JP2008201602A - Carbon carrying platinum-bridged nanowire particles and its manufacturing method - Google Patents

Carbon carrying platinum-bridged nanowire particles and its manufacturing method Download PDF

Info

Publication number
JP2008201602A
JP2008201602A JP2007037200A JP2007037200A JP2008201602A JP 2008201602 A JP2008201602 A JP 2008201602A JP 2007037200 A JP2007037200 A JP 2007037200A JP 2007037200 A JP2007037200 A JP 2007037200A JP 2008201602 A JP2008201602 A JP 2008201602A
Authority
JP
Japan
Prior art keywords
platinum
carbon
carbon carrying
platinum nanoparticles
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007037200A
Other languages
Japanese (ja)
Other versions
JP5004163B2 (en
Inventor
Takeshi Kijima
剛 木島
Takeshi Sakai
剛 酒井
Yuichi Hayashi
祐一 林
Masashi Uota
将史 魚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Priority to JP2007037200A priority Critical patent/JP5004163B2/en
Publication of JP2008201602A publication Critical patent/JP2008201602A/en
Application granted granted Critical
Publication of JP5004163B2 publication Critical patent/JP5004163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new platinum-carbon complex carrying platinum controlled in its shape at a nanosize level on carbon which is usable as an electrode catalyst for a fuel cell or the like and its manufacturing method. <P>SOLUTION: In carbon carrying platinum nanoparticles, the platinum nanoparticle has a skeleton formed by platinum element and has a wire-like shape which consists of single crystals having an outer diameter of 5-100 nm in which cross-linked wire-like skeletons having a diameter of 1-5 nm are three-dimensionally bridged or microcrystals are connected. In a method for manufacturing carbon carrying platinum nanoparticles by preparing a reaction mixture consisting of a platinum complex compound, two kinds of non-ionic surfactants, water, and various kinds of carbon and reacting the reaction mixture by adding an aqueous solution of a reducer, platinum-bridged nanowire particles are formed by preparing the reaction mixture under a reduced pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、白金の化学的及び電気化学的特性を利用した燃料電池用電極触媒などの各種電気化学反応に用いる触媒、自動車排ガス処理用触媒等の産業及び環境分野における各種化学反応に用いる触媒、燃料電池用ガス拡散電極、金属―空気電池用ガス拡散電極、食塩電解用ガス拡散電極、電気分解用等のガス拡散電極、マイクロリアクター構成材料、物質貯蔵材料、各種センサ、ペースト、電気配線材、電気抵抗体、キャパシタ、永久磁石などの機能性材料として使用される新規な白金架橋ナノワイヤ粒子担持カーボン及びその製造方法に関する。   The present invention relates to a catalyst used for various electrochemical reactions such as a fuel cell electrode catalyst utilizing the chemical and electrochemical characteristics of platinum, a catalyst used for various chemical reactions in industrial and environmental fields such as a catalyst for automobile exhaust gas treatment, Gas diffusion electrode for fuel cell, gas diffusion electrode for metal-air battery, gas diffusion electrode for salt electrolysis, gas diffusion electrode for electrolysis, microreactor constituent material, substance storage material, various sensors, paste, electrical wiring material, The present invention relates to a novel platinum-supported nanowire particle-supporting carbon used as a functional material such as an electric resistor, a capacitor, and a permanent magnet, and a method for producing the same.

エネルギー変換及び物質変換のための各種電極触媒並びにガス拡散電極は、一般に、カーボン等の導電性担体に、金属塩の水溶液あるいはコロイド分散系を用いて金属成分を導入したのち、焼成、水素還元などの処理を行い調製する方法や(非特許文献1)、CVDなどの気相法を用いて調製される。つまり、電極触媒は、固体担体の表面に金属粒子を担持した複合粒子の形で調製され、その活性は、金属種はもとより、担持された金属微粒子の大きさ、結晶面の種類、担体の種類などによって変化し、微粒子の形状および大きさの制御は特に重要である。   Various electrode catalysts and gas diffusion electrodes for energy conversion and substance conversion are generally used after introducing a metal component into a conductive support such as carbon using an aqueous solution or colloidal dispersion of a metal salt, followed by firing, hydrogen reduction, etc. It is prepared using a method of performing the above-described treatment (Non-patent Document 1) or a vapor phase method such as CVD. That is, the electrode catalyst is prepared in the form of composite particles in which metal particles are supported on the surface of a solid support, and its activity is not only the metal species but also the size of the supported metal fine particles, the type of crystal plane, the type of support. The control of the shape and size of the fine particles is particularly important.

このため、白金触媒及び白金電極触媒の調製法として、上記の一般的な方法を様々に工夫することに加えて、ポリビニルピロリドンなどの保護剤存在下で液相還元し白金コロイドを作製する方法(非特許文献2)なども開発されてきている。   For this reason, as a method for preparing the platinum catalyst and the platinum electrode catalyst, in addition to devising the above general methods in various ways, a method of producing a platinum colloid by liquid phase reduction in the presence of a protective agent such as polyvinylpyrrolidone ( Non-patent document 2) has also been developed.

