材23の高さ方向の中央を焦点Fとする放物線となるように、第2反射部材30の形状が設定されている。これにより、上述の焦点Fの位置から出射された光を、LEDチップ21の出射面に垂直な方向に第2反射部材30で反射させることができるようになっている。なお、第2反射板の反射面はアルミ又は銀の蒸着若しくはメッキ等による鏡面処理がなされている。   The second reflecting member 30 is fixed to the outer periphery of the wavelength conversion member 23 on the wiring board 22 with an adhesive or the like. The second reflecting member 30 is formed in a substantially parabolic shape by a resin such as acrylic, polycarbonate or ABS. More specifically, as shown in FIG. 1, each curve appearing on both the left and right sides of the wavelength conversion member 23 in an arbitrary cross section including the optical axis A of the LED chip 21 has a focal point F at the center in the height direction of the wavelength conversion member 23. The shape of the second reflecting member 30 is set so as to be a parabola. Thereby, the light emitted from the position of the focal point F can be reflected by the second reflecting member 30 in the direction perpendicular to the emission surface of the LED chip 21. Note that the reflecting surface of the second reflecting plate is mirror-finished by vapor deposition or plating of aluminum or silver.

次にこのLED装置20の作用について説明する。LEDチップ21から発せたれた光は、その大部分が第1反射部材24でLEDチップ21の側方に反射されて波長変換部材23に入射するとともに残部は波長変換部材23に直接入射する。   Next, the operation of the LED device 20 will be described. Most of the light emitted from the LED chip 21 is reflected by the first reflecting member 24 to the side of the LED chip 21 and enters the wavelength conversion member 23, and the remaining part directly enters the wavelength conversion member 23.

LEDチップ21からは青色光が発せられており、波長変換部材23では入射された青色光の一部が黄色光に波長変換される。その結果、波長変換された黄色光と波長変換されずに透過した青色光とが合成されて混色された白色光が、波長変換部材23から放射される。   Blue light is emitted from the LED chip 21, and the wavelength conversion member 23 converts part of the incident blue light into yellow light. As a result, white light, which is a mixture of the wavelength-converted yellow light and the blue light transmitted without wavelength conversion and mixed, is emitted from the wavelength conversion member 23.

この際、円筒状の波長変換部材23全体から白色光が放射されるが、特に円筒の高さ方向の中央部分に入射する光が多いため、この部分が高輝度部となる。また、波長変換部材23から放射される光は略水平方向に広がる配光となる。   At this time, white light is radiated from the entire cylindrical wavelength conversion member 23. However, since there is a large amount of light that is particularly incident on the central portion in the height direction of the cylinder, this portion becomes a high luminance portion. Moreover, the light radiated | emitted from the wavelength conversion member 23 becomes light distribution which spreads in a substantially horizontal direction.

この結果、波長変換部材23から放射された光の大部分は、波長変換部材23の外周側に配設された第2反射部材30の反射面に入射する。そして、この反射面で所定の照射方向に配光制御される。   As a result, most of the light emitted from the wavelength conversion member 23 enters the reflection surface of the second reflection member 30 disposed on the outer peripheral side of the wavelength conversion member 23. Then, light distribution is controlled in a predetermined irradiation direction on this reflecting surface.

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

本実施形態に係るLED装置20はLEDチップ21の上方において出射面に対向した第1反射部材24を備えている。そのため、LEDチップ21から発せられた光は、その大部分が第1反射部材24によって略水平方向に反射される。そして、略水平方向に発せられた光は第2反射部材30で反射されて照射目標方向に照射される。すなわち、第2反射部材30を介さずにLEDチップ21から外部に直接照射される光が抑制されている。この結果、直射光成分と反射光成分とによる二重の照射パターンを抑制すること可能となり照射パターンの品質が向上する。また、直射光成分を抑制することが可能であるので、直射光成分によるグレアの発生を抑制することが可能となる。   The LED device 20 according to the present embodiment includes a first reflecting member 24 that faces the emission surface above the LED chip 21. Therefore, most of the light emitted from the LED chip 21 is reflected in the substantially horizontal direction by the first reflecting member 24. And the light emitted in the substantially horizontal direction is reflected by the 2nd reflective member 30, and is irradiated to an irradiation target direction. That is, the light directly irradiated to the outside from the LED chip 21 without the second reflecting member 30 is suppressed. As a result, it becomes possible to suppress the double irradiation pattern due to the direct light component and the reflected light component, and the quality of the irradiation pattern is improved. In addition, since the direct light component can be suppressed, the occurrence of glare due to the direct light component can be suppressed.

本実施形態では、第2反射部材30の反射面を放物面に形成し、その焦点Fを円筒状の波長変換部材23の周上に設定した。これにより、波長変換部を透過した光を第2反射部材30でLEDチップ21の光軸A方向に好適に配光制御することが可能となる。また、第2反射部材30の焦点Fは波長変換部材23の高輝度部となるように設定されており、この高輝度部からは第2反射部材30の反射面の全域を見渡すことが可能である。このため、高輝度部から発せられた光を第2反射板の全域で反射させてLEDチップ21の光軸A方向に効率よく照射することが可能となる。   In the present embodiment, the reflecting surface of the second reflecting member 30 is formed as a parabolic surface, and the focal point F is set on the circumference of the cylindrical wavelength conversion member 23. Thereby, it is possible to appropriately control the light distribution of the light transmitted through the wavelength conversion unit in the direction of the optical axis A of the LED chip 21 by the second reflecting member 30. Further, the focal point F of the second reflecting member 30 is set to be a high luminance portion of the wavelength conversion member 23, and it is possible to overlook the entire reflection surface of the second reflecting member 30 from this high luminance portion. is there. For this reason, it becomes possible to reflect the light emitted from the high-intensity part in the whole area of the second reflecting plate and efficiently irradiate the LED chip 21 in the optical axis A direction.

