JP2008204650A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2008204650A
JP2008204650A JP2007036565A JP2007036565A JP2008204650A JP 2008204650 A JP2008204650 A JP 2008204650A JP 2007036565 A JP2007036565 A JP 2007036565A JP 2007036565 A JP2007036565 A JP 2007036565A JP 2008204650 A JP2008204650 A JP 2008204650A
Authority
JP
Japan
Prior art keywords
gas
process gas
electrodes
processing apparatus
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007036565A
Other languages
Japanese (ja)
Inventor
Daisuke Takahashi
大輔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007036565A priority Critical patent/JP2008204650A/en
Publication of JP2008204650A publication Critical patent/JP2008204650A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device to suppress temperature elevation of an electrode surface, suppress discharge of thermoelectrons, and prevent transition to an arc discharge. <P>SOLUTION: Since a voltage is applied between electrodes 2a, 2b from a high frequency power supply 1, plasma 5 is formed between a dielectric 4a and a dielectric 4b. A treated base material 6 is conveyed in a conveyance passage 9 which is formed by a barrier rib 8, has a cross sectional area necessary enough for conveyance, and has air tightness at least in the upper part direction, a gas supplying part 10a to supply a first process gas between the electrodes 2a, 2b is formed in the upstream of the conveyance passage 9, and a gas exhaust part 11a to exhaust the first process gas is installed in the downstream. Furthermore, in contact with the dielectric 4a, the gas supplying part 10b to supply a second process gas between the electrodes is installed at the upstream side of the conveyance passage 9 and the gas exhaust part 11b to exhaust a second process gas 12b is installed at the downstream side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、プラズマ処理装置に関し、とくにプラズマの生成、制御技術を応用することで、表面改質、洗浄、加工、成膜等の処理を行うプラズマ処理装置に関し、例えば、半導体、液晶表示素子やEL(エレクトロルミネッセンス)パネルやPDP(プラズマディスプレイパネル)をはじめとするフラットパネルディスプレイ、太陽電池等を製造する装置で用いられるプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus, and more particularly to a plasma processing apparatus that performs processing such as surface modification, cleaning, processing, and film formation by applying plasma generation and control technology, such as semiconductors, liquid crystal display elements, and the like. The present invention relates to a plasma processing apparatus used in apparatuses for manufacturing flat panel displays such as EL (electroluminescence) panels and PDP (plasma display panels), solar cells and the like.

近年、半導体、フラットパネルディスプレイ、太陽電池等の製造工程では、ガラス基板や半導体ウエハのような被処理基材に対して、真空チャンバや排気装置など大掛かりな設備を必要としない大気圧プラズマ技術を用いた改質、洗浄、加工、成膜等の処理への注目度が高まってきており、表面改質や洗浄、ドライエッチングといった一部のプロセスにおいては実用化されている。   In recent years, in the manufacturing process of semiconductors, flat panel displays, solar cells, etc., atmospheric pressure plasma technology that does not require large-scale equipment such as vacuum chambers and exhaust devices for substrates to be processed such as glass substrates and semiconductor wafers. Increasing attention is being paid to the processes such as modification, cleaning, processing, and film formation, which have been put into practical use in some processes such as surface modification, cleaning, and dry etching.

しかしながら、長時間の放電を行うとプラズマ中の粒子と電極との衝突や輻射熱によって電極表面の温度が上昇するため、熱電子が放出しやすくなる。その結果、熱電子の空間密度が高くなり、グロー放電空間中に電子の偏りが生じて、グロー放電からアーク放電に移行しやすくなる。アーク放電に移行するとプラズマが高温となり、被処理基材への熱的なダメージのほか、電極自体が溶融してしまうという問題が生じる。   However, when a long-time discharge is performed, the temperature of the electrode surface rises due to collision between particles in the plasma and the electrode or radiation heat, so that thermionic electrons are likely to be emitted. As a result, the spatial density of the thermoelectrons is increased, and the electrons are biased in the glow discharge space, so that the transition from the glow discharge to the arc discharge is facilitated. When it shifts to arc discharge, plasma becomes high temperature, and there arises a problem that the electrode itself melts in addition to thermal damage to the substrate to be treated.

このため、回転電極を用いることによりプラズマに接する電極表面を常に変化させることで電極表面の熱的安定性を確保するようにしたものが知られている(例えば、特許文献1参照)。
特許第30069271号
For this reason, there has been known one that ensures the thermal stability of the electrode surface by constantly changing the electrode surface in contact with plasma by using a rotating electrode (see, for example, Patent Document 1).
Japanese Patent No. 30069271

しかしながら、回転電極を用いる場合、電極部を回転させるための機構系と動力源が必要であり、装置が大型化するうえ、電極の振動、偏芯によるばらつきのため、空間的にもプロセス的にも冗長を多くとる必要がある。特に、板状の被処理基材を一方向に搬送させてプラズマ空間を通過させ、プラズマ処理を施していく場合においては、処理量のばらつきが大きくなることが十分に予見される。   However, when a rotating electrode is used, a mechanism system and a power source for rotating the electrode portion are necessary, and the apparatus becomes large, and because of variations due to electrode vibration and eccentricity, spatially and processically. Need to take a lot of redundancy. In particular, when the plate-like substrate to be processed is transported in one direction, passed through the plasma space, and subjected to the plasma treatment, it is sufficiently foreseen that the variation in the processing amount will increase.

この発明は、電極間にプラズマを生成するために少なくとも一方が誘電体で被覆された一対の対向電極と、電極間に被処理基板を搬入するための搬入路と、電極間から被処理基材を搬出する搬出路と、前記搬入路と搬出路を通って電極間に被処理基材を搬入して搬出する基材搬送部材と、前記搬入路の上流より電極間に第1プロセスガスを供給する第1ガス供給部と、前記搬出路の下流から第1プロセスガスを排気する第1ガス排気部と、第1ガス供給部よりも対向電極の近くで前記搬入路の上流より電極間に第2プロセスガスを供給する第2ガス供給部と、第1ガス排気部よりも対向電極の近くで前記搬出路の下流から第2プロセスガスを排気する第2ガス排気部とを備えるプラズマ処理装置を提供するものである。   The present invention relates to a pair of counter electrodes, at least one of which is coated with a dielectric material to generate plasma between electrodes, a carry-in path for carrying a substrate to be treated between the electrodes, and a substrate to be treated from between the electrodes The first process gas is supplied between the electrodes from the upstream of the carry-in path, the substrate transport member that carries the substrate to be treated between the electrodes through the carry-in path and the carry-out path, and the unloaded substrate. A first gas supply unit that discharges the first process gas from the downstream of the carry-out path, and a first gas supply unit that is closer to the counter electrode than the first gas supply unit and between the electrodes from the upstream of the carry-in path. (2) A plasma processing apparatus comprising: a second gas supply unit that supplies process gas; and a second gas exhaust unit that exhausts the second process gas from the downstream of the carry-out path closer to the counter electrode than the first gas exhaust unit. It is to provide.

この発明によれば、処理に直接寄与する被処理基材表面には第1プロセスガスが供給され、電極表面には電極表面の温度上昇を抑えるように第2プロセスガスが供給される。
従って、電極表面の熱的安定性が効果的に確保される。
According to the present invention, the first process gas is supplied to the surface of the substrate to be processed that directly contributes to the treatment, and the second process gas is supplied to the electrode surface so as to suppress the temperature rise of the electrode surface.
Therefore, the thermal stability of the electrode surface is effectively ensured.

この発明のプラズマ処理装置は、電極間にプラズマを生成するために少なくとも一方が誘電体で被覆された一対の対向電極と、電極間に被処理基板を搬入するための搬入路と、電極間から被処理基材を搬出する搬出路と、前記搬入路と搬出路を通って電極間に被処理基材を搬入して搬出する基材搬送部材と、前記搬入路の上流より電極間に第1プロセスガスを供給する第1ガス供給部と、前記搬出路の下流から第1プロセスガスを排気する第1ガス排気部と、第1ガス供給部よりも対向電極の近くで前記搬入路の上流より電極間に第2プロセスガスを供給する第2ガス供給部と、第1ガス排気部よりも対向電極の近くで前記搬出路の下流から第2プロセスガスを排気する第2ガス排気部とを備えることを特徴とする。   The plasma processing apparatus according to the present invention includes a pair of counter electrodes, at least one of which is coated with a dielectric to generate plasma between the electrodes, a loading path for loading a substrate to be processed between the electrodes, and between the electrodes A carry-out path for carrying out the substrate to be treated, a substrate conveying member carrying in and carrying out the substrate to be treated between the electrodes through the carry-in path and the carry-out path, and a first electrode between the upstream from the carry-in path. A first gas supply unit that supplies process gas, a first gas exhaust unit that exhausts the first process gas from the downstream of the carry-out path, and an upstream side of the carry-in path that is closer to the counter electrode than the first gas supply unit. A second gas supply unit configured to supply a second process gas between the electrodes; and a second gas exhaust unit configured to exhaust the second process gas from the downstream of the carry-out path closer to the counter electrode than the first gas exhaust unit. It is characterized by that.

第2ガス供給部と第2ガス排気部が、対向電極に隣接あるいは一体化して配設され、第2ガス供給部および第2のガス排気部は被処理基材の移動方向に対して直交する方向にスリット状であり、かつ、電極面に沿うような形状のガス供給口およびガス排出口をそれぞれ備えてもよい。
第1プロセスガスと第2プロセスガスが電極間で概ね層流となり、かつ、電極間における第2プロセスガスの流速が第1プロセスガスの流速より速いことが好ましい。
The second gas supply unit and the second gas exhaust unit are disposed adjacent to or integrally with the counter electrode, and the second gas supply unit and the second gas exhaust unit are orthogonal to the moving direction of the substrate to be processed. A gas supply port and a gas discharge port that are slit-shaped in the direction and along the electrode surface may be provided.
It is preferable that the first process gas and the second process gas are substantially laminar between the electrodes, and the flow rate of the second process gas between the electrodes is faster than the flow rate of the first process gas.

第2プロセスガスの比熱容量が第1のプロセスガスの比熱容量より大きくてもよい。
第2プロセスガスがヘリウムおよび水素を含んでいてもよい。
第2プロセスガスの供給温度が室温より低くてもよい。
第2プロセスガスには水が含まれていてもよい。
上記のように、第2のガス供給部と第2のガス排気部が、対向電極に隣接あるいは一体化して配設され、第2ガス供給部および第2のガス排気部は被処理基材の移動方向に対して直交する方向にスリット状であり、かつ、電極面に沿うような形状のガス供給口およびガス排出口を備えることにより、第2プロセスガスがコアンダ効果により電極表面を流れやすくなるため、プラズマ中において第1プロセスガスと第2プロセスガスが層流を形成しやすくなる。
The specific heat capacity of the second process gas may be larger than the specific heat capacity of the first process gas.
The second process gas may include helium and hydrogen.
The supply temperature of the second process gas may be lower than room temperature.
The second process gas may contain water.
As described above, the second gas supply unit and the second gas exhaust unit are disposed adjacent to or integrally with the counter electrode, and the second gas supply unit and the second gas exhaust unit are formed of the substrate to be processed. By providing a gas supply port and a gas discharge port that are slit-shaped in a direction perpendicular to the moving direction and that follow the electrode surface, the second process gas can easily flow on the electrode surface due to the Coanda effect. Therefore, it becomes easy for the first process gas and the second process gas to form a laminar flow in the plasma.

さらには、第1プロセスガス流が直接電極表面を吹き付けないようにすれば、第2プロセスガス流への影響を低減できる。
また、電極間、つまり、プラズマ処理空間おける第2プロセスガスの流速を速くすることにより電極表面の熱を多く奪い、温度上昇を抑制できる。
Furthermore, if the first process gas flow is not directly sprayed on the electrode surface, the influence on the second process gas flow can be reduced.
Further, by increasing the flow rate of the second process gas between the electrodes, that is, in the plasma processing space, a large amount of heat on the surface of the electrodes can be taken and the temperature rise can be suppressed.

また、プロセスガスの流速が速くなることにより規則化されていた放電状態、すなわち被処理基材面に対しては不均一な処理となる放電が、規則化されない均一な放電へと移行する。しかし、一定の放電空間内において流速をあげるには、プロセスガスの供給量を増加させる必要があり、これはプロセスガスの消費量増加となり不経済であるが、この発明では電極表面を流れる第2プロセスガスの流速のみを速くすればよく、プロセスガス全体の消費量を抑えられる。
また、第2プロセスガスを比熱容量の大きいガスとすることでも、電極表面の熱を多く奪うことができ、電極表面の温度上昇を抑制できる。
第2プロセスガスは、そのガス自体が被処理基材の処理に寄与する影響は小さいため、比熱容量の大きいヘリウムや水素を第1プロセスガスより多く含んでいると、より電極表面の温度上昇を抑制できる。
あるいは、第2プロセスガスの温度自体を低くすることにより電極表面の温度上昇を抑えられる。
In addition, the discharge state that has been ordered by increasing the flow rate of the process gas, that is, the discharge that becomes non-uniform treatment on the surface of the substrate to be processed, shifts to a uniform discharge that is not ordered. However, in order to increase the flow velocity in a certain discharge space, it is necessary to increase the supply amount of the process gas, which increases the consumption of the process gas, which is uneconomical. Only the flow rate of the process gas needs to be increased, and the consumption of the entire process gas can be suppressed.
Further, even when the second process gas is a gas having a large specific heat capacity, a large amount of heat on the electrode surface can be taken away, and an increase in temperature on the electrode surface can be suppressed.
The second process gas has a small influence that the gas itself contributes to the processing of the substrate to be processed. Therefore, if the second process gas contains helium or hydrogen having a large specific heat capacity more than the first process gas, the temperature of the electrode surface is further increased. Can be suppressed.
Alternatively, the temperature rise of the electrode surface can be suppressed by lowering the temperature of the second process gas itself.

または、第2プロセスガスを導入する前段階でバブリング等の方法によりガス中に水分を含ませることで、第2プロセスガス中の水が電極表面近傍でプラズマにより気化し、周囲の熱を奪うため、電極温度の上昇を抑えられる。   Alternatively, water is contained in the gas by a method such as bubbling before introducing the second process gas, so that the water in the second process gas is vaporized by the plasma in the vicinity of the electrode surface, and the surrounding heat is taken away. The increase in electrode temperature can be suppressed.

以下、図面に示す実施形態を用いてこの発明を詳述する。
実施形態1
図1に、本発明におけるプラズマ処理装置の実施形態1を示す。高周波電源1が接続された金属製の電極2aの内部には冷却水3が流れている。電極2aの外部はセラミックよりなる誘電体4aにより覆われている。電極2aと対向する位置に電極2bが設置され、電極2aと同様に電極2b内部には冷却水3が流れていて、外側は誘電体4bにより覆われている。高周波電源1から電極2a,2b間に電圧が印加されることにより誘電体4aと誘電体4bの間にプラズマ5が形成される。プラズマ5には被処理基材6が搬送部材7により白抜き矢印で示す方向に搬送され、所望のプラズマ処理が施される。被処理基材6は、隔壁8で形成された、搬送するに必要十分な断面積をもった、少なくとも上部方向に気密性を有する搬送路9内を搬送されていて、搬送路9の上流には電極2a、2b間へ第1プロセスガス12aを供給するガス供給部10aが、下流には第1プロセスガス12aを排気するガス排気部11aが設置されている。さらに、誘電体4aと接して、搬送路9の上流側には電極間に第2プロセスガス12bを供給するガス供給部10b、下流側には第2プロセスガス12bを排気するガス排気部11bが設置されている。第2プロセスガスは第1プロセスガスより比熱容量の大きいガスを供給できるようにしており、図中には記載していないが、ガス供給部10bからはH2、He、N2を、ガス供給部10aからはH2、He、O2、N2、Ar、CF4を用途に応じて、選択して供給する。第2プロセスガス自体は被処理基材の処理に寄与する影響は小さいため、比熱容量の大きいヘリウムや水素の比率を高くして供給するとより好ましい。なお、ガス12a、12bは電極2a、3b間で概ね層流になり、かつ、ガス12bはガス12aよりも流層が速くなるように、それぞれの流速が設定される。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
Embodiment 1
FIG. 1 shows a first embodiment of a plasma processing apparatus according to the present invention. Cooling water 3 flows inside a metal electrode 2a to which the high frequency power source 1 is connected. The outside of the electrode 2a is covered with a dielectric 4a made of ceramic. The electrode 2b is installed at a position facing the electrode 2a. Like the electrode 2a, the cooling water 3 flows inside the electrode 2b, and the outside is covered with the dielectric 4b. When a voltage is applied between the high frequency power source 1 and the electrodes 2a and 2b, a plasma 5 is formed between the dielectric 4a and the dielectric 4b. The substrate 5 to be treated is transported to the plasma 5 in the direction indicated by the white arrow by the transport member 7 and subjected to a desired plasma treatment. The to-be-processed base material 6 is conveyed in the conveyance path 9 which is formed with the partition wall 8 and has a cross-sectional area necessary and sufficient for conveyance, and has airtightness in at least the upper direction, and is upstream of the conveyance path 9. A gas supply unit 10a for supplying the first process gas 12a between the electrodes 2a and 2b is installed, and a gas exhaust unit 11a for exhausting the first process gas 12a is installed downstream. Further, in contact with the dielectric 4a, a gas supply unit 10b that supplies the second process gas 12b between the electrodes on the upstream side of the transport path 9, and a gas exhaust unit 11b that exhausts the second process gas 12b on the downstream side. is set up. The second process gas can supply a gas having a larger specific heat capacity than the first process gas. Although not shown in the figure, the gas supply unit 10b supplies H 2 , He, and N 2 as gas supplies. From the unit 10a, H 2 , He, O 2 , N 2 , Ar, and CF 4 are selected and supplied according to the application. Since the second process gas itself has little influence on the treatment of the substrate to be treated, it is more preferable to supply it with a high ratio of helium or hydrogen having a large specific heat capacity. Note that the flow rates of the gases 12a and 12b are set so that they are almost laminar between the electrodes 2a and 3b, and the gas 12b has a faster laminar flow than the gas 12a.

図2は、このプラズマ処理装置における電極部を拡大したものである。上述のように誘電体4aを挟むようにガス供給部10b、ガス排気部11bが配置されており、誘電体4aの表面を流れるようにガス供給部10bからガス12bが供給され、ガス排気部11bからガス12bが排気される。ガス供給部10bおよびガス排気部11bは、被処理基材6の移動方向に直交する方向にスリット状で、かつ、誘電体4aの表面に沿うような形状のガス供給口およびガス排出口をそれぞれ備える。   FIG. 2 is an enlarged view of an electrode portion in this plasma processing apparatus. As described above, the gas supply unit 10b and the gas exhaust unit 11b are arranged so as to sandwich the dielectric 4a. The gas 12b is supplied from the gas supply unit 10b so as to flow on the surface of the dielectric 4a, and the gas exhaust unit 11b. From this, the gas 12b is exhausted. The gas supply unit 10b and the gas exhaust unit 11b have a gas supply port and a gas discharge port that are slit-shaped in a direction orthogonal to the moving direction of the substrate 6 and along the surface of the dielectric 4a, respectively. Prepare.

実施形態2
この実施形態では、図3に示すようにガス供給部10b、ガス排気部11bの一部は誘電体4aを利用して形成している。その他の構成は実施形態1に準拠する。誘電体4aはセラミックよりなっており、表面の平滑性を良くできるため、ガス12bが表面に沿って流れやすい。
Embodiment 2
In this embodiment, as shown in FIG. 3, the gas supply part 10b and a part of the gas exhaust part 11b are formed using the dielectric 4a. Other configurations conform to the first embodiment. Since the dielectric 4a is made of ceramic and can improve the smoothness of the surface, the gas 12b easily flows along the surface.

実施形態3
この実施形態では、図4に示すようにガス供給部10bの一部は搬送路9の中心側に飛び出している。その他の構成は実施形態1に準拠する。このためガス供給部10aから供給されているガス12aが搬送路9の中心方向に流れ(偏向され)、ガス12bの流れを乱さない。
Embodiment 3
In this embodiment, as shown in FIG. 4, a part of the gas supply unit 10 b protrudes to the center side of the transport path 9. Other configurations conform to the first embodiment. For this reason, the gas 12a supplied from the gas supply unit 10a flows (deflects) toward the center of the transport path 9, and does not disturb the flow of the gas 12b.

実施形態4
この実施形態では、図5に示すようにガス供給部10bにガス12bを供給する前段階で純水14中を通過させる。その他の構成は実施形態1に準拠する。これによりガス12bに水分が含まれ、ガス12b中の水分の気化熱により誘電体4aの表面が冷却されやすくなる。さらに、純水14の温度を5〜20℃程度に室温より低く保持しておくことにより、第2プロセスガスの温度を室温より低くすることができ、電極表面の温度上昇を抑えられる。なお、CF4ガスなどを用いた撥水化処理を目的とした場合では、ガス12a中のFと12b中のHの反応によるHFの生成などがあるため、この方法は適さず、O2ガスなどを用いたアッシング処理、親水化処理などに適用される。
Embodiment 4
In this embodiment, as shown in FIG. 5, the pure water 14 is passed through before the gas 12b is supplied to the gas supply unit 10b. Other configurations conform to the first embodiment. Thereby, moisture is contained in the gas 12b, and the surface of the dielectric 4a is easily cooled by the heat of vaporization of moisture in the gas 12b. Furthermore, by keeping the temperature of the pure water 14 at about 5 to 20 ° C. below room temperature, the temperature of the second process gas can be lowered below room temperature, and the temperature rise on the electrode surface can be suppressed. In the case of water repellency treatment using CF 4 gas or the like, this method is not suitable because there is generation of HF due to the reaction of F in gas 12a and H in 12b, and O 2 gas. It is applied to an ashing process using a material such as a hydrophilization process.

実施形態5
この実施形態では、図6に示すように、誘電体4bを挟むようにガス供給部10c、ガス排気部11cが配置され、他の構成は実施形態1に準拠する。これにより誘電体4bの表面が冷却されやすくなる。このことにより、誘電体4b側での放電不均一が抑えられる。
また、この場合には、被処理基材6の下部側には搬送部材7が設けられているため、搬送部材7の隙間に誘電体4b、ガス供給部10c、ガス排気部11cを配置するには、これらをコンパクトにまとめる必要がある。よって、このような場合には、実施形態2で示したようなガス供給部10b、10c、ガス排気部11b、11cの一部を誘電体4a、4bを利用して形成すると良い。
Embodiment 5
In this embodiment, as shown in FIG. 6, the gas supply part 10c and the gas exhaust part 11c are arrange | positioned so that the dielectric material 4b may be pinched | interposed, and another structure is based on Embodiment 1. FIG. As a result, the surface of the dielectric 4b is easily cooled. This suppresses uneven discharge on the dielectric 4b side.
In this case, since the transport member 7 is provided on the lower side of the substrate 6 to be processed, the dielectric 4b, the gas supply unit 10c, and the gas exhaust unit 11c are arranged in the gap of the transport member 7. Needs to be put together in a compact. Therefore, in such a case, it is preferable to form part of the gas supply units 10b and 10c and the gas exhaust units 11b and 11c as shown in the second embodiment by using the dielectrics 4a and 4b.

この発明によれば、プロセスガスの消費量を抑えつつ、電極表面の温度上昇を抑えることで電極表面からの熱電子放出を抑制してグロー放電を維持し、プラズマ処理空間では多くの電子や励起種が存在した均一性の良いプラズマを発生させることが可能で、低ランニングコストと高速処理を両立できるプラズマ処理装置を実現できる。   According to the present invention, while suppressing the consumption of process gas and suppressing the temperature rise on the electrode surface, the discharge of thermionic electrons from the electrode surface is suppressed to maintain the glow discharge. It is possible to generate a plasma with good uniformity in which seeds exist, and to realize a plasma processing apparatus that can achieve both low running cost and high speed processing.

この発明のプラズマ処理装置の実施形態1の構成を示す側断面図である。It is a sectional side view which shows the structure of Embodiment 1 of the plasma processing apparatus of this invention. 実施形態1のプラズマ処理装置の主要部の構成を示す拡大側断面図である。It is an expanded side sectional view which shows the structure of the principal part of the plasma processing apparatus of Embodiment 1. この発明のプラズマ処理装置の実施形態2のプラズマ処理装置の主要部の構成を示す拡大側断面図である。It is an expanded sectional side view which shows the structure of the principal part of the plasma processing apparatus of Embodiment 2 of the plasma processing apparatus of this invention. この発明のプラズマ処理装置の実施形態3のプラズマ処理装置の主要部の構成を示す拡大側断面図である。It is an expanded sectional side view which shows the structure of the principal part of the plasma processing apparatus of Embodiment 3 of the plasma processing apparatus of this invention. この発明のプラズマ処理装置の実施形態4のプラズマ処理装置の主要部の構成を示す拡大側断面図である。It is an expanded sectional side view which shows the structure of the principal part of the plasma processing apparatus of Embodiment 4 of the plasma processing apparatus of this invention. この発明のプラズマ処理装置の実施形態5の構成を示す側断面図である。It is a sectional side view which shows the structure of Embodiment 5 of the plasma processing apparatus of this invention.

符号の説明Explanation of symbols

1 高周波電源
2a,2b 電極
3 冷却水
4a,4b 誘電体
5 プラズマ
6 被処理基材
7 搬送部材
8 隔壁
9 搬送路
10a,10b,10c ガス供給部
11a,11b,11c ガス排気部
12a,12b ガス
DESCRIPTION OF SYMBOLS 1 High frequency power supply 2a, 2b Electrode 3 Cooling water 4a, 4b Dielectric 5 Plasma 6 Substrate to be processed 7 Conveyance member 8 Bulkhead 9 Conveyance path 10a, 10b, 10c Gas supply part 11a, 11b, 11c Gas exhaust part 12a, 12b Gas

Claims (8)

電極間にプラズマを生成するために少なくとも一方が誘電体で被覆された一対の対向電極と、電極間に被処理基板を搬入するための搬入路と、電極間から被処理基材を搬出する搬出路と、前記搬入路と搬出路を通って電極間に被処理基材を搬入して搬出する基材搬送部材と、前記搬入路の上流より電極間に第1プロセスガスを供給する第1ガス供給部と、前記搬出路の下流から第1プロセスガスを排気する第1ガス排気部と、第1ガス供給部よりも対向電極の近くで前記搬入路の上流より電極間に第2プロセスガスを供給する第2ガス供給部と、第1ガス排気部よりも対向電極の近くで前記搬出路の下流から第2プロセスガスを排気する第2ガス排気部とを備えるプラズマ処理装置。   A pair of counter electrodes, at least one of which is coated with a dielectric material to generate plasma between the electrodes, a carry-in path for carrying a substrate to be treated between the electrodes, and a carry-out carrying the substrate to be treated from between the electrodes A substrate, a substrate transport member that loads and unloads the substrate to be processed between the electrodes through the loading path and the unloading path, and a first gas that supplies a first process gas between the electrodes from upstream of the loading path A supply unit, a first gas exhaust unit for exhausting the first process gas from the downstream of the carry-out path, and a second process gas between the electrodes from the upstream of the carry-in path closer to the counter electrode than the first gas supply unit. A plasma processing apparatus comprising: a second gas supply unit for supplying; and a second gas exhaust unit for exhausting a second process gas from the downstream of the carry-out path closer to the counter electrode than the first gas exhaust unit. 第2ガス供給部と第2ガス排気部が、対向電極に隣接あるいは一体化して配設され、第2ガス供給部および第2ガス排気部は被処理基材の移動方向に対して直交する方向にスリット状であり、かつ、電極面に沿うような形状のガス供給口およびガス排出口それぞれ備える請求項1記載のプラズマ処理装置。   The second gas supply unit and the second gas exhaust unit are disposed adjacent to or integrated with the counter electrode, and the second gas supply unit and the second gas exhaust unit are orthogonal to the moving direction of the substrate to be processed. The plasma processing apparatus according to claim 1, further comprising a gas supply port and a gas discharge port each having a slit shape and a shape extending along the electrode surface. 搬入路は、第2ガス供給部の上流で第1プロセスガスの流れを搬入路の中心方向へ偏向させる突出部を備えた請求項2記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, wherein the carry-in path includes a protrusion that deflects the flow of the first process gas toward the center of the carry-in path upstream of the second gas supply unit. 第1プロセスガスと第2プロセスガスが電極間で概ね層流となり、かつ、電極間における第2プロセスガスの流速が第1プロセスガスの流速より速い請求項1記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the first process gas and the second process gas are substantially laminar between the electrodes, and the flow rate of the second process gas between the electrodes is faster than the flow rate of the first process gas. 第2プロセスガスの比熱容量が第1のプロセスガスの比熱容量より大きい請求項1記載のプラズマ処理装置。   The plasma processing apparatus of claim 1, wherein the specific heat capacity of the second process gas is larger than the specific heat capacity of the first process gas. 第2プロセスガスがヘリウムおよび水素を含んでいる請求項5記載のプラズマ処理装置。   The plasma processing apparatus according to claim 5, wherein the second process gas contains helium and hydrogen. 第2プロセスガスの供給温度が室温より低い請求項1記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the supply temperature of the second process gas is lower than room temperature. 第2プロセスガスには水が含まれている請求項1記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the second process gas contains water.
JP2007036565A 2007-02-16 2007-02-16 Plasma treatment device Pending JP2008204650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036565A JP2008204650A (en) 2007-02-16 2007-02-16 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036565A JP2008204650A (en) 2007-02-16 2007-02-16 Plasma treatment device

Publications (1)

Publication Number Publication Date
JP2008204650A true JP2008204650A (en) 2008-09-04

Family

ID=39781945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036565A Pending JP2008204650A (en) 2007-02-16 2007-02-16 Plasma treatment device

Country Status (1)

Country Link
JP (1) JP2008204650A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080933A1 (en) * 2008-09-30 2010-04-01 Applied Materials, Inc. Multi-electrode pecvd source
JP2013533641A (en) * 2010-07-29 2013-08-22 ローレンス アドヴァンスド セミコンダクター テクノロジーズ,エルエルシー Substrate processing apparatus and system
JP2015222684A (en) * 2014-05-23 2015-12-10 株式会社リコー Plasma processing apparatus and image forming apparatus including the same
CN109196958A (en) * 2016-03-29 2019-01-11 海别得公司 System and method for the plasma gas discharge in plasma welding torch

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100080933A1 (en) * 2008-09-30 2010-04-01 Applied Materials, Inc. Multi-electrode pecvd source
US8438990B2 (en) * 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
JP2013533641A (en) * 2010-07-29 2013-08-22 ローレンス アドヴァンスド セミコンダクター テクノロジーズ,エルエルシー Substrate processing apparatus and system
JP2015222684A (en) * 2014-05-23 2015-12-10 株式会社リコー Plasma processing apparatus and image forming apparatus including the same
CN109196958A (en) * 2016-03-29 2019-01-11 海别得公司 System and method for the plasma gas discharge in plasma welding torch
CN109196958B (en) * 2016-03-29 2020-09-11 海别得公司 System and method for plasma gas venting in a plasma arc torch

Similar Documents

Publication Publication Date Title
US9136097B2 (en) Shower plate and substrate processing apparatus
JP5086192B2 (en) Plasma processing equipment
KR100787080B1 (en) Substrate processing method, computer readable recording medium and substrate processing apparatus
JP4233348B2 (en) Plasma process equipment
JP5167430B2 (en) Etching method and apparatus
US20070039942A1 (en) Active cooling substrate support
JP2008192643A (en) Substrate treating equipment
US20080236746A1 (en) Substrate processing apparatus and substrate mounting stage on which focus ring is mounted
TWI772430B (en) Plasma treatment device and gas shower head
JP2008204650A (en) Plasma treatment device
JP4439501B2 (en) Plasma process apparatus and electrode unit for plasma apparatus
JP2011204995A (en) Atmospheric pressure plasma film-forming apparatus and method
JP2008262781A (en) Atmosphere control device
KR100988291B1 (en) Apparatus for surface treatment with plasma in atmospheric pressure having parallel plates type electrode structure
JP2007026981A (en) Plasma processing device
JP2007280885A (en) Plasma treatment device
JP3955835B2 (en) Plasma surface treatment apparatus and treatment method thereof
JP2007027187A (en) Plasma treatment apparatus and plasma treatment method using the same
JP2009099361A (en) Plasma processing device and plasma processing method
KR100988290B1 (en) Apparatus for surface treatment with plasma in atmospheric pressure having parallel plates type electrode structure
JP4693544B2 (en) Plasma generating electrode, plasma processing apparatus, and plasma processing method
KR101272101B1 (en) The atmospheric plasma header
KR102214790B1 (en) Plasma processing apparatus
WO2016132583A1 (en) Method for manufacturing thin film electronic device, etching apparatus, and apparatus for manufacturing thin film electronic device
JP2009182300A (en) Vacuum processing apparatus