JP2008203130A - Bearing for wheel with sensor - Google Patents

Bearing for wheel with sensor Download PDF

Info

Publication number
JP2008203130A
JP2008203130A JP2007040683A JP2007040683A JP2008203130A JP 2008203130 A JP2008203130 A JP 2008203130A JP 2007040683 A JP2007040683 A JP 2007040683A JP 2007040683 A JP2007040683 A JP 2007040683A JP 2008203130 A JP2008203130 A JP 2008203130A
Authority
JP
Japan
Prior art keywords
sensor
sensors
pulsar ring
load
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007040683A
Other languages
Japanese (ja)
Inventor
Hiroshi Isobe
浩 磯部
Toru Takahashi
亨 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007040683A priority Critical patent/JP2008203130A/en
Publication of JP2008203130A publication Critical patent/JP2008203130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing for a wheel with a sensor that can easily mount a sensor, and can accurately detect the load and the rotation acting on the bearing by only mounting one type of sensor. <P>SOLUTION: In this bearing for the wheel having a plurality of rows of rolling bodies 5 interposed between an outer member 1 and an inner member 2, the rotation-side member, of the outward member 1 and inward member 2, is provided with a ring-like pulsar ring 16, where a plurality of teeth are arranged in the circumferential direction of the rotation-side member. The fixed-side member, of the outward member 1 and inward member 2, is provided with sensors 18A and 18B for detecting the pulsar ring 16. The bearing comprises a rotation speed detecting means 20 for detecting the rotation speed from the period of the output signals from the sensors 18A and 18B, and a load detecting means 21 for detecting the load acting on the bearing for the wheel from the length of the amplitude of the output signals from the sensors 18A and 18B or the phase difference between the input signal and the output signals. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重と車輪の回転とを検出するセンサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing incorporating a sensor for detecting a load applied to a wheel bearing portion and rotation of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。   2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are performed by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.

そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。   Therefore, it is conceivable to control the posture from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, the suspension control etc. is controlled in advance based on the detection result, thereby controlling the attitude during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future and the system becomes a system in which the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、変位センサを用いて軸受の回転輪と固定輪間のギャップ(相対変位)を測定し、それから荷重を算出する車輪用軸受も提案されている(例えば特許文献1,2)。また、軸受の外輪に超音波センサを設け、転動体と転走面の接触面積により変化するエコー比より荷重を検出する車輪用軸受も提案されている(例えば特許文面3,4)。
特開2004−003918号公報 特開2004−232795号公報 特開2006−177932号公報 特開2006−292027号公報
As a response to such a demand, a wheel bearing has also been proposed in which a gap (relative displacement) between a rotating wheel and a fixed ring of a bearing is measured using a displacement sensor and a load is calculated therefrom (for example, Patent Document 1). , 2). There has also been proposed a wheel bearing in which an ultrasonic sensor is provided on the outer ring of the bearing and the load is detected based on an echo ratio that varies depending on the contact area between the rolling element and the rolling surface (for example, patent documents 3 and 4).
JP 2004-003918 A Japanese Patent Laid-Open No. 2004-232795 JP 2006-177932 A JP 2006-292027 A

しかし、特許文献1,2に開示された技術には、次のような問題があった。
・ 回転輪と固定輪の相対変位量が小さく、変位の検出が難しい。
・ 様々な方向の荷重を測定するためには、複数個のセンサを設ける必要がある。例えばタイヤの接地面に対して垂直方向にセンサを設置した場合、垂直方向の変位は検出できるが水平方向の変位は検出できない。
・ 渦電流方式や磁束の大きさによりギャップを検出する方式では、検出部と被検出部のギャップを狭くしなければならない。
・ 光学式の変位センサの場合、振動に弱い。
・ この場合の変位センサは荷重検出に専用のセンサであり、荷重検出のほかに回転検出を行おうとすれば、別に回転センサを設ける必要がある。変位センサで検出される転動体の通過時に変位センサで検出される公転速度から車輪の回転を求めることもできるが、転動体には公転滑りが存在するため、正確な回転検出はできない。
However, the techniques disclosed in Patent Documents 1 and 2 have the following problems.
・ The relative displacement between the rotating wheel and the fixed wheel is small, making it difficult to detect the displacement.
・ In order to measure loads in various directions, it is necessary to install multiple sensors. For example, when a sensor is installed in a direction perpendicular to the ground contact surface of the tire, a vertical displacement can be detected, but a horizontal displacement cannot be detected.
・ In the eddy current method and the method of detecting the gap by the magnitude of the magnetic flux, the gap between the detection unit and the detection unit must be narrowed.
・ In the case of an optical displacement sensor, it is vulnerable to vibration.
-The displacement sensor in this case is a dedicated sensor for load detection. If rotation detection is to be performed in addition to load detection, it is necessary to provide a separate rotation sensor. Although it is possible to determine the rotation of the wheel from the revolution speed detected by the displacement sensor when the rolling element is detected by the displacement sensor, accurate rotation detection cannot be performed because of the revolution slip of the rolling element.

また、特許文献3,4に開示された技術には、次のような問題があった。
・ 超音波が反射を繰り返して複雑に伝播するため、他の位置に設置された別の超音波センサに影響を及ぼし、荷重を正確に検出することが難しい。
・ 転動体と転走面の接触面に向けて超音波が発せられるように超音波センサを設置する必要があるため、超音波センサの位置決めが難しい。
・ 超音波センサは荷重検出に専用のセンサであり、荷重検出のほかに回転検出を行おうとすれば、別に回転センサを設ける必要がある。
In addition, the techniques disclosed in Patent Documents 3 and 4 have the following problems.
-Since ultrasonic waves are repeatedly reflected and propagated in a complicated manner, it affects other ultrasonic sensors installed at other positions, and it is difficult to accurately detect the load.
-Since it is necessary to install an ultrasonic sensor so that an ultrasonic wave is emitted toward the contact surface between the rolling element and the rolling surface, it is difficult to position the ultrasonic sensor.
-The ultrasonic sensor is a dedicated sensor for load detection. If rotation detection is to be performed in addition to load detection, it is necessary to provide a separate rotation sensor.

この発明の目的は、センサの搭載が容易で、一種類のセンサを搭載するだけで、軸受に作用する荷重と回転とを正確に検出できるセンサ付車輪用軸受を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a sensor-equipped wheel bearing that is easy to mount a sensor and can accurately detect a load and rotation acting on the bearing only by mounting a single type of sensor.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記各転走面と対向する転走面が外周に形成された内方部材と、対向する両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、前記外方部材および内方部材のうちの回転側部材に、この回転側部材の円周方向に複数の歯が並ぶギヤ状のパルサリングを設け、前記外方部材および内方部材のうちの固定側部材に、前記パルサリングを検出するセンサを設け、前記センサの出力信号の周期から回転速度を検出する回転速度検出手段、および前記センサの出力信号の振幅の大きさもしくは入力信号と出力信号の位相差から前記車輪用軸受に作用する荷重を検出する荷重検出手段を設けたことを特徴とする。
この構成によると、パルサリングを検出するセンサの出力信号の周期から回転速度を検出する回転速度検出手段、および前記センサの出力信号の振幅の大きさもしくは入力信号と出力信号の位相差から前記車輪用軸受に作用する荷重を検出する荷重検出手段を設けたため、パルサリングとセンサとでなる一種類のセンサユニットだけのコンパクトな構成により、車輪の回転と車輪用軸受に作用する荷重とを正確に検出することができ、車輪用軸受へのセンサユニットの搭載も容易なものとなる。
The sensor-equipped wheel bearing according to the present invention includes an outer member in which a double row rolling surface is formed on the inner periphery, an inner member in which a rolling surface opposite to each of the rolling surfaces is formed on the outer periphery, In a wheel bearing comprising a double row rolling element interposed between both facing rolling surfaces and rotatably supporting the wheel with respect to the vehicle body, the rotating side member of the outer member and the inner member The rotation side member is provided with a gear-shaped pulsar ring in which a plurality of teeth are arranged in the circumferential direction, and a sensor for detecting the pulsar ring is provided on the fixed side member of the outer member and the inner member. Rotation speed detection means for detecting the rotation speed from the period of the output signal, and load detection means for detecting the load acting on the wheel bearing from the magnitude of the amplitude of the output signal of the sensor or the phase difference between the input signal and the output signal Is provided.
According to this configuration, the rotational speed detecting means for detecting the rotational speed from the period of the output signal of the sensor for detecting pulsar ring, and the wheel output from the magnitude of the amplitude of the output signal of the sensor or the phase difference between the input signal and the output signal. Since load detection means for detecting the load acting on the bearing is provided, the rotation of the wheel and the load acting on the wheel bearing can be accurately detected with a compact configuration consisting of only one type of sensor unit consisting of a pulsar ring and a sensor. Therefore, the sensor unit can be easily mounted on the wheel bearing.

この発明において、前記センサを超音波センサとしてもよい。超音波センサの場合、送信部と検出面、および検出面と受信部の間に、ある程度距離を離してもよいので設計の自由度が高い。また、超音波センサは振動にも強い。さらに、超音波は指向性が良いため、少しの相対変位でも受信部で検知したエコーの大きさや反射時間(反射時間が変化することにより入力信号と出力信号の位相差が変化する)が変化しやすく、感度の良い測定結果が得られる。さらに、この発明の構成によれば、超音波は空気中を伝播するため、複数個のセンサを設置しても互いに影響を及ぼし合うことが少なく、そのため複数個のセンサを設置して検出精度を向上させることが可能である。   In the present invention, the sensor may be an ultrasonic sensor. In the case of an ultrasonic sensor, the degree of freedom in design is high because a certain distance may be provided between the transmission unit and the detection surface and between the detection surface and the reception unit. The ultrasonic sensor is also resistant to vibration. Furthermore, since ultrasonic waves have good directivity, the magnitude of the echo detected by the receiver and the reflection time (the phase difference between the input signal and the output signal changes as the reflection time changes) change even with a slight relative displacement. Easy and sensitive measurement results can be obtained. Furthermore, according to the configuration of the present invention, since ultrasonic waves propagate in the air, even if a plurality of sensors are installed, they hardly affect each other. Therefore, a plurality of sensors are installed to improve detection accuracy. It is possible to improve.

この発明において、前記センサを2つ以上設け、少なくても2つの前記センサは、前記パルサリングの隣接する凹凸を1周期とする周回位相において、90°の位相差を持つように配置してもよい。これにより、回転方向を検出することができる。   In the present invention, two or more sensors may be provided, and at least two of the sensors may be arranged so as to have a phase difference of 90 ° in a circulation phase in which the adjacent unevenness of the pulsar ring is one cycle. . Thereby, the rotation direction can be detected.

この発明において、前記パルサリングの円周方向の1箇所に原点被検出部を設け、この原点被検出部を検出して前記回転側部材の回転位置の原点を検出する原点検出用センサを設けても良い。この構成の場合、パルサリングを検出するセンサの出力信号の振幅のうち回転同期成分をオフセット変動として記憶してキャンセルすることが可能となるので、振幅の微小な変動も検出することができ、高精度な荷重検出が可能となる。   In the present invention, an origin detection part may be provided at one place in the circumferential direction of the pulsar ring, and an origin detection sensor for detecting the origin of the rotation position of the rotation side member by detecting the origin detection part may be provided. good. In this configuration, the rotation synchronization component of the amplitude of the output signal of the sensor that detects pulsarring can be stored and canceled as an offset fluctuation, so that a minute fluctuation in amplitude can be detected with high accuracy. Load detection is possible.

この発明において、前記固定側部材が外方部材であり、前記パルサリングを前記内方部材の外周に設けても良い。   In this invention, the fixed member may be an outer member, and the pulsar ring may be provided on the outer periphery of the inner member.

この発明において、前記回転側部材が内方部材であり、この内方部材が車輪取付用のフランジを有し、このフランジの側面に前記パルサリングを設けても良い。
車輪取付用のフランジは、作用荷重による傾きを生じるため、感度良く荷重が検出できる。また、内方部材の車輪取付用のフランジと外方部材との間の隙間を利用してパルサリングおよびセンサを配置できて、コンパクトな構成とできる。
In the present invention, the rotation side member may be an inner member, the inner member may have a wheel mounting flange, and the pulsar ring may be provided on a side surface of the flange.
Since the wheel mounting flange is inclined by the applied load, the load can be detected with high sensitivity. Further, the pulsar ring and the sensor can be arranged using the gap between the flange for mounting the wheel of the inner member and the outer member, and a compact configuration can be achieved.

この発明において、前記センサを、前記固定側部材における円周方向の4箇所に設け、前記回転速度検出手段は、前記4箇所のセンサのうちの少なくとも一つのセンサの出力信号から回転速度を検出するものとし、前記荷重検出手段は前記4箇所のセンサの出力信号から前記荷重を検出するものとしても良い。
この構成の場合、4箇所のセンサの出力信号から様々な方向の荷重を推定することができる。
In the present invention, the sensors are provided at four locations in the circumferential direction of the stationary member, and the rotational speed detecting means detects the rotational speed from an output signal of at least one of the four sensors. The load detection means may detect the load from output signals of the four sensors.
In this configuration, loads in various directions can be estimated from the output signals of the four sensors.

この発明において、前記固定側部材と回転側部材との間の軸受空間のアウトボード側端およびインボード側端をそれぞれ覆う一対のシールを設け、アウトボード側のシールとこのシール側の転動体列との間に、アウトボード側のパルサリングおよびこのパルサリングを検出するアウトボード側のセンサを配置し、かつインボード側のシールとこのシール側の転動体列との間に、インボード側のパルサリングおよびこのパルサリングを検出するインボード側のセンサを配置し、前記回転速度検出手段は、前記アウトボード側およびインボード側のセンサのうちの少なくとも一方のセンサの出力信号から回転速度を検出するものとし、前記荷重検出手段は前記アウトボード側およびインボード側のセンサの両方の出力信号から前記荷重を検出するものとしても良い。
この構成の場合、軸方向に離れたアウトボード側とインボード側の2箇所にパルサリングとセンサの組を2組設けているので、車輪用軸受に作用する荷重をより詳しく検出することができる。例えば、アウトボード側とインボード側のセンサの出力の差から、車幅方向の荷重が検出できる。また、シールと転動体列との間にパルサリングおよびセンサを配置するため、軸受内の空間を利用してコンパクトにセンサ等を設置でき、かつ前記シールによりセンサおよびパルサリングの防水,防錆が行える。
In this invention, a pair of seals are provided to cover the outboard side end and the inboard side end of the bearing space between the fixed side member and the rotation side member, respectively, and the seal on the outboard side and the rolling element row on the seal side are provided. An outboard-side pulsar ring and an outboard-side sensor for detecting this pulsar ring are arranged between the inboard-side seal and this seal-side rolling element row, and the in-board-side pulsar ring and An inboard side sensor for detecting this pulsar ring is arranged, and the rotational speed detecting means detects a rotational speed from an output signal of at least one of the outboard side sensor and the inboard side sensor, The load detecting means detects the load from output signals of both the outboard side and inboard side sensors. It may be of.
In the case of this configuration, two sets of pulsar rings and sensors are provided at two locations on the outboard side and the inboard side that are separated in the axial direction, so that the load acting on the wheel bearing can be detected in more detail. For example, the load in the vehicle width direction can be detected from the difference between the outputs of the sensors on the outboard side and the inboard side. Further, since the pulsar ring and the sensor are arranged between the seal and the rolling element row, a sensor or the like can be installed in a compact manner by utilizing the space in the bearing, and the sensor and the pulsar ring can be waterproofed and rusted by the seal.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記各転走面と対向する転走面が外周に形成された内方部材と、対向する両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、前記外方部材および内方部材のうちの回転側部材に、この回転側部材の円周方向に複数の歯が並ぶギヤ状のパルサリングを設け、前記外方部材および内方部材のうちの固定側部材に、前記パルサリングを検出するセンサを設け、前記センサの出力信号の周期から回転速度を検出する回転速度検出手段、および前記センサの出力信号の振幅の大きさもしくは入力信号と出力信号の位相差から前記車輪用軸受に作用する荷重を検出する荷重検出手段を設けたため、センサの搭載が容易で、一種類のセンサを搭載するだけで、軸受に作用する荷重と回転とを正確に検出することができる。   The sensor-equipped wheel bearing according to the present invention includes an outer member in which a double row rolling surface is formed on the inner periphery, an inner member in which a rolling surface opposite to each of the rolling surfaces is formed on the outer periphery, In a wheel bearing comprising a double row rolling element interposed between both facing rolling surfaces and rotatably supporting the wheel with respect to the vehicle body, the rotating side member of the outer member and the inner member The rotation side member is provided with a gear-shaped pulsar ring in which a plurality of teeth are arranged in the circumferential direction, and a sensor for detecting the pulsar ring is provided on the fixed side member of the outer member and the inner member. Rotation speed detection means for detecting the rotation speed from the period of the output signal, and load detection means for detecting the load acting on the wheel bearing from the magnitude of the amplitude of the output signal of the sensor or the phase difference between the input signal and the output signal The sensor can be mounted easily. In, simply by mounting one type of sensor, and a rotation load applied to the bearing can be accurately detected.

この発明の一実施形態を図1ないし図4と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が外向きとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 formed with the surface 4 and the double row rolling elements 5 interposed between the outer member 1 and the rolling surfaces 3 and 4 of the inner member 2 are constituted. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 are arc-shaped in cross section, and each rolling surface 3 and 4 is formed so that the contact angle is outward. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックルに取付けるフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に車体取付孔14が設けられている。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、ホイールおよび制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
図2は、この車輪用軸受のインボード側から見た正面図を示す。なお、図1は、図2におけるI−O−I矢視断面図を示す。
The outer member 1 is a fixed side member, and has a flange 1a attached to the knuckle in the suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with vehicle body mounting holes 14 at a plurality of locations in the circumferential direction.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fitting holes 15 for hub bolts (not shown) at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a brake component (not shown) protrudes toward the outboard side.
FIG. 2 shows a front view of the wheel bearing as viewed from the inboard side. FIG. 1 is a cross-sectional view taken along the line I-O-I in FIG.

回転側部材である内方部材2の外周面における前記両列の転走面4,4間の軸方向中間位置には、図3(A)に断面図で示すように、内方部材2の円周方向に複数の歯16aが等ピッチで並ぶギヤ状のパルサリング16が設けられている。
また、固定側部材である外方部材1の内周面には、前記パルサリング16とでセンサユニット30を構成する一対のセンサ18A,18Bが設けられている。これら一対のセンサ18A,18Bは、前記パルサリング16を検出する検出部となるものであって、パルサリング16と径方向に対向するようにリング状のセンサハウジング19を介して外方部材1の内周面に設けられている。これらのセンサ18A,18Bは、図3(A)の一部を拡大して示す図3(B)のように、送信部28と受信部29を有する超音波センサからなり、送信部28から発せられる超音波が反射面であるパルサリング16の外周の歯16aの凹凸面で反射し、その反射した超音波のエコーを受信部29が受信するようになっている。ここでは、これら一対のセンサ18A,18Bが外方部材1の上下に分けて設けられている。これら一対のセンサ18A,18Bは、パルサリング16の歯16aの隣接する山部16aaから谷部16abまでの区間を1周期とする周回位相において、例えば90°の位相差を持つように配置される。なお、図3の図面上では上記位相差を省略して図示している。
As shown in the cross-sectional view of FIG. 3A, the inner member 2 is positioned at an intermediate position in the axial direction between the rolling surfaces 4 and 4 of the two rows on the outer peripheral surface of the inner member 2 that is the rotation side member. A gear-shaped pulsar ring 16 in which a plurality of teeth 16a are arranged at an equal pitch in the circumferential direction is provided.
In addition, a pair of sensors 18 </ b> A and 18 </ b> B that form a sensor unit 30 with the pulsar ring 16 are provided on the inner peripheral surface of the outer member 1 that is a fixed member. The pair of sensors 18 </ b> A and 18 </ b> B serve as a detection unit that detects the pulsar ring 16, and the inner periphery of the outer member 1 is interposed via a ring-shaped sensor housing 19 so as to face the pulsar ring 16 in the radial direction. It is provided on the surface. These sensors 18A and 18B are composed of ultrasonic sensors having a transmitter 28 and a receiver 29 as shown in FIG. 3B, which is an enlarged view of a part of FIG. The reflected ultrasonic waves are reflected by the concavo-convex surface of the teeth 16a on the outer periphery of the pulsar ring 16 which is a reflection surface, and the reception unit 29 receives echoes of the reflected ultrasonic waves. Here, the pair of sensors 18 </ b> A and 18 </ b> B are provided separately above and below the outer member 1. The pair of sensors 18A and 18B are arranged so as to have a phase difference of 90 °, for example, in a circular phase having one period as a period from the adjacent peak 16aa to the valley 16ab of the teeth 16a of the pulsar ring 16. Note that the phase difference is omitted in the drawing of FIG.

図4(A),(B)は、内方部材2の回転に伴い前記両センサ18A,18Bの受信部29から出力される検出信号の波形図を示し、図4(C)はセンサ18Bの出力波形図に対応するパルサリング16の歯16aの配列を示す。ここでは、前記受信部29の出力信号として、受信部29が受信する超音波のエコーの大きさが示されている。すなわち、送信部28から発せられる超音波がパルサリング16の歯16aの山部16aaで反射したエコーを受信部29が受信するときには、超音波の進行経路が短く受信部29で受信されるエコーは大きいが、パルサリング16の歯16aの谷部16abで反射したエコーを受信部29が受信するときには、超音波の進行経路が長く受信部29で受信されるエコーは小さくなる。このエコーの大小変化が、図4(A),(B)のような交番波形の検出信号となって受信部29から出力される。なお、ここでは受信部29が受信するパルサリング16の歯16aの山部16aaで反射したエコーの大きさを振幅としている。同図に示す両センサ18A,18Bの出力信号の間では、上記した両センサ18A,18Bの設置において設けられた位相差に対応して、90°の位相差が生じる。すなわち、両センサ18A,18Bの出力信号はAB相信号となる。   4A and 4B show waveform diagrams of detection signals output from the receiving portions 29 of the sensors 18A and 18B as the inner member 2 rotates, and FIG. 4C shows the sensor 18B. The arrangement of the teeth 16a of the pulsar ring 16 corresponding to the output waveform diagram is shown. Here, as the output signal of the receiving unit 29, the magnitude of an ultrasonic echo received by the receiving unit 29 is shown. That is, when the receiving unit 29 receives an echo reflected from the peak 16aa of the tooth 16a of the pulsar ring 16 by the ultrasonic wave emitted from the transmitting unit 28, the echo travel path is short and the echo received by the receiving unit 29 is large. However, when the receiving unit 29 receives the echo reflected by the valley 16ab of the tooth 16a of the pulsar ring 16, the echo travel path is long and the echo received by the receiving unit 29 is small. This echo change is output from the receiving unit 29 as an alternating waveform detection signal as shown in FIGS. Here, the magnitude of the echo reflected by the peak 16aa of the tooth 16a of the pulsar ring 16 received by the receiving unit 29 is used as the amplitude. Between the output signals of both sensors 18A and 18B shown in the figure, a phase difference of 90 ° is generated corresponding to the phase difference provided in the installation of both sensors 18A and 18B. That is, the output signals of both sensors 18A and 18B are AB phase signals.

また、センサ18A,18Bの送信部28から発せられた超音波がパルサリング16の反射面で反射するエコーの大きさをセンサ18A,18Bの受信部29で検出して、そのエコーの周期と大きさの変動から回転速度と荷重とを検出する場合を示したが、パルサリング16の反射面でのエコーの反射時間を検出することにより回転速度と荷重を求めるようにしても良い(図示なし)。すなわち、センサ18A,18Bの送信部28から発せられる超音波がパルサリング16の歯16aの山部16aaで反射するときには、エコーの反射時間は短くなるが、パルサリング16の歯16aの谷部16abで反射するときには、エコーの反射時間は長くなる。そこで、受信部29で、エコーの反射時間を検出信号として出力するものとすれば、その出力波形は図4(A),(B)の場合とは逆の交番波形(パルサリング16の歯16aの山部16aaで最小値、パルサリング16の歯16aの谷部16abで最大値)となり、その波形の振幅の変動値から荷重を検出し、その波形の周期から回転速度を検出することができる。   In addition, the magnitude of an echo reflected from the reflecting surface of the pulsar ring 16 by the ultrasonic wave emitted from the transmission unit 28 of the sensors 18A and 18B is detected by the reception unit 29 of the sensors 18A and 18B, and the period and size of the echoes. Although the case where the rotational speed and the load are detected from the fluctuations in the above is shown, the rotational speed and the load may be obtained by detecting the reflection time of the echo on the reflecting surface of the pulsar ring 16 (not shown). That is, when the ultrasonic waves emitted from the transmitters 28 of the sensors 18A and 18B are reflected by the peaks 16aa of the teeth 16a of the pulsar ring 16, the echo reflection time is shortened but reflected by the valleys 16ab of the teeth 16a of the pulsar rings 16. When doing so, the echo reflection time becomes longer. Therefore, if the reception unit 29 outputs the echo reflection time as a detection signal, the output waveform is an alternating waveform (of the teeth 16a of the pulsar ring 16) opposite to that in FIGS. 4 (A) and 4 (B). It is possible to detect the load from the fluctuation value of the amplitude of the waveform, and to detect the rotation speed from the period of the waveform, the minimum value at the peak portion 16aa and the maximum value at the valley portion 16ab of the teeth 16a of the pulsar ring 16.

前記両センサ18A,18Bは、回転速度検出手段20と荷重検出手段21とに接続される。回転速度検出手段20は、センサ18A,18Bの出力信号の周期から、パルサリング16つまり内方部材2の回転速度を検出する手段である。この回転速度の検出には、両センサ18A,18Bの出力信号のうち、いずれか一方を用いれば足りるが、回転方向は両方の出力信号の位相差から検出される。
荷重検出手段21は、センサ18A,18Bの出力信号の振幅の大きさから車輪用軸受に作用する荷重を検出する手段である。荷重検出手段21は電子回路やマイクロコンピュータ等からなり、センサ18A,18Bの出力信号の振幅の大きさと荷重との関係を設定した関係設定手段(図示せず)を有していて、センサ18A,18Bの出力信号を上記関係設定手段に照らして荷重の検出信号を出力する。また、荷重検出手段21は、前記センサ18A,18Bの入力信号と出力信号の位相差(図示なし)から車輪用軸受に作用する荷重を検出する手段としても良い。
Both sensors 18A and 18B are connected to a rotational speed detecting means 20 and a load detecting means 21. The rotational speed detecting means 20 is a means for detecting the rotational speed of the pulsar ring 16, that is, the inner member 2, from the period of the output signals of the sensors 18A and 18B. For detecting the rotational speed, it is sufficient to use one of the output signals of both the sensors 18A and 18B, but the rotational direction is detected from the phase difference between the two output signals.
The load detection means 21 is a means for detecting a load acting on the wheel bearing from the magnitude of the amplitude of the output signals of the sensors 18A and 18B. The load detection means 21 is composed of an electronic circuit, a microcomputer, and the like, and has relationship setting means (not shown) that sets the relationship between the amplitude of the output signals of the sensors 18A and 18B and the load. A load detection signal is output by comparing the output signal of 18B with the relationship setting means. The load detection means 21 may be a means for detecting a load acting on the wheel bearing from a phase difference (not shown) between the input signals and output signals of the sensors 18A and 18B.

荷重検出手段21による荷重検出処理は、具体的には例えば以下のように行われる。パルサリング16で反射される超音波のエコーを検出する各センサ18A,18Bの出力信号の振幅A,Bは、パルサリング16の超音波反射面とセンサ18A,18Bとの距離の変動、つまり内方部材2の外周面と外方部材1の内周面との間のギャップの変動により大きく変動する。したがって、センサ18A,18Bの出力信号の振幅は、車輪用軸受に加わる荷重の大きさに応じて変動することになる。
そこで、ここでは、荷重検出手段21は、例えばセンサ18A,18Bの出力信号の振幅A,Bから、ギャップ変動を検出するものとされる。
あるいは、荷重検出手段21は、このセンサ付車輪用軸受を車両に組み込む前におけるセンサ18A,18Bの出力信号の振幅を基準値として、センサ18A,18Bの出力信号の振幅A,Bの前記基準値に対する変動分ΔA,ΔBを求め、前記ギャップの変動量の大きさGとして、
G=|ΔA|+|ΔB|
を演算することにより、車輪用軸受に作用する荷重を検出するものとする。
あるいは、パルサリング16で反射される超音波のエコーを検出する各センサ18A,18Bの入力信号と出力信号の位相差は、パルサリング16の超音波反射面とセンサ18A,18Bとの距離の変動、つまり内方部材2の外周面と外方部材1の内周面との間のギャップによる反射時間の変動により、大きく変動する。したがって、センサ18A,18Bの入力信号と出力信号の位相差は、車輪用軸受に加わる荷重の大きさに応じて変動することになる。
そこで、ここでは、荷重検出手段21は、例えばセンサ18A,18Bの入力信号と出力信号の位相差から、ギャップ変動を検出するものとされる。
Specifically, the load detection process by the load detection means 21 is performed as follows, for example. The amplitudes A and B of the output signals of the sensors 18A and 18B that detect the echoes of the ultrasonic waves reflected by the pulsar ring 16 are fluctuations in the distance between the ultrasonic reflection surface of the pulsar ring 16 and the sensors 18A and 18B, that is, inner members. 2 greatly varies due to a variation in the gap between the outer peripheral surface 2 and the inner peripheral surface of the outer member 1. Therefore, the amplitudes of the output signals of the sensors 18A and 18B vary according to the magnitude of the load applied to the wheel bearing.
Therefore, here, the load detection means 21 detects the gap fluctuation from the amplitudes A and B of the output signals of the sensors 18A and 18B, for example.
Alternatively, the load detection means 21 uses the amplitudes of the output signals of the sensors 18A and 18B before the sensor-equipped wheel bearings are incorporated in the vehicle as a reference value, and the reference values of the amplitudes A and B of the output signals of the sensors 18A and 18B. Fluctuations ΔA and ΔB with respect to, and as the magnitude G of the gap variation,
G = | ΔA | + | ΔB |
By calculating, the load acting on the wheel bearing is detected.
Alternatively, the phase difference between the input signals and the output signals of the sensors 18A and 18B that detect the echoes of the ultrasonic waves reflected by the pulsar ring 16 is a variation in the distance between the ultrasonic reflection surface of the pulsar ring 16 and the sensors 18A and 18B. Due to the fluctuation of the reflection time due to the gap between the outer peripheral surface of the inner member 2 and the inner peripheral surface of the outer member 1, it varies greatly. Therefore, the phase difference between the input signals and output signals of the sensors 18A and 18B varies according to the magnitude of the load applied to the wheel bearing.
Therefore, here, the load detection means 21 detects gap fluctuation from the phase difference between the input signals and output signals of the sensors 18A and 18B, for example.

このように、このセンサ付車輪用軸受によると、軸受の回転側部材である内方部材2に設けられたパルサリング16と、軸受の固定側部材である外方部材1に設けられパルサリング16を検出するセンサ18A,18Bとでなる一種類のセンサユニット30だけのコンパクトな構成により、車輪の回転と車輪用軸受に作用する荷重とを正確に検出することができ、車輪用軸受へのセンサユニット30の搭載も容易なものとなる。
また、この実施形態では、車輪用軸受の内部空間における両列の転動体5,5の間に上記センサユニット30が配置されているので、センサユニット30の防錆処理も不要である。
Thus, according to this sensor-equipped wheel bearing, the pulsar ring 16 provided on the inner member 2 which is the rotation side member of the bearing and the pulsar ring 16 provided on the outer member 1 which is the fixed side member of the bearing are detected. With the compact configuration of only one type of sensor unit 30 composed of the sensors 18A and 18B, the rotation of the wheel and the load acting on the wheel bearing can be accurately detected, and the sensor unit 30 to the wheel bearing is detected. Can be easily mounted.
Further, in this embodiment, since the sensor unit 30 is disposed between the two rolling elements 5 and 5 in the inner space of the wheel bearing, the antirust treatment of the sensor unit 30 is also unnecessary.

図5は、上記実施形態のセンサ付車輪用軸受におけるセンサ18A,18Bの他の配置例の断面図を示す。この例では、一対のセンサ18A,18Bを、外方部材1の内周面の上位置において、パルサリング16における歯16aの山部16aaから谷部16abまでの区間を1周期とする周回位相の90°の位相差分だけ離して配置している。
この場合にも、両センサ18A,18Bの出力信号はAB相信号となり、両出力信号の位相差から回転方向を検出でき、いずれか一方の出力信号の周期を用いて回転速度を検出することができる。ただし、この場合の両センサ18A,18Bの出力信号の振幅変動もしくは入力信号と出力信号の位相差変動は、ともに上位置における内方部材2の外周面と外方部材1の内周面の間のギャップ変動だけを反映したものとなるので、荷重検出手段21はいずれか一方のセンサの出力信号から荷重を検出するものとしても良い。
FIG. 5 shows a cross-sectional view of another arrangement example of the sensors 18A and 18B in the sensor wheel bearing according to the embodiment. In this example, the pair of sensors 18A and 18B are placed at a position above the inner peripheral surface of the outer member 1, and the period from the peak 16aa to the valley 16ab of the teeth 16a in the pulsar ring 16 is 90 cycles. They are separated by a phase difference of °.
Also in this case, the output signals of both the sensors 18A and 18B become AB phase signals, the rotation direction can be detected from the phase difference between the two output signals, and the rotation speed can be detected using the period of one of the output signals. it can. However, the amplitude fluctuation of the output signals of both sensors 18A and 18B or the phase difference fluctuation of the input signal and the output signal in this case are both between the outer peripheral surface of the inner member 2 and the inner peripheral surface of the outer member 1 at the upper position. Therefore, the load detection means 21 may detect the load from the output signal of one of the sensors.

図6は、上記実施形態のセンサ付車輪用軸受におけるセンサのさらに他の配置例の断面図を示す。この例では、固定側部材である外方部材1における円周方向の4箇所にセンサ18A〜18Dを配置している。すなわち、この例では、上記した上下に配置される一対のセンサ18A,18Bのほかに、左右に配置される一対のセンサ18C,18Dを付加している。この場合、回転方向検出のために、例えば上下一対のセンサ18A,18Bの間で上記した位相差を設定すると、左右一対のセンサ18C,18Dの間では位相差は考慮しなくて良い。回転速度検出手段20は、前記4箇所のセンサ18A〜18Dのうちの少なくとも1つのセンサの出力信号から回転速度を検出し、荷重検出手段21は前記4箇所のセンサ18A〜18Dの出力信号から荷重を検出するものとしている。
この場合には、上下一対のセンサ18A,18Bの出力信号の振幅変動もしくは入力信号と出力信号の位相差変動が、上下位置における内方部材2の外周面と外付部材1の内周面の間のギャップ変動を反映し、左右一対のセンサ18C,18Dの出力信号の振幅変動もしくは入力信号と出力信号の位相差変動が、左右位置における前記ギャップ変動を反映したものとなるので、それらの出力信号から様々な方向の荷重を推定することができる。
FIG. 6 shows a cross-sectional view of still another example of arrangement of sensors in the sensor-equipped wheel bearing according to the embodiment. In this example, sensors 18A to 18D are arranged at four locations in the circumferential direction of the outer member 1 that is a fixed member. That is, in this example, in addition to the pair of sensors 18A and 18B arranged above and below, a pair of sensors 18C and 18D arranged on the left and right are added. In this case, for example, if the above-described phase difference is set between the pair of upper and lower sensors 18A and 18B in order to detect the rotation direction, the phase difference need not be considered between the pair of left and right sensors 18C and 18D. The rotational speed detection means 20 detects the rotational speed from the output signal of at least one of the four sensors 18A to 18D, and the load detection means 21 detects the load from the output signals of the four sensors 18A to 18D. Is supposed to be detected.
In this case, the amplitude fluctuation of the output signal of the pair of upper and lower sensors 18A, 18B or the phase difference fluctuation of the input signal and the output signal is caused by the outer peripheral surface of the inner member 2 and the inner peripheral surface of the external member 1 at the upper and lower positions. The variation in the amplitude of the output signal of the pair of left and right sensors 18C and 18D or the variation in the phase difference between the input signal and the output signal reflects the gap variation in the left and right positions. Loads in various directions can be estimated from the signal.

図7は、上記実施形態のセンサ付車輪用軸受における磁気エンコーダ16の他の構成例の部分平面図を示す。この構成例のパルサリング16では、その円周方向の1箇所に原点被検出部22が設けられている。ここでは、パルサリング16における1つの歯16aの山部16aaだけを、他部よりも軸方向に突出させ、その突出部を原点被検出部22としている。なお、原点被検出部22を、2つないし3つの歯16aの山部16aaで構成しても良い。
この場合、パルサリング16を検出するセンサとして、パルサリング16の全周を検出できる軸方向長さの上記したセンサ18A,18Bとは別に、前記原点被検出部22だけを検出して回転側部材である内方部材2の回転位置の原点を検出する原点検出用センサ23が設けられる。
FIG. 7 shows a partial plan view of another configuration example of the magnetic encoder 16 in the sensor-equipped wheel bearing according to the embodiment. In the pulsar ring 16 of this configuration example, the origin detected part 22 is provided at one place in the circumferential direction. Here, only the peak portion 16aa of one tooth 16a in the pulsar ring 16 protrudes in the axial direction from the other portion, and the protruding portion is used as the origin detected portion 22. Note that the origin detected part 22 may be constituted by a crest 16aa of two or three teeth 16a.
In this case, as a sensor for detecting the pulsar ring 16, apart from the above-described sensors 18A and 18B having an axial length capable of detecting the entire circumference of the pulsar ring 16, only the origin detected portion 22 is detected and a rotation side member. An origin detection sensor 23 for detecting the origin of the rotational position of the inner member 2 is provided.

このように、パルサリング16の円周方向の1箇所に原点被検出部22を設け、この原点被検出部22を原点検出用センサ23で検出して、回転側部材である内方部材2の回転位置の原点を検出する構成とした場合、センサ18A,18Bの出力信号の振幅もしくは入力信号と出力信号の位相差のうち回転同期成分をオフセット変動として記憶してキャンセルすることが可能となるので、振幅の微小な変動も検出することができ、高精度な荷重検出が可能となる。   Thus, the origin detected part 22 is provided at one place in the circumferential direction of the pulsar ring 16, and this origin detected part 22 is detected by the origin detection sensor 23 to rotate the inner member 2 that is the rotation side member. When the origin of the position is configured to be detected, the rotation synchronization component of the amplitude of the output signal of the sensors 18A and 18B or the phase difference between the input signal and the output signal can be stored as an offset change and canceled. Small fluctuations in amplitude can be detected, and highly accurate load detection is possible.

図8は、この発明の他の実施形態を示す。この実施形態では、図1のセンサ付車輪用軸受において、回転側部材である内方部材2におけるハブ輪9の車輪取付用のハブフランジ9aのインボード側に向く片面に、歯16aの凹凸面が軸方向に向くパルサリング16を、内方部材2と同心となるように設けると共に、固定側部材である外方部材1のアウトボード側の端部に、前記パルサリング16の歯16aの凹凸面と軸方向に対向するように上下一対のセンサ18A,18Bを設けたものである。すなわち、図1の実施形態ではパルサリング16とセンサ18A,18Bを径方向に対向させているのに対して、この実施形態では軸方向に対向させている。その他の構成は図1の実施形態の場合と同様である。
この実施形態の場合、軸受空間内にパルサリング16やセンサ18A,18Bを設置する余裕空間がなくても、これらパルサリング16やセンサ18A,18Bを設置することができる。また、車輪取付用のハブフランジ9aは、車輪に作用する荷重による傾きを生じるため、ここにパルサリング16を設けることで、感度良く荷重を検出することができる。
FIG. 8 shows another embodiment of the present invention. In this embodiment, in the sensor-equipped wheel bearing of FIG. 1, the uneven surface of the teeth 16 a is formed on one surface of the inner member 2, which is a rotation-side member, facing the inboard side of the hub flange 9 a for mounting the wheel of the hub wheel 9. Is provided so as to be concentric with the inner member 2, and an uneven surface of the teeth 16 a of the pulsar ring 16 is provided at an end of the outer member 1 which is a fixed side member. A pair of upper and lower sensors 18A and 18B are provided so as to face each other in the axial direction. That is, in the embodiment of FIG. 1, the pulsar ring 16 and the sensors 18A and 18B are opposed in the radial direction, whereas in this embodiment, they are opposed in the axial direction. Other configurations are the same as those in the embodiment of FIG.
In the case of this embodiment, the pulsar ring 16 and the sensors 18A and 18B can be installed even if there is no room for installing the pulsar ring 16 and the sensors 18A and 18B in the bearing space. Further, since the hub flange 9a for wheel mounting is inclined due to the load acting on the wheel, the load can be detected with high sensitivity by providing the pulsar ring 16 here.

図9および図10は、この発明のさらに他の実施形態を示す。この実施形態も、図8のセンサ付車輪用軸受と同様に、パルサリング16とセンサ18A,18Bを軸方向に対向させたものであり、ここではパルサリング16とセンサ18A,18Bとでなる2組のセンサユニット30A,30Bを、外方部材1と内方部材2の間の軸受内部空間におけるアウトボード側の転動体5の列とアウトボード側シール7との間と、インボード側の転動体5の列とインボード側シール8との間とに分配して設けている。図10は、センサユニット30A(30B)の設置部の断面図を示している。ここでは、パルサリング16は、軸方向に貫通する複数の窓24を円周方向に等ピッチで並べたものとされている。したがって、センサ18A,18Bの送信部28から発せられる超音波が窓24の無い部分で反射されるときには、受信部29でエコーを検出できるが、超音波が窓24を通過するときには、受信部29でエコーを検出できない。これにより、センサ18A,18Bは、検出信号としてノイズなどの影響を受けない交番波形の信号を出力することができる。センサ18A,18Bが外方部材1の内周面に設けられるリング状のセンサハウング19に保持されることは、図1の実施形態の場合と同様である。
この場合、回転速度検出手段20は、前記2つのセンサユニット30A,30Bのうち、すくなくともいずれか一方のセンサユニットにおけるセンサ18A,18Bの出力信号から回転速度を検出し、荷重検出手段21は、両方のセンサユニット30A,30Bのすべてのセンサ18A,18Bの出力信号から荷重を検出するものとしている。
この実施形態において、前記2つのセンサユニット30A,30Bをシールに兼用する構成として、図中のシール7,8を省略しても良い。
9 and 10 show still another embodiment of the present invention. Similarly to the sensor-equipped wheel bearing of FIG. 8, this embodiment also has the pulsar ring 16 and the sensors 18A and 18B facing each other in the axial direction. Here, two sets of the pulsar ring 16 and the sensors 18A and 18B are used. The sensor units 30 </ b> A and 30 </ b> B are arranged between the row of the outboard side rolling elements 5 and the outboard side seal 7 in the bearing inner space between the outer member 1 and the inner member 2, and the inboard side rolling element 5. And are distributed between the inboard side seal 8 and the inboard side seal 8. FIG. 10 shows a cross-sectional view of the installation part of the sensor unit 30A (30B). Here, the pulsar ring 16 is formed by arranging a plurality of windows 24 penetrating in the axial direction at equal pitches in the circumferential direction. Therefore, when the ultrasonic wave emitted from the transmission unit 28 of the sensors 18A and 18B is reflected by a portion without the window 24, the reception unit 29 can detect an echo, but when the ultrasonic wave passes through the window 24, the reception unit 29 Cannot detect echo. Accordingly, the sensors 18A and 18B can output an alternating waveform signal that is not affected by noise or the like as a detection signal. The sensors 18A and 18B are held by a ring-shaped sensor housing 19 provided on the inner peripheral surface of the outer member 1, as in the embodiment of FIG.
In this case, the rotational speed detection means 20 detects the rotational speed from the output signals of the sensors 18A and 18B in at least one of the two sensor units 30A and 30B, and the load detection means 21 The load is detected from the output signals of all the sensors 18A and 18B of the sensor units 30A and 30B.
In this embodiment, the seals 7 and 8 in the figure may be omitted as a configuration in which the two sensor units 30A and 30B are also used as seals.

この実施形態では、軸方向に離れたアウトボード側とインボード側の2箇所にセンサユニット30A,30Bを設けているので、車輪用軸受に作用する荷重をより詳しく検出することができる。   In this embodiment, since the sensor units 30A and 30B are provided at two locations on the outboard side and the inboard side that are separated in the axial direction, the load acting on the wheel bearing can be detected in more detail.

この発明の一実施形態に係るセンサ付車輪用軸受の断面図である。It is sectional drawing of the wheel bearing with a sensor which concerns on one Embodiment of this invention. 同車輪用軸受の外方部材の正面図である。It is a front view of the outward member of the wheel bearing. (A)は同車輪用軸受におけるセンサユニット設置部の断面図、(B)は(A)の部分拡大図である。(A) is sectional drawing of the sensor unit installation part in the bearing for the wheels, (B) is the elements on larger scale of (A). (A),(B)は同車輪用軸受におけるセンサの出力波形図、(C)は(B)の出力波形に対応するパルサリングの歯の配列図である。(A), (B) is an output waveform diagram of a sensor in the wheel bearing, and (C) is an array diagram of pulsar ring teeth corresponding to the output waveform of (B). センサの他の配置例を示す断面図である。It is sectional drawing which shows the other example of arrangement | positioning of a sensor. センサのさらに他の配置例を示す断面図である。It is sectional drawing which shows the other example of arrangement | positioning of a sensor. パルサリングの他の構成例を示す部分平面図である。It is a fragmentary top view which shows the other structural example of a pulsar ring. この発明の他の実施形態に係るセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係るセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor which concerns on other embodiment of this invention. 同車輪用軸受におけるセンサユニット設置部の断面図である。It is sectional drawing of the sensor unit installation part in the wheel bearing.

符号の説明Explanation of symbols

1…外方部材
1a…車体取付用フランジ
2…内方部材
3,4…転走面
5…転動体
7,8…シール
16…パルサリング
16a…歯
18A〜18D…センサ
20…回転速度検出手段
21…荷重検出手段
22…原点被検出部
23…原点検出用センサ
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Car body mounting flange 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 7, 8 ... Seal 16 ... Pulsar ring 16a ... Teeth 18A-18D ... Sensor 20 ... Rotational speed detection means 21 ... Load detection means 22 ... Origin detected part 23 ... Origin detection sensor

Claims (8)

複列の転走面が内周に形成された外方部材と、前記各転走面と対向する転走面が外周に形成された内方部材と、対向する両転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
前記外方部材および内方部材のうちの回転側部材に、この回転側部材の円周方向に複数の歯が並ぶギヤ状のパルサリングを設け、前記外方部材および内方部材のうちの固定側部材に、前記パルサリングを検出するセンサを設け、前記センサの出力信号の周期から回転速度を検出する回転速度検出手段、および前記センサの出力信号の振幅の大きさもしくは入力信号と出力信号の位相差から前記車輪用軸受に作用する荷重を検出する荷重検出手段を設けたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member in which a rolling surface facing each of the rolling surfaces is formed on the outer periphery, and the both facing rolling surfaces are interposed In a wheel bearing comprising a double row rolling element, and rotatably supporting the wheel with respect to the vehicle body,
A rotation-side member of the outer member and the inner member is provided with a gear-shaped pulsar ring in which a plurality of teeth are arranged in a circumferential direction of the rotation-side member, and a fixed side of the outer member and the inner member The member is provided with a sensor for detecting the pulsar ring, a rotational speed detecting means for detecting the rotational speed from the period of the output signal of the sensor, and the magnitude of the amplitude of the output signal of the sensor or the phase difference between the input signal and the output signal A sensor-equipped wheel bearing comprising a load detecting means for detecting a load acting on the wheel bearing.
請求項1において、前記センサを超音波センサとしたことを特徴とするセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 1, wherein the sensor is an ultrasonic sensor. 請求項1または請求項2において、前記センサを2つ以上設け、少なくても2つの前記センサは、前記パルサリングの隣接する凹凸を1周期とする周回位相において、90°の位相差を持つように配置したことを特徴とするセンサ付車輪用軸受。   2. The sensor according to claim 1, wherein two or more sensors are provided, and at least two of the sensors have a phase difference of 90 ° in a circular phase having one cycle of adjacent unevenness of the pulsar ring. A wheel bearing with sensor, characterized by being arranged. 請求項1ないし請求項3のいずれか1項において、前記パルサリングの円周方向の1箇所に原点被検出部を設け、この原点被検出部を検出して前記回転側部材の回転位置の原点を検出する原点検出用センサを設けたセンサ付車輪用軸受。   The origin detection part is provided in one place in the circumferential direction of the pulsar ring according to any one of claims 1 to 3, and the origin detection part is detected to determine the origin of the rotation position of the rotation side member. Sensor-equipped wheel bearing with a sensor for detecting the origin. 請求項1ないし請求項4のいずれか1項において、前記固定側部材が外方部材であり、前記パルサリングを前記内方部材の外周に設けたセンサ付車輪用軸受。   5. The sensor-equipped wheel bearing according to claim 1, wherein the fixed side member is an outer member, and the pulsar ring is provided on an outer periphery of the inner member. 請求項1ないし請求項4のいずれか1項において、前記回転側部材が内方部材であり、この内方部材が車輪取付用のフランジを有し、このフランジの側面に前記パルサリングを設けたセンサ付車輪用軸受。   5. The sensor according to claim 1, wherein the rotation side member is an inner member, the inner member has a wheel mounting flange, and the pulsar ring is provided on a side surface of the flange. 6. Wheel bearing. 請求項1ないし請求項6のいずれか1項において、前記センサを、前記固定側部材における円周方向の4箇所に設け、前記回転速度検出手段は、前記4箇所のセンサのうちの少なくとも一つのセンサの出力信号から回転速度を検出するものとし、前記荷重検出手段は前記4箇所のセンサの出力信号から前記荷重を検出するものとしたセンサ付車輪用軸受。   7. The sensor according to claim 1, wherein the sensors are provided at four locations in the circumferential direction of the fixed-side member, and the rotational speed detection means is at least one of the sensors at the four locations. A sensor-equipped wheel bearing in which a rotational speed is detected from an output signal of a sensor, and the load detecting means detects the load from output signals of the four sensors. 請求項1ないし請求項7のいずれか1項において、前記固定側部材と回転側部材との間の軸受空間のアウトボード側端およびインボード側端をそれぞれ覆う一対のシールを設け、アウトボード側のシールとこのシール側の転動体列との間に、アウトボード側のパルサリングおよびこのパルサリングを検出するアウトボード側のセンサを配置し、かつインボード側のシールとこのシール側の転動体列との間に、インボード側のパルサリングおよびこのパルサリングを検出するインボード側のセンサを配置し、前記回転速度検出手段は、前記アウトボード側およびインボード側のセンサのうちの少なくとも一方のセンサの出力信号から回転速度を検出するものとし、前記荷重検出手段は前記アウトボード側およびインボード側のセンサの両方の出力信号から前記荷重を検出するものとしたセンサ付車輪用軸受。


8. The pair of seals according to claim 1, wherein a pair of seals respectively covering an outboard side end and an inboard side end of the bearing space between the fixed side member and the rotation side member are provided, and the outboard side is provided. An outboard side pulsar ring and an outboard side sensor for detecting the pulsar ring are arranged between the seal of the seal and the rolling element row on the seal side, and the seal on the inboard side and the rolling element row on the seal side An inboard side pulsar ring and an inboard side sensor for detecting the pulsar ring are disposed between the at least one of the outboard side sensor and the inboard side sensor. The rotation speed is detected from the signal, and the load detecting means outputs both the outboard side sensor and the inboard side sensor. Sensor equipped wheel support bearing assembly which is intended to detect the load from the signal.


JP2007040683A 2007-02-21 2007-02-21 Bearing for wheel with sensor Pending JP2008203130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040683A JP2008203130A (en) 2007-02-21 2007-02-21 Bearing for wheel with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040683A JP2008203130A (en) 2007-02-21 2007-02-21 Bearing for wheel with sensor

Publications (1)

Publication Number Publication Date
JP2008203130A true JP2008203130A (en) 2008-09-04

Family

ID=39780800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040683A Pending JP2008203130A (en) 2007-02-21 2007-02-21 Bearing for wheel with sensor

Country Status (1)

Country Link
JP (1) JP2008203130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163675A (en) * 2013-02-21 2014-09-08 Toshiba Corp Rotary machine monitoring system and rotary machine monitoring method
WO2018003054A1 (en) * 2016-06-30 2018-01-04 Gkn ドライブライン ジャパン株式会社 Slide flange

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163675A (en) * 2013-02-21 2014-09-08 Toshiba Corp Rotary machine monitoring system and rotary machine monitoring method
WO2018003054A1 (en) * 2016-06-30 2018-01-04 Gkn ドライブライン ジャパン株式会社 Slide flange
CN109072992A (en) * 2016-06-30 2018-12-21 吉凯恩传动系统日本株式会社 Slide flange
CN109072992B (en) * 2016-06-30 2020-06-09 吉凯恩汽车有限公司 Sliding flange
US10711849B2 (en) 2016-06-30 2020-07-14 Gkn Automotive Ltd. Slide flange

Similar Documents

Publication Publication Date Title
JP4925624B2 (en) Wheel bearing with sensor
JP2007046635A (en) Bearing for wheel with sensor
JP2007071280A (en) Wheel bearing with sensor
WO2007023785A1 (en) Sensor-equipped bearing for wheel
JP2007155079A (en) Wheel bearing with sensor
JP2006057817A (en) Bearing device for wheel with sensor
JP4925625B2 (en) Wheel bearing with sensor
JP2007057258A (en) Wheel bearing with sensor
JP2007078615A (en) Bearing with sensor for wheel
JP2007057259A (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
JP4840083B2 (en) Rolling bearing device with sensor
JP2008203130A (en) Bearing for wheel with sensor
JP2008051283A (en) Wheel bearing with sensor
WO2010147004A1 (en) System for monitoring tire air pressure
JP3979151B2 (en) Wheel rotation detector
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2009041704A (en) Rolling bearing device
JP2007064778A (en) Bearing for wheel with sensor
JP2008215977A (en) Wheel bearing with sensor
JP2006003268A (en) Bearing device for wheel with built-in load sensor
JP2007071652A (en) Wheel bearing with sensor
JP4911967B2 (en) Wheel bearing with sensor
JP2009128265A (en) Wheel bearing with sensor