最近では、メソポーラスシリカを鋳型とする光還元、Hガス及び電着法を用いた還元により白金ナノワイヤが得られており、(非特許文献3、4)また、パラジウムについても、シリカを鋳型として、その細孔径に応じた直径および長さをもつナノワイヤが合成されている(非特許文献5)。また、三次元細孔構造をもつメソポーラスシリカを鋳型とする水素還元により、白金ワイヤが三次元網目状に連結し、シリカ壁の厚さに相当する直径約3nmの細孔をもつポーラス白金粒子が得られているが(非特許文献6)、いずれもカーボン上への担持についての言及はない。 Recently, platinum nanowires have been obtained by photoreduction using mesoporous silica as a template, reduction using H 2 gas and electrodeposition (Non-Patent Documents 3 and 4). Nanowires having a diameter and length corresponding to the pore diameter have been synthesized (Non-patent Document 5). In addition, by platinum reduction using mesoporous silica having a three-dimensional pore structure as a template, platinum wires are connected in a three-dimensional network, and porous platinum particles having pores with a diameter of about 3 nm corresponding to the thickness of the silica wall are obtained. Although it is obtained (Non-Patent Document 6), there is no mention of loading on carbon.

一方、本発明者らは、二種類の界面活性剤から成る液晶を鋳型として塩化白金酸を還元する手法を開発し、還元剤および白金塩の種類によって、外径5〜7nm、内径2〜4nmの白金、パラジウムなどの白金ナノチューブ、直径1.5〜4nm、外径20〜100nmのスポンジ状白金ナノ粒子及び該スポンジ状白金ナノ粒子(スポンジ状形態を有する白金ナノシート)担持カーボンを製造した(特許文献1、特許文献2、特許文献3)。   On the other hand, the present inventors have developed a technique for reducing chloroplatinic acid using a liquid crystal composed of two kinds of surfactants as a template, and an outer diameter of 5 to 7 nm and an inner diameter of 2 to 4 nm depending on the kind of the reducing agent and the platinum salt. Of platinum, platinum nanotubes such as palladium, sponge-like platinum nanoparticles having a diameter of 1.5 to 4 nm and an outer diameter of 20 to 100 nm, and carbon carrying the sponge-like platinum nanoparticles (platinum nanosheet having a sponge-like form) were produced (patents) Literature 1, Patent Literature 2, Patent Literature 3).

しかしながら、上記の文献に開示されている白金ナノ構造体は、あくまで独立して生成するバルクの超微粉やスポンジ状白金ナノ粒子(シート)担持カーボンであり、白金架橋ナノワイヤ粒子担持カーボンについての言及はない。   However, the platinum nanostructure disclosed in the above-mentioned document is a bulk ultrafine powder or sponge-like platinum nanoparticle (sheet) -supporting carbon that is independently generated. Absent.

富永博夫ほか1名、化学総説「触媒設計」、日本化学会編、1982年、p.50-63Hiroo Tominaga et al., Chemical Review “Catalyst Design”, The Chemical Society of Japan, 1982, p.50-63 N. Toshimaほか1名、Bull. Chem. Soc. Jpn., 65, 400 (1992)N. Toshima and 1 other person, Bull. Chem. Soc. Jpn., 65, 400 (1992) M. Sasakiほか6名、MicroporousMesoporous Mater., 21, 597 (1998).M. Sasaki and 6 others, Microporous Mesoporous Mater., 21, 597 (1998). Z. Liuほか7名、Angew. Chem. Int. Ed., 39, 3107 (2000).Z. Liu and 7 others, Angew. Chem. Int. Ed., 39, 3107 (2000). K-. B. Leeほか2名、Adv. Mater., 13, 7, 517 (2001).K-. B. Lee and two others, Adv. Mater., 13, 7, 517 (2001). H. J. Shinほか3名J. Am. Chem. Soc., 123, 1246-1247 (2001).H. J. Shin and three others J. Am. Chem. Soc., 123, 1246-1247 (2001). 木島 剛、特開2004−034228Tsuyoshi Kijima, JP2004-034228 木島 剛、ほか1名、特開2006−045582Takeshi Kijima and 1 other, JP2006-045582 木島 剛、ほか1名、特開2006−228450Takeshi Kijima and one other, JP 2006-228450

以上のように、白金に代表される白金及びその合金をカーボン上に担持する従来技術は、還元剤の添加や各種反応の利用によって自己組織的に形成される球状もしくは不定形の超微粒子が大多数であり、新規な物性の発現及び燃料電池用電極の性能向上のために、白金をナノサイズレベルで形状制御してカーボンに担持させ、これによって従来とは異なる形態、性質を有する新規な白金−カーボン複合体の開発が諸分野から望まれている。   As described above, the conventional technique for supporting platinum and its alloys represented by platinum on carbon has a large number of spherical or amorphous ultrafine particles formed in a self-organized manner by adding a reducing agent and utilizing various reactions. In order to develop a large number of new physical properties and improve the performance of fuel cell electrodes, platinum is supported on carbon by controlling its shape at the nano-size level, which makes it a new platinum with different forms and properties. -Development of carbon composites is desired from various fields.

また、燃料電池用の電極として、酸素還元活性が低いことに起因するカソード過電圧の低減が強く望まれている。
本発明は、燃料電池用の電極触媒などとして用いることができる、白金をナノサイズレベルで形状制御してカーボンに担持させた新規な白金−カーボン複合体及びその製造方法を提供することを課題とする。
Further, as an electrode for a fuel cell, it is strongly desired to reduce the cathode overvoltage resulting from the low oxygen reduction activity.
It is an object of the present invention to provide a novel platinum-carbon composite that can be used as an electrode catalyst for a fuel cell, etc., supported on carbon by controlling the shape of platinum at a nanosize level, and a method for producing the same. To do.

そのため、本発明者らにおいては、以上紹介した従来技術を前提技術とし、従来技術とは異なる形態の、形状制御した白金系触媒を開発すべく、本発明者らが先に提案し、特許出願した特許文献1〜3に記載の複合界面活性剤系を基礎とする鋳型合成法をさらに発展させた結果、白金塩を含む特定の反応混合物を調製し、減圧下で反応混合物に予めカーボン粉末を混合し、混合物が所定の割合に達した後、還元反応をすることによってカーボン粉末に白金架橋ナノワイヤ粒子を析出させることに成功し、これによって新規な形態の白金―カーボン複合体を提供することができることを知見した。本発明は、この知見に基づいてなされたものであり、その構成は以下(1)から(9)に記載のとおりである。   Therefore, in the present inventors, based on the conventional technology introduced above, the present inventors previously proposed and applied for a patent in order to develop a shape-controlled platinum catalyst having a form different from the conventional technology. As a result of further development of the template synthesis method based on the composite surfactant system described in Patent Literatures 1 to 3, a specific reaction mixture containing a platinum salt was prepared, and carbon powder was previously added to the reaction mixture under reduced pressure. After the mixture reaches a predetermined ratio, the platinum cross-linked nanowire particles are successfully deposited on the carbon powder by a reduction reaction, thereby providing a new form of platinum-carbon composite. I found out that I can do it. The present invention has been made on the basis of this finding, and the configuration thereof is as described in (1) to (9) below.

すなわち、第1の発明は、(1)白金ナノ粒子を担持したカーボンにおいて、前記白金ナノ粒子が、白金元素によってその骨格が構成され、かつ直径1〜5nmの交差結合したワイヤ状骨格が3次元的に架橋した外径5〜100nmの単結晶からなる又は微結晶が連結したワイヤ状形態を有することを特徴とする、白金ナノ粒子を担持したカーボンである。   That is, according to the first invention, (1) in carbon carrying platinum nanoparticles, the platinum nanoparticles are composed of a skeleton of platinum element, and a cross-bonded wire-like skeleton having a diameter of 1 to 5 nm is three-dimensional. It is a carbon carrying platinum nanoparticles, characterized in that it has a wire-like form consisting of a single crystal having an outer diameter of 5 to 100 nm cross-linked or having a crystallite connected thereto.

第2の発明は、前記第1の発明の製造方法を提示するものである。すなわち、(2)白金錯化合物、及び、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンソルビタンエステル、ポリオキシエチレン脂肪酸エステル類、ポリオキシエチレンアルキルフェニールエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマーよりなる群から選択された二種類の非イオン性界面活性剤、水、並びに各種カーボンからなる反応混合物を調製し、次いでこの反応混合物に還元剤水溶液を添加して反応させる白金ナノ粒子を担持したカーボンの製造方法において、前記反応混合物を減圧下で調製することにより、白金元素によってその骨格が形成され、かつ交差結合したワイヤ状骨格が3次元的に架橋した単結晶からなる又は微結晶が連結したワイヤ状形態を有する白金ナノ粒子を生成させることを特徴とする、白金ナノ粒子を担持したカーボンの製造方法である。   The second invention presents the manufacturing method of the first invention. That is, (2) from the group consisting of platinum complex compounds and polyoxyethylene alkyl ethers, polyoxyethylene sorbitan esters, polyoxyethylene fatty acid esters, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polyoxypropylene block polymers A method for producing carbon carrying platinum nanoparticles prepared by preparing a reaction mixture comprising two kinds of selected nonionic surfactants, water, and various carbons, and then adding an aqueous reducing agent solution to the reaction mixture for reaction. In the above, the reaction mixture is prepared under reduced pressure to form a skeleton of platinum element, and the cross-linked wire-like skeleton is composed of a three-dimensionally cross-linked single crystal or a wire-like form in which microcrystals are connected Producing platinum nanoparticles having Wherein a method for producing a carbon supporting platinum nanoparticles.

第3〜6の発明は、第2の発明の実施形態を示すものである。
すなわち、(3)前記白金錯化合物として、ヘキサクロロ白金酸又はその塩等を用い、二種類の非イオン性界面活性剤については、(4)前記ポリオキシエチレンアルキルエーテル類として、ノナエチレングリコールドデシルエーテル、ノナエチレングリコールモノヘキサデシルエーテル等を用い、(5)前記ポリオキシエチレンソルビタンエステルとして、ポリオキシエチレンソルビタンモノステアレート等を用い、(6)前記還元剤水溶液として、ヒドラジン水溶液等を用いる(2)に記載の白金ナノ粒子を担持したカーボンの製造方法である。
The third to sixth inventions show embodiments of the second invention.
That is, (3) hexachloroplatinic acid or a salt thereof is used as the platinum complex compound, and two types of nonionic surfactants are (4) nonaethylene glycol dodecyl ether as the polyoxyethylene alkyl ethers. (5) Polyoxyethylene sorbitan monostearate or the like is used as the polyoxyethylene sorbitan ester, and (6) A hydrazine aqueous solution or the like is used as the reducing agent aqueous solution (2) ) Is a method for producing carbon carrying platinum nanoparticles.

また、第7の発明は、(7)第1の発明の白金架橋ナノワイヤ粒子担持カーボンを含んでなり、その物性に基づいた用途に使用することを特徴とする機能性材料であり、第8〜9の発明は、さらに具体的な用途に使用するものである。
すなわち、第8の発明は、(8)電極触媒などの触媒材料として供され、使用される前記(7)の機能性材料であり、第9の発明は、(9)その用途が専ら燃料電池や金属空気電池などのガス拡散電極として供され、使用されること、又は電気分解用等の電極として供され、使用されることを特徴とする前記(7)の機能性材料を提供するものである。
さらに、その用途が専らマイクロリアクター構成材料として供され、使用される機能性材料、その用途が専ら物質貯蔵材料として供され、使用される機能性材料、その用途が専ら温度、圧力、湿度、結露、流量、風速、光、ガス、酸素濃度、若しくは変位を検出あるいは測定するセンサ、又は形状記憶センサとして供され、使用される機能性材料、その用途が専らペーストとして供され、使用されることを特徴とする機能性材料、その用途が専ら電気配線材、電気抵抗体、またはキャパシタとして供され、使用される機能性材料、その用途が専ら永久磁石として供され、使用される機能性材料を提供することができる。
The seventh invention is (7) a functional material comprising the platinum-crosslinked nanowire particle-supporting carbon of the first invention and used for applications based on the physical properties thereof. The invention of No. 9 is used for a more specific application.
That is, the eighth invention is (8) the functional material of (7) provided and used as a catalyst material such as an electrode catalyst, and the ninth invention is (9) a fuel cell whose use is exclusively used. The functional material according to (7) is provided and used as a gas diffusion electrode for a metal-air battery or the like, or used as an electrode for electrolysis or the like. is there.
Furthermore, the functional material used exclusively as a microreactor constituting material, the functional material used, the functional material used exclusively as a material storage material, the functional material used, the application exclusively used for temperature, pressure, humidity, condensation Functional materials that are used as sensors for detecting or measuring flow rate, wind speed, light, gas, oxygen concentration, or displacement, or shape memory sensors, and that their applications are exclusively used as pastes. Functional materials that are characterized, functional materials that are used exclusively as electrical wiring materials, electrical resistors, or capacitors, functional materials that are used, and functional materials that are used exclusively as permanent magnets can do.

本発明の製造方法の骨子は、少なくとも二種類の界面活性剤、白金塩の水溶液及びカーボンとを減圧下で適切な条件で混合することによって得られる構造を鋳型として白金塩を還元することによって特定寸法のナノ粒子をカーボン上に誘導するというものであり、鋳型を構築するための最適温度や混合条件も、対象とする白金の種類、用いる界面活性剤の特性、用いるカーボンの特性、及び還元剤の種類によって多様に変化する。   The outline of the production method of the present invention is specified by reducing platinum salt using a structure obtained by mixing at least two kinds of surfactants, an aqueous solution of platinum salt and carbon under appropriate conditions under reduced pressure as a template. The size of the nanoparticles is induced on the carbon, and the optimum temperature and mixing conditions for constructing the template are the target platinum type, the characteristics of the surfactant used, the characteristics of the carbon used, and the reducing agent. Varies depending on the type of

白金錯化合物(白金塩)として、ヘキサクロロ白金酸(HPtCl)を用い、二種類の非イオン性界面活性剤として、ノナエチレングリコールドデシルエーテル、ポリオキシエチレン(20)ソルビタンモノステアレートを用いた場合には、以下のような条件を採用することができる。
ヘキサクロロ白金酸2モルに対し、ノナエチレングリコールドデシルエーテルを1〜10モル、水を1〜600モル加えて60〜70℃で10〜30分間振とう混合後、冷却しA水溶液とする。次に、50〜70℃でポリオキシエチレン(20)ソルビタンモノステアレートを1〜10モル、水を1〜600モル加えて10〜30分混合後、冷却しB水溶液とする。A水溶液にB水溶液を添加し、10〜30分攪拌後、ここに、カーボンを、Ptの全体重量比が10〜70wt%となるように加え、任意のモル比となるまで減圧下で攪拌しながら水を除去する。0〜30℃好ましくは0〜10℃まで十分冷却して、ヒドラジンをヘキサクロロ白金酸1モル当たり1〜700モル好ましくは350〜600モル滴下し、その温度で1分〜24時間保持し、その後、エタノール洗浄、水洗を経て乾燥させ、白金架橋ナノワイヤ粒子担持カーボンを得る。
Hexachloroplatinic acid (H 2 PtCl 6 ) is used as a platinum complex compound (platinum salt), and nonaethylene glycol dodecyl ether and polyoxyethylene (20) sorbitan monostearate are used as two types of nonionic surfactants. In such a case, the following conditions can be adopted.
1 to 10 mol of nonaethylene glycol dodecyl ether and 1 to 600 mol of water are added to 2 mol of hexachloroplatinic acid, and the mixture is shaken and mixed at 60 to 70 ° C. for 10 to 30 minutes, and then cooled to obtain an aqueous solution A. Next, 1 to 10 mol of polyoxyethylene (20) sorbitan monostearate and 1 to 600 mol of water are added at 50 to 70 ° C., mixed for 10 to 30 minutes, and then cooled to obtain an aqueous B solution. The aqueous B solution was added to the aqueous A solution, and after stirring for 10 to 30 minutes, carbon was added thereto so that the total weight ratio of Pt was 10 to 70 wt%, and the mixture was stirred under reduced pressure until an arbitrary molar ratio was obtained. While removing the water. Cool sufficiently to 0 to 30 ° C., preferably 0 to 10 ° C., and drop hydrazine in an amount of 1 to 700 mol, preferably 350 to 600 mol per mol of hexachloroplatinic acid, and hold at that temperature for 1 minute to 24 hours. It is made to dry through ethanol washing and water to obtain platinum-crosslinked nanowire particle-supporting carbon.

本発明の特徴である減圧の条件は、限定されるものではないが、0.01〜0.0001atmを採用することが好ましい。特許文献3に記載されているように、反応混合物の調整を常圧で行った場合には、本発明に示すようなワイヤ状形態を有する白金ナノ粒子を担持したカーボンは得られない。   The decompression conditions that characterize the present invention are not limited, but preferably 0.01 to 0.0001 atm. As described in Patent Document 3, when the reaction mixture is adjusted at normal pressure, carbon carrying platinum nanoparticles having a wire-like form as shown in the present invention cannot be obtained.

カーボンとしては、ファーネスブラック等のカーボンブラック、カーボンナノチューブ等を用いることができる。   As the carbon, carbon black such as furnace black, carbon nanotube, and the like can be used.

本発明は、以上の特徴を持つものであるが、以下、本発明を実施例及び添付した図面に基づき、具体的に説明する。ただし、これらの実施例は、あくまでも本発明の一つの態様を開示するものであり、決して本発明を限定する趣旨ではない。本発明を構成する金属種や製造方法もこの実施例によって限定されるべきではない。   The present invention has the above-described features, but the present invention will be specifically described below with reference to the embodiments and the accompanying drawings. However, these examples merely disclose one aspect of the present invention, and are not intended to limit the present invention. The metal species and the manufacturing method constituting the present invention should not be limited by this example.

図1は、以下に記載する本発明の実施例1で得られた交差結合したワイヤ状白金ナノ粒子担持カーボンの透過形電子顕微鏡による観察写真であり、これによると、本発明の白金組織は、交差結合したワイヤ状構造を呈し、かつ、カーボン上に担持されていることが観察される。   FIG. 1 is a transmission electron microscope observation photograph of cross-bonded wire-like platinum nanoparticle-supported carbon obtained in Example 1 of the present invention described below. According to this, the platinum structure of the present invention is It is observed that it exhibits a cross-bonded wire-like structure and is supported on carbon.

白金を白金成分とする白金架橋ナノワイヤ粒子担持カーボンを以下のようにして製造した。
ヘキサクロロ白金酸(HPtCl)2モルに対し、ノナエチレングリコールドデシルエーテル(C12EO)を2モル、水を300モル加えて60℃で10分間振とう混合後、冷却しA水溶液とした。次に60℃でポリオキシエチレン(20)ソルビタンモノステアレート(Tween60;米国
Atlas Powder社
商品名)を2モル、水を300モル加えて15分間混合後、冷却しB水溶液とした。A水溶液にB水溶液を添加し、10分攪拌後、ここに、ファーネスブラック(VXC72R;米国 Cabot 社 商品名)を、Ptの全体重量比が46wt%となるように加え、HPtCl:C12EO:Tween60:HO=2:2:2:30となるまで減圧下(0.0008atm)で攪拌しながら水を除去した。4℃まで十分冷却して、ヒドラジンをヘキサクロロ塩化白金酸1モル当たり481モル滴下し、その温度で10分間保持し、その後、エタノール洗浄、水洗を経て乾燥させ、黒色粉末を得た。
A platinum-bridged nanowire particle-supporting carbon containing platinum as a platinum component was produced as follows.
To 2 mol of hexachloroplatinic acid (H 2 PtCl 6 ), 2 mol of nonaethylene glycol dodecyl ether (C 12 EO 9 ) and 300 mol of water were added, and the mixture was shaken at 60 ° C. for 10 minutes, then cooled, did. Next, 2 mol of polyoxyethylene (20) sorbitan monostearate (Tween 60; trade name of Atlas Powder, USA) was added at 60 ° C. and 300 mol of water were mixed for 15 minutes, followed by cooling to obtain an aqueous B solution. The aqueous B solution was added to the aqueous A solution, and after stirring for 10 minutes, furnace black (VXC72R; trade name of Cabot Corp., USA) was added thereto so that the total weight ratio of Pt was 46 wt%, and H 2 PtCl 6 : C Water was removed while stirring under reduced pressure (0.0008 atm) until 12 EO 9 : Tween 60: H 2 O = 2: 2: 2: 30. After sufficiently cooling to 4 ° C., 481 mol of hydrazine was added dropwise per 1 mol of hexachlorochloroplatinic acid, kept at that temperature for 10 minutes, and then dried through ethanol washing and water washing to obtain a black powder.

PtCl:C12EO:Tween60:HO=2:2:2:30で調整して得られた生成物のX線回折パターンは、白金の結晶構造を反映したピークを示しており、得られた生成物が白金を担持したカーボンであることが確認された(図3)。 The X-ray diffraction pattern of the product obtained by adjusting H 2 PtCl 6 : C 12 EO 9 : Tween 60: H 2 O = 2: 2: 2: 30 shows a peak reflecting the crystal structure of platinum. It was confirmed that the obtained product was carbon carrying platinum (FIG. 3).

透過型電子顕微鏡による観察により、カーボン上に担持された白金生成物が、直径1〜5nmの交差結合したワイヤ状骨格が3次元的に連結した外径5〜100nmの単結晶からなるワイヤ状形態及び微結晶が連結したワイヤ状形態を有することを確認した(図1、図2)。これにより、本発明にかかる多孔性の単結晶構造のあるいは微結晶が連結したワイヤ状白金ナノ粒子が担持されたカーボンが得られたことを確認した。   Observation by a transmission electron microscope shows that a platinum product supported on carbon is formed of a single crystal having an outer diameter of 5 to 100 nm in which a cross-bonded wire-like skeleton having a diameter of 1 to 5 nm is three-dimensionally connected. And it confirmed that it had the wire-like form which the microcrystal connected (FIG. 1, FIG. 2). As a result, it was confirmed that carbon carrying wire-like platinum nanoparticles having a porous single crystal structure or crystallites according to the present invention was obtained.

本発明は、上述したように、燃料電池用電極触媒、燃料電池用ガス拡散電極、金属―空気電池用ガス拡散電極、食塩電解用のガス拡散電極、電気分解用等のガス拡散電極等においてきわめて有意な活性を有し、これによって極めて高価な白金ないし白金材料を使用するデバイスにおいて、材料節減効果を有することはもちろん、高レベルの性質、機能を発現するものと期待される。燃料電池、金属―空気電池、食塩電解等に利用されるガス拡散電極及びその構成材料は、近未来の重要技術に位置づけられており、エネルギーおよび環境の観点からも最重要の技術課題の一つである。本発明の特異な形態、特異な間隙を有しなる白金を担持したカーボン材料の意義は、極めて大である。   As described above, the present invention is very useful in electrode catalysts for fuel cells, gas diffusion electrodes for fuel cells, gas diffusion electrodes for metal-air cells, gas diffusion electrodes for salt electrolysis, gas diffusion electrodes for electrolysis and the like. It is expected that a device having a significant activity and thus using a very expensive platinum or platinum material will exhibit a high level of properties and functions as well as a material saving effect. Gas diffusion electrodes and their constituent materials used in fuel cells, metal-air batteries, salt electrolysis, etc. are positioned as important technologies in the near future, and are one of the most important technical issues from the viewpoint of energy and environment. It is. The significance of the carbon material carrying platinum having a peculiar form of the present invention and a peculiar gap is extremely great.

実施例1で得られた白金架橋ナノワイヤ粒子担持カーボンの透過型電子顕微鏡による観察図である。2 is an observation view of platinum-supported nanowire particle-supported carbon obtained in Example 1 with a transmission electron microscope. FIG. 実施例1で得られた白金架橋ナノワイヤ粒子担持カーボンの透過型電子顕微鏡による観察図(図1の拡大図)である。FIG. 2 is an observation view (enlarged view of FIG. 1) of the platinum-bridged nanowire particle-supported carbon obtained in Example 1 with a transmission electron microscope. 実施例1で得られた白金架橋ナノワイヤ粒子担持カーボンのX線回折図形である。2 is an X-ray diffraction pattern of platinum-bridged nanowire particle-supported carbon obtained in Example 1. FIG.

Claims (9)

白金ナノ粒子を担持したカーボンにおいて、前記白金ナノ粒子が、白金元素によってその骨格が形成され、かつ直径1〜5nmの交差結合したワイヤ状骨格が3次元的に架橋した外径5〜100nmの単結晶からなる又は微結晶が連結したワイヤ状形態を有することを特徴とする、白金ナノ粒子を担持したカーボン。   In carbon carrying platinum nanoparticles, the platinum nanoparticles are formed of a single element having an outer diameter of 5 to 100 nm in which a skeleton is formed by platinum element and a cross-linked wire-like skeleton having a diameter of 1 to 5 nm is three-dimensionally crosslinked. A carbon carrying platinum nanoparticles, characterized in that it has a wire-like form made of crystals or connected with microcrystals. 白金錯化合物、及び、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンソルビタンエステル、ポリオキシエチレン脂肪酸エステル類、ポリオキシエチレンアルキルフェニールエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマーよりなる群から選択された二種類の非イオン性界面活性剤、水、並びに各種カーボンからなる反応混合物を調製し、次いでこの反応混合物に還元剤水溶液を添加して反応させる白金ナノ粒子を担持したカーボンの製造方法において、前記反応混合物を減圧下で調製することにより、白金元素によってその骨格が形成され、かつ交差結合したワイヤ状骨格が3次元的に架橋した単結晶からなる又は微結晶が連結したワイヤ状形態を有する白金ナノ粒子を生成させることを特徴とする、白金ナノ粒子を担持したカーボンの製造方法。   Two types selected from the group consisting of platinum complex compounds and polyoxyethylene alkyl ethers, polyoxyethylene sorbitan esters, polyoxyethylene fatty acid esters, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polyoxypropylene block polymers In the method for producing carbon carrying platinum nanoparticles, a reaction mixture comprising a nonionic surfactant, water, and various carbons is prepared, and then an aqueous reducing agent solution is added to the reaction mixture for reaction. Is prepared under reduced pressure to form a platinum nanoparticle having a wire-like form in which a skeleton is formed of platinum element and a cross-bonded wire-like skeleton is made of a single crystal three-dimensionally cross-linked or a microcrystal is connected White, characterized by generating Carbon manufacturing method of carrying nanoparticles. 前記白金錯化合物が、ヘキサクロロ白金酸又はその塩であることを特徴とする請求項2に記載の白金ナノ粒子を担持したカーボンの製造方法。   The method for producing carbon carrying platinum nanoparticles according to claim 2, wherein the platinum complex compound is hexachloroplatinic acid or a salt thereof. 前記ポリオキシエチレンアルキルエーテル類が、ノナエチレングリコールドデシルエーテル又はノナエチレングリコールモノヘキサデシルエーテルであることを特徴とする請求項2又は3に記載の白金ナノ粒子を担持したカーボンの製造方法。   The method for producing carbon carrying platinum nanoparticles according to claim 2 or 3, wherein the polyoxyethylene alkyl ether is nonaethylene glycol dodecyl ether or nonaethylene glycol monohexadecyl ether. 前記ポリオキシエチレンソルビタンエステルが、ポリオキシエチレンソルビタンモノステアレートであることを特徴とする請求項2〜4のいずれか一項に記載の白金ナノ粒子を担持したカーボンの製造方法。   The method for producing carbon carrying platinum nanoparticles according to any one of claims 2 to 4, wherein the polyoxyethylene sorbitan ester is polyoxyethylene sorbitan monostearate. 前記還元剤水溶液が、ヒドラジン水溶液であることを特徴とする請求項2〜5のいずれか一項に記載の白金ナノ粒子を担持したカーボンの製造方法。   The method for producing carbon carrying platinum nanoparticles according to any one of claims 2 to 5, wherein the aqueous reducing agent solution is an aqueous hydrazine solution. 請求項1に記載の白金ナノ粒子を担持したカーボンからなる機能性材料。   A functional material comprising carbon carrying the platinum nanoparticles according to claim 1. 触媒材料であることを特徴とする請求項7に記載の機能性材料。   The functional material according to claim 7, wherein the functional material is a catalyst material. 電極用材料であることを特徴とする請求項7に記載の機能性材料。   The functional material according to claim 7, wherein the functional material is an electrode material.
JP2007037200A 2007-02-16 2007-02-16 Platinum-crosslinked nanowire particle-supported carbon and method for producing the same Expired - Fee Related JP5004163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037200A JP5004163B2 (en) 2007-02-16 2007-02-16 Platinum-crosslinked nanowire particle-supported carbon and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037200A JP5004163B2 (en) 2007-02-16 2007-02-16 Platinum-crosslinked nanowire particle-supported carbon and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008201602A true JP2008201602A (en) 2008-09-04
JP5004163B2 JP5004163B2 (en) 2012-08-22

Family

ID=39779497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037200A Expired - Fee Related JP5004163B2 (en) 2007-02-16 2007-02-16 Platinum-crosslinked nanowire particle-supported carbon and method for producing the same

Country Status (1)

Country Link
JP (1) JP5004163B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915758B1 (en) * 2011-03-24 2012-04-11 国立大学法人信州大学 Metal oxide / platinum composite catalyst for oxygen reduction and process for producing the same
WO2012127540A1 (en) * 2011-03-24 2012-09-27 国立大学法人信州大学 Metal oxide-platinum compound catalyst and method for producing same
WO2016009935A1 (en) * 2014-07-15 2016-01-21 東レ株式会社 Electrode material for metal-air battery
CN113421716A (en) * 2021-06-23 2021-09-21 大连交通大学 Method for regulating and controlling growth mechanism of platinum nanowires in carrier mesoporous controllable growth mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228450A (en) * 2005-02-15 2006-08-31 Univ Of Miyazaki Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228450A (en) * 2005-02-15 2006-08-31 Univ Of Miyazaki Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915758B1 (en) * 2011-03-24 2012-04-11 国立大学法人信州大学 Metal oxide / platinum composite catalyst for oxygen reduction and process for producing the same
WO2012127540A1 (en) * 2011-03-24 2012-09-27 国立大学法人信州大学 Metal oxide-platinum compound catalyst and method for producing same
US8980786B2 (en) 2011-03-24 2015-03-17 Shinshu University Metal oxide-platinum compound catalyst and method for producing same
WO2016009935A1 (en) * 2014-07-15 2016-01-21 東レ株式会社 Electrode material for metal-air battery
JPWO2016009935A1 (en) * 2014-07-15 2017-04-27 東レ株式会社 Electrode material for metal-air battery
US10249881B2 (en) 2014-07-15 2019-04-02 Toray Industries, Inc. Electrode material for metal-air battery
CN113421716A (en) * 2021-06-23 2021-09-21 大连交通大学 Method for regulating and controlling growth mechanism of platinum nanowires in carrier mesoporous controllable growth mechanism

Also Published As

Publication number Publication date
JP5004163B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Devaguptapu et al. Morphology control of carbon-free spinel NiCo2O4 catalysts for enhanced bifunctional oxygen reduction and evolution in alkaline media
Tiwari et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells
JP6392214B2 (en) Method for producing catalyst structure
Mohanty Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals
KR101001122B1 (en) Platinum and platinum based alloy nanotubes as electrocatalysts for fuel cells
Yang et al. Assembly of bimetallic PdAg nanosheets and their enhanced electrocatalytic activity toward ethanol oxidation
Farsadrooh et al. Sonochemical synthesis of high-performance Pd@ CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media
Yang et al. Surfactant-assisted synthesis of palladium nanosheets and nanochains for the electrooxidation of ethanol
Peng et al. PdAg alloy nanotubes with porous walls for enhanced electrocatalytic activity towards ethanol electrooxidation in alkaline media
JP2004034228A (en) Precious metal nanotube, and method for manufacturing the same
JP4487067B2 (en) Platinum nanoparticles and method for producing the same
Zhang et al. Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation
Ahmed et al. Graphene supported silver nanocrystals preparation for efficient oxygen reduction in alkaline fuel cells
Du Pt-based nanowires as electrocatalysts in proton exchange fuel cells
Sui et al. Boosting methanol oxidation reaction with Au@ AgPt yolk-shell nanoparticles
Ohno et al. Remarkable mass activities for the oxygen evolution reaction at iridium oxide nanocatalysts dispersed on tin oxides for polymer electrolyte membrane water electrolysis
JP2006228450A (en) Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method
Li et al. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts
Daryakenari et al. Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions
KR101753126B1 (en) Manufacturing method of graphene/platinum-gold nano composite and graphene/platinum-gold 3D nano composite using the same
Hou et al. Ultraviolet laser beam-assisted one-step synthesis of clean PtPd nanoarchitectures with excellent electrocatalytic properties for direct methanol fuel cells
JP5004163B2 (en) Platinum-crosslinked nanowire particle-supported carbon and method for producing the same
Jiang et al. Synergism of multicomponent catalysis: one-dimensional Pt-Rh-Pd nanochain catalysts for efficient methanol oxidation
Chen et al. Nanostructured coral-like carbon as Pt support for fuel cells
JP2008173524A (en) Manufacturing method of noble metal supported electrode catalyst and noble metal supported electrode catalyst obtained thereby

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees