JP2008202859A - Absorption type refrigerating device - Google Patents

Absorption type refrigerating device Download PDF

Info

Publication number
JP2008202859A
JP2008202859A JP2007039625A JP2007039625A JP2008202859A JP 2008202859 A JP2008202859 A JP 2008202859A JP 2007039625 A JP2007039625 A JP 2007039625A JP 2007039625 A JP2007039625 A JP 2007039625A JP 2008202859 A JP2008202859 A JP 2008202859A
Authority
JP
Japan
Prior art keywords
refrigerant
heat transfer
absorption
evaporator
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007039625A
Other languages
Japanese (ja)
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007039625A priority Critical patent/JP2008202859A/en
Publication of JP2008202859A publication Critical patent/JP2008202859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently spray a refrigerant to a heat transfer face of a plate-type evaporator. <P>SOLUTION: In this absorption type refrigerating device, dispersion plates 45 for allowing a refrigerant jetted from refrigerant spray ports 43 formed on a header 42 to be dispersed and flow down onto the heat transfer faces of heat transfer plates 41 are mounted on the header 42 of the evaporator 4 in a state of covering the refrigerant spray ports 43, and the refrigerant supplied from a condenser 3 and jetted from the refrigerant spray ports 43 of the header 42 is guided by the dispersion plates 45 mounted in a state of covering the refrigerant spray ports 43 to be dispersed and flow down to the heat transfer faces of the heat transfer plates 41, thus the refrigerant can be uniformly and efficiently dispersed and supplied to the heat transfer faces of the heat transfer plates 41 of the evaporator 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、吸収式冷凍装置に関し、さらに詳しくは吸収式冷凍装置における蒸発器の構造に関するものである。   The present invention relates to an absorption refrigeration apparatus, and more particularly to an evaporator structure in an absorption refrigeration apparatus.

吸収式冷凍装置の場合、蒸発器では伝熱面に冷媒を散布させることで内部の被冷却流体を冷却するが、蒸発器下部に設けた冷媒溜まりの冷媒を冷媒ポンプにより循環させて、蒸発器伝熱面に散布させる冷媒ポンプ方式が採用されている。   In the case of an absorption refrigeration system, the evaporator cools the fluid to be cooled by spraying the refrigerant on the heat transfer surface, but the refrigerant in the refrigerant pool provided in the lower part of the evaporator is circulated by a refrigerant pump, and the evaporator A refrigerant pump system is used to spray the heat transfer surface.

蒸発器の小型化、低コスト化には、伝熱管式の蒸発器よりプレート式の蒸発器の方が最適と考えられるが、プレート式の蒸発器を採用した場合、伝熱面全面に均一に濡れ性を確保することが重要となる。   To reduce the size and cost of the evaporator, a plate-type evaporator is considered to be more optimal than a heat-transfer-tube evaporator. However, when a plate-type evaporator is used, it is evenly distributed over the entire heat transfer surface. It is important to ensure wettability.

プレート式の蒸発器において、伝熱面への均一な濡れ性を確保する手段としては、蒸発器の伝熱面に多孔質層(網状体や織金網、エキスパンドメタル等)を貼り付ける(特許文献1参照)あるいは蒸発器のプレート表面に横方向の溝を設ける(特許文献2参照)等が従来から知られている。   In a plate-type evaporator, as a means of ensuring uniform wettability to the heat transfer surface, a porous layer (such as a net, woven wire mesh, or expanded metal) is attached to the heat transfer surface of the evaporator (Patent Document) 1) or a lateral groove on the plate surface of the evaporator (see Patent Document 2) has been known.

特開平6−11209号公報JP-A-6-11209 特開平10−220914号公報Japanese Patent Laid-Open No. 10-220914

ところが、上記特許文献に開示されているような技術では、コスト的な問題に加えて、冷媒が部分的に溜まることで伝熱面での熱貫流率が定価したり、冷媒量がすくない場合には偏流等を発生するという問題があった。   However, in the technology as disclosed in the above-mentioned patent document, in addition to the problem of cost, when the refrigerant partially accumulates, the heat flow rate on the heat transfer surface is fixed or the amount of the refrigerant is not enough. Had the problem of generating drift and the like.

本願発明は、上記の点に鑑みてなされたもので、プレート式の蒸発器における伝熱面への冷媒散布を効率的に行い得るようにすることを目的とするものである。   This invention is made | formed in view of said point, and it aims at enabling it to perform refrigerant | coolant dispersion | distribution to the heat-transfer surface in a plate type evaporator efficiently.

本願発明では、上記課題を解決するための第1の手段として、吸収希溶液Ldを加熱することにより冷媒蒸気Rsおよび吸収濃溶液Lcを生成する発生器1と、該発生器1からの冷媒蒸気Rsを凝縮して冷却液化する凝縮器3と、該凝縮器3からの冷媒液Rwをヘッダ42の冷媒散布口43,43・・を介して伝熱プレート41,41の伝熱面に散布して蒸発させる蒸発器4と、前記吸収濃溶液Lcに対して前記蒸発器4で蒸発させた冷媒蒸気Rsを吸収させる吸収器5と、該吸収器5で冷媒蒸気Rsを吸収した吸収希溶液Ldを前記発生器1に供給する溶液ポンプ7とを備えた吸収式冷凍装置において、前記ヘッダ42に、前記冷媒散布口43,43・・から噴出する冷媒を前記伝熱プレート41,41の伝熱面へ分散流下させるための分散板45,45を前記冷媒散布口43,43・・を覆うように取り付けている。   In the present invention, as a first means for solving the above problems, the generator 1 that generates the refrigerant vapor Rs and the absorption concentrated solution Lc by heating the absorption diluted solution Ld, and the refrigerant vapor from the generator 1 The condenser 3 that condenses Rs into a liquefied liquid and the refrigerant liquid Rw from the condenser 3 is sprayed on the heat transfer surfaces of the heat transfer plates 41 and 41 through the refrigerant spray ports 43, 43,. The evaporator 4 to be evaporated, the absorber 5 that absorbs the refrigerant vapor Rs evaporated by the evaporator 4 with respect to the absorption concentrated solution Lc, and the absorption dilute solution Ld that has absorbed the refrigerant vapor Rs by the absorber 5. In the absorption refrigeration apparatus including the solution pump 7 that supplies the heat to the generator 1, the refrigerant ejected from the refrigerant spray ports 43, 43. Minutes to disperse flow down to the surface It is attached a plate 45, 45 so as to cover the coolant distribution opening 43, 43 ....

上記のように構成したことにより、凝縮器3から供給されてヘッダ42の冷媒散布口43,43・・から噴出する冷媒は、冷媒散布口43,43・・を覆うように取り付けられた分散板45,45に案内されて伝熱プレート41,41の伝熱面へ分散流下せしめられることとなる。従って、蒸発器4の伝熱プレート41,41の伝熱面へ冷媒を均一且つ効率的に分散供給させることができる。   With the configuration described above, the refrigerant supplied from the condenser 3 and ejected from the refrigerant spray ports 43, 43,... Of the header 42 is attached so as to cover the refrigerant spray ports 43, 43,. It will be guided to 45 and 45, and will be distributed and flowed down to the heat-transfer surface of the heat-transfer plates 41 and 41. FIG. Therefore, the refrigerant can be uniformly and efficiently distributed and supplied to the heat transfer surfaces of the heat transfer plates 41 and 41 of the evaporator 4.

本願発明では、さらに、上記課題を解決するための第2の手段として、上記第1の手段を備えた吸収式冷凍装置において、前記伝熱プレート41,41の伝熱面を焼鈍させて濡れ性を向上させることもでき、そのように構成した場合、伝熱プレート41,41の伝熱面の撥水性が低下して、濡れ性が大幅に向上することとなり、熱貫流率の向上に寄与する。   In the present invention, as a second means for solving the above problems, in the absorption refrigeration apparatus provided with the first means, the heat transfer surfaces of the heat transfer plates 41 and 41 are annealed so as to be wettable. In such a case, the water repellency of the heat transfer surfaces of the heat transfer plates 41 and 41 is reduced, and the wettability is greatly improved, which contributes to the improvement of the heat transmissivity. .

本願発明では、さらに、上記課題を解決するための第3の手段として、上記第1又は第2の手段を備えた吸収式冷凍装置において、前記各分散板45を、前記冷媒散布口43,43・・に対向する鉛直部45aと、該鉛直部45aの下端から前記伝熱プレート41の伝熱面に向かって傾斜するガイド部45bとによって構成することもでき、そのように構成した場合、凝縮器3から供給されてヘッダ42の冷媒散布口43,43・・から噴出する冷媒が、冷媒散布口43,43・・に対向する鉛直部45aに衝突した後、伝熱プレート41の伝熱面に向かって傾斜するガイド部45bに沿って流下することとなり、蒸発器4の伝熱プレート41への冷媒の均一且つ効率的な分散供給が可能となる。   In the present invention, as a third means for solving the above-described problem, in the absorption refrigeration apparatus provided with the first or second means, each of the dispersion plates 45 is connected to the refrigerant spray ports 43, 43. The vertical part 45a facing the vertical part 45a and the guide part 45b inclined from the lower end of the vertical part 45a toward the heat transfer surface of the heat transfer plate 41 can be configured. The refrigerant supplied from the vessel 3 and ejected from the refrigerant spray ports 43, 43,... Of the header 42 collides with the vertical portion 45a facing the refrigerant spray ports 43, 43,. Accordingly, the refrigerant flows down along the guide portion 45b that inclines toward the heat exchanger, and the refrigerant can be uniformly and efficiently supplied to the heat transfer plate 41 of the evaporator 4.

本願発明では、さらに、上記課題を解決するための第4の手段として、上記第1、第2又は第3の手段を備えた吸収式冷凍装置において、前記蒸発器4において未蒸発の冷媒を前記ヘッダ42へ循環圧送する冷媒ポンプ8を付設することもでき、そのように構成した場合、蒸発器4において未蒸発の冷媒が冷媒ポンプ8によってヘッダ42へ循環圧送され、再度蒸発器4において蒸発気化されることとなり、冷媒の効率的な利用が可能となる。   In the present invention, as a fourth means for solving the above-described problem, in the absorption refrigeration apparatus including the first, second, or third means, the refrigerant that has not evaporated in the evaporator 4 is A refrigerant pump 8 that circulates and pressure-feeds to the header 42 can also be provided. In such a configuration, the refrigerant that has not evaporated in the evaporator 4 is circulated and pressure-fed to the header 42 by the refrigerant pump 8 and is evaporated again in the evaporator 4. As a result, the refrigerant can be used efficiently.

本願発明の第1の手段によれば、吸収希溶液Ldを加熱することにより冷媒蒸気Rsおよび吸収濃溶液Lcを生成する発生器1と、該発生器1からの冷媒蒸気Rsを凝縮して冷却液化する凝縮器3と、該凝縮器3からの冷媒液Rwをヘッダ42の冷媒散布口43,43・・を介して伝熱プレート41,41の伝熱面に散布して蒸発させる蒸発器4と、前記吸収濃溶液Lcに対して前記蒸発器4で蒸発させた冷媒蒸気Rsを吸収させる吸収器5と、該吸収器5で冷媒蒸気Rsを吸収した吸収希溶液Ldを前記発生器1に供給する溶液ポンプ7とを備えた吸収式冷凍装置において、前記ヘッダ42に、前記冷媒散布口43,43・・から噴出する冷媒を前記伝熱プレート41,41の伝熱面へ分散流下させるための分散板45,45を前記冷媒散布口43,43・・を覆うように取り付けて、凝縮器3から供給されてヘッダ42の冷媒散布口43,43・・から噴出する冷媒が、冷媒散布口43,43・・を覆うように取り付けられた分散板45,45に案内されて伝熱プレート41,41の伝熱面へ分散流下せしめられるようにしたので、蒸発器4の伝熱プレート41,41の伝熱面へ冷媒を均一且つ効率的に分散供給させることができるという効果がある。   According to the first means of the present invention, the refrigerant 1 Rs and the concentrated concentrated solution Lc are generated by heating the diluted absorption solution Ld, and the refrigerant vapor Rs from the generator 1 is condensed and cooled. The condenser 3 to be liquefied, and the evaporator 4 for spraying and evaporating the refrigerant liquid Rw from the condenser 3 on the heat transfer surfaces of the heat transfer plates 41 and 41 through the refrigerant spray ports 43, 43,. An absorber 5 that absorbs the refrigerant vapor Rs evaporated by the evaporator 4 with respect to the absorption concentrated solution Lc, and an absorption dilute solution Ld that has absorbed the refrigerant vapor Rs by the absorber 5 to the generator 1. In the absorption refrigeration apparatus including the solution pump 7 to be supplied, the refrigerant ejected from the refrigerant spray ports 43, 43... Is distributed to the header 42 to the heat transfer surfaces of the heat transfer plates 41, 41. The dispersion plates 45, 45 are .. Are attached so as to cover the openings 43, 43... So that the refrigerant supplied from the condenser 3 and ejected from the refrigerant distribution openings 43, 43... Of the header 42 covers the refrigerant distribution openings 43, 43. Since it is guided by the dispersed plates 45, 45 so as to be dispersed and flowed down to the heat transfer surfaces of the heat transfer plates 41, 41, the refrigerant is uniformly distributed to the heat transfer surfaces of the heat transfer plates 41, 41 of the evaporator 4. There is an effect that it can be efficiently distributed and supplied.

本願発明の第2の手段におけるように、上記第1の手段を備えた吸収式冷凍装置において、前記伝熱プレート41,41の伝熱面を焼鈍させて濡れ性を向上させることもでき、そのように構成した場合、伝熱プレート41,41の伝熱面の撥水性が低下して、濡れ性が大幅に向上することとなり、熱貫流率の向上に寄与する。   As in the second means of the present invention, in the absorption refrigeration apparatus provided with the first means, the heat transfer surfaces of the heat transfer plates 41 and 41 can be annealed to improve wettability, When comprised in this way, the water repellency of the heat-transfer surface of the heat-transfer plates 41 and 41 will fall, wettability will improve significantly, and it contributes to the improvement of a heat-transfer rate.

本願発明の第3の手段におけるように、上記第1又は第2の手段を備えた吸収式冷凍装置において、前記各分散板45を、前記冷媒散布口43,43・・に対向する鉛直部45aと、該鉛直部45aの下端から前記伝熱プレート41の伝熱面に向かって傾斜するガイド部45bとによって構成することもでき、そのように構成した場合、凝縮器3から供給されてヘッダ42の冷媒散布口43,43・・から噴出する冷媒が、冷媒散布口43,43・・に対向する鉛直部45aに衝突した後、伝熱プレート41の伝熱面に向かって傾斜するガイド部45bに沿って流下することとなり、蒸発器4の伝熱プレート41,41への冷媒の均一且つ効率的な分散供給が可能となる。   As in the third means of the present invention, in the absorption refrigeration apparatus provided with the first or second means, each dispersion plate 45 is provided with a vertical portion 45a facing the refrigerant spray ports 43, 43,. And a guide portion 45b inclined from the lower end of the vertical portion 45a toward the heat transfer surface of the heat transfer plate 41. In such a case, the header 42 is supplied from the condenser 3 and supplied from the condenser 42. .. The guide part 45b which inclines toward the heat transfer surface of the heat transfer plate 41 after the refrigerant jetted from the refrigerant spray holes 43, 43... Collides with the vertical part 45a facing the refrigerant spray holes 43, 43. Thus, the refrigerant can be uniformly and efficiently distributed and supplied to the heat transfer plates 41 and 41 of the evaporator 4.

本願発明の第4の手段におけるように、上記第1、第2又は第3の手段を備えた吸収式冷凍装置において、前記蒸発器4において未蒸発の冷媒を前記ヘッダ42へ循環圧送する冷媒ポンプ8を付設することもでき、そのように構成した場合、蒸発器4において未蒸発の冷媒が冷媒ポンプ8によってヘッダ42へ循環圧送され、再度蒸発器4において蒸発気化されることとなり、冷媒の効率的な利用が可能となる。   As in the fourth means of the present invention, in the absorption refrigeration apparatus provided with the first, second or third means, a refrigerant pump for circulating and pumping unevaporated refrigerant to the header 42 in the evaporator 4 8, the refrigerant not yet evaporated in the evaporator 4 is circulated and pumped to the header 42 by the refrigerant pump 8 and evaporated again in the evaporator 4. Use is possible.

以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について詳述する。   Hereinafter, some preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1の実施の形態
図1ないし図4には、本願発明の第1の実施の形態にかかる吸収式冷凍装置および吸収式冷凍装置における蒸発器の要部が示されている。
First Embodiment FIGS. 1 to 4 show an absorption refrigeration apparatus according to a first embodiment of the present invention and a main part of an evaporator in the absorption refrigeration apparatus.

この吸収式冷凍装置においては、例えば冷媒として水(H2O)が採用され、吸収剤として臭化リチウム(LiBr)が採用されている。 In this absorption refrigeration apparatus, for example, water (H 2 O) is employed as a refrigerant, and lithium bromide (LiBr) is employed as an absorbent.

この吸収式冷凍装置は、図1に示すように、吸収器5からの吸収希溶液Ldを排温水熱交換器1aで加熱することにより冷媒蒸気Rsおよび吸収濃溶液Lcを生成する発生器1と、吸収器5からの吸収希溶液Ldと前記発生器1からの吸収濃溶液Lcとを熱交換させる溶液熱交換器2と、前記発生器1からの冷媒蒸気Rsを冷水熱交換器3aにより凝縮液化して冷媒液Rwとする凝縮器3と、該凝縮器3から供給される冷媒液Rwを図2〜図4に示すようなヘッダ42の冷媒散布口43,43・・を介して内部通路47内に被冷却流体(例えば、温水)Wcが流されている一対の伝熱プレート41,41の伝熱プレート面上に散布して冷媒蒸気Rsを蒸発させる蒸発器4と、前記発生器1からの吸収濃溶液Lcに対して前記蒸発器4で蒸発させた冷媒蒸気Rsを冷水熱交換器5aで吸収熱を放熱しながら吸収させて吸収希溶液Ldを生成する吸収器5と、該吸収器5で冷媒蒸気Rsを吸収して得られた吸収希溶液Ldを前記溶液熱交換器2を介して前記発生器1に供給する溶液ポンプ7とを備えて構成されている。符号4bは冷媒散布装置、5bは濃溶液散布装置である。   As shown in FIG. 1, the absorption refrigeration apparatus includes a generator 1 that generates refrigerant vapor Rs and an absorption concentrated solution Lc by heating an absorption diluted solution Ld from an absorber 5 with an exhaust hot water heat exchanger 1a. The solution heat exchanger 2 that exchanges heat between the absorption diluted solution Ld from the absorber 5 and the absorption concentrated solution Lc from the generator 1 and the refrigerant vapor Rs from the generator 1 are condensed by the cold water heat exchanger 3a. The condenser 3 that is liquefied to make the refrigerant liquid Rw, and the refrigerant liquid Rw supplied from the condenser 3 through the refrigerant spray ports 43, 43,... Of the header 42 as shown in FIGS. The evaporator 4 that sprays the refrigerant vapor Rs by spraying it on the heat transfer plate surfaces of the pair of heat transfer plates 41 and 41 in which a fluid to be cooled (for example, hot water) Wc is flowed in 47, and the generator 1 Is absorbed by the evaporator 4 with respect to the absorbed concentrated solution Lc from That absorbs the refrigerant vapor Rs by absorbing the refrigerant vapor Rs with the cold water heat exchanger 5a while absorbing the absorption heat, and the absorption diluted solution obtained by absorbing the refrigerant vapor Rs with the absorber 5. And a solution pump 7 for supplying Ld to the generator 1 via the solution heat exchanger 2. Reference numeral 4b is a refrigerant spraying device, and 5b is a concentrated solution spraying device.

そして、前記蒸発器4と吸収器5とは、例えば同一のケーシング6内の各設置室6a,6bにコンパクトに並設されており、蒸発器4の下部に溜まる未蒸発の冷媒液Rwは、ケーシング6の底面を介して吸収器設置室6bの底部の希溶液溜まり6b1に流され、前記溶液ポンプ7によって吸収希溶液Ldと共に発生器1に供給されるようになっている。つまり、未蒸発の冷媒液Rwを蒸発器4へ循環させる冷媒ポンプを不要としているのである(換言すれば、冷媒ポンプレス方式とされているのである)。 And the said evaporator 4 and the absorber 5 are arranged in parallel compactly in each installation chamber 6a, 6b in the same casing 6, for example, The un-evaporated refrigerant | coolant liquid Rw which accumulates in the lower part of the evaporator 4 is It flows into the dilute solution pool 6b 1 at the bottom of the absorber installation chamber 6b through the bottom surface of the casing 6, and is supplied to the generator 1 together with the dilute solution Ld by the solution pump 7. That is, a refrigerant pump that circulates the non-evaporated refrigerant liquid Rw to the evaporator 4 is unnecessary (in other words, a refrigerant pump-less system is used).

ところで、上記したような冷媒ポンプレス方式のプレート式蒸発器4においては、伝熱プレート面で蒸発せずに未蒸発冷媒として伝熱面より落下すると大きな冷媒損失となって、性能が大きく低下してしまう。従って、上述のようなプレート式蒸発器4の伝熱プレート面全面に、均一に濡れ性を確保することは性能向上のために極めて重要である。   By the way, in the plate type evaporator 4 of the refrigerant pumpless type as described above, if the refrigerant evaporates from the heat transfer surface as non-evaporated refrigerant without evaporating on the heat transfer plate surface, a large refrigerant loss is caused and the performance is greatly reduced. End up. Therefore, ensuring wettability uniformly over the entire surface of the heat transfer plate of the plate evaporator 4 as described above is extremely important for improving performance.

そこで、本実施の形態においては、前記溶液ポンプ7からの吸収希溶液Ldを利用し、吸収希溶液還流配管15を介して前記蒸発器4の伝熱プレート41,41面上に前記凝縮器3からの冷媒液Rwと共に散布することによって蒸発器4の伝熱プレート41,41面上の可及的均一な濡れ性を確保するように構成されている。   Therefore, in the present embodiment, the condenser 3 is used on the surfaces of the heat transfer plates 41 and 41 of the evaporator 4 through the absorption diluted solution reflux pipe 15 using the absorption diluted solution Ld from the solution pump 7. By spraying together with the refrigerant liquid Rw from the heat transfer plate 41, the heat transfer plates 41, 41 of the evaporator 4 are configured to ensure as much wettability as possible.

前記蒸発器4および吸収器5は、上述のように蒸発器および吸収器ケーシング6内の蒸発器設置室6aおよび吸収器設置室6b内に並設して設置され、蒸発器4側で蒸発した冷媒蒸気Rsを吸収器設置室6b内の吸収器5に供給して発生器1から供給される吸収濃溶液Lcに吸収させることとなっている。   The evaporator 4 and the absorber 5 are installed side by side in the evaporator installation chamber 6a and the absorber installation chamber 6b in the evaporator and absorber casing 6 as described above, and are evaporated on the evaporator 4 side. The refrigerant vapor Rs is supplied to the absorber 5 in the absorber installation chamber 6b and is absorbed by the absorption concentrated solution Lc supplied from the generator 1.

そして、本実施の形態の場合、冷媒蒸気Rsを吸収して得られた吸収希溶液Ldは、溶液ポンプ7、溶液熱交換器2および希溶液配管11を介して前記発生器1に供給されることとなっている。   In the case of the present embodiment, the absorbed diluted solution Ld obtained by absorbing the refrigerant vapor Rs is supplied to the generator 1 via the solution pump 7, the solution heat exchanger 2, and the diluted solution pipe 11. It is supposed to be.

前記希溶液配管11の溶液ポンプ7の下流側で、かつ前記溶液熱交換器2の上流側部分では、希溶液配管11から吸収希溶液還流配管15が分岐されており、この吸収希溶液還流配管15は、例えば電磁開閉弁よりなる開閉制御弁16を介して前記凝縮器3の底部から前記蒸発器4上部のヘッダ42に至る冷媒供給管14に接続連通せしめられている。   At the downstream side of the solution pump 7 of the dilute solution pipe 11 and at the upstream side of the solution heat exchanger 2, an absorbing dilute solution reflux pipe 15 is branched from the dilute solution pipe 11, and this absorbed dilute solution reflux pipe. 15 is connected to and communicated with the refrigerant supply pipe 14 extending from the bottom of the condenser 3 to the header 42 above the evaporator 4 via an open / close control valve 16 made of, for example, an electromagnetic open / close valve.

前記吸収希溶液還流配管15途中の開閉制御弁16は、運転開始後所定時間が経過した濡れ性の良い定常運転状態では閉弁制御される一方、運転開始時等の濡れ性の悪い状態では、例えば運転開始スイッチのONから所定の時間が経過するまでの間は開弁制御されて、前記溶液ポンプ7からの吸収希溶液Ldが凝縮器3からの冷媒液Rwと一緒に蒸発器4のヘッダ42に供給される。   The open / close control valve 16 in the middle of the absorption diluted solution reflux pipe 15 is controlled to close in a steady operation state with good wettability after a predetermined time has elapsed after the start of operation, while in a poor wettability state such as at the start of operation, For example, the valve opening control is performed until a predetermined time elapses after the operation start switch is turned on, and the absorption diluted solution Ld from the solution pump 7 is combined with the refrigerant liquid Rw from the condenser 3 and the header of the evaporator 4. 42.

この結果、運転開始後所定の時間が経過するまでの間は、前記蒸発器4の伝熱プレート41,41面上には多量の吸収希溶液Ldが供給され、蒸発器4の伝熱プレート41,41面上の濡れ性が確保される。   As a result, until a predetermined time elapses after the operation is started, a large amount of the diluted diluted solution Ld is supplied onto the heat transfer plates 41 and 41 of the evaporator 4, and the heat transfer plate 41 of the evaporator 4. , 41 is secured on the surface.

そして、上記所定の時間が経過して濡れ性が良くなると、その後定常運転時の冷媒液量に切り換えられる。   Then, after the predetermined time has elapsed, when the wettability is improved, the refrigerant liquid amount is switched to the steady operation amount thereafter.

前記開閉制御弁16の上記のタイミングおよび時間での開閉制御は、例えば図示しないマイコン制御ユニットによりリレー等を介してタイマー制御することによってなされる。   The opening / closing control of the opening / closing control valve 16 at the above timing and time is performed, for example, by a timer control via a relay or the like by a microcomputer control unit (not shown).

ところで、前記蒸発器4の冷媒散布装置4bのヘッダ42および蒸発器4の伝熱プレート部4aを構成する伝熱プレート41,41し、例えば図2〜図4に詳細に示すように、さらに構造的な観点からも十分な濡れ性を向上させ得るような構成が採用されている。   By the way, the header 42 of the refrigerant | coolant spraying apparatus 4b of the said evaporator 4 and the heat-transfer plates 41 and 41 which comprise the heat-transfer plate part 4a of the evaporator 4 are made, for example, as shown in detail in FIGS. From a general viewpoint, a configuration that can improve sufficient wettability is employed.

即ち、本実施の形態の場合、前記ヘッダ42と伝熱プレート41,41とは、1枚の伝熱プレート用板材の上部部分を側方から見てテーパー部44bを介した斜めクランク形状に曲成し、そのテーパー部44bに冷媒散布口43,43・・を形成するとともに該テーパー部44bよりも上部側の所定の高さの縦壁部44aでヘッダ42の冷媒貯留室42aを形成している。   That is, in the case of the present embodiment, the header 42 and the heat transfer plates 41, 41 are bent into an oblique crank shape through the tapered portion 44b when the upper portion of one heat transfer plate plate is viewed from the side. Are formed in the tapered portion 44b, and the refrigerant storage chamber 42a of the header 42 is formed by a vertical wall portion 44a having a predetermined height above the tapered portion 44b. Yes.

一方、前記テーパー部44bよりも下部の相当の長さの縦壁部を伝熱プレート41,41とし、そのような構成の板材を図示のように2枚逆方向に対向させた状態で並設し、それらの両端部および底部を別の板材で側壁および底壁として接合シールするとともに前記テーパー部44b,44bの下端間を所定の幅のスペーサ部材46を介してシールすることによって、図2〜図4のような上部に漏斗形状のヘッダ42、下部に相互に対向する2枚の伝熱プレート41,41、それら伝熱プレート41,41の間に被冷却流体通路47を備えた蒸発器4が構成されている。   On the other hand, the vertical wall portions having a considerable length below the tapered portion 44b are used as the heat transfer plates 41, 41, and two plate members having such a configuration are arranged in parallel in the opposite direction as shown in the figure. Then, the both end portions and the bottom portion are joined and sealed as a side wall and a bottom wall with another plate material, and the lower end of the tapered portions 44b and 44b is sealed through a spacer member 46 having a predetermined width, so that FIG. As shown in FIG. 4, an evaporator 4 having a funnel-shaped header 42 at the top, two heat transfer plates 41, 41 facing each other at the bottom, and a cooled fluid passage 47 between the heat transfer plates 41, 41. Is configured.

そして、前記蒸発器4の前記テーパー部44b,44bおよびその冷媒散布口43,43・・部分には、それらの周囲をカバーし、冷媒散布口43,43・・から噴出する吸収希溶液Ldおよび冷媒液Rwを受け止めて、下部側の伝熱プレート41,41の伝熱面上に可及的に均一に拡散させて流す分散板45,45が設けられている。つまり、前記ヘッダ42には、前記冷媒散布口43,43・・から噴出する冷媒を前記伝熱プレート41,41面へ分散流下させるための分散板45,45が前記冷媒散布口43,43・・を覆うように取り付けられているのである。   Further, the tapered portions 44b, 44b and the refrigerant spray ports 43, 43,... Of the evaporator 4 cover the periphery thereof, and absorb the diluted rare solution Ld ejected from the refrigerant spray ports 43, 43,. Dispersion plates 45 and 45 are provided that receive the refrigerant liquid Rw and diffuse it as uniformly as possible on the heat transfer surfaces of the lower heat transfer plates 41 and 41. That is, the header 42 is provided with dispersion plates 45, 45 for distributing and flowing down the refrigerant sprayed from the refrigerant spray ports 43, 43,.・ It is attached to cover.

この分散板45,45は、前記テーパー部44b,44bの上下長さに対応して同長さよりも少し下方に長い状態で並立する鉛直部45a,45aと、該鉛直部45a,45aの下端から伝熱プレート41,41面面に向かって傾斜するガイド部45b,45bとからなっていて、前記ヘッダ42の下部両側のテーパー部44b,44bに形成された冷媒散布口43,43・・から散布された冷媒が、図3のような定常流量時の場合はともかく、例えば図4に示す上述した運転開始時のような多量の場合であって、側方に勢いよく噴出するような場合にも、同冷媒液Rwを前記鉛直部45a,45aで確実に受け止め、その後下方に向けてスムーズにガイドして効率良く拡散させる。   The dispersion plates 45 and 45 correspond to the vertical lengths of the taper portions 44b and 44b, and are vertically aligned with the vertical portions 45a and 45a extending slightly below the length, and the lower ends of the vertical portions 45a and 45a. Heat transfer plates 41, guide portions 45b, 45b inclined toward the surface of the surface, and sprayed from refrigerant spray ports 43, 43,... Formed in taper portions 44b, 44b on both lower sides of the header 42. In the case of a large amount of the refrigerant, such as at the start of the operation shown in FIG. 4, for example, at the steady flow rate as shown in FIG. The refrigerant liquid Rw is reliably received by the vertical portions 45a and 45a, and then smoothly guided downward and diffused efficiently.

この結果、上述した運転開始時所定時間内の多量の冷媒液Rwが蒸発器4の伝熱プレート41,41の伝熱面上に均一に流され、運転初期の伝熱プレート面の濡れ性が十分に、かつ速やかに確保される。   As a result, a large amount of the refrigerant liquid Rw within a predetermined time at the start of operation described above is evenly flowed on the heat transfer surfaces of the heat transfer plates 41 and 41 of the evaporator 4, and the wettability of the heat transfer plate surface in the initial operation is improved. It is secured sufficiently and promptly.

このように、プレート式の蒸発器4の伝熱プレート41,41面に吸収希溶液Ldおよび冷媒液Rwを多量に散布し、伝熱プレート41,41面全面の濡れ性を確保した後に冷媒液Rwのみに切り換えることによって、冷媒液Rwが蒸発器4の伝熱プレート41,41面全面に均一に濡れ、熱貫流率も大きく増加し、冷媒ポンプレス方式の蒸発器4において特に有効な作用を得ることができる。   As described above, the absorption liquid Ld and the refrigerant liquid Rw are sprayed in large amounts on the surfaces of the heat transfer plates 41 and 41 of the plate-type evaporator 4, and the refrigerant liquid is obtained after ensuring the wettability of the entire surfaces of the heat transfer plates 41 and 41. By switching to only Rw, the refrigerant liquid Rw is uniformly wetted over the entire surface of the heat transfer plates 41 and 41 of the evaporator 4, and the heat transmissivity is greatly increased, so that a particularly effective action is obtained in the refrigerant pumpless type evaporator 4. be able to.

また、一度濡れ性を確保すれば、かなりの期間持続し、濡れ性が低下した時点で再度吸収希溶液Ldを散布すれば、再び濡れ性が復活する。   Further, once the wettability is ensured, the wettability lasts for a considerable period of time, and when the absorbable diluted solution Ld is sprayed again when the wettability is lowered, the wettability is restored again.

なお、以上の場合において、蒸発器4の伝熱プレート41,41の伝熱面は、さらに濡れ性を向上させるために、好ましくは焼鈍されていることが好ましい。そのようにすると、伝熱プレート41,41の伝熱面の撥水性が低下するので、一層濡れ性が向上する。   In the above case, the heat transfer surfaces of the heat transfer plates 41 and 41 of the evaporator 4 are preferably annealed in order to further improve the wettability. In such a case, the water repellency of the heat transfer surfaces of the heat transfer plates 41 and 41 is lowered, so that the wettability is further improved.

(変形例)
以上の構成では、蒸発器4の伝熱プレート41,41の伝熱面の十分な濡れ性を確保するために、溶液ポンプ7の吐出側の吸収希溶液Ldを蒸発器4の伝熱プレート41,41の伝熱面に分散板45,45を使用して供給するようにしたが、吸収希溶液Ldは、例えば図1のAに示すように、さらに溶液熱交換器2の下流側から帰還させるようにしてもよい。
(Modification)
In the above configuration, in order to ensure sufficient wettability of the heat transfer surfaces of the heat transfer plates 41 and 41 of the evaporator 4, the absorption diluted solution Ld on the discharge side of the solution pump 7 is used as the heat transfer plate 41 of the evaporator 4. , 41 is supplied using the dispersion plates 45, 45, but the absorbing dilute solution Ld is further returned from the downstream side of the solution heat exchanger 2, for example, as shown in FIG. You may make it make it.

また、同様の濡れ性を確保する方法としては、例えば図1のBに示すように、発生器1からの吸収濃溶液Lcを利用することも可能である。   Further, as a method for ensuring the same wettability, for example, as shown in FIG. 1B, it is also possible to use an absorption concentrated solution Lc from the generator 1.

第2の実施の形態
図5には、本願発明の第2の実施の形態にかかる吸収式冷凍装置が示されている。
Second Embodiment FIG. 5 shows an absorption refrigeration apparatus according to a second embodiment of the present invention.

この場合、第1の実施の形態における吸収希溶液還流配管15が廃止され、蒸発器4において未蒸発の冷媒液Rwをヘッダ42へ循環圧送する冷媒ポンプ8が付設されている。即ち、ケーシング6における蒸発器設置室6aの底部の冷媒液溜まり6a1と凝縮器3の出口側の冷媒供給管14とは、冷媒ポンプ8を介設した冷媒液還流配管17で接続されているのである。このようにすると、蒸発器4において未蒸発の冷媒が冷媒ポンプ8によってヘッダ42へ循環圧送され、再度蒸発器4において蒸発気化されることとなり、冷媒の効率的な利用が可能となる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。 In this case, the absorption diluted solution recirculation pipe 15 in the first embodiment is abolished, and the refrigerant pump 8 that circulates and pressure-feeds the non-evaporated refrigerant liquid Rw to the header 42 in the evaporator 4 is attached. That is, the refrigerant liquid pool 6a 1 at the bottom of the evaporator installation chamber 6a in the casing 6 and the refrigerant supply pipe 14 on the outlet side of the condenser 3 are connected by a refrigerant liquid recirculation pipe 17 having a refrigerant pump 8 interposed therebetween. It is. If it does in this way, the refrigerant | coolant which has not evaporated in the evaporator 4 will be circulated and pressure-fed by the refrigerant | coolant pump 8 to the header 42, and will be evaporated again in the evaporator 4, and efficient utilization of a refrigerant | coolant will be attained. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

本願発明は、上記各実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiments, and it goes without saying that the design can be changed as appropriate without departing from the scope of the invention.

本願発明の第1の実施の形態にかかる吸収式冷凍装置の冷凍サイクルを示す冷凍回路図である。1 is a refrigeration circuit diagram showing a refrigeration cycle of an absorption refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第1の実施の形態にかかる吸収式冷凍装置における蒸発器の伝熱プレートおよび冷媒散布装置部分の構成を示す一部を切除した斜視図である。It is the perspective view which excised a part which shows the structure of the heat exchanger plate and refrigerant | coolant spraying apparatus part of the evaporator in the absorption refrigeration apparatus concerning 1st Embodiment of this invention. 本願発明の第1の実施の形態にかかる吸収式冷凍装置における蒸発器の伝熱プレートおよび冷媒散布装置部分の定常運転時の冷媒散布状態を示す断面図である。It is sectional drawing which shows the refrigerant | coolant spraying state at the time of the steady operation of the heat exchanger plate and refrigerant | coolant spraying apparatus part of the evaporator in the absorption refrigeration apparatus concerning 1st Embodiment of this invention. 本願発明の第1の実施の形態にかかる吸収式冷凍装置における蒸発器の伝熱プレートおよび冷媒散布装置部分の運転開始時の多量の吸収希溶液散布状態を示す断面図である。It is sectional drawing which shows the abundant absorption solution dispersion state at the time of the operation | movement start of the heat-transfer plate and refrigerant | coolant spraying device part of an evaporator in the absorption refrigeration apparatus concerning 1st Embodiment of this invention. 本願発明の第2の実施の形態にかかる吸収式冷凍装置の冷凍サイクルを示す冷凍回路図である。It is a refrigeration circuit diagram which shows the refrigerating cycle of the absorption refrigeration apparatus concerning 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1は発生器
2は溶液熱交換器
3は凝縮器
4は蒸発器
4aは伝熱プレート部
4bは冷媒散布装置
5は吸収器
6はケーシング
7は溶液ポンプ
8は冷媒ポンプ
11は希溶液配管
12は冷媒蒸気配管
13は濃溶液配管
14は冷媒供給管
15は吸収希溶液還流配管
16は開閉制御弁
17は冷媒液還流配管
41は伝熱プレート
42はヘッダ
42aは冷媒貯留室
43は冷媒散布口
45は分散板
45aは鉛直部
45bはガイド部
Lcは吸収濃溶液
Ldは吸収希溶液
Rsは冷媒蒸気
Rwは冷媒液
1 is a generator 2 is a solution heat exchanger 3 is a condenser 4 is an evaporator 4a is a heat transfer plate part 4b is a refrigerant spray device 5 is an absorber 6 is a casing 7 is a solution pump 8 is a refrigerant pump 11 is a dilute solution pipe 12 Is a refrigerant vapor pipe 13 is a concentrated solution pipe 14 is a refrigerant supply pipe 15 is an absorption dilute solution reflux pipe 16 is an open / close control valve 17 is a refrigerant liquid reflux pipe 41 is a heat transfer plate 42 is a header 42a is a refrigerant storage chamber 43 is a refrigerant spray port 45 is a dispersion plate 45a is a vertical part 45b is a guide part Lc is an absorbing concentrated solution Ld is an absorbing diluted solution Rs is a refrigerant vapor Rw is a refrigerant liquid

Claims (4)

吸収希溶液(Ld)を加熱することにより冷媒蒸気(Rs)および吸収濃溶液(Lc)を生成する発生器(1)と、該発生器(1)からの冷媒蒸気(Rs)を凝縮して冷却液化する凝縮器(3)と、該凝縮器(3)からの冷媒液(Rw)をヘッダ(42)の冷媒散布口(43),(43)・・を介して伝熱プレート(41),(41)の伝熱面に散布して蒸発させる蒸発器(4)と、前記吸収濃溶液(Lc)に対して前記蒸発器(4)で蒸発させた冷媒蒸気(Rs)を吸収させる吸収器(5)と、該吸収器(5)で冷媒蒸気(Rs)を吸収した吸収希溶液(Ld)を前記発生器(1)に供給する溶液ポンプ(7)とを備えた吸収式冷凍装置であって、前記ヘッダ(42)には、前記冷媒散布口(43),(43)・・から噴出する冷媒を前記伝熱プレート(41),(41)の伝熱面へ分散流下させるための分散板(45),(45)を前記冷媒散布口(43),(43)・・を覆うように取り付けたことを特徴とする吸収式冷凍装置。 A generator (1) that generates refrigerant vapor (Rs) and an absorption concentrated solution (Lc) by heating the absorption diluted solution (Ld), and condensing the refrigerant vapor (Rs) from the generator (1) The condenser (3) for cooling and liquefying, and the refrigerant liquid (Rw) from the condenser (3) are transferred to the heat transfer plate (41) via the refrigerant spray ports (43), (43),. , (41) spread on the heat transfer surface and evaporate, and absorption that absorbs the refrigerant vapor (Rs) evaporated in the evaporator (4) with respect to the absorption concentrated solution (Lc). Absorption refrigeration apparatus comprising: a vessel (5); and a solution pump (7) for supplying an absorption dilute solution (Ld) having absorbed refrigerant vapor (Rs) by the absorber (5) to the generator (1) In the header (42), the refrigerant sprayed from the refrigerant spray ports (43), (43),. Dispersion plates (45) and (45) for dispersing and flowing down to the heat transfer surfaces of the heat plates (41) and (41) are attached so as to cover the refrigerant spray ports (43), (43). Absorption refrigeration equipment characterized. 前記伝熱プレート(41),(41)の伝熱面を焼鈍させて濡れ性を向上させたことを特徴とする請求項1記載の吸収式冷凍装置。 The absorption refrigeration apparatus according to claim 1, wherein the heat transfer surfaces of the heat transfer plates (41) and (41) are annealed to improve wettability. 前記各分散板(45)を、前記冷媒散布口(43),(43)・・に対向する鉛直部(45a)と、該鉛直部(45a)の下端から前記伝熱プレート(41)の伝熱面に向かって傾斜するガイド部(45b)とによって構成したことを特徴とする請求項1および2のいずれか一項記載の吸収式冷凍装置。 Each of the dispersion plates (45) is transferred to the heat transfer plate (41) from the vertical portion (45a) facing the refrigerant spray ports (43), (43), and the lower end of the vertical portion (45a). The absorption refrigeration apparatus according to any one of claims 1 and 2, wherein the absorption refrigeration apparatus includes a guide portion (45b) inclined toward a hot surface. 前記蒸発器(4)において未蒸発の冷媒を前記ヘッダ(42)へ循環圧送する冷媒ポンプ(8)を付設したことを特徴とする請求項1、2および3のいずれか一項記載の吸収式冷凍装置。 The absorption type according to any one of claims 1, 2, and 3, further comprising a refrigerant pump (8) for circulating and pressure-feeding unvaporized refrigerant to the header (42) in the evaporator (4). Refrigeration equipment.
JP2007039625A 2007-02-20 2007-02-20 Absorption type refrigerating device Pending JP2008202859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007039625A JP2008202859A (en) 2007-02-20 2007-02-20 Absorption type refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007039625A JP2008202859A (en) 2007-02-20 2007-02-20 Absorption type refrigerating device

Publications (1)

Publication Number Publication Date
JP2008202859A true JP2008202859A (en) 2008-09-04

Family

ID=39780558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007039625A Pending JP2008202859A (en) 2007-02-20 2007-02-20 Absorption type refrigerating device

Country Status (1)

Country Link
JP (1) JP2008202859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795588A (en) * 2019-04-05 2020-10-20 株式会社神户制钢所 Gasification device and maintenance method for gasification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795588A (en) * 2019-04-05 2020-10-20 株式会社神户制钢所 Gasification device and maintenance method for gasification device

Similar Documents

Publication Publication Date Title
JPH11264623A (en) Absorptive refrigerator
KR100346049B1 (en) Absorptive refrigerator and method for manufacturing the same
JPH06221718A (en) High temperature regenerator absorption type cold/hot water apparatus and the apparatus
JP2008202824A (en) Absorption type refrigerating device
KR19990023967A (en) Absorption Chiller
JP2008202859A (en) Absorption type refrigerating device
KR101060776B1 (en) Absorption Chiller
JP5338270B2 (en) Absorption refrigeration system
JP2008202873A (en) Absorption type refrigerating device
JPH07269980A (en) Absorption type heat pump
JP2009085571A (en) Absorption type refrigerating device
KR20000076283A (en) Liquid distributor, falling film heat exchanger and absorption refrigerator
JP2008202848A (en) Absorption type refrigerating device
JP5338272B2 (en) Absorption refrigeration system
KR19990029907A (en) Absorption Chiller
JP3813348B2 (en) Absorption refrigerator
JP7209324B2 (en) absorption chiller
JP7080001B2 (en) Absorption chiller
KR100339399B1 (en) Absorption heat pump
JP3432864B2 (en) Rectification unit for absorption refrigerator
JP2945972B1 (en) Absorption chiller / heater
JP2002243309A (en) Absorptive freezer
JP2001082824A (en) Absorption refrigerating machine
JP2916865B2 (en) Absorption refrigerator
JP2994253B2 (en) Absorption air conditioner