本実施形態では、円筒状の波長変換部材23がLEDチップ21を包囲するように配設されている。これにより、LEDチップ21の側方に反射された光を波長変換部材23に効率よく入射させることが可能となり、好適に波長変換を行うことが可能となる。   In the present embodiment, a cylindrical wavelength conversion member 23 is disposed so as to surround the LED chip 21. Thereby, the light reflected to the side of the LED chip 21 can be efficiently incident on the wavelength conversion member 23, and the wavelength conversion can be suitably performed.

本実施形態では、波長変換部材23の形状を、LEDチップ21の全体をドーム状等に覆うものではなくLEDチップ21の周囲を囲む円筒状とした。これにより、波長変換部材23大きさを小さくすることが可能となり、波長変換部材23の発光面の輝度を向上させることが可能となるとともにより点光源化することが可能となる。   In the present embodiment, the shape of the wavelength conversion member 23 is a cylindrical shape surrounding the LED chip 21 rather than covering the entire LED chip 21 in a dome shape or the like. As a result, the size of the wavelength conversion member 23 can be reduced, the luminance of the light emitting surface of the wavelength conversion member 23 can be improved, and a more point light source can be realized.

波長変換部材23に入射した光の一部は波長変換部材23に吸収され、波長変換部材23が発熱する。そして、波長変換部材23が発熱すると波長変換部材23の内周側に配設されているLEDチップ21からの放熱を阻害する。LEDチップ21の放熱が阻害されると、LEDチップ21の温度上昇の原因となるため、LEDチップ21の発光効率が低下するとともにLEDチップ21の寿命信頼性にも悪影響を及ぼす虞がある。この点、本実施形態では、波長変換部材23は配線基板22上に固定されているため、波長変換部材23で発生した熱が配線基板22を通して放出される。また、円筒状の波長変換部材23の上端部には第1反射部材24が固定されているため、波長変換部材23で発生した熱が第1反射部材24を通して放出される。この結果、LEDチップ21の温度上昇を抑制することが可能となるので、LEDチップ21の発光効率を向上することが可能となるとともにLEDチップ21の寿命信頼性を向上することができる。   Part of the light incident on the wavelength conversion member 23 is absorbed by the wavelength conversion member 23 and the wavelength conversion member 23 generates heat. When the wavelength conversion member 23 generates heat, heat dissipation from the LED chip 21 disposed on the inner peripheral side of the wavelength conversion member 23 is hindered. If the heat dissipation of the LED chip 21 is hindered, the temperature of the LED chip 21 is increased, so that the light emission efficiency of the LED chip 21 is lowered and the lifetime reliability of the LED chip 21 may be adversely affected. In this regard, in this embodiment, since the wavelength conversion member 23 is fixed on the wiring substrate 22, the heat generated by the wavelength conversion member 23 is released through the wiring substrate 22. Further, since the first reflecting member 24 is fixed to the upper end portion of the cylindrical wavelength converting member 23, the heat generated by the wavelength converting member 23 is released through the first reflecting member 24. As a result, the temperature rise of the LED chip 21 can be suppressed, so that the light emission efficiency of the LED chip 21 can be improved and the lifetime reliability of the LED chip 21 can be improved.

LEDチップ21の出射面と当該出射面と接する媒質との境界面においては、LEDチップ21から発せられた光の一部が全反射する。そのため、LEDチップ21から発せられる光の一部は外部に取り出されていない。この点本実施形態では、円筒状の波長変換部材23と配線基板22とで形成される内部空間に透明な樹脂25が充填されており、この樹脂25でLEDチップ21が埋められている。ここで、樹脂の屈折率は空気の屈折率よりも大きい。そのため、LEDチップ21の出射面を樹脂と接触させた場合と空気と接触させた場合とを比較すると、樹脂と接触させた場合の方が境界面における光の全反射の割合が低くなる。この結果、本実施形態のLED装置20では光の取出効率を向上することが可能となる。   A part of light emitted from the LED chip 21 is totally reflected at the boundary surface between the emission surface of the LED chip 21 and the medium in contact with the emission surface. Therefore, a part of the light emitted from the LED chip 21 is not extracted outside. In this respect, in the present embodiment, a transparent resin 25 is filled in an internal space formed by the cylindrical wavelength conversion member 23 and the wiring board 22, and the LED chip 21 is filled with the resin 25. Here, the refractive index of the resin is larger than the refractive index of air. Therefore, comparing the case where the emission surface of the LED chip 21 is brought into contact with the resin and the case where it is brought into contact with the air, the ratio of the total reflection of light at the boundary surface is lower when the LED chip 21 is brought into contact with the resin. As a result, the LED device 20 of this embodiment can improve the light extraction efficiency.

波長変換部材23に入射した光は、その一部が波長変換部材23を透過するとともに残りは波長変換部材23の内周側表面で反射される。ここで本実施形態では、第1反射部材24はLEDチップ21に接近するほど小径となる形状をしている。すなわち、波長変換部材23の内周側面で反射した光が、第1反射部材24に入射することなくその側方を通過して、再度波長変換部材23に入射しやすい形状となっている。このため、波長変換部材23の内周側面において反射した光が第1反射部材24で再反射されてLEDチップ21に戻ることが抑制され、光の取出効率を高めることが可能となる。   A part of the light incident on the wavelength conversion member 23 is transmitted through the wavelength conversion member 23, and the rest is reflected on the inner peripheral surface of the wavelength conversion member 23. Here, in the present embodiment, the first reflecting member 24 has a shape with a smaller diameter as it approaches the LED chip 21. That is, the light reflected by the inner peripheral side surface of the wavelength conversion member 23 passes through the side without entering the first reflection member 24 and is likely to enter the wavelength conversion member 23 again. For this reason, it is suppressed that the light reflected in the inner peripheral side surface of the wavelength conversion member 23 is re-reflected by the 1st reflection member 24, and returns to the LED chip 21, and it becomes possible to improve the light extraction efficiency.

[第2実施形態]
次に本発明を具体化した第2実施形態について、図面を参照しつつ説明する。図3は本実施形態に係る照明装置10の要部縦断面図である。なお、第1実施形態と同様の構成については、同一符号を付して説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a longitudinal sectional view of a main part of the illumination device 10 according to the present embodiment. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態では、第1反射部材24はアルミ、銅等の高熱伝導性の金属で形成されており、その上部には外方に向けて放熱フィン24cが設けられている。なお、第1反射部材24の反射面部24aの表面は第1実施形態と同様に銀蒸着等の鏡面処理がなされている。   In the present embodiment, the first reflecting member 24 is formed of a metal having high thermal conductivity such as aluminum or copper, and a heat radiating fin 24c is provided on the upper portion thereof toward the outside. In addition, the surface of the reflective surface portion 24a of the first reflective member 24 is subjected to mirror treatment such as silver vapor deposition as in the first embodiment.

本実施形態においても第1実施形態と同様、波長変換部材23で発生した熱を配線基板22及び第1反射部材24を介して放出することができる。特に本実施形態では、第1反射部材24が高熱伝導性の金属で形成されているので、波長変換部材23の熱が第1反射部材24全体に伝達されやすく、第1反射部材24の全体から効率よく放熱することができる。また、第1反射部材24には外方に向けて放熱フィン24cが形成されているので、第1反射部材24から外方に向けた放熱性をより向上させることができる。   Also in the present embodiment, heat generated by the wavelength conversion member 23 can be released through the wiring substrate 22 and the first reflection member 24 as in the first embodiment. In particular, in the present embodiment, since the first reflecting member 24 is formed of a metal having high thermal conductivity, the heat of the wavelength conversion member 23 is easily transmitted to the entire first reflecting member 24, and from the entire first reflecting member 24. Heat can be radiated efficiently. In addition, since the heat radiation fins 24c are formed outward in the first reflection member 24, the heat radiation performance from the first reflection member 24 toward the outside can be further improved.

[第3実施形態]
次に本発明を具体化した第3実施形態について、図面を参照しつつ説明する。図4は本実施形態に係るLED装置20の縦断面図である。なお、第1実施形態と同様の構成については、同一符号を付して説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a longitudinal sectional view of the LED device 20 according to this embodiment. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施形態では、三次元立体構造を有する絶縁基板の表面に所定の回路パターンを形成した立体回路基板(MID:Molded Interconnect Device)で配線基板22を形成するとともに、、第2反射部材30を配線基板22と一体化した点が第1実施形態と異なっている。   In the present embodiment, the wiring board 22 is formed by a three-dimensional circuit board (MID: Molded Interconnect Device) in which a predetermined circuit pattern is formed on the surface of an insulating board having a three-dimensional structure, and the second reflecting member 30 is wired. The point which integrated with the board | substrate 22 differs from 1st Embodiment.

詳述すると、配線基板22は、アルミニウム等の金属からなる基材を三次元立体構造に形成しその表面にセラミック膜等の絶縁層を設けて形成されている。基材の三次元立体構造は、金属の鍛造や切削加工など各種の方法で形成することができる。図4に示すように、配線基板22にはLEDチップ21の実装部21a凹状に形成されている。凹状の実装部21aは、その内周面が実装部21aにおける開口側に向けて広がる略放物面状となっており、この内周面により第2反射部22bが形成されている。   More specifically, the wiring board 22 is formed by forming a base material made of a metal such as aluminum in a three-dimensional structure and providing an insulating layer such as a ceramic film on the surface thereof. The three-dimensional structure of the substrate can be formed by various methods such as metal forging or cutting. As shown in FIG. 4, the wiring substrate 22 is formed in a concave shape on the mounting portion 21 a of the LED chip 21. The concave mounting portion 21a has a substantially parabolic shape whose inner peripheral surface extends toward the opening side of the mounting portion 21a, and the second reflecting portion 22b is formed by the inner peripheral surface.

本実施形態のLED装置20においても、第1実施形態と同様に、LEDチップ21から発せられた光はその大部分が第1反射部材24で略水平方向に反射される。そして、略水平方向に発せられた光は第2反射部22bで反射されて照射目標方向に照射される。すなわち、本実施形態においても、直射光成分と反射光成分とによる二重の照射パターンを抑制すること可能となるとともに、直射光成分によるグレアの発生を抑制することが可能となる。   Also in the LED device 20 of the present embodiment, as in the first embodiment, most of the light emitted from the LED chip 21 is reflected in the substantially horizontal direction by the first reflecting member 24. And the light emitted in the substantially horizontal direction is reflected by the 2nd reflection part 22b, and is irradiated to an irradiation target direction. That is, also in the present embodiment, it is possible to suppress the double irradiation pattern due to the direct light component and the reflected light component, and it is possible to suppress the occurrence of glare due to the direct light component.

本実施形態においては、LED装置20は、配線基板22に形成した凹状の実装部21aにLEDチップ21を実装したパッケージ構造を有している。すなわち、LED装置20は三次元立体構造を有する配線基板22自身がLED装置20の筐体を形成している。これにより、パッケージとしてのLED装置20の体格を小型化することが可能となる。また、配線基板22に形成した凹状の実装部21aの内周面で第2反射部22bを形成している。これにより、別体で第2反射部材30を設ける場合と比較して第2反射部22bを含めたLED装置20の体格を小型化することが可能となる。   In the present embodiment, the LED device 20 has a package structure in which the LED chip 21 is mounted on a concave mounting portion 21 a formed on the wiring board 22. That is, in the LED device 20, the wiring board 22 itself having a three-dimensional structure forms the housing of the LED device 20. Thereby, the physique of the LED device 20 as a package can be reduced in size. Further, the second reflecting portion 22 b is formed on the inner peripheral surface of the concave mounting portion 21 a formed on the wiring board 22. Thereby, compared with the case where the 2nd reflection member 30 is provided separately, it becomes possible to reduce the size of the LED device 20 including the 2nd reflection part 22b.

[第4実施形態]
次に本発明に係るLED装置を面発光型の照明装置に適用した実施形態について、図面を参照しつつ説明する。図5は本実施形態に係る照明装置の縦断面図であり、図6は照明装置の平面図である。なお、第1実施形態と同様の構成については、同一符号を付して説明を省略する。
[Fourth Embodiment]
Next, an embodiment in which the LED device according to the present invention is applied to a surface-emitting illumination device will be described with reference to the drawings. FIG. 5 is a longitudinal sectional view of the lighting device according to the present embodiment, and FIG. 6 is a plan view of the lighting device. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

照明装置110は、導光板130にLED装置20を設けて構成される。詳述すると、導光板130は所定の厚さを有する透明なアクリル板等からなる。導光板130の一側の面は発光面131をなし、他側の面はLED配設面132なしている。LED配設面132には所定の間隔で複数の凹部133が形成されており、各凹部133内にLED装置20が収納されている。各凹部133内に収納されるLED装置20の構成は第1実施形態におけるLED装置20と同一であるため、説明を省略する。   The illumination device 110 is configured by providing the LED device 20 on the light guide plate 130. More specifically, the light guide plate 130 is made of a transparent acrylic plate having a predetermined thickness. One surface of the light guide plate 130 forms a light emitting surface 131, and the other surface has no LED mounting surface 132. A plurality of recesses 133 are formed at predetermined intervals on the LED arrangement surface 132, and the LED device 20 is accommodated in each recess 133. Since the configuration of the LED device 20 housed in each recess 133 is the same as that of the LED device 20 in the first embodiment, the description thereof is omitted.

導光板130の側面及びLED配設面132は拡散反射部134が形成されている。拡散反射部134は入射した光が拡散反射するように処理がされており、その処理方法としてはシルクスクリーンによるドット印刷又は微細凹凸処理等が可能である。なお、拡散反射処理は各LED装置20を中心としてLED装置20から遠ざかるにつれて反射性が高くなるようにされている。   A diffuse reflection part 134 is formed on the side surface of the light guide plate 130 and the LED arrangement surface 132. The diffuse reflection unit 134 is processed so that incident light is diffusely reflected. As a processing method thereof, dot printing by a silk screen or fine unevenness processing can be performed. Note that the diffuse reflection process is configured such that the reflectivity increases as the distance from the LED device 20 increases with the LED device 20 as the center.

第1実施形態で説明したように、LED装置20はLEDチップ21の上方において出射面に対向した第1反射部材24を備えている。そのため、LED装置20からその上方に直接出射される光成分はほとんどなく、大部分は第1反射部材24で反射されて略水平方向に出射される。すなわち、各LED装置20から出射された光は、凹部133から略水平方向(導光板130が広がる方向)に出射されて導光板130内に導かれる。そして導光板130内の光は導光板130の側面及びLED配設面132における拡散反射部134で反射されて、発光面131から外部に出射される。   As described in the first embodiment, the LED device 20 includes the first reflecting member 24 that faces the emission surface above the LED chip 21. Therefore, there is almost no light component directly emitted upward from the LED device 20, and most of the light component is reflected by the first reflecting member 24 and emitted in a substantially horizontal direction. That is, the light emitted from each LED device 20 is emitted from the recess 133 in a substantially horizontal direction (direction in which the light guide plate 130 spreads) and is guided into the light guide plate 130. The light in the light guide plate 130 is reflected by the diffuse reflection part 134 on the side surface of the light guide plate 130 and the LED arrangement surface 132 and is emitted to the outside from the light emitting surface 131.

本実施形態の照明装置110では、LEDチップ21からの直射光成分はほとんどなく、大部分が第1反射部材24での反射による略水平方向の光成分である。これにより、直射成分によるグレアの発生を抑制することが可能となる。   In the illuminating device 110 of this embodiment, there is almost no direct light component from the LED chip 21, and most is a light component of the substantially horizontal direction by the reflection in the 1st reflection member 24. FIG. As a result, it is possible to suppress the occurrence of glare due to direct components.

本実施形態では、導光板130の側面及びLED配設面132に拡散反射部134が形成されているので、これらの面に入射した光を様々な方向に拡散反射させることが可能である。この結果、発光面131における輝度を均一化することが可能となる。特に本実施形態では、拡散反射部134の拡散反射処理は各LED装置20を中心としてLED装置20から遠ざかるにつれて反射性が高くなるようにされているので、より均一な輝度の面発光をさせることが可能となる。   In this embodiment, since the diffuse reflection part 134 is formed on the side surface of the light guide plate 130 and the LED arrangement surface 132, it is possible to diffusely reflect light incident on these surfaces in various directions. As a result, the luminance on the light emitting surface 131 can be made uniform. In particular, in the present embodiment, the diffuse reflection processing of the diffuse reflector 134 is configured such that the reflectivity increases as the distance from the LED device 20 increases with each LED device 20 as the center, so that surface emission with more uniform luminance is performed. Is possible.

[他の実施形態]
なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。
[Other Embodiments]
In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

上記各実施形態では、第1反射部材24の形状はLEDチップ21に接近するほど小径となる断面円弧状としたが、第1反射部材24の形状はこれに限られるものではない。すなわち、第1反射部材24の形状として、図6に示すように、反射面部24aを円錐状とすることも可能である。さらに、図7に示すように、第1反射部材24を平板によって形成することも可能である。これらの場合でも、LEDチップ21から発せられた光をLEDチップ21の側方に反射すること可能である。   In each said embodiment, although the shape of the 1st reflection member 24 was made into the circular arc shape of a cross section that becomes so small that it approached the LED chip 21, the shape of the 1st reflection member 24 is not restricted to this. That is, as the shape of the first reflecting member 24, the reflecting surface portion 24a can be conical as shown in FIG. Furthermore, as shown in FIG. 7, it is also possible to form the 1st reflection member 24 with a flat plate. Even in these cases, it is possible to reflect the light emitted from the LED chip 21 to the side of the LED chip 21.

上記各実施形態では波長変換部材23を円筒形状としたが、特に配線基板22から離れるにしたがって円筒の外径及び内径が小さくなるような形状としてもよい。上記各実施形態の波長変換部材23からは略水平方向の配光の光が放射されるが、その放射成分の中には配線基板22に向けて入射してロスの要因となる成分も存在する。この点、配線基板22から離れるにしたがって波長変換部材23の径が小さくなるような形状とすると、波長変換部材23から放射される光は若干上方に偏った配光となる。このため、配線基板22に向けて入射する光成分を低減することが可能となり、ロスの原因となる成分を低減することができる。

断面外径が変化しないような円筒形状で


上記第1及び第2の実施形態では、第1反射部材24の反射面には高反射処理が施された。しかし、第1反射部材24の反射面に拡散反射処理を施すことも可能である。これによっても、高反射処理を施した場合と同様の効果を奏する。拡散反射処理の方法としては様々な方法が可能である。例えば、アルミ板をプレス加工して形成された第1反射部材24の表面にサンドブラスト処理で凹凸を形成した後、アルミ又は銀を蒸着によりコーティングする方法を採用することができる。また、表面に微細な凹凸が形成されたプレス型を用いて第1反射部材24を形成した後、アルミ又は銀を蒸着してもよい。また、表面が平滑なメタル部材の反射面にアルミ又は銀を蒸着する際に、アンダーコート又はトップコートに反射率の高い微細なSiO2の粒子を混ぜ込んで塗布する方法を採用することも可能である。また、第1反射部材24の反射面に白色の塗装をして拡散反射させることも可能である。
In each of the above embodiments, the wavelength conversion member 23 has a cylindrical shape. However, the outer diameter and the inner diameter of the cylinder may be reduced as the distance from the wiring board 22 increases. The light of the light distribution in the substantially horizontal direction is radiated from the wavelength conversion member 23 of each of the above embodiments, but among the radiated components, there are components that are incident on the wiring board 22 and cause a loss. . In this regard, if the wavelength conversion member 23 is shaped so that the diameter of the wavelength conversion member 23 decreases as the distance from the wiring board 22 increases, the light emitted from the wavelength conversion member 23 has a light distribution slightly biased upward. For this reason, it becomes possible to reduce the light component which injects toward the wiring board 22, and can reduce the component which causes loss.

A cylindrical shape that does not change the outer diameter of the cross section


In the first and second embodiments, the reflection surface of the first reflecting member 24 is subjected to high reflection processing. However, the reflection surface of the first reflecting member 24 can be subjected to a diffuse reflection process. This also has the same effect as when the high reflection process is performed. Various methods can be used as the diffuse reflection processing method. For example, after forming unevenness on the surface of the first reflecting member 24 formed by pressing an aluminum plate by sandblasting, a method of coating aluminum or silver by vapor deposition can be employed. Alternatively, aluminum or silver may be vapor-deposited after the first reflecting member 24 is formed using a press mold having fine irregularities formed on the surface. Also, when depositing aluminum or silver on the reflective surface of a metal member with a smooth surface, it is also possible to adopt a method in which fine SiO2 particles with high reflectivity are mixed and applied to the undercoat or topcoat. is there. Moreover, it is also possible to diffusely reflect the first reflective member 24 by coating the reflective surface with white.

第2実施形態の第1反射部材24を高熱伝導性金属で形成するとともに放熱フィン24cを形成した。しかし、高熱伝導性金属で形成すること及び放熱フィン24cを形成することの両要件が必須ではなく、いずれか一方の要件のみでも放熱性を向上することは可能である。   The first reflecting member 24 of the second embodiment was formed of a highly heat conductive metal and the heat dissipating fins 24c were formed. However, both the requirements of forming with a high thermal conductivity metal and the formation of the heat radiation fins 24c are not essential, and it is possible to improve the heat dissipation even with only one of the requirements.

第3実施形態では、導光板130を透明やアクリル板で形成したが、アクリル以外の他の樹脂板やガラス板等で導光板130を形成してもよい。また、上記第3実施形態では、導光板130の側面及びLED配設面132に拡散反射処理を施したが、これらの面に鏡面反射処理を施してもよい。   In the third embodiment, the light guide plate 130 is formed of a transparent or acrylic plate, but the light guide plate 130 may be formed of a resin plate other than acrylic, a glass plate, or the like. Moreover, in the said 3rd Embodiment, although the diffuse reflection process was performed to the side surface of the light-guide plate 130 and the LED arrangement | positioning surface 132, you may perform a specular reflection process to these surfaces.

本発明の第1実施形態に係る照明装置の縦断面図である。It is a longitudinal cross-sectional view of the illuminating device which concerns on 1st Embodiment of this invention. 図1における要部の拡大図である。It is an enlarged view of the principal part in FIG. 本発明の第2実施形態に係る照明装置の要部の拡大図である。It is an enlarged view of the principal part of the illuminating device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るLED装置の縦断面図である。It is a longitudinal cross-sectional view of the LED device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る照明装置の縦断面図である。It is a longitudinal cross-sectional view of the illuminating device which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る照明装置の平面図である。It is a top view of the illuminating device which concerns on 4th Embodiment of this invention. 本発明の他の実施形態に係る照明装置の要部の拡大図である。It is an enlarged view of the principal part of the illuminating device which concerns on other embodiment of this invention. 本発明の他の実施形態に係る照明装置の要部の拡大図である。It is an enlarged view of the principal part of the illuminating device which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

10…照明装置、20…LED装置、21…LEDチップ、22…配線基板、23…波長変換部材、24…第1反射部材、25…樹脂、30…第2反射部材。   DESCRIPTION OF SYMBOLS 10 ... Illuminating device, 20 ... LED device, 21 ... LED chip, 22 ... Wiring board, 23 ... Wavelength conversion member, 24 ... 1st reflection member, 25 ... Resin, 30 ... 2nd reflection member.

Claims (9)

LEDチップと、
前記LEDチップが実装されるとともに前記LEDチップに給電するための配線を備えた配線基板と、
前記LEDチップの出射面に対向して設けられ、当該LEDチップから出射された光を前記LEDチップとの間に形成される空間の側方に反射する第1反射部材と、
前記LEDチップの側方に設けられ、前記LEDチップから出射された光の一部を波長変換して透過させるとともに、当該波長変換されて透過した光と波長変換されずに透過した光とが合成された光を放射する波長変換部材とを備えることを特徴とするLED装置。
An LED chip;
A wiring board on which the LED chip is mounted and provided with wiring for supplying power to the LED chip;
A first reflecting member provided opposite to the emitting surface of the LED chip and reflecting the light emitted from the LED chip to the side of the space formed between the LED chip;
A part of the light emitted from the LED chip is provided on the side of the LED chip, and the wavelength-converted light is transmitted, and the light that has been wavelength-converted and transmitted is combined with the light that has been transmitted without being wavelength-converted. And a wavelength conversion member that emits the emitted light.
前記波長変換部材を筒状に形成し、前記LEDチップを包囲するように配設したことを特徴とする請求項1に記載のLED装置。   The LED device according to claim 1, wherein the wavelength conversion member is formed in a cylindrical shape and disposed so as to surround the LED chip. 前記筒状の波長変換部材を前記配線基板に当接させるとともに前記第1反射部材を前記筒状の波長変換部材に当接させたことを特徴とする請求項2に記載のLED装置。   The LED device according to claim 2, wherein the cylindrical wavelength conversion member is brought into contact with the wiring substrate and the first reflecting member is brought into contact with the cylindrical wavelength conversion member. 前記第1反射部材を金属で形成したことを特徴とする請求項3に記載のLED装置。   The LED device according to claim 3, wherein the first reflecting member is made of metal. 前記第1反射部材における反LEDチップ側に放熱フィンを設けたことを特徴とする請求項3又は請求項4のいずれかに記載のLED装置。   5. The LED device according to claim 3, wherein a radiation fin is provided on a side of the first reflecting member opposite to the LED chip. 配線基板と前記波長変換部材とで囲まれた空間に光透過性の樹脂を充填し、当該樹脂内に前記LEDチップが埋設されていることを特徴とする請求項3から請求項5のいずれか一項に記載のLED装置。   6. The space surrounded by the wiring board and the wavelength conversion member is filled with a light transmissive resin, and the LED chip is embedded in the resin. The LED device according to one item. 前記配線基板には凹部が形成されており、
前記LEDチップが前記凹部に実装されるとともに、
前記凹部の内周面は前記波長変換部材から放射された光を所定の放射方向に反射する反射面を形成していることを特徴とする請求項1から請求項6のいずれか一項に記載のLED装置。
A concave portion is formed in the wiring board,
The LED chip is mounted in the recess,
The inner peripheral surface of the concave portion forms a reflection surface that reflects light emitted from the wavelength conversion member in a predetermined radiation direction. LED device.
請求項1から請求項6のいずれか一項に記載のLED装置の外周側に、前記波長変換部材から放射された光を所定の放射方向に反射する第2反射部材を設けたことを特徴とする照明装置。   A second reflecting member that reflects light emitted from the wavelength conversion member in a predetermined radiation direction is provided on the outer peripheral side of the LED device according to any one of claims 1 to 6. Lighting device. 光透過性の板状体からなり、一方側の面に凹部が形成された導光部材と、
前記凹部内に配設され、当該凹部から前記導光部材の面に沿った方向に光を出射する請求項1から請求項6のいずれか一項に記載のLED装置とを備えることを特徴とする照明装置。
A light guide member made of a light-transmitting plate and having a recess formed on one surface;
It is arrange | positioned in the said recessed part, It equips with the LED apparatus as described in any one of Claims 1-6 which radiate | emits light in the direction along the surface of the said light guide member from the said recessed part. Lighting device.
JP2007043075A 2007-02-23 2007-02-23 LED device and lighting device including the same Expired - Fee Related JP5056064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043075A JP5056064B2 (en) 2007-02-23 2007-02-23 LED device and lighting device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043075A JP5056064B2 (en) 2007-02-23 2007-02-23 LED device and lighting device including the same

Publications (2)

Publication Number Publication Date
JP2008205410A true JP2008205410A (en) 2008-09-04
JP5056064B2 JP5056064B2 (en) 2012-10-24

Family

ID=39782544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043075A Expired - Fee Related JP5056064B2 (en) 2007-02-23 2007-02-23 LED device and lighting device including the same

Country Status (1)

Country Link
JP (1) JP5056064B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016108A (en) * 2008-07-02 2010-01-21 Nec Lighting Ltd Light-emitting device
JP2010171340A (en) * 2009-01-26 2010-08-05 Panasonic Electric Works Co Ltd Light emitting device
JP2011503891A (en) * 2007-11-20 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Side radiation device with wavelength conversion
JP2011187660A (en) * 2010-03-08 2011-09-22 Hiroshi Ninomiya Bare chip mounting surface emitter and method of manufacturing the same
JP2012059988A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Light-emitting device and illumination device
JP2012524995A (en) * 2009-04-21 2012-10-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device with phosphor
CN103292235A (en) * 2012-03-02 2013-09-11 旭曻有限公司 LED bulb used for taking the place of vehicle halogen bulb
CN103883893A (en) * 2012-12-20 2014-06-25 秦彪 Semiconductor lighting lamp and lamp core
EP2781823A3 (en) * 2013-03-19 2014-12-03 Stanley Electric Co., Ltd. Light-emitting body and manufacturing method thereof, and light-emitting device including the same
WO2015011590A1 (en) * 2013-07-22 2015-01-29 Koninklijke Philips N.V. Flip-chip side emitting led
CN104412038A (en) * 2012-07-02 2015-03-11 欧司朗股份有限公司 Process for equipping lighting sources, corresponding devices and assortment
KR101517930B1 (en) * 2008-12-11 2015-05-06 주식회사 케이엠더블유 Multi-chip LED package having a high performance radiator
EP2840301A3 (en) * 2011-12-20 2015-12-09 Stanley Electric Co., Ltd. Light emitting device, vehicle light and vehicle
CN105209821A (en) * 2013-05-08 2015-12-30 K.M.W.株式会社 Stand-type LED lighting device
JP2016515767A (en) * 2013-04-15 2016-05-30 ダウ コーニング コーポレーションDow Corning Corporation Light emitting assembly and method with spectral shift reflection
JP2016111299A (en) * 2014-12-10 2016-06-20 株式会社ソディック Light-emitting diode module
JP2017098398A (en) * 2015-11-24 2017-06-01 豊田合成株式会社 Light-emitting device and lighting device
CN107681036A (en) * 2017-08-22 2018-02-09 深圳市芯联电股份有限公司 LED encapsulation structure
JP2018182053A (en) * 2017-04-12 2018-11-15 シチズン電子株式会社 Light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008068A (en) * 2001-05-04 2003-01-10 Lumileds Lighting Us Llc Fluorescent diode lens
JP2003178612A (en) * 2001-09-28 2003-06-27 Osram Sylvania Inc Replaceable led bulb provided with replaceable optical lens
JP2005311170A (en) * 2004-04-23 2005-11-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2007042938A (en) * 2005-08-04 2007-02-15 Nichia Chem Ind Ltd Optical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008068A (en) * 2001-05-04 2003-01-10 Lumileds Lighting Us Llc Fluorescent diode lens
JP2003178612A (en) * 2001-09-28 2003-06-27 Osram Sylvania Inc Replaceable led bulb provided with replaceable optical lens
JP2005311170A (en) * 2004-04-23 2005-11-04 Stanley Electric Co Ltd Semiconductor light emitting device
JP2007042938A (en) * 2005-08-04 2007-02-15 Nichia Chem Ind Ltd Optical device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503891A (en) * 2007-11-20 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Side radiation device with wavelength conversion
JP2010016108A (en) * 2008-07-02 2010-01-21 Nec Lighting Ltd Light-emitting device
KR101517930B1 (en) * 2008-12-11 2015-05-06 주식회사 케이엠더블유 Multi-chip LED package having a high performance radiator
JP2010171340A (en) * 2009-01-26 2010-08-05 Panasonic Electric Works Co Ltd Light emitting device
JP2012524995A (en) * 2009-04-21 2012-10-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device with phosphor
JP2011187660A (en) * 2010-03-08 2011-09-22 Hiroshi Ninomiya Bare chip mounting surface emitter and method of manufacturing the same
JP2012059988A (en) * 2010-09-10 2012-03-22 Mitsubishi Electric Corp Light-emitting device and illumination device
US9335017B2 (en) 2011-12-20 2016-05-10 Stanley Electric Co., Ltd. Light emitting device that can realize reduction in thickness of vehicle light fitting, vehicle light fitting using the light emitting device and vehicle provided with the vehicle light
EP2840301A3 (en) * 2011-12-20 2015-12-09 Stanley Electric Co., Ltd. Light emitting device, vehicle light and vehicle
CN103292235A (en) * 2012-03-02 2013-09-11 旭曻有限公司 LED bulb used for taking the place of vehicle halogen bulb
JP2013182882A (en) * 2012-03-02 2013-09-12 Asahi Raizu Kk Led bulb for replacing halogen lamp for automobile
CN104412038A (en) * 2012-07-02 2015-03-11 欧司朗股份有限公司 Process for equipping lighting sources, corresponding devices and assortment
CN103883893A (en) * 2012-12-20 2014-06-25 秦彪 Semiconductor lighting lamp and lamp core
EP2781823A3 (en) * 2013-03-19 2014-12-03 Stanley Electric Co., Ltd. Light-emitting body and manufacturing method thereof, and light-emitting device including the same
JP2016515767A (en) * 2013-04-15 2016-05-30 ダウ コーニング コーポレーションDow Corning Corporation Light emitting assembly and method with spectral shift reflection
CN105209821A (en) * 2013-05-08 2015-12-30 K.M.W.株式会社 Stand-type LED lighting device
JP2016521447A (en) * 2013-05-08 2016-07-21 ケーエムダブリュ・インコーポレーテッド Stand type LED lighting device
EP2995847A4 (en) * 2013-05-08 2016-11-09 Kmw Inc Stand-type led lighting device
US9960330B2 (en) 2013-07-22 2018-05-01 Koninklijke Philips N.V. Flip-chip side emitting LED with top reflector, peripheral wavelength conversion element, and optical element between light emitting element and lightguide element
CN105393370A (en) * 2013-07-22 2016-03-09 皇家飞利浦有限公司 Flip-chip side emitting LED
WO2015011590A1 (en) * 2013-07-22 2015-01-29 Koninklijke Philips N.V. Flip-chip side emitting led
JP2016527723A (en) * 2013-07-22 2016-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Flip chip side-emitting LED
CN105393370B (en) * 2013-07-22 2018-11-13 亮锐控股有限公司 Flip-chip side emission-type LED
JP2016111299A (en) * 2014-12-10 2016-06-20 株式会社ソディック Light-emitting diode module
JP2017098398A (en) * 2015-11-24 2017-06-01 豊田合成株式会社 Light-emitting device and lighting device
JP2018182053A (en) * 2017-04-12 2018-11-15 シチズン電子株式会社 Light-emitting device
CN107681036A (en) * 2017-08-22 2018-02-09 深圳市芯联电股份有限公司 LED encapsulation structure

Also Published As

Publication number Publication date
JP5056064B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5056064B2 (en) LED device and lighting device including the same
US9022613B2 (en) Semiconductor light emitting device comprising cut-and-bent portions
US8467633B2 (en) Wavelength conversion structure and light source apparatus
KR101377965B1 (en) Lighting apparatus
EP1249877B1 (en) Reflective type light-emitting diode
US20120243203A1 (en) Vehicle light
US20120299463A1 (en) Light emitting device and illumination apparatus using same
JP2004206947A (en) Light emitting diode, lighting fixture and their process of manufacture
JP5167099B2 (en) Lighting device
KR20130112577A (en) Led lighting apparatus
JP5270991B2 (en) Light emitting device and lighting apparatus
JP2009088235A (en) Light emitting device and luminaire
JP2006066657A (en) Light emitting device and lighting device
JP2000277812A (en) Line light source device and its manufacture
JP2007150255A (en) Light emitting diode illumination module and illumination device
CN203010228U (en) A light-emitting device
TW201411892A (en) Light emitting diode
KR101843505B1 (en) Led lamp
KR101836066B1 (en) LED Reflective Heat-dissipating Board using Chromium
JP2007318176A (en) Light-emitting diode
JP2007258059A (en) Light-emitting device
CN203812916U (en) Optical module and lighting device
JP5891398B2 (en) lighting equipment
JP2010010651A (en) Light emitting device, and illuminating apparatus
CN203812900U (en) Optical module and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees