JP2008203054A - Far-infrared image acquisition apparatus - Google Patents

Far-infrared image acquisition apparatus Download PDF

Info

Publication number
JP2008203054A
JP2008203054A JP2007038731A JP2007038731A JP2008203054A JP 2008203054 A JP2008203054 A JP 2008203054A JP 2007038731 A JP2007038731 A JP 2007038731A JP 2007038731 A JP2007038731 A JP 2007038731A JP 2008203054 A JP2008203054 A JP 2008203054A
Authority
JP
Japan
Prior art keywords
shutter
far
temperature
infrared
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007038731A
Other languages
Japanese (ja)
Other versions
JP5347224B2 (en
Inventor
Toshiaki Yamashita
敏明 山下
Motohiko Hirano
基彦 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007038731A priority Critical patent/JP5347224B2/en
Publication of JP2008203054A publication Critical patent/JP2008203054A/en
Application granted granted Critical
Publication of JP5347224B2 publication Critical patent/JP5347224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable target biological information to be acquired easily and efficiently, without having to perform shutter driving control, by synchronizing a complex and high-precision synchronization between a camera and a shutter. <P>SOLUTION: The method comprises putting an object to be photographed on the shutter (S1); adjusting the distance between a biological portion and a proximal lens 2, by using a height fine adjusting mechanism 8 (S2); acquiring a biological temperature distribution as image information, after the adjusting step, by using a far-infrared camera 1 disposed at the lower section of the shutter 3 (S3); keeping the surface of the shutter 3 at a fixed temperature that is higher than that of a core component as well as not higher than 42°C, by controlling a heater 4 mounted on the surface of the shutter 3 on the far-infrared camera side (step S4); bringing the shutter temperature to reach a setting temperature (step S5); setting the closing period of the shutter 3 so that it is longer than the period for which the temperature-tracking characteristic of the far-infrared camera brings its temperature, to reach the temperature of the object to be photographed by using a shutter-camera synchronous controller 6, when step S5 is completed (step S6); and photographing the object to be photographed by using the far-infrared camera 1 (step S7). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は遠赤外線画像取得装置及び方法に関するものであり、特に生体皮膚表面の指紋や汗腺、皮膚内部の真皮層や静脈などの生体情報を遠赤外線画像として取得する遠赤外線画像取得装置に関するものである。   The present invention relates to a far-infrared image acquisition apparatus and method, and more particularly to a far-infrared image acquisition apparatus that acquires biological information such as fingerprints and sweat glands on the surface of a living body skin, dermal layers and veins inside the skin as far-infrared images. is there.

近年、遠赤外線の特性(熱を持つ物体は必ず放射し、高い温度の物体ほど強く放射する)を利用した遠赤外線画像取得装置が実用化され、特に生体における温度分布を表示するサーモグラフィは、医療分野やセキュリティ分野において広く用いられている。最新のサーモグラフィ技術では、より短時間に多くの画像を演算処理すべく、100Hzを超える高速フレームレートで遠赤外線画像の取り込みとフレーム毎のデータを関連付ける演算を連続的に行い、刻々と変化する温度変化を平均化することで温度分解能を向上させる、いわゆる「ロックイン方式」と呼ばれる手法が用いられる。 In recent years, far-infrared image acquisition devices that use the characteristics of far-infrared radiation (heated objects always radiate, and higher-temperature objects radiate more intensely) have been put into practical use. Widely used in the field and security field. With the latest thermography technology, in order to process a large number of images in a shorter period of time, the calculation of the far-infrared image and the data for each frame are continuously performed at a high frame rate exceeding 100 Hz, and the temperature changes every moment. A so-called “lock-in method” that improves temperature resolution by averaging changes is used.

例えば「矢尾板:赤外線カメラとロックインによる温度差画像、画像ラボ、pp32-35、2005.8」により開示された従来の生体情報取得可能な赤外線画像取得装置の構成例の一つを図8に示す。101は赤外線カメラ、102はチョッピング/ロックインアンプ、103は回転ブレード、104はモータ、105はフレームレート同期コントローラである。この従来の赤外線画像取得装置では、赤外線カメラ101と回転ブレード103を併用することにより、任意に設定した一定間隔のフレームレートに基づいて赤外線画像の取り込みとフレーム毎のデータを関連付けるための演算を連続的に実施することでロックイン方式を実現し、その結果を画像として連続的に作成している。   For example, FIG. 8 shows one configuration example of a conventional infrared image acquisition apparatus capable of acquiring biological information disclosed by “Yao plate: temperature difference image by infrared camera and lock-in, image lab, pp32-35, 2005.8”. 101 is an infrared camera, 102 is a chopping / lock-in amplifier, 103 is a rotating blade, 104 is a motor, and 105 is a frame rate synchronous controller. In this conventional infrared image acquisition device, by using the infrared camera 101 and the rotating blade 103 in combination, calculation for associating infrared image capturing and data for each frame is continuously performed based on an arbitrarily set frame rate. The lock-in method is realized by implementing the method, and the result is continuously created as an image.

また、再公表特許WO00/42399公報「赤外線画像撮像装置およびこれを搭載した車両、並びに赤外線画像調整装置」により開示された技術では、車載の赤外線画像撮像装置における温度校正技術として、赤外線画像をより見やすく表示する技術について説明されている。以下、要点を簡潔に説明する。   Further, in the technology disclosed by the re-published patent WO 00/42399 “Infrared image pickup device and vehicle equipped with the same, and infrared image adjustment device”, as a temperature calibration technology in an in-vehicle infrared image pickup device, an infrared image is more It describes the technology for easy-to-read display. Hereinafter, the main points will be briefly described.

図9において、遮断手段40が開状態の際、被写体70から放射された赤外線は、光学系20によって赤外線検出器100上に赤外線画像として結像する。赤外線検出器100は各画素において赤外線受光量を検出し、これに応じた信号をそれぞれ出力する。補正手段30は、画素間の感度のばらつき、画素間の信号ノイズ、いわゆるDCオフセットのばらつきや、レンズシェーディング、および光学系20の赤外放射の影響などを統括して補正する。補正にあたっては、温度設定手段51を設け、遮断手段40の温度Tcを所望の温度に設定し、さらにこのTcを特定の撮像対象物の温度近傍に設定することでより良好な結果を得ることができる旨が記載されている。   In FIG. 9, when the blocking means 40 is in the open state, infrared rays emitted from the subject 70 are imaged on the infrared detector 100 by the optical system 20 as an infrared image. The infrared detector 100 detects the amount of received infrared light at each pixel and outputs a signal corresponding to the detected amount. The correction means 30 collectively corrects variations in sensitivity between pixels, signal noise between pixels, so-called DC offset variations, lens shading, and the influence of infrared radiation of the optical system 20. In the correction, the temperature setting unit 51 is provided, the temperature Tc of the blocking unit 40 is set to a desired temperature, and the Tc is set in the vicinity of the temperature of a specific imaging object, so that a better result can be obtained. It states that it can be done.

矢尾板:赤外線カメラとロックインによる温度差画像、画像ラボ、pp32-35、2005.8Yao board: temperature difference image by infrared camera and lock-in, image lab, pp32-35, 2005.8 再公表特許WO00/42399公報Republished Patent WO00 / 42399

図8に示すような赤外線カメラ装置では、コントローラより指令されるフレームレートに同期させながらの赤外線画像取込み処理、ロックイン方式の演算処理、及び測定された生体温度変化の平均化処理について高速かつ高精度に実施する必要がある。すなわち画像検出精度が回転ブレードの角速度制御性能に大きく左右されるため、高性能なロックインアンプが不可欠となり、装置の全体構成が複雑化するという課題が生じていた。 In the infrared camera device as shown in FIG. 8, the infrared image capturing process while synchronizing with the frame rate commanded by the controller, the lock-in method arithmetic process, and the average process of the measured biological temperature change are performed at high speed. It is necessary to carry out with accuracy. That is, since the image detection accuracy is greatly influenced by the angular velocity control performance of the rotary blade, a high-performance lock-in amplifier is indispensable, and there is a problem that the overall configuration of the apparatus becomes complicated.

また、図9に示すような赤外線画像撮像装置には、遮断手段を温度制御して車や人など熱源が変動する場合でも補正係数の決定を簡略化する事項が開示されているのみで、ロックイン方式の課題はもとより、ロックイン方式で温度分解能を向上させた遠赤外線画像を取得する技術に関する記載自体が存在しない。   In addition, the infrared imaging apparatus as shown in FIG. 9 only discloses matters for simplifying the determination of the correction coefficient even when the heat source such as a car or a person fluctuates by controlling the temperature of the blocking means. There is no description of a technique for acquiring a far-infrared image with improved temperature resolution by the lock-in method as well as the problem of the IN method.

本発明は上述の点に鑑みてなされたもので、簡易な装置構成により、フレームレートに同期した赤外線画像を連続的に取得できる遠赤外線画像取得装置を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a far-infrared image acquisition device capable of continuously acquiring infrared images synchronized with a frame rate with a simple device configuration.

上述した課題を鑑み、本発明の請求項1にかかる遠赤外線画像取得装置は、赤外線画像を取得する遠赤外線カメラと、上記遠赤外線カメラと上記撮影対象の間に配置されるシャッタと、上記シャッタに取り付けられたヒータと、上記シャッタの温度を少なくとも撮像対象の温度より高い温度で一定に保つよう上記ヒータの温度を制御するヒータコントローラと、上記シャッタの閉鎖時間を、上記遠赤外線カメラの温度追従特性が上記撮像対象の温度に到達する時間より長く設定するシャッタ・カメラ同期コントローラを備えてなることを特徴とする。   In view of the above-described problems, a far-infrared image acquisition device according to claim 1 of the present invention includes a far-infrared camera that acquires an infrared image, a shutter disposed between the far-infrared camera and the object to be imaged, and the shutter. A heater controller that controls the temperature of the heater so as to keep the temperature of the shutter constant at a temperature that is at least higher than the temperature of the object to be imaged, and the closing time of the shutter to follow the temperature of the far-infrared camera. It is characterized by comprising a shutter / camera synchronization controller whose characteristic is set longer than the time required to reach the temperature of the imaging object.

さらに、本発明の請求項2にかかる遠赤外線画像取得装置は、上記の構成に加え、上記シャッタ・カメラ同期コントローラが、上記シャッタの閉鎖時間を、上記遠赤外線カメラの温度追従特性が前記シャッタの設定温度に到達する時間に設定することを特徴とする。   In addition to the above-described configuration, the far-infrared image acquisition device according to claim 2 of the present invention is configured so that the shutter-camera synchronization controller indicates the closing time of the shutter, and the temperature tracking characteristic of the far-infrared camera indicates the shutter. The time is set to reach the set temperature.

さらに、本発明の請求項3にかかる遠赤外線画像取得装置は、前記撮像対象は人体の一部または全部であり、前記シャッタの温度を42度以下の一定温度に保つよう前記ヒータの温度を制御することを特徴とする。   Furthermore, in the far-infrared image acquisition apparatus according to claim 3 of the present invention, the imaging object is a part or all of a human body, and the temperature of the heater is controlled so as to keep the temperature of the shutter at a constant temperature of 42 degrees or less. It is characterized by doing.

さらに、本発明の請求項4にかかる遠赤外線画像取得装置は、前記撮像対象の発する遠赤外線を前記遠赤外線カメラの所定位置に結像させる調整手段を備えることを特徴とする。   Furthermore, the far-infrared image acquisition apparatus according to claim 4 of the present invention is characterized by comprising adjusting means for forming an image of the far-infrared ray emitted from the imaging object at a predetermined position of the far-infrared camera.

さらに、本発明の請求項5にかかる遠赤外線画像取得装置は、前記調整手段は前記撮像対象を光学的に拡大することを特徴とする。   Furthermore, the far-infrared image acquisition apparatus according to claim 5 of the present invention is characterized in that the adjusting means optically enlarges the imaging target.

さらに、本発明の請求項6にかかる遠赤外線画像取得装置は、上記撮像対象を設置する設置手段を備えることを特徴とする。   Furthermore, the far-infrared image acquisition apparatus according to claim 6 of the present invention is characterized by comprising installation means for installing the imaging object.

さらに、本発明の請求項7にかかる遠赤外線画像取得装置は、上記撮像対象をサーモグラフィック表示する表示手段を備えたことを特徴とする。   Furthermore, a far-infrared image acquisition apparatus according to claim 7 of the present invention is characterized by comprising display means for displaying the imaging object thermographically.

以上説明したように本発明によれば、汎用シャッタの表面をヒータで撮像対象の温度より高く設定し、かつシャッタ閉鎖時間を、遠赤外線カメラの温度追従特性が撮像対象の温度に到達する時間より長く設定して撮影することにより、カメラとシャッタとの間で複雑かつ高精度な同期をとってシャッタ制御を実施せずとも、フレームレートに同期した連続する遠赤外線画像を、簡易な装置構成で取得するという効果を奏する。   As described above, according to the present invention, the surface of the general-purpose shutter is set higher than the temperature of the object to be imaged by the heater, and the shutter closing time is set longer than the time for the temperature tracking characteristic of the far-infrared camera to reach the temperature of the imaged object. By shooting for a long time, a simple device configuration enables continuous far-infrared images synchronized with the frame rate without performing complicated and highly accurate synchronization between the camera and the shutter and shutter control. There is an effect of acquiring.

図1は本発明の一実施の形態にかかる遠赤外線画像取得装置の一例を示す構成図である。この遠赤外線画像取得装置は、遠赤外線カメラ1、近接レンズ2、シャッタ3、ヒータ4、ヒータコントローラ5、シャッタ・カメラ同期コントローラ6、フレーム7、高さ微調整機構8、及びディスプレイモニタ9によって構成される。   FIG. 1 is a block diagram showing an example of a far-infrared image acquisition apparatus according to an embodiment of the present invention. This far-infrared image acquisition apparatus includes a far-infrared camera 1, a proximity lens 2, a shutter 3, a heater 4, a heater controller 5, a shutter / camera synchronization controller 6, a frame 7, a fine height adjustment mechanism 8, and a display monitor 9. Is done.

近接レンズ2を装着した遠赤外線カメラ1が、近接レンズ2が上向きになるよう固定設置される。遠赤外線カメラ1の撮像データは所定の時間間隔(フレームレート)で連続的に取得されるよう設定されている。この遠赤外線カメラ1の図中左右にはフレーム7が立設され、両フレーム7にはそれぞれ高さ微調整機構8が取り付けられている。高さ微調整機構8は、両フレームに架け渡され支持されたシャッタ3を上下方向に自在に移動させる機構である。本実施の形態においては固定されたフレーム7をスライドレールとして摺動上下移動する摺動式を適用したが、調整精度が保証されていれば、伸縮するフレームを任意の箇所で係止する伸縮式を用いてもよい。   The far-infrared camera 1 equipped with the proximity lens 2 is fixedly installed so that the proximity lens 2 faces upward. The imaging data of the far-infrared camera 1 is set to be continuously acquired at a predetermined time interval (frame rate). Frames 7 are erected on the left and right sides of the far-infrared camera 1 in the drawing, and height adjustment mechanisms 8 are attached to both frames 7 respectively. The height fine adjustment mechanism 8 is a mechanism that freely moves the shutter 3 spanned and supported by both frames in the vertical direction. In this embodiment, a sliding type that slides up and down using the fixed frame 7 as a slide rail is applied. However, as long as the adjustment accuracy is guaranteed, a telescopic type that locks the expanding and contracting frame at an arbitrary position. May be used.

シャッタ3はフレーム7により、遠赤外線カメラ1に装着された近接レンズ2の真上に支持されている。これにより高さ微調整機構8で撮像対象である生体部分と近接レンズ2間の距離を0〜任意の距離に調節することができる。またシャッタ3はドーナツ状の孔空き円板構造の外枠を有するスライドシャッタであり、生体部分を上に載せた状態でシャッタ3の遮蔽板をスパイラル状にスライド開閉動作が可能なよう構成されている。そしてシャッタ3は開放時間/閉鎖時間を任意に設定調整することができる。   The shutter 3 is supported by a frame 7 directly above the proximity lens 2 attached to the far-infrared camera 1. Thereby, the distance between the living body part to be imaged and the proximity lens 2 can be adjusted to 0 to an arbitrary distance by the height fine adjustment mechanism 8. The shutter 3 is a slide shutter having an outer frame having a donut-shaped perforated disk structure, and is configured so that the shielding plate of the shutter 3 can be opened and closed in a spiral manner with the living body portion placed on the shutter 3. Yes. The shutter 3 can arbitrarily set and adjust the opening time / closing time.

シャッタ3の外枠の裏面側には、穿設された孔部分の周縁を囲むように、孔の外径より大きな内径を有する環形状のヒータ4が取り付けられている。ヒータ4はヒータコントローラ5により任意の温度に制御することが可能である。すなわちシャッタ3の表面温度はヒータコントローラ5により任意の値に調節することが可能となる。   An annular heater 4 having an inner diameter larger than the outer diameter of the hole is attached to the rear surface side of the outer frame of the shutter 3 so as to surround the periphery of the hole portion formed. The heater 4 can be controlled to an arbitrary temperature by the heater controller 5. That is, the surface temperature of the shutter 3 can be adjusted to an arbitrary value by the heater controller 5.

シャッタ3と遠赤外線カメラ1には、シャッタ・カメラ同期コントローラ6が接続されている。このシャッタ・カメラ同期コントローラ6により、シャッタ3が遠赤外線カメラ1の撮影動作に同期し、最適な開放時間/閉鎖時間で開閉されるよう制御される。こうして撮影された生体部分の赤外線画像データ(サーモグラフィ)は、ディスプレイモニタ9に表示される。   A shutter / camera synchronization controller 6 is connected to the shutter 3 and the far infrared camera 1. The shutter 3 is controlled by the shutter / camera synchronization controller 6 so that the shutter 3 is opened / closed in an optimum opening / closing time in synchronization with the photographing operation of the far-infrared camera 1. The infrared image data (thermography) of the living body image thus taken is displayed on the display monitor 9.

図2は本実施形態の遠赤外線画像取得装置の一例であり、指先端部の生体情報を取得している様子を俯瞰したイメージを示す図である。被験者自身は椅子に座るなどの安定した姿勢をとり、上腕〜手の腹部分を机に置き、撮像対象となる生体部分(指先)がシャッタ3開閉部の真上に位置するよう、指の第一関節辺りをシャッタ3上(ドーナツ孔の縁部分)に載せる。この際、被験者の体格(前腕部長さ)に応じてシャッタ3の位置を調整できるよう、シャッタ3には高さ微調整機構8に加えて、水平面内の移動を自在に調整する機構(例えば遠赤外線カメラ1が取り付けられたX−Yステージ)を設けておいてもよい。   FIG. 2 is an example of the far-infrared image acquisition apparatus according to the present embodiment, and is a diagram showing an overview of a state in which biological information of the finger tip is acquired. The subject himself took a stable posture, such as sitting on a chair, placed the upper arm to the abdomen of the hand on the desk, and placed the first part of the finger so that the living body part (fingertip) to be imaged was located directly above the shutter 3 opening / closing part. One joint is placed on the shutter 3 (the edge of the donut hole). At this time, in addition to the fine height adjustment mechanism 8, the shutter 3 is a mechanism that freely adjusts the movement in the horizontal plane (e.g., a far distance) so that the position of the shutter 3 can be adjusted according to the physique (forearm length) of the subject. An XY stage to which the infrared camera 1 is attached may be provided.

図3は、時間を横軸、温度を縦軸とするグラフを用いて本実施形態の遠赤外線画像の取得原理を模式的に示した図である。遠赤外線カメラ1の撮像データは映像フレームとして連続的に取得され、また撮像する温度の範囲によって階調が相対的に割り振られる。すなわち最高温度を256、最低温度を0とする256階調を縦辺とし、フレーム時間を横辺とする矩形としてグラフ上に表現することができる。また、このグラフ中には、遠赤外線カメラ1の温度追従特性が太実線で示されている。この温度追従特性は、主に遠赤外線カメラ1に内蔵されるセンサの応答特性に依存するカメラ固有のものである。   FIG. 3 is a diagram schematically illustrating the far-infrared image acquisition principle of the present embodiment using a graph with time on the horizontal axis and temperature on the vertical axis. The imaging data of the far-infrared camera 1 is continuously acquired as video frames, and gradations are relatively allocated according to the temperature range for imaging. That is, it can be expressed on the graph as a rectangle with 256 gradations, with the highest temperature set to 256, the lowest temperature set to 0, as the vertical side, and the frame time as the horizontal side. In this graph, the temperature tracking characteristic of the far-infrared camera 1 is shown by a thick solid line. This temperature tracking characteristic is inherent to the camera mainly depending on the response characteristic of the sensor built in the far-infrared camera 1.

最初に遠赤外線カメラ1のシャッタ3が開放されている状態では、遠赤外線カメラ1の検出データは周囲の環境温度を階調中心(階調表現で126)とする映像フレームが連続的に取得される。環境温度は季節等によって変動はあるが、基本的に撮像対象となる最適な温度帯(生体の核心温)よりも低い。   In the state where the shutter 3 of the far-infrared camera 1 is opened first, the detection data of the far-infrared camera 1 continuously obtains video frames having the ambient environmental temperature as the gradation center (126 in gradation expression). The Although the environmental temperature varies depending on the season, etc., it is basically lower than the optimum temperature zone (core temperature of the living body) to be imaged.

続いて撮像対象を撮影するためシャッタ3が閉鎖されると、遠赤外線カメラ1の温度追従特性が変化する。この場合撮像対象から発せられる遠赤外線がシャッタ3により遮断されるため、温度追従特性は初期値を環境温度、到達温度をシャッタ設定温度とする温度差に応じて指数関数的に変化する。またこのシャッタ3の閉鎖時間における遠赤外線カメラ1の検出データは、シャッタ設定温度を白(階調表現で256)として一定のまま推移する。   Subsequently, when the shutter 3 is closed in order to photograph the imaging target, the temperature tracking characteristic of the far-infrared camera 1 changes. In this case, since far-infrared rays emitted from the object to be imaged are blocked by the shutter 3, the temperature tracking characteristic changes exponentially according to a temperature difference in which the initial value is the environmental temperature and the ultimate temperature is the shutter setting temperature. The detection data of the far-infrared camera 1 during the closing time of the shutter 3 is kept constant with the shutter setting temperature set to white (256 in gradation expression).

シャッタ3が閉鎖を終了し再度開放されると、検出データが白一色の状態から徐々に256階調の映像フレームとして再現される。映像フレームは遠赤外線カメラの温度追従特性に沿って下降し、以後再び周囲の環境温度を階調中心とする映像フレームが連続的に取得される。   When the shutter 3 is closed and then opened again, the detection data is gradually reproduced as a video frame of 256 gradations from the white color state. The video frame descends according to the temperature tracking characteristics of the far-infrared camera, and thereafter, the video frame having the ambient environmental temperature as the center of the gradation is continuously acquired again.

遠赤外線カメラは所定の温度範囲に256階調を割り振ってデータを画像化する。よって本発明の成立にあたっては、まずシャッタ3の設定温度が最適な温度帯より高い値に設定されていることが必須である。そして、少なくとも温度追従特性曲線が最適な温度帯を超えるまでの時間でシャッタ閉鎖が終了し再度開放されるよう制御されれば、下降中の映像フレームの階調内に最適な温度帯を収めることはできる。   The far-infrared camera images 256 data by assigning 256 gradations to a predetermined temperature range. Therefore, for the establishment of the present invention, it is essential that the set temperature of the shutter 3 is first set to a value higher than the optimum temperature range. If the shutter is closed and then reopened at least until the temperature tracking characteristic curve exceeds the optimum temperature range, the optimum temperature range is accommodated within the gradation of the descending video frame. I can.

しかし、より明瞭な遠赤外線画像を取得するためには、階調中心が最適な温度帯に相当する映像フレームを連続的に取得することが求められる。これを実現するためにシャッタ3の温度は、最適な温度帯よりもある程度高く設定しておく必要がある。ただし、シャッタ設定温度と最適な温度帯との不要な温度差は、赤外線画像の階調配分にとって決して好ましいものではない。そこで、シャッタ設定温度の上限は生体として存在できる体温の最大値である「42℃」とする。また、シャッタの閉鎖時間も、最適な温度帯に達する瞬間までの時間で開放するよりは、シャッタ設定温度に到達するまでの時間で開放した方が、下降する映像フレームが最適な温度帯で連続的に現れ、より明瞭な遠赤外線画像が取得される。   However, in order to acquire a clearer far-infrared image, it is required to continuously acquire video frames corresponding to the temperature range where the gradation center is optimal. In order to realize this, the temperature of the shutter 3 needs to be set to be somewhat higher than the optimum temperature range. However, an unnecessary temperature difference between the shutter set temperature and the optimum temperature zone is not preferable for the gradation distribution of the infrared image. Therefore, the upper limit of the shutter set temperature is set to “42 ° C.” which is the maximum value of the body temperature that can exist as a living body. In addition, the shutter closing time is lower than the time until the moment when the optimum temperature range is reached. Appear and a clearer far-infrared image is acquired.

図4は本実施形態の遠赤外線画像取得装置の撮像動作例のフローチャートである。   FIG. 4 is a flowchart of an example of the imaging operation of the far-infrared image acquisition apparatus of this embodiment.

図4によれば、撮像対象となる生体部分をシャッタ上に載せ(ステップS1)、この状態で近接レンズ2の焦点距離に応じ、生体部分と近接レンズ2との距離を高さ微調整機構8で調整する(ステップS2)。生体部分と近接レンズ2の距離を調節した後、シャッタ3の下部に設置した遠赤外線カメラ1により、近接レンズ2を介して得られる生体温度情報の分布状態を画像情報として取得する(ステップS3)。ここでヒータコントローラ5は遠赤外線カメラ側のシャッタ3表面に取り付けられたヒータ4を制御して、シャッタ3の表面を人体核心温度より高く、かつ42℃以下の任意の温度で一定に保つよう調節する(ステップS4)。これによりシャッタと生体部分との温度差が強調される。シャッタ温度が設定温度に到達したら(ステップS5)、さらにシャッタ・カメラ同期コントローラ6により、シャッタ3の閉鎖時間を遠赤外線カメラの温度追従特性が上記撮像対象の温度に到達する時間より長くなるよう設定し(ステップS6)、遠赤外線カメラ1で撮像対象を撮影する(ステップS7)。これらの動作により、遠赤外線カメラ1の感度(S/N比)の大幅な改善が達成される。   According to FIG. 4, the living body part to be imaged is placed on the shutter (step S <b> 1), and in this state, the distance between the living body part and the proximity lens 2 is finely adjusted according to the focal length of the proximity lens 2. (Step S2). After adjusting the distance between the living body part and the proximity lens 2, the distribution state of the biological temperature information obtained through the proximity lens 2 is acquired as image information by the far-infrared camera 1 installed under the shutter 3 (step S <b> 3). . Here, the heater controller 5 controls the heater 4 attached to the surface of the shutter 3 on the far-infrared camera side so as to keep the surface of the shutter 3 constant at an arbitrary temperature higher than the core temperature of the human body and lower than 42 ° C. (Step S4). Thereby, the temperature difference between the shutter and the living body part is emphasized. When the shutter temperature reaches the set temperature (step S5), the shutter / camera synchronization controller 6 sets the closing time of the shutter 3 so that the temperature follow-up characteristic of the far-infrared camera becomes longer than the time to reach the imaging target temperature. In step S6, the far-infrared camera 1 captures an image of the imaging target (step S7). With these operations, the sensitivity (S / N ratio) of the far-infrared camera 1 is greatly improved.

図5は、本装置において、遠赤外線カメラ1の焦点が右手指先表面に合うよう、高さ微調整機構8で調整して撮影し、赤外線サーモグラフィとして表示させた画面写真の例である。   FIG. 5 shows an example of a screen photograph taken by adjusting the fine height adjustment mechanism 8 so that the far-infrared camera 1 is focused on the surface of the right hand finger tip and displayed as an infrared thermography.

今回はシャッタ3の表面温度を42℃となるようヒータコントローラ5によりフィードバック制御を行った。この結果、指先表面の指紋(横方向に複数見られる薄白線)と汗腺(黒い斑点)を同時に取得していることが図5において確認できる。   This time, feedback control was performed by the heater controller 5 so that the surface temperature of the shutter 3 was 42 ° C. As a result, it can be confirmed in FIG. 5 that fingerprints on the fingertip surface (a plurality of thin white lines seen in the lateral direction) and sweat glands (black spots) are acquired simultaneously.

図6は本実施の形態で用いた遠赤外線カメラ1において、シャッタ温度40℃として右手指先表面を撮影して表示させた温度分布データ画面写真の例であるが、こちらについては指先表面の指紋が確認できた。   FIG. 6 is an example of a temperature distribution data screen photograph of the far-infrared camera 1 used in the present embodiment, where the shutter temperature is 40 ° C. and the surface of the right hand fingertip is photographed and displayed. It could be confirmed.

なお、撮像範囲に関しては、高さ微調整機構8を用いることで任意に設定可能であるが、撮像範囲を狭めることで取得画像の解像度が向上させ、より精密な観測を行うために、あえて指先の皮膚表面の焦点を設定し、撮像範囲を狭くなるよう調整した上で生体情報を取得した。   The imaging range can be arbitrarily set by using the height fine adjustment mechanism 8, but the resolution of the acquired image is improved by narrowing the imaging range, and the fingertip is used in order to perform more precise observation. The biometric information was acquired after setting the focus of the skin surface of the skin and adjusting the imaging range to be narrow.

以上説明したように本実施形態によれば、シャッタの設定温度を少なくとも撮像対象の温度より高い温度に設定し、かつシャッタの閉鎖時間を遠赤外線カメラの温度追従特性が上記撮像対象の温度に到達する時間より長く設定することによって、カメラとシャッタとの間で複雑かつ高精度な同期をとってシャッタ駆動制御を実施せずとも、目的とする生体情報を容易かつ効率的に取得することが可能となる。   As described above, according to this embodiment, the set temperature of the shutter is set to a temperature that is at least higher than the temperature of the imaging target, and the closing time of the shutter reaches the temperature of the imaging target when the temperature tracking characteristics of the far-infrared camera. By setting the time longer than the time required, it is possible to easily and efficiently obtain the desired biological information without performing complicated and highly accurate synchronization between the camera and the shutter and performing shutter drive control. It becomes.

なお、本発明の実施形態においては撮像対象が指先で、取得した生体情報が汗腺や指紋である例を示したが、これに限定するものではなく、撮像対象を手のひらや手の甲とし、生体情報を静脈や真皮層にする等、既知の遠赤外線撮影で取得可能な撮像対象や生体情報に適用し得ることは言うまでもない。例えば、本発明の他の実施形態を用いて手の甲〜上肢部を撮像対象として撮影した写真の例を図7に示す。この形態では近接レンズ2を標準ズーム用のレンズに交換して撮影している。特に手の甲から手首にかけて、静脈が黒い筋(温度の低い部分)として認識されていることが把握できる。   In the embodiment of the present invention, the imaging target is a fingertip and the acquired biological information is a sweat gland or a fingerprint. However, the present invention is not limited to this, and the imaging target is the palm or the back of the hand, and the biological information is Needless to say, the present invention can be applied to imaging objects and biological information that can be acquired by known far-infrared imaging, such as a vein or dermis layer. For example, FIG. 7 shows an example of a photograph taken using the other embodiment of the present invention as the imaging target from the back of the hand to the upper limb. In this embodiment, the proximity lens 2 is replaced with a standard zoom lens for photographing. In particular, it can be understood that the vein is recognized as a black line (low temperature part) from the back of the hand to the wrist.

本発明の一実施の形態にかかる簡易型生体情報取得装置の構成イメージを示す図である。It is a figure which shows the structure image of the simple biological information acquisition apparatus concerning one embodiment of this invention. 本発明の生体情報取得装置で生体情報を取得している様子を上方から俯瞰した図である。It is the figure which looked down at a mode that living body information is acquired with a living body information acquisition device of the present invention from the upper part. 本発明の生体情報取得方法を示すフローチャートである。It is a flowchart which shows the biometric information acquisition method of this invention. 温度の経時変化グラフを用いて本発明の生体情報撮像原理を模式的に示した図である。It is the figure which showed typically the biological information imaging principle of this invention using the time-dependent change graph of temperature. 本発明の生体情報取得装置で撮影し、赤外線サーモグラフィとして表示させた撮像対象の(指皮膚表面)画面写真である。It is the (photograph skin surface) screen photograph of the imaging target image | photographed with the biometric information acquisition apparatus of this invention, and displayed as an infrared thermography. 本発明の生体情報取得装置を用いずに撮影し、赤外線サーモグラフィとして表示させた生体部分(指皮膚表面)画面写真である。It is the living body part (finger skin surface) screen photograph which image | photographed without using the biometric information acquisition apparatus of this invention, and was displayed as infrared thermography. 本発明の生体情報取得装置で撮影し、赤外線サーモグラフィとして表示させた撮像対象(手の甲〜上肢部)の画面写真である。It is the screen photograph of the imaging target (back of hand-upper limb part) image | photographed with the biometric information acquisition apparatus of this invention, and displayed as infrared thermography. 従来技術の一例を示す図である。It is a figure which shows an example of a prior art. 従来技術の別の一例を示す図である。It is a figure which shows another example of a prior art.

符号の説明Explanation of symbols

1 遠赤外線カメラ
2 近接レンズ
3 シャッタ
4 ヒータ
5 ヒータコントローラ
6 シャッタ・カメラ同期コントローラ
7 フレーム
8 高さ微調整機構
9 ディスプレイモニタ
11 赤外線カメラ
12 チョッピング/ロックインアンプ
13 回転ブレード
14 モータ
15 フレームレート同期コントローラ
20 光学系
30 補正手段
40 遮断手段
50 温度測定手段
60 制御手段
70 被写体
100 赤外線検出器
101 赤外線カメラ
102 チョッピング/ロックインアンプ
103 回転ブレード
104 モータ
105 フレームレート同期コントローラ
DESCRIPTION OF SYMBOLS 1 Far-infrared camera 2 Proximity lens 3 Shutter 4 Heater 5 Heater controller 6 Shutter camera synchronous controller 7 Frame 8 Height fine adjustment mechanism 9 Display monitor 11 Infrared camera 12 Chopping / lock-in amplifier 13 Rotating blade 14 Motor 15 Frame rate synchronous controller DESCRIPTION OF SYMBOLS 20 Optical system 30 Correction | amendment means 40 Blocking means 50 Temperature measurement means 60 Control means 70 Subject 100 Infrared detector 101 Infrared camera 102 Chopping / lock-in amplifier 103 Rotating blade 104 Motor 105 Frame rate synchronous controller

Claims (7)

赤外線画像を取得する遠赤外線カメラと、前記遠赤外線カメラと前記撮影対象の間に配置されるシャッタと、前記シャッタに取り付けられたヒータと、前記シャッタの温度を少なくとも撮像対象の温度より高い温度で一定に保つよう前記ヒータの温度を制御するヒータコントローラと、前記シャッタの閉鎖時間を、前記遠赤外線カメラの温度追従特性が前記撮像対象の温度に到達する時間より長く設定するシャッタ・カメラ同期コントローラを備えてなることを特徴とする、遠赤外線画像取得装置。   A far-infrared camera for acquiring an infrared image; a shutter disposed between the far-infrared camera and the object to be photographed; a heater attached to the shutter; and a temperature of the shutter at least higher than a temperature of the object to be imaged. A heater controller that controls the temperature of the heater so as to be kept constant, and a shutter / camera synchronization controller that sets the closing time of the shutter longer than the time that the temperature tracking characteristic of the far-infrared camera reaches the temperature of the imaging target A far-infrared image acquisition device comprising: 前記シャッタ・カメラ同期コントローラが、前記シャッタの閉鎖時間を、前記遠赤外線カメラの温度追従特性が前記シャッタの設定温度に到達する時間に設定することを特徴とする、請求項1に記載の遠赤外線画像取得装置。   The far-infrared ray according to claim 1, wherein the shutter-camera synchronization controller sets the closing time of the shutter to a time when the temperature tracking characteristic of the far-infrared camera reaches the set temperature of the shutter. Image acquisition device. 前記撮像対象は人体の一部または全部であり、前記シャッタの温度を42度以下の一定温度に保つよう前記ヒータの温度を制御することを特徴とする、請求項1または請求項2のいずれかに記載の遠赤外線画像取得装置。   The temperature of the heater is controlled so that the imaging target is a part or all of a human body, and the temperature of the shutter is maintained at a constant temperature of 42 degrees or less. The far-infrared image acquisition apparatus described in 1. 前記撮像対象の発する遠赤外線を前記遠赤外線カメラの所定位置に結像させる調整手段を備えることを特徴とする、請求項1または請求項3のいずれかに記載の遠赤外線画像取得装置。 The far-infrared image acquisition apparatus according to claim 1, further comprising an adjusting unit that forms an image of the far-infrared ray emitted from the imaging target at a predetermined position of the far-infrared camera. 前記調整手段は前記撮像対象を光学的に拡大することを特徴とする、請求項4に記載の遠赤外線画像取得装置。   The far-infrared image acquisition apparatus according to claim 4, wherein the adjustment unit optically enlarges the imaging target. 前記撮像対象を設置する設置手段を備えることを特徴とする、請求項1から請求項5のいずれかに記載の遠赤外線画像取得装置。   The far-infrared image acquisition apparatus according to any one of claims 1 to 5, further comprising installation means for installing the imaging target. 前記撮像対象をサーモグラフィック表示する表示手段を備えたことを特徴とする、請求項1から請求項6のいずれかに記載の遠赤外線画像取得装置。   The far-infrared image acquisition apparatus according to any one of claims 1 to 6, further comprising display means for thermographically displaying the imaging target.
JP2007038731A 2007-02-20 2007-02-20 Far-infrared image acquisition device Expired - Fee Related JP5347224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038731A JP5347224B2 (en) 2007-02-20 2007-02-20 Far-infrared image acquisition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038731A JP5347224B2 (en) 2007-02-20 2007-02-20 Far-infrared image acquisition device

Publications (2)

Publication Number Publication Date
JP2008203054A true JP2008203054A (en) 2008-09-04
JP5347224B2 JP5347224B2 (en) 2013-11-20

Family

ID=39780730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038731A Expired - Fee Related JP5347224B2 (en) 2007-02-20 2007-02-20 Far-infrared image acquisition device

Country Status (1)

Country Link
JP (1) JP5347224B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9066015B2 (en) 2011-04-28 2015-06-23 Nippon Avionics Co., Ltd. Image capture device, method for generating image, infrared camera system, and interchangeable lens system
US9170161B2 (en) 2011-03-30 2015-10-27 Nippon Avionics Co., Ltd. Image capture device, pixel output level compensation method for same, infrared camera system, and interchangeable lens system
KR101736750B1 (en) * 2015-10-19 2017-05-18 주식회사 콕스 Shutter device for thermal camera
CN108182749A (en) * 2018-02-13 2018-06-19 南京东屋电气有限公司 A kind of door lock with separate type infrared image acquisition device
JP6778348B1 (en) * 2020-05-19 2020-10-28 株式会社イーバイピー Palm vein identification device with body temperature measurement function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614932A (en) * 1984-06-19 1986-01-10 Nippon Abionikusu Kk Infrared video device
JPH0450737A (en) * 1990-06-20 1992-02-19 Nippon Avionics Co Ltd Range setting device
JPH0638217A (en) * 1992-07-17 1994-02-10 Fujitsu Ltd Infrared-ray monitoring system
WO2000042399A1 (en) * 1999-01-14 2000-07-20 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle with the same, and infrared image adjusting device
JP2003247889A (en) * 2002-02-25 2003-09-05 Mitsubishi Electric Corp Infrared image pickup apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614932A (en) * 1984-06-19 1986-01-10 Nippon Abionikusu Kk Infrared video device
JPH0450737A (en) * 1990-06-20 1992-02-19 Nippon Avionics Co Ltd Range setting device
JPH0638217A (en) * 1992-07-17 1994-02-10 Fujitsu Ltd Infrared-ray monitoring system
WO2000042399A1 (en) * 1999-01-14 2000-07-20 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle with the same, and infrared image adjusting device
JP2003247889A (en) * 2002-02-25 2003-09-05 Mitsubishi Electric Corp Infrared image pickup apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170161B2 (en) 2011-03-30 2015-10-27 Nippon Avionics Co., Ltd. Image capture device, pixel output level compensation method for same, infrared camera system, and interchangeable lens system
US9066015B2 (en) 2011-04-28 2015-06-23 Nippon Avionics Co., Ltd. Image capture device, method for generating image, infrared camera system, and interchangeable lens system
KR101736750B1 (en) * 2015-10-19 2017-05-18 주식회사 콕스 Shutter device for thermal camera
CN108182749A (en) * 2018-02-13 2018-06-19 南京东屋电气有限公司 A kind of door lock with separate type infrared image acquisition device
JP6778348B1 (en) * 2020-05-19 2020-10-28 株式会社イーバイピー Palm vein identification device with body temperature measurement function
JP2021180747A (en) * 2020-05-19 2021-11-25 株式会社イーバイピー Palm vein identification apparatus with body temperature measurement function

Also Published As

Publication number Publication date
JP5347224B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
KR101355946B1 (en) Device and method for measuring temperature using infrared array sensors
US8760509B2 (en) Thermal imager with non-uniformity correction
US9372120B2 (en) Camera, computer program and method for measuring thermal radiation and thermal rates of change
JP5347224B2 (en) Far-infrared image acquisition device
WO2014171142A1 (en) Image processing method and image processing device
KR20090022392A (en) Apparatus and method for picturing image using function of face drecognition
JP3635937B2 (en) Infrared camera
EP3709268A1 (en) An image processing arrangement
EP3403397B1 (en) Through-focus image combination
US20150051461A1 (en) System and method for performing a remote medical diagnosis
CN205697730U (en) Medical human thermal source collecting device
JP7254562B2 (en) Imaging device and its control device
JP2011188258A (en) Camera system
US9395812B2 (en) Method and system for presenting at least one image of at least one application on a display device
JP2007094536A (en) Device and method for tracking physical object
TWI588585B (en) Image capture device and focus method
KR101880448B1 (en) Digital mirror with function of gesture recognition
US11494945B2 (en) Image analysis device, image analysis method, and program
JP2010020619A (en) Cursor movement control method and cursor movement control device
JP7382226B2 (en) monitoring camera system
US11816873B2 (en) Image analysis device, image analysis method, and program
KR101284010B1 (en) Camera equipped with rotatable lens
US11549849B2 (en) Image processing arrangement providing a composite image with emphasized spatial portions
JP2721598B2 (en) Video camera backlight compensation device
KR101690213B1 (en) Video recording apparatus with a room mirror

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080613

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees