JP2008203227A - Automatic tracking scanning sonar - Google Patents
Automatic tracking scanning sonar Download PDFInfo
- Publication number
- JP2008203227A JP2008203227A JP2007043090A JP2007043090A JP2008203227A JP 2008203227 A JP2008203227 A JP 2008203227A JP 2007043090 A JP2007043090 A JP 2007043090A JP 2007043090 A JP2007043090 A JP 2007043090A JP 2008203227 A JP2008203227 A JP 2008203227A
- Authority
- JP
- Japan
- Prior art keywords
- fish
- depression angle
- school
- image
- depression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は、魚群等の標的を自動的に追尾できる機能を備えたスキャニングソナーに関する。 The present invention relates to a scanning sonar having a function capable of automatically tracking a target such as a school of fish.
一般の漁労用スキャニングソナーは、所定の俯角で、あるビーム幅を持った傘状の送波ビームを水中の全方位へ送信し、あるビーム幅を持ったペンシル状の受波ビームを高速に所定の俯角で回転させ、エコー信号を検出する(以下水平スキャンと呼ぶ)ことで、所定の俯角での水中の全方位の断面像を得る装置である。 General fishing scanning sonar transmits an umbrella-shaped transmission beam with a certain beam width at a predetermined depression angle in all directions in the water, and a pencil-shaped receiving beam with a certain beam width is predetermined at high speed. This is an apparatus that obtains a cross-sectional image of all azimuths in water at a predetermined depression angle by rotating at a depression angle and detecting an echo signal (hereinafter referred to as a horizontal scan).
しかし所定の俯角での海中の断面しか見ることができないため、いったん発見した魚群を見失わないようにするために、ユーザが手動で俯角を制御する必要がある。この労力を軽減するため、追尾対象として選択された魚群を捉えるように俯角を制御する魚群追尾スキャニングソナーが求められている。 However, since only a cross-section in the sea at a predetermined depression angle can be seen, it is necessary for the user to manually control the depression angle so as not to lose sight of the school of fish once discovered. In order to reduce this effort, there is a need for a fish tracking scanning sonar that controls the depression angle so as to capture a school of fish selected as a tracking target.
この種の装置として、魚群は発見時の一定深度に存在するとして、魚群の水平移動にあわせて、自船と魚群との水平距離が近づいたら俯角を下げ、遠ざかると俯角を上げる魚群追尾スキャニングソナーがある。ある方位の海中の断面をスキャン(垂直スキャン)できるトランスデューサをもつスキャニングソナーでは、特開平2003−315453で示される手法を用いる魚群追尾スキャニングソナーがある。
魚群が一定深度に存在するとして、魚群の水平移動にあわせて俯角を調整する魚群追尾スキャニングソナーでは、魚群が垂直移動をした場合に、魚群を見失う可能性が高くなる。また、特許文献1で示される手法は、垂直スキャンできない安価なトランスデューサを搭載したスキャニングソナーでは実現できないという欠点があった。 In the fish tracking scanning sonar that adjusts the depression angle according to the horizontal movement of the fish school, assuming that the fish school exists at a certain depth, there is a high possibility that the fish school will be lost when the fish school moves vertically. Further, the technique disclosed in Patent Document 1 has a drawback that it cannot be realized by a scanning sonar equipped with an inexpensive transducer that cannot perform vertical scanning.
前記課題を解決するために本発明では次のような手段をとる。 In order to solve the above problems, the present invention takes the following means.
すなわち、例えば測定中心が船であり対象標的が魚群であるような標的を自動追尾する機能を有する自動追尾スキャニングソナーにおいて、水平面とソナービームとの角度を俯角と定義した場合に、ソナービームの俯角のみを変動させて魚群を探査する手段を持つことを特徴とする自動追尾スキャニングソナーとする。 That is, for example, in an automatic tracking scanning sonar having a function of automatically tracking a target whose measurement center is a ship and the target target is a school of fish, when the angle between the horizontal plane and the sonar beam is defined as the depression angle, the depression angle of the sonar beam The automatic tracking sonar is characterized by having means for exploring the school of fish by varying only
また、前記俯角を変動させて魚群を探査する手段は、魚群断面を捉える基準俯角をAとし、予め定め記憶装置に記憶させた1以上である定数n個の変動角度をBnとした場合にA+Bnを俯角としてn+1回の水平スキャンを実行する送受波部と、前記送受波部のデータを断面ソナー画像データに変換する断面画像構成部と、前記断面画像構成部から得られる断面ソナー画像データから魚群予測位置を用いて対象とする魚群像を抽出し魚群の反応強度および魚群中心の測定中心からの相対位置を算出する魚群像抽出部と、魚群中心の測定中心からの相対位置と船の絶対位置と俯角から魚群の絶対位置を算出する魚群像位置情報算出部と、俯角とその俯角で得られた魚群の反応強度を保存する俯角−蓄積反応強度記憶部と、魚群の絶対位置から次回の魚群予測位置を算出する水平断面上動き予測部と、前記俯角−蓄積反応強度記憶部の情報から次回の基準俯角を決定する俯角制御部と、魚群の絶対位置あるいは相対位置から次回の探査距離を決定する探査範囲制御部と、からなることを特徴とする自動追尾スキャニングソナーとする。 Further, means for probing the fish by varying the angle of depression, when the reference depression to capture fish section is A, a constant n-number of variations angle is predetermined storage device 1 or more which is stored in the set to B n A transmission / reception unit that executes n + 1 horizontal scans with A + Bn as a depression angle, a cross-sectional image configuration unit that converts data of the transmission / reception unit into cross-sectional sonar image data, and cross-sectional sonar image data obtained from the cross-sectional image configuration unit A fish image extraction unit that extracts the fish image of interest using the predicted fish position from the fish and calculates the reaction intensity of the fish school and the relative position of the fish center from the measurement center, and the relative position of the fish center from the measurement center and the ship The fish image position information calculation unit that calculates the absolute position of the fish school from the absolute position and the depression angle, the depression angle-accumulation reaction intensity storage unit that stores the reaction angle of the depression angle and the fish school obtained at the depression angle, and the absolute position of the fish school A horizontal cross-sectional motion prediction unit for calculating the next fish school prediction position, a depression angle control unit for determining the next reference depression angle from the information of the depression angle-accumulation reaction intensity storage unit, and the next exploration from the absolute or relative position of the fish school An automatic tracking scanning sonar characterized by comprising a search range control unit for determining a distance.
また、前記俯角制御部は、予め設定した値を前記基準俯角Aの更新量とすることを特徴とする自動追尾スキャニングソナーとする。 In addition, the depression angle control unit is an automatic tracking scanning sonar that uses a preset value as an update amount of the reference depression angle A.
また、前記俯角制御部は、測定中心と対象魚群の距離に反比例するよう距離が近いほど前記変動角度Bを大きくすることを特徴とする自動追尾スキャニングソナーとする。 Further, the depression angle control unit is an automatic tracking scanning sonar that increases the fluctuation angle B as the distance is closer to be in inverse proportion to the distance between the measurement center and the target fish school.
また、前記俯角制御部は、前記俯角A+BFurther, the depression angle control unit is configured to perform the depression angle A + B. nn の俯角毎に水平スキャン面からの魚群の反射強度を加算し、最も反射強度の強いBThe reflection intensity of the school of fish from the horizontal scan plane is added for each depression angle of nn の符合が正数であれば対象魚群は下方に移動したものとみなし、また、最も反射強度の強いBIf the sign of is a positive number, the school of fish is considered to have moved downward, and B, which has the strongest reflection intensity nn の符合が負数であれば対象魚群は上方に移動したものであるとみなすことによって、魚群の移動に追随して俯角を制御することを特徴とする自動追尾スキャニングソナーとする。If the sign of is a negative number, it is assumed that the target fish school has moved upward, and the automatic tracking scanning sonar is characterized in that the depression angle is controlled following the movement of the fish school.
また、前記探査範囲制御部は測定中心から対象魚群への距離に応じて自動的に探査距離を決定することを特徴とする自動追尾スキャニングソナーとする。The search range control unit may be an automatic tracking scanning sonar that automatically determines a search distance according to a distance from a measurement center to a target fish school.
本発明によれば、魚群と自船との距離に合わせて探査範囲を調整し、また、魚群の上下移動に合わせて俯角を調整することが可能となり、魚群の追尾性能が向上する。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to adjust a search range according to the distance of a fish school and the own ship, and to adjust a depression angle according to the vertical movement of a fish school, and the tracking performance of a fish school improves.
本発明の好適な実施例として観測点を測定中心の船舶とし観測物を移動する魚群とした場合について、図を参照して説明する。
図1は異なる複数の俯角による水平スキャンの結果の差異を説明する図である。船101から傘状の送波ビームを水中の全方位へ送信し、物体からの反射波をペンシル状の受波ビーム103として検出する。傘状ビームとペンシル状ビームの関係を図4に模式的に示した。
As a preferred embodiment of the present invention, a case where an observation point is a ship having a measurement center and a moving fish is moved will be described with reference to the drawings.
FIG. 1 is a diagram for explaining a difference in the result of horizontal scanning by a plurality of different depression angles. An umbrella-shaped transmission beam is transmitted from the ship 101 to all directions in the water, and a reflected wave from the object is detected as a pencil-shaped reception beam 103. The relationship between the umbrella beam and the pencil beam is schematically shown in FIG.
検出した受信ビームに関して、俯角Aの送波ビームに対する受信ビームを映像化したものが107であり、Aよりも小さな俯角A+B1の送波ビームに対する受信ビームを映像化したものが105であり、Aよりも大きな俯角A+B2の送波ビームに対する受信ビームを映像化したものが109である。図のように俯角によって得られるソナー映像は違ったものとなる。 Regarding the detected received beam, 107 is obtained by visualizing the received beam with respect to the transmitted beam at the depression angle A , and 105 is obtained by visualizing the received beam with respect to the transmitted beam at the smaller angle A + B1 smaller than A. 109 is an image of the received beam with respect to the transmitted beam having a large depression angle A + B2 . As shown in the figure, the sonar image obtained by the depression is different.
図1についてさらに詳述し、基準俯角Aの決定方法について説明する。ある俯角で水平スキャンを行い、得られたソナー映像に魚群像が出現し、それが追尾魚群像として指定される。このときの俯角を基準俯角Aと、あらかじめ定められた任意の角度だけ基準俯角Aから変化させた複数の俯角A+Bn(n=1、2、…)で水平スキャンする。Bnは例えば、B1=+X1、B2=−X2、B3=+X3、B4=−X4のように、その個数と角度Aからの変化角度は自由に設定できるようにしておく。 1 will be described in further detail, and a method for determining the reference depression angle A will be described. A horizontal scan is performed at a certain depression angle, and a fish image appears in the obtained sonar image, which is designated as a tracking fish image. The depression angle at this time is horizontally scanned with a reference depression angle A and a plurality of depression angles A + Bn (n = 1, 2,...) Changed from the reference depression angle A by a predetermined arbitrary angle. As for Bn, for example, B1 = + X1, B2 = −X2, B3 = + X3, B4 = −X4, and the change angle from the angle A can be freely set.
図1のように、それぞれの俯角で得られる魚群からのエコー信号は異なる。それぞれの俯角A、A+Bn(n=1、2、…)で得られた魚群からの反射強度を算出し、保存しておく。それぞれの俯角で得られた魚群からの反射強度を比較し、基準俯角より浅い俯角、つまりAよりも小さな値の俯角で魚群からの反射強度が強ければ、次回の基準俯角を浅く、つまり俯角を小さくし、基準俯角より深い俯角、つまりAよりも大きな値の俯角で魚群からの反射強度が強ければ、次回の基準俯角を深く、つまり俯角を大きくするように制御し、これを繰り返すことで魚群を追尾するのが本発明にかかる追尾方式である。 As shown in FIG. 1, the echo signals from the school of fish obtained at each depression are different. The reflection intensity from the school of fish obtained at each depression angle A, A + Bn (n = 1, 2,...) Is calculated and stored. Compare the reflection intensity from the school of fish obtained at each depression angle. If the depression angle is shallower than the reference depression angle, that is, the depression angle is smaller than A, and the reflection intensity from the school is strong, the next reference depression angle is reduced, that is, the depression angle is If the reflection angle from the school of fish is strong at a depression angle deeper than the reference depression angle, that is, a depression angle greater than A, the next reference depression angle is controlled to be deep, that is, the depression angle is increased, and this is repeated to repeat the fish school. Is a tracking method according to the present invention.
ここで、前述した魚群からの反射強度に関して、その算出方法の一例を説明する。まず、スキャンで得られたソナー信号の2次元データ(図1における105、107、109)を画像処理により2値化し、反射強度が平均値よりも大きな箇所(図1における111、113、115)についてグループ化しラベルを付与する。 Here, an example of a calculation method for the above-described reflection intensity from the school of fish will be described. First, two-dimensional data (105, 107, 109 in FIG. 1) of the sonar signal obtained by scanning is binarized by image processing, and the reflection intensity is larger than the average value (111, 113, 115 in FIG. 1). Group and give a label.
保存されている過去の追尾対象魚群像の位置から予測される魚群位置、あるいは過去の追尾対象魚群像の大きさ、あるいは過去の追尾対象魚群像強度などと、ラベルを付与されたそれぞれの像の位置、あるいは大きさ、あるいは強度とを比較し、追尾対象魚群として扱うべき像を選択する。追尾対象魚群像を定めた後に、その追尾対象魚群像を構成する画素ごとの数値の和を魚群からの反射強度と定義する。 For each image that has been labeled, the fish position predicted from the location of the previous tracking target fish school image, the size of the past tracking fish school image, or the past tracking fish school image intensity, etc. The position, size, or intensity is compared, and an image to be treated as a tracking target fish school is selected. After the tracking target fish school image is determined, the sum of numerical values for each pixel constituting the tracking target fish school image is defined as the reflection intensity from the fish school.
なお、エコー信号の揺らぎを考慮して、各俯角毎にスキャンを複数回実施し、それぞれの反射強度を累積加算した結果を利用して前記のような過去のデータとの比較を行うことも可能である。 In consideration of fluctuations in the echo signal, it is also possible to perform multiple scans for each depression angle and use the result of cumulative addition of each reflection intensity to compare with the past data as described above. It is.
水中の超音波の速度は、ほぼ一定であり、俯角の異なる数多くの断面を得るために必要な時間は、探査距離によって決定される。そのため、標的と自船との距離が近づけば自動的に探査距離を短くして、単位時間当たり数多くの断面を得ることで追尾性能を向上させ、標的と自船との距離が遠ざかった場合、追尾中断を防ぐため探査範囲を長くする。用意された標的と自船との距離に対応する探査距離のテーブルの利用や、探査距離と標的と自船との距離の割合を前もって決定しておくなどして、探査距離を決定する。 The speed of ultrasonic waves in water is almost constant, and the time required to obtain a number of cross-sections with different depression angles is determined by the search distance. Therefore, if the distance between the target and own ship gets closer, the exploration distance is automatically shortened, and tracking performance is improved by obtaining a large number of cross sections per unit time. Increase the search range to prevent tracking interruptions. The exploration distance is determined by using a table of exploration distances corresponding to the distance between the prepared target and the own ship, or by determining in advance the ratio of the exploration distance and the distance between the target and the own ship.
次に自動追尾スキャニングソナーシステムの構成について、図2の水平断面像と図3のブロック図を用いて説明する。図3において送受波部321は、設定された俯角、探査距離で、水平スキャンする。送受波部は近傍から方位方向360度のエコー信号(ラインデータ)を連続して出力し、時間が経過するにつれ、水中の音速に比例した遠方のエコー信号が出力する。探査距離に到達すると、設定された俯角、探査距離により、送波を行い、探査距離に到達するまで受波を行なう事を繰り返す。 Next, the configuration of the automatic tracking scanning sonar system will be described with reference to the horizontal sectional image of FIG. 2 and the block diagram of FIG. In FIG. 3, the wave transmission / reception unit 321 performs horizontal scanning at the set depression angle and search distance. The transmitter / receiver continuously outputs an echo signal (line data) in the azimuth direction of 360 degrees from the vicinity, and outputs a distant echo signal proportional to the sound speed in water as time passes. When the exploration distance is reached, transmission is performed with the set depression angle and exploration distance, and reception is repeated until the exploration distance is reached.
断面画像構成部323では、送受波部より水平スキャン毎に、連続して送られてくる、指定された俯角での方位方向360度のエコー信号データを蓄積することで、まず、方位方向(θ)と距離方向(r)を座標軸にもつ2次元エコー信号データを作成する。このrθ座標系2次元ソナーデータを、図2のように自船を中心とする水平断面画像に変換し、ディスプレイに表示する。 The cross-sectional image construction unit 323 first accumulates echo signal data of 360 degrees in the azimuth direction at a specified depression angle that is continuously transmitted from the transmission / reception unit for each horizontal scan. ) And distance direction (r) as coordinate axes are created. This rθ coordinate system two-dimensional sonar data is converted into a horizontal cross-sectional image centered on the ship as shown in FIG. 2 and displayed on the display.
魚群像抽出部325ではrθ座標系2次元ソナーデータと、魚群位置を入力とする。魚群位置は、自船からの距離、方位で与えられる、キーボードから入力された位置、または、過去の魚群像位置から算出した予測位置である。処理量軽減のため、追尾魚群が存在する位置周辺の2次元ソナーデータを2値化処理後、収縮膨張処理により雑音除去や距離の近い像を一つにまとめる作業を行ない、ラベリング処理をする。このラベリングされた像それぞれの重心位置を自船からの距離、方位で求める。また、ラベリングされた像それぞれの反応強度を算出する。このラベリング像の重心位置と入力された魚群位置の差と、像の反応強度から、判定基準に従い、複数のラベリング像の中から選ばれた1つを魚群像とする。該当する像が存在しなかった場合、処理を中断し、魚群位置再指定を待つ。 The fish school image extraction unit 325 receives the rθ coordinate system two-dimensional sonar data and the fish school position as inputs. The fish position is a position input from the keyboard given by a distance and direction from the own ship, or a predicted position calculated from a past fish image position. In order to reduce the amount of processing, the binarization processing is performed on the two-dimensional sonar data around the position where the tracking fish school is present, and then the processing is performed by performing the noise reduction and the processing of combining images close to each other by the contraction / expansion processing. The position of the center of gravity of each labeled image is obtained from the distance and direction from the ship. Further, the reaction intensity of each labeled image is calculated. Based on the difference between the center of gravity of the labeling image and the input fish school position and the reaction intensity of the image, one selected from a plurality of labeling images is set as the fish school image according to the criterion. If the corresponding image does not exist, the process is interrupted and the fish position re-designation is awaited.
魚群像位置情報算出部327では、魚群像の重心位置(船との相対距離、方位)と、探査俯角と、GPS及びコンパスから得られた自船の絶対位置情報を入力とし、船との相対距離、方位で表される魚群像の重心位置を緯度、経度の絶対位置に変換する。 The fish image position information calculation unit 327 receives the position of the center of gravity of the fish image (relative distance and azimuth from the ship), the search depression angle, and the absolute position information of the own ship obtained from the GPS and the compass. The barycentric position of the fish school image represented by the distance and direction is converted into the absolute position of latitude and longitude.
水平断面上動き予測部329では、入力された魚群像の絶対位置を、例えば過去nスキャン分保存することによって、その移動平均により次回フレームでの魚群の絶対位置を予測でき、ある俯角での水平断面像の中において、魚群の予測位置をあらかじめ把握できる。このことにより、水平断面全域で魚群抽出計算をする必要が無くなる。なお、予測した魚群像の絶対位置は、自船との相対距離、方位に変換しなおし、出力する。In the horizontal cross-sectional motion prediction unit 329, by saving the absolute position of the input fish school image, for example, for the past n scans, the absolute position of the fish school in the next frame can be predicted by the moving average, and the horizontal position at a certain depression angle can be predicted. In the cross-sectional image, the predicted position of the school of fish can be grasped in advance. This eliminates the need for fish school extraction calculations across the entire horizontal section. In addition, the absolute position of the predicted fish school image is converted into a relative distance and direction from the ship and output.
俯角−蓄積反応強度記憶部331に、基準俯角とその近くの俯角に対応する反射強度が蓄積される。基準俯角が更新されると、この記憶部はクリアされる。 The depression angle-accumulation reaction intensity storage unit 331 accumulates the reflection intensity corresponding to the reference depression angle and the depression angle nearby. When the reference depression angle is updated, this storage unit is cleared.
俯角制御部333では、例えば一定送受波毎に俯角−蓄積反応強度記憶部のデータを監視し、記憶部に登録された俯角のうち最も強い反射強度の俯角方向に魚群が上下移動したと判断し、基準俯角を最も強い反射強度の俯角方向にあらかじめ定めた任意の角度だけ変化させる。 The depression angle control unit 333 monitors, for example, the depression angle-accumulation reaction intensity storage unit data for every constant transmission / reception, and determines that the school of fish has moved up and down in the depression angle direction of the strongest reflection intensity among the depression angles registered in the storage unit. The reference depression angle is changed by a predetermined arbitrary angle in the depression angle direction of the strongest reflection intensity.
探査範囲制御部335では、魚群の絶対位置から、例えば、画面上で魚群の位置が表示される位置は、探査距離の8割の距離に存在するように設定しておき、これから次回の最大探査距離を決定する。探査距離がある程度短くなる(たとえば300m)と、それ以上魚群が近づいても探査距離を短くしない。 In the search range control unit 335, for example, the position where the position of the fish school is displayed on the screen is set to be 80% of the search distance from the absolute position of the fish school. Determine the distance. When the exploration distance is shortened to some extent (for example, 300 m), the exploration distance is not shortened even if the school of fish approaches further.
以上述べたように、図3の処理ブロックによって図1のような水平断面映像を得ることができるため、前回スキャン時に比べて魚群の移動方向がわかるため、自動的に魚群の移動に追従できるシステムを構築することが可能となる。 As described above, the horizontal cross-sectional image as shown in FIG. 1 can be obtained by the processing block of FIG. 3, and the movement direction of the fish school can be known as compared with the previous scan, so that the system can automatically follow the movement of the fish school. Can be built.
なお、本実施例の変形例として、Aよりも大きな値の俯角A+B1で魚群からの反射強度が強い時に、次回の基準俯角をA+B1にし、Aよりも小さな値の俯角A+B2で魚群からの反射強度が強ければ、次回の基準俯角をA+B2にする方式があり、また、本実施例のさらなる変形例として、あらかじめ任意の俯角変動量Pを定め、Aよりも大きな値の俯角で魚群からの反射強度が強い時に、次回の俯角をA+Pにし、Aよりも小さな値の俯角で魚群からの反射強度が強ければ、次回の基準俯角をA−Pにする方式がある。 As a modification of the present embodiment, when the reflection angle from the fish school is strong at a depression angle A + B1 having a value larger than A, the next reference depression angle is set to A + B1, and the reflection intensity from the fish school at a depression angle A + B2 having a smaller value than A. If the angle is strong, there is a method of setting the next reference depression angle to A + B2, and as a further modification of the present embodiment, an arbitrary depression angle variation amount P is determined in advance, and the reflection intensity from the fish school at an inclination angle larger than A There is a method in which the next depression angle is set to A + P when the angle is strong, and the next reference depression angle is set to AP when the depression angle is smaller than A and the reflection intensity from the fish school is strong.
本実施例によれば、雑音などの影響で基準俯角Aが大きく変動し、魚群を見失う可能性を軽減できる。 According to the present embodiment, it is possible to reduce the possibility that the reference depression angle A fluctuates greatly due to the influence of noise or the like and the school of fish is lost.
さらに本実施例によれば、魚群が同じ量を移動しても、自船と魚群の距離により、要する俯角が変わってくる事象を解決することが可能となる。 Furthermore, according to the present embodiment, even if the school of fish moves the same amount, it is possible to solve the phenomenon that the required depression angle changes depending on the distance between the own ship and the school of fish.
さらに本実施例によれば、エコーの揺らぎや雑音などの影響を低減することが可能となる。 Furthermore, according to the present embodiment, it is possible to reduce the influence of echo fluctuation, noise, and the like.
さらに本実施例によれば、魚群追尾に適した探査距離とすることにより、魚群を見失う可能性を軽減できる。 Furthermore, according to the present embodiment, the possibility of losing the fish school can be reduced by setting the search distance suitable for the fish school tracking.
101…自船、 103…受波ビーム、
105…俯角A+B1のソナー映像、 107…俯角Aのソナー映像、
109…俯角A+B2のソナー映像、
111…俯角A+B1の魚群像、 113…俯角Aの魚群像、
115…俯角A+B2の魚群像、
301…方位走査方向ラインデータ、 302…断面ソナー画像データ、
303…断面ソナー画像データ、
304…ソナー画像上の魚群像指定点データ(初回のみ)、
305…自船から見た魚群位置データ、 306…魚群像の反応強度データ、
307…魚群位置データ、 308…予測魚群位置データ、
309…一定時間の魚群反応強度の総和データ、
310…自船の位置データ、 311…次回俯角データ、
312…処理断面映像の俯角データ、 313…次回探査距離データ、
321…送受波部、 323…断面画像構成部、 325…魚群像抽出部、
327…魚群像位置情報算出部、 329…水平断面上動き予測部、
331…俯角−蓄積反応強度記憶部、 333…俯角制御部、
335…探査範囲制御部。
101 ... Own ship, 103 ... Received beam,
105 ... Sonar image of depression angle A + B1, 107 ... Sonar image of depression angle A,
109 ... Sonar image of depression A + B2,
111 ... Depression A + B1 Fish School Image 113 ... Depression Angle A Fish School Image,
115 ... Fish angle image of depression angle A + B2,
301 ... Azimuth scanning direction line data, 302 ... Cross-sectional sonar image data,
303 ... sectional sonar image data,
304 ... Fish image designated point data on the sonar image (first time only)
305 ... Fish position data seen from own ship, 306 ... Response intensity data of fish image,
307 ... Fish position data, 308 ... Predicted fish position data,
309 ... Summation data of school reaction intensity for a certain period of time,
310 ... Own ship position data, 311 ... Next depression data,
312 ... Depression angle data of the processing cross section image, 313 ... Next exploration distance data,
321 ... Transmission / reception unit , 323 ... Cross-sectional image configuration unit, 325 ... Fish image extraction unit,
327 ... Fish image position information calculation unit, 329 ... Movement prediction unit on horizontal section,
331 ... Depression angle-accumulation reaction intensity storage unit, 333 ... Depression angle control unit,
335 ... Exploration range controller.
Claims (6)
魚群断面を捉える基準俯角をAとし、予め定め記憶装置に記憶させた1以上である定数n個の変動角度をBnとした場合にA+Bnを俯角としてn+1回の水平スキャンを実行する送受波部と、
前記送受波部のデータを断面ソナー画像データに変換する断面画像構成部と、
前記断面画像構成部から得られる断面ソナー画像データから魚群予測位置を用いて対象とする魚群像を抽出し魚群の反応強度および魚群中心の測定中心からの相対位置を算出する魚群像抽出部と、
魚群中心の測定中心からの相対位置と船の絶対位置と俯角から魚群の絶対位置を算出する魚群像位置情報算出部と、
俯角とその俯角で得られた魚群の反応強度を保存する俯角−蓄積反応強度記憶部と、
魚群の絶対位置から次回の魚群予測位置を算出する水平断面上動き予測部と、
前記俯角−蓄積反応強度記憶部の情報から次回の基準俯角を決定する俯角制御部と、
魚群の絶対位置あるいは相対位置から次回の探査距離を決定する探査範囲制御部と、
からなることを特徴とする請求項1に記載の自動追尾スキャニングソナー。 Means for exploring the school of fish by varying the depression angle,
Transducing the reference depression to capture fish section is A, executes the n + 1 times the horizontal scan A + B n as depression constant of n variation angle is one or more has been stored in a predetermined storage device in the case of the B n And
A cross-sectional image construction unit for converting the data of the transmitting and receiving unit into cross-sectional sonar image data;
A fish image extraction unit for extracting a fish image of interest using a fish school predicted position from the cross-sectional sonar image data obtained from the cross-sectional image configuration unit, and calculating a relative position from the measurement center of the fish reaction intensity and fish center;
A fish image position information calculation unit for calculating the absolute position of the fish school from the relative position of the fish center from the measurement center, the absolute position of the ship, and the depression angle;
The depression angle-accumulation reaction intensity storage unit for storing the depression angle and the reaction intensity of the school of fish obtained at the depression angle;
A horizontal cross-section motion prediction unit that calculates the next predicted fish position from the absolute position of the school,
A depression angle control unit for determining a next depression angle from information of the depression angle-accumulated reaction intensity storage unit;
An exploration range control unit that determines the next exploration distance from the absolute position or relative position of the school of fish,
The automatic tracking scanning sonar according to claim 1, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043090A JP2008203227A (en) | 2007-02-23 | 2007-02-23 | Automatic tracking scanning sonar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043090A JP2008203227A (en) | 2007-02-23 | 2007-02-23 | Automatic tracking scanning sonar |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008203227A true JP2008203227A (en) | 2008-09-04 |
Family
ID=39780882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007043090A Pending JP2008203227A (en) | 2007-02-23 | 2007-02-23 | Automatic tracking scanning sonar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008203227A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145225A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device |
JP2010145223A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device and tracking method |
JP2010145222A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device and tracking method |
JP2010145224A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device |
JP2010164384A (en) * | 2009-01-14 | 2010-07-29 | Japan Radio Co Ltd | Apparatus, method and program for tracking target image |
JP2011203123A (en) * | 2010-03-25 | 2011-10-13 | Japan Radio Co Ltd | Three-dimensional survey device |
JP2014077701A (en) * | 2012-10-10 | 2014-05-01 | Furuno Electric Co Ltd | Fish finding device, signal processing device, fish finder, fish finding method and program |
CN107703509A (en) * | 2017-11-06 | 2018-02-16 | 苏州科技大学 | A kind of optimal system and method fished a little of sonar contact shoal of fish selection |
JP2021001737A (en) * | 2019-06-19 | 2021-01-07 | 古野電気株式会社 | Underwater detection device and underwater detection method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53110496A (en) * | 1977-03-09 | 1978-09-27 | Nec Corp | Auotmatic tracking apparatus of antenna |
JPS54148394A (en) * | 1978-05-12 | 1979-11-20 | Mitsubishi Electric Corp | Peak deciding device for step track tracking system |
JPH0843531A (en) * | 1994-08-02 | 1996-02-16 | Japan Radio Co Ltd | Fishfinder |
JPH10239425A (en) * | 1997-02-27 | 1998-09-11 | Kaijo Corp | Underwater sensor |
JP2003315453A (en) * | 2002-04-24 | 2003-11-06 | Furuno Electric Co Ltd | Automatic tracking system scanning sonar |
JP2006105850A (en) * | 2004-10-07 | 2006-04-20 | Furuno Electric Co Ltd | Scanning sonar |
-
2007
- 2007-02-23 JP JP2007043090A patent/JP2008203227A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53110496A (en) * | 1977-03-09 | 1978-09-27 | Nec Corp | Auotmatic tracking apparatus of antenna |
JPS54148394A (en) * | 1978-05-12 | 1979-11-20 | Mitsubishi Electric Corp | Peak deciding device for step track tracking system |
JPH0843531A (en) * | 1994-08-02 | 1996-02-16 | Japan Radio Co Ltd | Fishfinder |
JPH10239425A (en) * | 1997-02-27 | 1998-09-11 | Kaijo Corp | Underwater sensor |
JP2003315453A (en) * | 2002-04-24 | 2003-11-06 | Furuno Electric Co Ltd | Automatic tracking system scanning sonar |
JP2006105850A (en) * | 2004-10-07 | 2006-04-20 | Furuno Electric Co Ltd | Scanning sonar |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145225A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device |
JP2010145223A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device and tracking method |
JP2010145222A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device and tracking method |
JP2010145224A (en) * | 2008-12-18 | 2010-07-01 | Japan Radio Co Ltd | Scanning sonar device |
JP2010164384A (en) * | 2009-01-14 | 2010-07-29 | Japan Radio Co Ltd | Apparatus, method and program for tracking target image |
JP2011203123A (en) * | 2010-03-25 | 2011-10-13 | Japan Radio Co Ltd | Three-dimensional survey device |
JP2014077701A (en) * | 2012-10-10 | 2014-05-01 | Furuno Electric Co Ltd | Fish finding device, signal processing device, fish finder, fish finding method and program |
CN107703509A (en) * | 2017-11-06 | 2018-02-16 | 苏州科技大学 | A kind of optimal system and method fished a little of sonar contact shoal of fish selection |
CN107703509B (en) * | 2017-11-06 | 2023-08-04 | 苏州科技大学 | System and method for selecting optimal fishing point by detecting fish shoal through sonar |
JP2021001737A (en) * | 2019-06-19 | 2021-01-07 | 古野電気株式会社 | Underwater detection device and underwater detection method |
JP7257271B2 (en) | 2019-06-19 | 2023-04-13 | 古野電気株式会社 | Underwater detection device and underwater detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008203227A (en) | Automatic tracking scanning sonar | |
JP6014382B2 (en) | Underwater detection device, underwater display system, program, and underwater display method | |
US6870793B2 (en) | Automatically tracking scanning sonar | |
US20210141048A1 (en) | Marine electronic device for presentment of nautical charts and sonar images | |
JP2019120543A (en) | Target detection device | |
JP6509873B2 (en) | System and associated method for detecting and locating a neutral buoyant underwater object such as anchored mines | |
KR20090084877A (en) | Ship mounted underwater sonar system | |
KR19990078351A (en) | Apparatus suitable for searching objects in water | |
JP2006162480A (en) | Underwater detection system | |
JP2008096199A (en) | Underground radar | |
JP2008268183A (en) | Underwater detection device | |
JP2009075093A (en) | Radar device | |
EP2527864A1 (en) | Sensor image display device and method | |
EP3006321A1 (en) | Environment information detection device for ships, route setting device, environment information detection method for ships, and program | |
US20180149731A1 (en) | Signal processor and radar apparatus | |
JPH11316277A (en) | Scanning sonar for automatically tracking school of fish | |
JP6154219B2 (en) | Echo signal processing device, wave radar device, echo signal processing method, and echo signal processing program | |
CN108713153B (en) | Radar device and track display method | |
KR101773425B1 (en) | Method and apparatus for controlling position of underwater robot and underwater robot having the same | |
JP2012122736A (en) | Underwater detection device and underwater detection system | |
JP7163555B2 (en) | Underwater information visualization device | |
KR101566337B1 (en) | Artificial landmark for facilitating identification by underwater imaging sonar and image processing | |
CN110780286A (en) | Echo signal processing device and system, and echo signal processing method | |
KR102710500B1 (en) | Apparatus and method for providing position and orientation information of sea object based on camera | |
JP6016255B2 (en) | Acoustic image generation system, acoustic image generation method, and acoustic image generation program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20100223 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110721 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110725 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20110908 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111201 |
|
A521 | Written amendment |
Effective date: 20120120 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120404 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20120525 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20130402 Free format text: JAPANESE INTERMEDIATE CODE: A02 |