JP2008204750A - Battery device with abnormality judging means - Google Patents

Battery device with abnormality judging means Download PDF

Info

Publication number
JP2008204750A
JP2008204750A JP2007038720A JP2007038720A JP2008204750A JP 2008204750 A JP2008204750 A JP 2008204750A JP 2007038720 A JP2007038720 A JP 2007038720A JP 2007038720 A JP2007038720 A JP 2007038720A JP 2008204750 A JP2008204750 A JP 2008204750A
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
battery device
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007038720A
Other languages
Japanese (ja)
Inventor
Taku Kozono
卓 小園
Kazusa Yukimoto
和紗 行本
Taro Yamafuku
太郎 山福
Shigeki Yamate
山手  茂樹
Atsushi Funabiki
厚志 船引
Sadahiro Katayama
禎弘 片山
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2007038720A priority Critical patent/JP2008204750A/en
Publication of JP2008204750A publication Critical patent/JP2008204750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery device which has a highly sensitive abnormality judging means capable of easily and surely identifying an abnormal cell or a unit containing an abnormal cell among a number of cells, thus eliminating a need of a means that monitors the operation of each of unit cells making up a battery pack. <P>SOLUTION: The battery device includes a plurality of serial connection units each consisting of a plurality of secondary cells connected in series. The battery device is provided with the abnormality judging means which monitors each serial connection unit to watch a rate of voltage change occurring along with the progress of charging, detect the presence of a maximum point on a curve of the rate of voltage change occurring along with the progress of charging in a deep charging area, and judge that the serial connection unit contains an abnormal cell. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二次電池の異常判定手段を備えたバッテリー装置に関する。   The present invention relates to a battery device including secondary battery abnormality determination means.

近年、地球環境保護等の観点から、電気自動車(EV)やハイブリッド電気自動車(HEV)などが注目されている。EVやHEVに使用される電池は、主に、モーター駆動やバックアップ電源としての用途であり、高い電圧が要求されるので、複数個の電池(単位電池)を直列に接続した組電池として構成される。現在、これらのデバイスを、従来の鉛,ニカドやニッケル水素電池、キャパシター等から、高いエネルギー密度(高電圧)を有するリチウム二次電池への代替が検討されている。   In recent years, electric vehicles (EV), hybrid electric vehicles (HEV), and the like have attracted attention from the viewpoint of protecting the global environment. Batteries used in EVs and HEVs are mainly used as motor drives and backup power supplies, and are required to have high voltages, so they are configured as assembled batteries in which multiple batteries (unit batteries) are connected in series. The At present, replacement of these devices with lithium secondary batteries having high energy density (high voltage) from conventional lead, nickel-cadmium or nickel metal hydride batteries, capacitors, etc. is being studied.

従来の鉛,ニカドやニッケル水素電池等においては、組電池を構成する一部の電池(単位電池)が過放電、過充電となっても、組電池全体としては性能がやや劣化するだけで使用不能にまで至る場合は稀であるため、組電池を備えたバッテリー装置を日常的に運転使用するにあたっては、組電池全体としての作動状態を監視するだけで十分であり、組電池を構成する一個一個の電池の状態まで監視する必要がなかった。   In conventional lead, nickel-cadmium or nickel metal hydride batteries, even if some of the batteries (unit batteries) that make up the assembled battery are overdischarged or overcharged, the overall assembled battery performance is only slightly degraded. Since it is rare that it becomes impossible, it is sufficient to monitor the operating state of the assembled battery as a whole when operating and using a battery device equipped with the assembled battery on a daily basis. There was no need to monitor the condition of a single battery.

しかしながら、リチウム二次電池は、電極反応機構の違いにより、過充電や過放電に弱く、規定された電圧の範囲内で使用しないと、著しい容量減少や、異常な発熱をする場合があるため、リチウム二次電池を使用するには、上限電圧及び下限電圧を厳密に制御する必要がある。   However, lithium secondary batteries are vulnerable to overcharge and overdischarge due to the difference in electrode reaction mechanism, and if not used within the specified voltage range, there may be significant capacity reduction or abnormal heat generation, In order to use a lithium secondary battery, it is necessary to strictly control the upper limit voltage and the lower limit voltage.

従って、複数のリチウム二次電池を接続した組電池は、該組電池を構成する一部の電池(単位電池)が過放電、過充電となっても、組電池全体に影響を与えるため、多数個のリチウム二次電池を接続した組電池を備えたバッテリー装置を日常的に運転使用するに際しては、組電池全体の作動状態を監視することでは不十分であり、組電池を構成する一部の電池に内部微短絡等の異常が生じた場合、組電池を構成する多数個のリチウム二次電池の中から、かかる異常電池を早期に確実に特定し、正常な電池と取り替える必要がある。そのため、多数個のリチウム二次電池を接続した組電池を備えたバッテリー装置においては、一個一個の単位電池それぞれに対して動作を監視する手段を設ける必要があり、装置のコストが膨大なものになるといった問題点があった。   Therefore, there are many assembled batteries in which a plurality of lithium secondary batteries are connected, because even if some of the batteries (unit batteries) constituting the assembled battery are overdischarged or overcharged, the entire assembled battery is affected. In daily operation and use of a battery device having an assembled battery to which a single lithium secondary battery is connected, it is not sufficient to monitor the operating state of the entire assembled battery. When an abnormality such as an internal micro short circuit occurs in a battery, it is necessary to identify such an abnormal battery from a large number of lithium secondary batteries constituting the assembled battery at an early stage and replace it with a normal battery. Therefore, in a battery device having an assembled battery in which a large number of lithium secondary batteries are connected, it is necessary to provide means for monitoring the operation of each unit cell, and the cost of the device is enormous. There was a problem of becoming.

特許文献1には、二次電池の端子間電圧や端子間を流れる電流値等に基づき二次電池の状態を検出する方法が記載されている。   Patent Document 1 describes a method of detecting the state of a secondary battery based on the voltage between terminals of the secondary battery, the value of current flowing between the terminals, and the like.

特許文献2には、本発明は、充電式リチウム電池において、端子電圧の乱れにより、又は、あらかじめ設定しておいた時間での端子電圧が、あらかじめ設定しておいた電圧より小さくなることにより、あるいは、充電中の端子電圧がこれまでの充電挙動より学習して決定した電圧より小さくなることにより、微小短絡を検出する方法が記載されている。   In Patent Document 2, in the rechargeable lithium battery, the terminal voltage is disturbed or the terminal voltage at a preset time becomes smaller than the preset voltage. Alternatively, a method is described in which a minute short circuit is detected by making the terminal voltage during charging smaller than the voltage determined by learning from the conventional charging behavior.

ところで、多数個のリチウム二次電池を接続した組電池を備えたバッテリー装置において、動作監視手段の数を減らすためには、組電池全体をいくつかのブロックに分け、それぞれのブロック毎に動作監視手段を設ける方法が考えられる。例えば、5個のリチウム二次電池が直列接続された組電池を1ユニットとし、10ユニットが並列接続されたバッテリー装置において、動作監視手段を1ユニット毎に設ければ、異常電池を1個に特定することはできないまでも、異常電池が存在するユニットを絞り込むことができるので、異常電池の検出を早期化することができ、動作監視手段の数を1/10に減らすことができると考えられる。しかしながら、上記特許文献1,2記載の方法を組電池に適用しても、例えば1ユニット中の1個の単位電池に異常が生じた場合、その挙動が他の9個の電池のために希釈される結果、異常を検出する感度が大きく低下してしまうことになる。   By the way, in order to reduce the number of operation monitoring means in a battery device having an assembled battery to which a large number of lithium secondary batteries are connected, the entire assembled battery is divided into several blocks, and the operation is monitored for each block. A method of providing means is conceivable. For example, if an assembled battery in which 5 lithium secondary batteries are connected in series is one unit and a battery device in which 10 units are connected in parallel is provided with an operation monitoring unit for each unit, one abnormal battery is provided. Even if it cannot be specified, it is possible to narrow down the units in which abnormal batteries exist, so that the detection of abnormal batteries can be accelerated and the number of operation monitoring means can be reduced to 1/10. . However, even if the method described in Patent Documents 1 and 2 is applied to an assembled battery, for example, when an abnormality occurs in one unit battery in one unit, the behavior is diluted for the other nine batteries. As a result, the sensitivity for detecting an abnormality is greatly reduced.

特許文献3には、「SOCに対するOCVの変化率が大きいところで、ばらつき判定を行うようにすれば、単位電池の電圧検出回路の精度や分解能を低くしても、単位電池のSOCを精度良く検出することができること」に基づき、「組電池全体のSOCの変化に対する各単位電池の開回路電圧の変化率を検出し、その変化率が所定値を上回っている範囲において、前記各単位電池の開回路電圧に基づいてそれら各単位電池間のSOCのばらつきを判定する」方法が記載されている。   According to Patent Document 3, “If the variation rate of the OCV with respect to the SOC is large, it is possible to accurately detect the SOC of the unit battery even if the accuracy and resolution of the voltage detection circuit of the unit battery are lowered. The change rate of the open circuit voltage of each unit battery relative to the change in the SOC of the entire assembled battery is detected, and the opening of each unit cell is within a range where the change rate exceeds a predetermined value. A method is described in which the variation in SOC between the unit cells is determined based on the circuit voltage.

しかしながら、特許文献3記載の方法によっても上記希釈の問題は依然として残る他、変化率の大小に基づいて判定する特許文献3記載の方法では、変化率の値は連続的に変化するため、変化率の値がどの程度まで大きい場合に判定を有意とするかについての判定基準は任意的なものであり、意図した通りに前記判定を精度良く行うために判定手段に設定するパラメータ値の選択が困難であるといった問題点があった。   However, the above-described dilution problem still remains even with the method described in Patent Document 3, and in the method described in Patent Document 3, which is determined based on the magnitude of the change rate, the value of the change rate changes continuously. The criteria for determining whether the value of a value is significant is arbitrary, and it is difficult to select a parameter value to be set in the determination means in order to accurately perform the determination as intended. There was a problem such as.

なお、特許文献4には、スピネル型リチウムチタン酸化物を負極に用い、正極と組み合わせて電池を構成する場合において、負極の可逆性のある領域の電気容量を正極の可逆性のある領域の電気容量より小さくしたリチウム二次電池が記載されている。
特開2000−323183号公報 特開平09−17458号公報 特開2000−92732号公報 特開平10−69922号公報
In Patent Document 4, when a battery is formed by using spinel type lithium titanium oxide as a negative electrode and combining with the positive electrode, the electric capacity of the reversible region of the negative electrode is set to the electric capacity of the reversible region of the positive electrode. A lithium secondary battery smaller than the capacity is described.
JP 2000-323183 A Japanese Patent Laid-Open No. 09-17458 JP 2000-92732 A JP-A-10-69922

本発明は上記問題点に鑑みてなされたものであり、一個一個の単位電池それぞれに対して動作を監視する手段を設ける必要がなく、多数の電池の中から異常電池又は異常電池を含むユニットを容易に高感度で確実に特定しうる異常判定手段を備えたバッテリー装置を提供することを目的とする。   The present invention has been made in view of the above problems, and it is not necessary to provide a means for monitoring the operation of each unit battery, and an abnormal battery or a unit including an abnormal battery is selected from a large number of batteries. It is an object of the present invention to provide a battery device including an abnormality determining means that can be easily identified with high sensitivity and reliability.

上記課題を解決するため、本発明は、深充電領域において充電の進行に伴う電池電圧の変化率曲線に極大点が存在することを検出して異常と判定する、二次電池の異常判定手段を備えたバッテリー装置である。   In order to solve the above problems, the present invention provides an abnormality determination unit for a secondary battery that detects the presence of a maximum point in the rate-of-change curve of the battery voltage as charging proceeds in a deep charge region and determines that there is an abnormality. The battery device provided.

また、本発明は、二次電池が複数個直列に接続された直列接続単位を1ユニットとし、該ユニットを複数個備えたバッテリー装置であって、前記直列接続単位に対して、充電の進行に伴う電圧の変化率を監視し、深充電領域において前記充電の進行に伴う電圧の変化率曲線に極大点が存在することを検出して、当該直列接続単位が異常電池を含むことを判定する、異常判定手段を備えたバッテリー装置である。   Further, the present invention provides a battery device including a plurality of units connected in series, each of which has a plurality of secondary batteries connected in series, and the battery is provided with a plurality of the units. Monitoring the rate of change of the accompanying voltage, detecting that there is a maximum point in the rate of change curve of the voltage accompanying the progress of charging in the deep charge region, and determining that the series connection unit includes an abnormal battery; The battery device includes an abnormality determination unit.

また、本発明の異常判定手段を備えたバッテリー装置において、前記二次電池は、負極にチタン酸リチウムを用いていることを特徴としている。   Moreover, in the battery device provided with the abnormality determining means of the present invention, the secondary battery is characterized in that lithium titanate is used for the negative electrode.

図3は、本発明の原理を説明するための図であり、負極にチタン酸リチウム、正極に層状構造を有する遷移金属複合酸化物であるLiNi1/6Mn1/6Co2/32を用いた電池の充電カーブ(a)である。図3から、電池電圧3.3V付近に、変曲点が存在していることがわかる。同図に、充電の進行に伴う電池電圧の径時変化率(dV/dt)を併せてプロットした。上記変曲点に対応して、前記dV/dt曲線に極大値が存在していること、即ち、ピークを形成していることがわかる。上記充電カーブ上に観察された変曲点は、チタン酸リチウム負極において0.5V(vs.Li/Li+)付近の電位にて観察される現象の反映である。このように、本発明のバッテリー装置が備える二次電池は、負極にチタン酸リチウムが負極活物質として用いられている二次電池であるものとすることにより、本発明を達成することができる。 FIG. 3 is a diagram for explaining the principle of the present invention. LiNi 1/6 Mn 1/6 Co 2/3 O 2 which is a transition metal composite oxide having a lithium titanate as a negative electrode and a layered structure as a positive electrode. 2 is a charging curve (a) of a battery using. FIG. 3 shows that an inflection point exists in the vicinity of the battery voltage of 3.3V. The graph also plots the rate of change in battery voltage over time (dV / dt) as charging progresses. It can be seen that there is a maximum value in the dV / dt curve corresponding to the inflection point, that is, a peak is formed. The inflection point observed on the charging curve is a reflection of a phenomenon observed at a potential in the vicinity of 0.5 V (vs. Li / Li + ) in the lithium titanate negative electrode. Thus, the present invention can be achieved by assuming that the secondary battery provided in the battery device of the present invention is a secondary battery in which lithium titanate is used as the negative electrode active material for the negative electrode.

ここでは、本発明のバッテリー装置に異常電池が存在しない場合は、該バッテリー装置の充電末状態が、二次電池の高SOC領域(深充電領域)に変曲点が現れる状態よりも浅い充電深度と対応するように設計されていることを前提としている。   Here, when there is no abnormal battery in the battery device of the present invention, the end-of-charge state of the battery device is shallower than the state where the inflection point appears in the high SOC region (deep charge region) of the secondary battery. It is assumed that it is designed to correspond to.

また、所定の充電末状態よりも深い充電がされた場合に現れるチタン酸リチウム特有の電位変曲点を利用する場合には、本発明のバッテリー装置が備える二次電池は、正負極の容量バランスの点において負極制限とした設計がされていること、即ち、負極の電気容量が正極の電気容量よりも小さくなるように設計されていることが必要である。   In addition, when using a potential inflection point peculiar to lithium titanate that appears when charging is performed deeper than a predetermined end-of-charge state, the secondary battery included in the battery device of the present invention has a positive / negative capacity balance. In this respect, it is necessary that the negative electrode is designed to be restricted, that is, the negative electrode has a smaller electric capacity than the positive electrode.

図3には、負極にチタン酸リチウムを用いた電池を例に挙げて説明したが、負極にチタン酸リチウムを用いることは、本発明を実施する上での必須要件ではない。深充電領域において充電曲線に変曲点が現れる現象は、チタン酸リチウムに限られるものではなく、例えば正極活物質として用いられているLiCoO2においても、4.3V(vs.Li/Li+)付近に変曲点が観察されるので、正極にLiCoO2を用いた電池に対して本発明の原理をそのまま適用することができる。この場合は、正負極の容量バランスの点において正極制限とした設計がされていることが必要であることはいうまでもない。また、この場合、負極活物質は黒鉛等の炭素質材料であってもよい。 In FIG. 3, a battery using lithium titanate as a negative electrode has been described as an example. However, the use of lithium titanate as a negative electrode is not an essential requirement for carrying out the present invention. The phenomenon in which the inflection point appears in the charge curve in the deep charge region is not limited to lithium titanate. For example, in LiCoO 2 used as a positive electrode active material, 4.3 V (vs. Li / Li + ) Since an inflection point is observed in the vicinity, the principle of the present invention can be applied as it is to a battery using LiCoO 2 for the positive electrode. In this case, it goes without saying that the positive electrode is required to be limited in terms of positive and negative electrode capacity balance. In this case, the negative electrode active material may be a carbonaceous material such as graphite.

ただ、負極にチタン酸リチウムを用いる構成を採用することは、充電末で電位の急上昇を伴うチタン酸リチウム負極の挙動を利用できるので、好ましい。   However, it is preferable to employ a configuration in which lithium titanate is used for the negative electrode because the behavior of the lithium titanate negative electrode accompanied by a sudden increase in potential at the end of charging can be used.

本発明によれば、充電の進行に伴う電池電圧の変化率曲線における極大点の有無に基づいて異常判定を行うので、判定基準が明確であり、精度の高い判定ができる。   According to the present invention, the abnormality determination is performed based on the presence / absence of the maximum point in the change rate curve of the battery voltage as the charging progresses, so the determination criterion is clear and the determination can be made with high accuracy.

また、本発明によれば、直接接続された電池の一部に異常が生じた場合、その影響が増幅されて前記充電の進行に伴う電池電圧の変化率曲線に反映されるので、感度の高い判定ができる。   In addition, according to the present invention, when an abnormality occurs in a part of directly connected batteries, the influence is amplified and reflected in the change rate curve of the battery voltage as the charging progresses, so that the sensitivity is high. Judgment is possible.

以下、実施例に基づき、本発明をさらに詳しく説明するが、これらの記載は本発明を何ら限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, these description does not limit this invention at all.

以下の実施例に係る二次電池(単位電池)は、負極にチタン酸リチウム、正極にLiNi1/6Mn1/6Co2/32を用い、負極の電気容量が正極の電気容量よりも小さくなるように設計されている。 The secondary battery (unit battery) according to the following examples uses lithium titanate for the negative electrode, LiNi 1/6 Mn 1/6 Co 2/3 O 2 for the positive electrode, and the electric capacity of the negative electrode is higher than that of the positive electrode. Is also designed to be smaller.

あらかじめ全ての単位電池をSOC(充電深度)50%に調整した上記単位電池(セルA〜E)5個直列に接続してなる1ユニットの組電池1を作製した。両端に接続された正,負極からの導線を、充放電装置に接続し、組電池1の充放電を実施した。組電池の充放電条件は、25℃、1ItA相当の電流値において、放電下限電圧7.5Vまでの定電流放電を行った後、充電上限電圧16Vまでの定電流定電圧充電を行った。この間、個々の単位電池の挙動についてもモニターした。   One unit assembled battery 1 was prepared by connecting in series the five unit batteries (cells A to E) in which all the unit batteries were previously adjusted to SOC (charge depth) 50%. Lead wires from the positive and negative electrodes connected to both ends were connected to a charging / discharging device, and charging / discharging of the assembled battery 1 was performed. The charging / discharging conditions of the assembled battery were a constant current and a constant voltage charge up to a charge upper limit voltage of 16 V after a constant current discharge to a discharge lower limit voltage of 7.5 V at a current value corresponding to 1 ItA at 25 ° C. During this time, the behavior of individual unit cells was also monitored.

組電池1の充電カーブ及び組電池1を構成する個々の単位電池の充電カーブを図2に示す。また、充放電装置から出力させた組電池1に対するdV/dtの値を併せて図2にプロットした。図2より、dV/dt値の急激な増加が、組電池の充電末期にみられる13V付近の電圧上昇部分に対応して観測されている。個々の単位電池(セルA〜E)においてもほぼ均等に電池電圧の上昇が観測され、組電池の両端電圧が充電上限電圧16Vのとき、個々の単位電池の電圧はそれぞれほぼ3.2Vとなっている。   FIG. 2 shows a charging curve of the assembled battery 1 and a charging curve of each unit battery constituting the assembled battery 1. Moreover, the value of dV / dt with respect to the assembled battery 1 output from the charging / discharging apparatus was plotted together in FIG. From FIG. 2, a rapid increase in the dV / dt value is observed corresponding to a voltage increase portion near 13 V seen at the end of charging of the assembled battery. In each unit battery (cells A to E), an increase in the battery voltage is observed almost evenly. When the voltage across the assembled battery is 16 V, the voltage of each unit battery is about 3.2 V. ing.

次に、5個のうち1個の単位電池が内部微短絡を起こしている状態を想定し、この状態を疑似的に再現するため、セルAのみをSOC40%に調整し、セルB〜EについてはSOC50%に調整した。その後、該セルAを含む単位電池(セルA〜E)を5本直列に接続し、組電池2を作製した。両端に接続された正,負極からの導線を、充放電装置に接続し、これらの組電池2の充放電を実施した。組電池の充放電条件は、上記組電池1と同様であり、25℃、1ItA相当の電流値において、放電下限電圧7.5Vまでの定電流放電を行った後、充電上限電圧16Vまでの定電流定電圧充電を行った。この間、個々の単位電池の挙動についてもモニターした。   Next, assuming that one of the five unit batteries has a slight internal short circuit, in order to reproduce this state in a pseudo manner, only cell A is adjusted to SOC 40%, and cells B to E are adjusted. Was adjusted to 50% SOC. Thereafter, five unit batteries (cells A to E) including the cell A were connected in series to produce the assembled battery 2. Lead wires from the positive and negative electrodes connected to both ends were connected to a charging / discharging device, and charging / discharging of these assembled batteries 2 was performed. The charging / discharging conditions of the assembled battery are the same as those of the assembled battery 1 described above. After performing constant-current discharge up to a discharge lower limit voltage of 7.5 V at a current value corresponding to 25 ° C. and 1 ItA, Current constant voltage charging was performed. During this time, the behavior of individual unit cells was also monitored.

組電池2の充電カーブ及び組電池2を構成する個々の単位電池の充電カーブを図1に示す。また、充放電装置から出力させた組電池2に対するdV/dtの値を併せて図1にプロットした。dV/dt値の急激な増加が、組電池の充電末期にみられる13V付近の電圧上昇部分に対応して観測されているが、充電の進行に伴うdV/dt曲線は、前記上昇後下降しており、即ちdV/dt曲線に明確に極大点(ピーク)が存在している。組電池2全体の電圧が充電上限電圧16Vに達したときの、個々の単位電池(セルA〜E)の電圧を調べたところ、疑似的な内部微短絡状態を再現したセルAは3Vに達していない反面、セルB〜Eについては3.3V以上に達していた。   FIG. 1 shows a charging curve of the assembled battery 2 and a charging curve of each unit battery constituting the assembled battery 2. Moreover, the value of dV / dt with respect to the assembled battery 2 output from the charging / discharging apparatus was plotted together in FIG. A rapid increase in the dV / dt value is observed corresponding to a voltage increase portion near 13 V seen at the end of charging of the assembled battery, but the dV / dt curve accompanying the progress of charging decreases after the increase. That is, a maximum point (peak) clearly exists in the dV / dt curve. When the voltage of each unit battery (cells A to E) when the voltage of the entire assembled battery 2 reached the charging upper limit voltage 16V was examined, the cell A that reproduced the pseudo internal micro short circuit state reached 3V. On the other hand, the cells B to E reached 3.3 V or higher.

これは、セルAについては充電開始時のSOCが他のセルB〜Eに比べて低かったために、他のセルB〜Eが本来設計した充電末の電圧である3.2Vに達してもなおセルAについては本来設計した充電末の電圧に達しないため、組電池2の電圧が充電上限電圧16Vに達するまで充電が継続された結果、セルB〜Eの4セルが過充電状態となったことによるものである。   This is because the SOC at the start of charging for cell A was lower than that for other cells B to E, so that even if the other cells B to E reached 3.2 V, which is the end-of-charge voltage originally designed. Since the cell A does not reach the originally designed voltage at the end of charging, charging was continued until the voltage of the assembled battery 2 reached the charging upper limit voltage of 16 V. As a result, the cells B to E were overcharged. It is because.

この結果からわかるように、他の電池よりも充電深度が浅い異常電池は、直列に接続されたn個の単位電池のうちの1個だけであるにもかかわらず、組電池に対するdV/dt曲線における極大値の有無を判定基準として採用することにより、1個の異常電池の影響が1/nに希釈されるどころか、逆に(n−1)倍に増幅されていることがわかる。従って、本発明によれば、検出感度の高い判定ができる。   As can be seen from this result, the dV / dt curve for the assembled battery is only one of the n unit batteries connected in series as the abnormal battery having a shallower charging depth than the other batteries. By using the presence / absence of the local maximum value as a criterion, it can be seen that the influence of one abnormal battery is amplified to (n-1) times, rather than being diluted to 1 / n. Therefore, according to the present invention, determination with high detection sensitivity can be performed.

なお、充電様式に定電流定電圧充電を採用する場合には、定電流モードから定電圧モードに切り替わる部分においては当然にdV/dtの値は急落するので、この部分をもって極大値の存在と誤認することを避けるため、dV/dt曲線における極大値の有無の判定は、定電圧モードに切り替わる時点より前の定電流充電モードの部分に対して行われなければならない。   When constant current / constant voltage charging is adopted as the charging mode, the dV / dt value naturally drops sharply at the part where the constant current mode is switched to the constant voltage mode. In order to avoid this, the determination of the presence / absence of the maximum value in the dV / dt curve must be made for the portion of the constant current charging mode prior to the time of switching to the constant voltage mode.

また、図1,2に例示したdV/dt曲線には、いわゆる髭ピークあるいはノイズと呼ばれる不連続部分が存在するが、これに対しては、データサンプリング条件の選択や、一般的な波形処理装置において通常行われているピーク認識条件の設定により、上記不連続部分の存在により誤判定に導かれる虞を排除できる。なお、一般的な波形処理装置において通常行われているピーク認識条件としては、minimal width(ピーク幅が一定の値以上の場合のみピークと認識する)、minimal height(ピーク幅が一定の値以上の場合のみピークと認識する)等がある。なお、波形処理装置としてはクロマトグラフ分析用の市販品を用いてもよい。参考までに、上記実施例にて用いたデータサンプリング条件は、時間が1秒経過するか、又は、電圧が前回の記録時点から5mV以上の変化があったときに、充電開始時からの経過時間(t)と電圧(V)のデータ対を記録するものとした。   The dV / dt curves illustrated in FIGS. 1 and 2 include discontinuous portions called so-called peak peaks or noise. For this, selection of data sampling conditions and general waveform processing devices are used. By setting the peak recognition condition that is normally performed in step 1, the possibility of erroneous determination due to the presence of the discontinuous portion can be eliminated. Note that the peak recognition conditions normally performed in a general waveform processing apparatus are: minimal width (recognized as a peak only when the peak width is greater than a certain value), minimal height (peak width is greater than a certain value) Only when it is recognized as a peak). Note that a commercially available product for chromatographic analysis may be used as the waveform processing apparatus. For reference, the data sampling condition used in the above example is that the time elapsed from the start of charging when the time has elapsed for 1 second or the voltage has changed more than 5 mV from the previous recording time. A data pair of (t) and voltage (V) was recorded.

上記実施例においては、定電流充電の経過時間に伴う電池電圧の変化を観察することによって、充電の進行に伴う電池電圧の変化を捉えたが、積算充電電気量の増加に伴う電池電圧の変化を観察することによる方法等を採用してもよい。   In the above embodiment, the change in the battery voltage with the progress of charging was captured by observing the change in the battery voltage with the elapsed time of constant current charging. You may employ | adopt the method by observing.

実施例2に係る組電池の充電挙動を示す図である。It is a figure which shows the charge behavior of the assembled battery which concerns on Example 2. FIG. 実施例1に係る組電池の充電挙動を示す図である。It is a figure which shows the charge behavior of the assembled battery which concerns on Example 1. FIG. 単電池の充電挙動を説明するための図である。It is a figure for demonstrating the charge behavior of a cell.

Claims (3)

深充電領域において充電の進行に伴う電池電圧の変化率曲線に極大点が存在することを検出して異常と判定する、二次電池の異常判定手段を備えたバッテリー装置。 A battery device comprising secondary battery abnormality determination means for detecting the presence of a maximal point in a change rate curve of battery voltage as charging proceeds in a deep charge region and determining an abnormality. 二次電池が複数個直列に接続された直列接続単位を1ユニットとし、該ユニットを複数個備えたバッテリー装置であって、前記直列接続単位に対して、充電の進行に伴う電圧の変化率を監視し、深充電領域において前記充電の進行に伴う電圧の変化率曲線に極大点が存在することを検出して、当該直列接続単位が異常電池を含むことを判定する、異常判定手段を備えたバッテリー装置。 A battery unit including a plurality of units connected in series, each of which has a plurality of secondary batteries connected in series, and having a voltage change rate as the charging progresses with respect to the units connected in series. An abnormality determination means is provided for monitoring and detecting that a maximum point is present in the rate-of-change curve of the voltage along with the progress of charging in a deep charging region, and determining that the series connection unit includes an abnormal battery. Battery device. 前記二次電池は、負極にチタン酸リチウムを用いていることを特徴とする請求項1又は2記載の異常判定手段を備えたバッテリー装置。 The battery device having an abnormality determining means according to claim 1 or 2, wherein the secondary battery uses lithium titanate as a negative electrode.
JP2007038720A 2007-02-20 2007-02-20 Battery device with abnormality judging means Pending JP2008204750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038720A JP2008204750A (en) 2007-02-20 2007-02-20 Battery device with abnormality judging means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038720A JP2008204750A (en) 2007-02-20 2007-02-20 Battery device with abnormality judging means

Publications (1)

Publication Number Publication Date
JP2008204750A true JP2008204750A (en) 2008-09-04

Family

ID=39782035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038720A Pending JP2008204750A (en) 2007-02-20 2007-02-20 Battery device with abnormality judging means

Country Status (1)

Country Link
JP (1) JP2008204750A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301048B1 (en) * 2017-10-05 2018-03-28 三菱電機株式会社 Battery management device and battery pack system
CN109061479A (en) * 2018-06-15 2018-12-21 郑州正方科技有限公司 A kind of battery pack imbalance degree analysis method and charging unit
CN112140936A (en) * 2020-09-29 2020-12-29 中国铁塔股份有限公司 Charging monitoring method, system and storage medium
JP2022044881A (en) * 2020-09-08 2022-03-18 株式会社東芝 Management method, management device and management system
CN114600299A (en) * 2019-11-07 2022-06-07 松果汽车株式会社 Battery pack protection method and device
WO2022233199A1 (en) * 2021-05-04 2022-11-10 International Business Machines Corporation Battery control using non-linear rate-of-change failure threshold(s)
CN117977770A (en) * 2024-03-28 2024-05-03 浙江达航数据技术有限公司 Lithium battery management method for charge and discharge control and serial-parallel capacity expansion

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6301048B1 (en) * 2017-10-05 2018-03-28 三菱電機株式会社 Battery management device and battery pack system
CN109061479A (en) * 2018-06-15 2018-12-21 郑州正方科技有限公司 A kind of battery pack imbalance degree analysis method and charging unit
CN109061479B (en) * 2018-06-15 2020-11-17 郑州正方科技有限公司 Battery pack unbalance analysis method and charging device
CN114600299A (en) * 2019-11-07 2022-06-07 松果汽车株式会社 Battery pack protection method and device
JP2022044881A (en) * 2020-09-08 2022-03-18 株式会社東芝 Management method, management device and management system
JP7317777B2 (en) 2020-09-08 2023-07-31 株式会社東芝 Management method, management device and management system
CN112140936A (en) * 2020-09-29 2020-12-29 中国铁塔股份有限公司 Charging monitoring method, system and storage medium
WO2022233199A1 (en) * 2021-05-04 2022-11-10 International Business Machines Corporation Battery control using non-linear rate-of-change failure threshold(s)
US11846679B2 (en) 2021-05-04 2023-12-19 International Business Machines Corporation Battery control using non-linear rate-of-change failure threshold(s)
CN117977770A (en) * 2024-03-28 2024-05-03 浙江达航数据技术有限公司 Lithium battery management method for charge and discharge control and serial-parallel capacity expansion
CN117977770B (en) * 2024-03-28 2024-06-07 浙江达航数据技术有限公司 Lithium battery management method for charge and discharge control and serial-parallel capacity expansion

Similar Documents

Publication Publication Date Title
US9864017B2 (en) Performance deterioration detecting apparatus and performance deterioration detecting method for energy storage device, and energy storage system
EP2666027B1 (en) Differential current monitoring for parallel-connected batteries
US8258755B2 (en) Secondary battery charging method and device
JP2008204750A (en) Battery device with abnormality judging means
TW201930910A (en) Abormality detection device for secondary battery, abnormality detection method, and program
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
US20120256598A1 (en) Battery Pack Detection Circuit
JP2014096376A (en) Lithium rechargeable cell with reference electrode for monitoring state of health
EP3835802B1 (en) Apparatus and method for determining degradation state of battery, battery pack and electric vehicle
EP3958006A1 (en) Battery diagnosis apparatus and method
EP1826863A2 (en) Charging apparatus
JP5590012B2 (en) Manufacturing method of secondary battery
US11828812B2 (en) Apparatus and method for detecting defect of battery pack
JP2009301941A (en) Secondary battery pack
US10295609B2 (en) Deterioration state detection apparatus and deterioration state detection method for energy storage device, and energy storage system
WO2021100247A1 (en) Capacity recovering method and manufacturing method for secondary battery
CN114158276A (en) Method of detecting lithium plating and method and apparatus for managing battery by using the same
JP5998887B2 (en) Deterioration state detection device for storage element, degradation state detection method, and storage system
JP5438602B2 (en) Charge control system
KR100964316B1 (en) System and Method for balancing battery cells and Recording medium using it
JPWO2019156171A1 (en) Lithium-ion secondary battery control device and its control method
KR20210030089A (en) Inspection method and apparatus of secondary battery cell in activation process
JP2008072842A (en) Rechargeable battery pack system and control method for charging of battery pack
EP3043441B1 (en) Battery management unit for preventing performance of erroneous control algorithm from communication error
KR20180031206A (en) Battery management system and method for protecting a battery from over-discharge