JP2008201182A - Driving device of hybrid vehicle - Google Patents

Driving device of hybrid vehicle Download PDF

Info

Publication number
JP2008201182A
JP2008201182A JP2007037125A JP2007037125A JP2008201182A JP 2008201182 A JP2008201182 A JP 2008201182A JP 2007037125 A JP2007037125 A JP 2007037125A JP 2007037125 A JP2007037125 A JP 2007037125A JP 2008201182 A JP2008201182 A JP 2008201182A
Authority
JP
Japan
Prior art keywords
power
generator
vehicle
engine
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007037125A
Other languages
Japanese (ja)
Other versions
JP4992457B2 (en
Inventor
Michiaki Nakao
道彰 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007037125A priority Critical patent/JP4992457B2/en
Publication of JP2008201182A publication Critical patent/JP2008201182A/en
Application granted granted Critical
Publication of JP4992457B2 publication Critical patent/JP4992457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the starting performance of a vehicle on a low μ road of a steep slope by enabling a first driving wheel and second driving wheel to rapidly generate a driving force at the start time of the vehicle. <P>SOLUTION: During start standby (S8 is YES), a forward/backward switching device 22 is put into a neutral state (S9), output control (S10) of an engine 12 is performed, the rotation speed NG of a power generator 48 is increased to a target rotation speed NGT, and the power capable of being generated by the power generator 48 is increased. Therefore, a predetermined power can be immediately generated by power generation control of the generator 48 by the power generation controlling means 114 at the start time of the vehicle, a predetermined driving wheel is rapidly generated in the rear wheel 32 by operation of a motor 68 by the generated power, and hence the vehicle can be started even on the low μ road or the like of the steep slope where the start only by a front wheel 30 is difficult. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エンジンによって第1駆動輪を回転駆動するとともに、エンジンによって回転駆動される発電機によって得られた電力で電動機を作動させて第2駆動輪を回転駆動するハイブリッド車両の駆動装置に係り、特に、第1駆動輪および第2駆動輪の両方を用いて発進する際の駆動力制御の改良に関するものである。   The present invention relates to a drive device for a hybrid vehicle that rotationally drives a first drive wheel by an engine and rotates a second drive wheel by operating an electric motor with electric power obtained by a generator that is rotationally driven by the engine. In particular, the present invention relates to an improvement in driving force control when starting using both the first driving wheel and the second driving wheel.

(a) 第1駆動輪を回転駆動するエンジンと、(b) そのエンジンによって機械的に回転駆動されることにより電力を発生する発電機と、(c) その発電機で発生させられた電力が供給されることにより力行トルクを発生し、前記第1駆動輪とは異なる第2駆動輪を回転駆動する電動機と、(d) 前記第1駆動輪および前記第2駆動輪を共に回転駆動して車両を発進させる際に、所定の力行トルクで前記電動機を作動させるのに必要な電力を発生するように前記発電機の発電制御を行う発進時発電制御手段と、を有するハイブリッド車両の駆動装置が知られている。特許文献1に記載の装置はその一例で、車両発進時に必要な電力を発電機により発生させることができる回転速度でその発電機が回転駆動されるようにエンジン回転速度を増大補正することにより、電動機を大きな力行トルクで作動させて第2駆動輪を回転駆動できるようになり、第1駆動輪と合せて急勾配の低μ路などでの発進性能が向上する。
特開2005−161933号公報
(a) an engine that rotationally drives the first drive wheel; (b) a generator that generates electric power when mechanically driven by the engine; and (c) an electric power generated by the generator. An electric motor that generates a power running torque by being supplied and rotationally drives a second driving wheel different from the first driving wheel; and (d) rotationally drives both the first driving wheel and the second driving wheel. When starting a vehicle, there is provided a hybrid vehicle drive device having start-time power generation control means for performing power generation control of the generator so as to generate electric power necessary to operate the electric motor with a predetermined power running torque. Are known. The apparatus described in Patent Document 1 is an example thereof, and by increasing and correcting the engine rotation speed so that the generator is driven to rotate at a rotation speed that can generate electric power necessary for starting the vehicle by the generator, The second drive wheel can be driven to rotate by operating the electric motor with a large power running torque, and the start performance on a steep low μ road or the like is improved together with the first drive wheel.
JP 2005-161933 A

しかしながら、上記特許文献1では、アクセルがON操作(ペダルの踏込み操作)された後にエンジン回転速度を増大補正するとともに、エンジン回転速度が上昇するまでブレーキ装置により車両を停止状態に保持するため、アクセルがON操作されてからエンジン回転速度が実際に上昇して車両が発進するまでに遅れ時間が生じるという問題があった。   However, in the above-mentioned Patent Document 1, the accelerator speed is increased and corrected after the accelerator is turned on (depressing the pedal), and the vehicle is stopped by the brake device until the engine speed increases. There is a problem that a delay time is generated from when the engine is turned on until the engine speed actually increases and the vehicle starts.

本発明は以上の事情を背景として為されたもので、その目的とするところは、車両発進時に第1駆動輪および第2駆動輪を共に速やかに回転駆動できるようにして、急勾配の低μ路などにおける車両の発進性能を一層向上させることにある。   The present invention has been made in the background of the above circumstances, and the object of the present invention is to enable both the first drive wheel and the second drive wheel to be rapidly rotated at the start of the vehicle so that the steep slope is reduced. The purpose is to further improve the starting performance of the vehicle on the road.

かかる目的を達成するために、本発明は、(a) 動力の伝達および遮断可能な断続装置を介して第1駆動輪を回転駆動するエンジンと、(b) そのエンジンによって機械的に回転駆動されることにより電力を発生する発電機と、(c) その発電機で発生させられた電力が供給されることにより力行トルクを発生し、前記第1駆動輪とは異なる第2駆動輪を回転駆動する電動機と、(d) 前記第1駆動輪および前記第2駆動輪を共に回転駆動して車両を発進させる際に、所定の力行トルクで前記電動機を作動させるのに必要な電力を発生するように前記発電機の発電制御を行う発進時発電制御手段と、を有するハイブリッド車両の駆動装置において、(e) ブレーキが制動操作されている車両停止中に、前記断続装置を遮断状態とするとともに、前記エンジンにより前記発電機の回転速度を増大させて発生可能な電力を増大させる停車中発電機回転増大手段を設けたことを特徴とする。   In order to achieve such an object, the present invention includes (a) an engine that rotationally drives the first drive wheel via an intermittent device capable of transmitting and interrupting power, and (b) mechanically driven by the engine. And (c) a power running torque is generated by supplying the power generated by the generator, and a second driving wheel different from the first driving wheel is driven to rotate. And (d) generating electric power necessary to operate the electric motor with a predetermined power running torque when both the first driving wheel and the second driving wheel are rotationally driven to start the vehicle. And a power generation control means at the time of starting to perform power generation control of the generator, (e) while the vehicle is stopped when the brake is braked, the intermittent device is in a disconnected state, To the engine Ri, characterized in that a generator rotation increasing means during stopping of increasing an amount of power that can be generated by increasing the rotational speed of the generator.

第2発明は、第1発明のハイブリッド車両の駆動装置において、前記停車中発電機回転増大手段は、路面勾配に応じてその路面勾配が大きい程前記発電機の回転速度を大きく増大させることを特徴とする。   According to a second aspect of the invention, in the hybrid vehicle drive device of the first aspect, the generator rotation increasing means during stopping increases the rotational speed of the generator greatly as the road surface gradient increases according to the road surface gradient. And

このようなハイブリッド車両の駆動装置においては、ブレーキが制動操作されている車両停止中に、断続装置を遮断状態にするとともにエンジンにより発電機の回転速度を増大させて発生可能な電力を増大させるため、ブレーキが解除操作されて発進する際に、発進時発電制御手段により発電機を発電制御することにより直ちに所定の電力を発生させることが可能で、その発生電力により電動機を作動させて第2駆動輪に所定の駆動力を速やかに発生させることができる。また、ブレーキの解除操作に伴って断続装置を接続することにより、エンジンによって第1駆動輪に所定の駆動力を速やかに発生させることができるため、結局、ブレーキの解除操作或いはアクセルのON操作(出力要求操作)に伴って第1駆動輪および第2駆動輪の駆動力を何れも速やかに発生させることが可能となり、第1駆動輪のみでは発進が困難な急勾配の低μ路などでも車両を速やかに発進させることができる。   In such a hybrid vehicle drive device, in order to increase the electric power that can be generated by turning off the intermittent device and increasing the rotational speed of the generator by the engine while the vehicle is being braked and stopped. When the vehicle is started after the brake is released, it is possible to immediately generate a predetermined power by controlling the power generation by the power generation control means at the time of starting, and the electric motor is operated by the generated power to drive the second drive. A predetermined driving force can be quickly generated in the wheel. In addition, by connecting the intermittent device in conjunction with the brake release operation, the engine can quickly generate a predetermined driving force on the first drive wheel. Consequently, the brake release operation or the accelerator ON operation ( It is possible to quickly generate the driving force of both the first driving wheel and the second driving wheel in accordance with the output request operation), and the vehicle can be used even on a steep low μ road that is difficult to start with only the first driving wheel. Can be started immediately.

第2発明では、路面勾配が大きい程発電機回転速度を大きく増大させるため、発電機の発生可能な電力が大きくなり、車両発進時に電動機により大きな駆動力を第2駆動輪に発生させることが可能で、登坂路における車両の発進性能が一層向上する。すなわち、第2駆動輪の駆動力が不足すると第1駆動輪に大きな負荷が掛かるため、その第1駆動輪がスリップして発進不能となったり、車両がずり下がったりする恐れがあるが、第2駆動輪の駆動力が路面勾配に応じて大きくされることにより、そのような発進不能やずり下がりが抑制される。   In the second invention, since the generator rotation speed is greatly increased as the road surface gradient is larger, the electric power that can be generated by the generator is increased, and a large driving force can be generated in the second driving wheel by the electric motor when the vehicle starts. Thus, the starting performance of the vehicle on the uphill road is further improved. That is, if the driving force of the second driving wheel is insufficient, a large load is applied to the first driving wheel, which may cause the first driving wheel to slip and become unable to start, or the vehicle may slide down. By increasing the driving force of the two driving wheels in accordance with the road surface gradient, it is possible to prevent such start failure and sliding down.

第1駆動輪および第2駆動輪は、何れも左右の車輪を対で備えているもので、例えば4輪駆動車両における前輪および後輪の一方および他方であり、例えば第1駆動輪が前輪で第2駆動輪が後輪とされるが、逆であっても良い。エンジンと第1駆動輪との間に介在させられる断続装置は、動力伝達を遮断するニュートラルを成立させることができる自動変速機や前後進切換装置などである。エンジンは、燃料の燃焼によって動力を発生するガソリンエンジンやディーゼルエンジン等の内燃機関である。   The first driving wheel and the second driving wheel are both provided with a pair of left and right wheels, for example, one and the other of the front and rear wheels in a four-wheel drive vehicle, for example, the first driving wheel is the front wheel. The second drive wheel is the rear wheel, but it may be reversed. The intermittent device interposed between the engine and the first drive wheel is an automatic transmission or a forward / reverse switching device that can establish a neutral for interrupting power transmission. The engine is an internal combustion engine such as a gasoline engine or a diesel engine that generates power by burning fuel.

エンジンによって回転駆動される発電機は、少なくとも発電機能を備えておれば良く、オルタネータ等が好適に用いられるが、必要に応じて力行が可能なモータジェネレータなどを採用することもできる。この発電機は、回転速度が高くなる程大きな電力を発生させることが可能で、例えば界磁電流の制御で発生電力を制御することができる。発電機は、エンジンに直接接続されてエンジンと一体的に回転させられるものでも良いが、プーリや歯車等の伝動装置を介してエンジンにより回転駆動されるものでも良く、その場合の回転速度はエンジンと同じであっても減速回転或いは増速回転させられるようになっていても良い。   The generator driven to rotate by the engine only needs to have at least a power generation function, and an alternator or the like is preferably used. However, a motor generator or the like capable of powering can be used as necessary. This generator can generate larger electric power as the rotational speed becomes higher, and can control generated electric power by controlling field current, for example. The generator may be directly connected to the engine and rotated integrally with the engine. Alternatively, the generator may be rotated by the engine via a transmission device such as a pulley or a gear. Even if it is the same, it may be designed to be rotated at a reduced speed or increased speed.

第2駆動輪を回転駆動する電動機は、少なくとも力行機能を備えておれば良く、必要に応じて発電が可能なモータジェネレータなどを採用することもできる。   The electric motor that rotationally drives the second drive wheel only needs to have at least a power running function, and a motor generator that can generate electric power can be adopted as necessary.

発進時発電制御手段は、例えばアクセル操作量に応じて定められる所定の力行トルクで電動機を作動させるのに必要な電力を発生するように発電機の発電制御を行うように構成され、アクセルOFF(非操作)時でも所定の力行トルク(クリープトルクに相当)で電動機を作動させることができるように発電制御を行うようになっていても良い。アクセル操作量および路面勾配をパラメータとして定められる所定の力行トルクで電動機を作動させることができるように発電制御を行うことも可能で、例えば路面勾配が所定値以上の時だけ発電制御を行って電動機を作動させ、路面勾配が小さい平坦路では、発電制御を行うことなく第1駆動輪のみで発進させるものでも良い。   The power generation control means at the start is configured to perform power generation control of the generator so as to generate electric power necessary to operate the electric motor with a predetermined power running torque determined according to the accelerator operation amount, for example. The power generation control may be performed so that the electric motor can be operated with a predetermined power running torque (corresponding to a creep torque) even during non-operation. It is also possible to perform power generation control so that the electric motor can be operated with a predetermined power running torque determined using the accelerator operation amount and the road surface gradient as parameters. For example, the power generation control is performed only when the road surface gradient is a predetermined value or more. On a flat road with a small road gradient, the vehicle may be started with only the first drive wheels without performing power generation control.

上記発進時発電制御手段は、例えばブレーキがON操作(制動操作)された車両停止中には発電制御を行うことなく、ブレーキがOFF操作(解除操作)された場合やアクセルがON操作された車両発進時に発電制御を行うように構成される。発電制御を行う車両発進時は、ブレーキが完全に解除される場合だけでなく、ブレーキ力や操作力が所定値以下まで低下した時でも良く、上記ブレーキのOFF操作はそのような態様を含む。また、前進発進時および後進発進時の両方で発電制御を行うこともできるが、それ等の何れか一方のみ、例えば前進発進時のみに実行するだけでも良い。   The power generation control means at the time of starting is, for example, a vehicle in which the brake is turned off (release operation) or the accelerator is turned on without performing power generation control while the vehicle is stopped while the brake is turned on (braking operation). It is comprised so that electric power generation control may be performed at the time of start. When starting the vehicle to perform power generation control, not only when the brake is completely released, but also when the brake force or the operation force is reduced to a predetermined value or less, the brake OFF operation includes such a mode. Further, the power generation control can be performed both at the time of forward start and at the time of reverse start. However, only one of them may be executed, for example, only at the time of forward start.

停車中発電機回転増大手段がエンジンによって発電機の回転速度の増大制御を実行するブレーキがON操作された車両停止中は、例えばフットブレーキの踏込み操作等により常用ブレーキがON操作されている場合であるが、駐車ブレーキがON操作されている場合であっても良い。このようにブレーキがON操作されているため、断続装置を遮断状態としても、坂路などで車両が動き出す恐れがない。   While the vehicle is stopped when the generator rotation increasing means is stopped by the engine to increase the rotation speed of the generator while the vehicle is stopped, the normal brake is turned ON by, for example, a foot brake depressing operation. However, the parking brake may be turned on. Since the brake is operated as described above, there is no fear that the vehicle starts to move on a slope or the like even when the interrupting device is in a shut-off state.

また、ブレーキがON操作されている車両停止中に常に発電機回転速度を増大させている必要はなく、シフトレバーがDポジション等の車両走行ポジションへ操作されている場合、或いはブレーキ操作力やブレーキ力(油圧など)が低下し始めた場合など、運転者がブレーキOFFや車両の発進を意図していることが予想される場合だけ、エンジン回転速度を増大させるようにしても良いなど、他の実行許可条件を設けることも可能である。   Further, it is not necessary to constantly increase the generator rotational speed while the vehicle is stopped while the brake is being operated. When the shift lever is operated to a vehicle travel position such as the D position, The engine speed may be increased only when the driver is expected to turn off the brake or start the vehicle, such as when the power (hydraulic pressure, etc.) starts to decrease. Execution permission conditions can also be set.

また、前記発進時発電制御手段が、路面勾配が所定値以上の時だけ発電制御を行い、路面勾配が小さい平坦路では発電制御を行わない場合には、停車中発電機回転増大手段も発電機回転速度を増大させる必要はなく、路面勾配が所定値以上の時だけ実行すれば良い。発進時発電制御手段が路面勾配に応じて発電制御を行う場合に、路面勾配が所定値以下で、発電機により発生させる電力が小さく、発電機回転速度を増大させる必要がない場合も、停車中発電機回転増大手段による発電機回転速度の増大制御は必要ない。また、発進時発電制御手段が前進発進時だけで発電制御を行う場合には、例えばシフトレバーが前進走行用の操作ポジションへ操作されている場合など、前進発進させる可能性がある場合だけ、言い換えれば発進時発電制御手段による発電制御が行われる可能性がある場合だけ回転増大制御を行えば良い。   Further, when the power generation control means at the time of starting performs power generation control only when the road surface gradient is not less than a predetermined value and does not perform power generation control on a flat road with a small road surface gradient, It is not necessary to increase the rotational speed, and it is sufficient to execute it only when the road surface gradient is a predetermined value or more. When the power generation control means at the time of starting performs power generation control according to the road surface gradient, the road surface gradient is below a predetermined value, the power generated by the generator is small, and it is not necessary to increase the generator rotation speed. Increase control of the generator rotation speed by the generator rotation increasing means is not necessary. In addition, when the power generation control means at the start performs power generation control only at the time of forward start, in other words, only when there is a possibility of starting forward, for example, when the shift lever is operated to the operation position for forward travel. For example, the rotation increase control may be performed only when there is a possibility that the power generation control by the starting power generation control means is performed.

第2発明では、路面勾配に応じてその路面勾配が大きい程発電機回転速度を大きく増大させるようになっているが、第1発明の実施に際しては、路面勾配とは関係なく、例えばエンジン回転速度をアイドル回転速度よりも高い予め定められた一定の回転速度として、発電機回転速度を一定量だけ増大させるだけでも良い。   In the second aspect of the invention, the generator rotational speed is greatly increased as the road surface gradient increases according to the road surface gradient. However, when the first invention is implemented, the engine rotational speed is not related to the road surface gradient, for example. May be set to a predetermined constant rotational speed higher than the idle rotational speed, and the generator rotational speed may be increased by a certain amount.

第2発明では、例えば路面勾配に応じて発電機回転速度すなわちエンジン回転速度を段階的或いは連続的に増大させるように構成される。この場合に、前記発進時発電制御手段がアクセルOFF時でも、路面勾配に拘らず車両のずり下がりが生じないように、路面勾配に応じて定められた所定の力行トルク(クリープトルクに相当)で電動機を作動させることができるように発電制御を行う場合には、停車中発電機回転増大手段は、その力行トルクで電動機を作動させるのに必要な電力を発生させることができるように、発電機回転速度の増大量を設定することが望ましく、それより大きくても良い。路面勾配の他に乗車人数や積載重量等を含む車両重量を考慮して、例えば車両のずり下がりが生じないように発進時の発電制御や停車中の発電機回転増大制御を行うことも可能である。   In the second invention, for example, the generator rotational speed, that is, the engine rotational speed is increased stepwise or continuously in accordance with the road gradient. In this case, even when the starting power generation control means is in the accelerator OFF state, a predetermined power running torque (corresponding to creep torque) determined according to the road surface gradient is set so that the vehicle does not slide down regardless of the road surface gradient. In the case of performing power generation control so that the electric motor can be operated, the generator rotation increasing means during stopping can generate electric power necessary to operate the electric motor with the power running torque. It is desirable to set the increase amount of the rotation speed, and it may be larger than that. Considering the vehicle weight including the number of passengers and the loaded weight in addition to the road surface gradient, it is also possible to perform power generation control at start-up and generator rotation increase control during stopping so that the vehicle does not slide down, for example. is there.

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が適用されたハイブリッド車両の駆動装置6の構成を表す図である。この駆動装置6は、主駆動輪である左右の前輪30L、30R(以下、左右それぞれを区別しないときは単に前輪30という。)を駆動する前輪用駆動装置10と、副駆動輪である左右の後輪32L、32R(以下、左右それぞれを区別しないときは単に後輪32という。)を駆動する後輪用駆動装置8と、これらの駆動装置を制御する電子制御装置70とを備えている。本実施例では、前輪30L、30Rが第1駆動輪で後輪32L、32Rが第2駆動輪である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a drive device 6 for a hybrid vehicle to which the present invention is applied. The driving device 6 includes a front wheel driving device 10 for driving the left and right front wheels 30L and 30R (hereinafter, simply referred to as the front wheel 30 when left and right are not distinguished), and the left and right front wheels 30L and 30R. A rear wheel drive device 8 for driving the rear wheels 32L and 32R (hereinafter simply referred to as the rear wheel 32 when left and right are not distinguished) and an electronic control device 70 for controlling these drive devices are provided. In this embodiment, the front wheels 30L and 30R are first drive wheels, and the rear wheels 32L and 32R are second drive wheels.

後輪用駆動装置8には、電力の供給を受けて力行トルクを発生する電動機68が備えられ、その電動機68の出力は減速機38、クラッチ44を介して差動歯車装置46に伝達され、左右の後輪32L、32Rに分配される。電動機68は、例えば直流モータが用いられ、後述する発電機48により発電された電力が供給されることにより、その電力によって力行トルクを発生する。また、前記クラッチ44は、減速機38と差動歯車装置46との間に配設され、クラッチ44が係合あるいは解放させられることにより、減速機38と差動歯車装置46との間の動力を伝達状態と遮断状態とに切り換える。たとえば、電動機68が非作動の場合、すなわち、車両が前輪30によってのみ駆動される場合などに、動力伝達が遮断されるようにされ、後輪32が回転させられることによって電動機68が引きずられて回転させられ、燃費が悪化したり、あるいは電動機68が直流モータである場合等において、整流子等の部品の磨耗を防ぐことにより電動機68の耐久性の向上を図る。   The rear wheel drive device 8 is provided with an electric motor 68 that receives power supply and generates a power running torque. The output of the electric motor 68 is transmitted to the differential gear device 46 via the speed reducer 38 and the clutch 44. The left and right rear wheels 32L and 32R are distributed. For example, a DC motor is used as the electric motor 68. When electric power generated by a generator 48, which will be described later, is supplied, a power running torque is generated by the electric power. The clutch 44 is disposed between the speed reducer 38 and the differential gear device 46, and the power between the speed reducer 38 and the differential gear device 46 is achieved by engaging or releasing the clutch 44. Is switched between the transmission state and the cutoff state. For example, when the electric motor 68 is not operated, that is, when the vehicle is driven only by the front wheels 30, the power transmission is cut off, and the electric motor 68 is dragged by rotating the rear wheel 32. When the motor is rotated and fuel consumption is deteriorated or the electric motor 68 is a DC motor, the durability of the electric motor 68 is improved by preventing wear of components such as a commutator.

また、各車輪30L、30R、32L、32Rには、それぞれ車輪速センサ52L、52R、54L、54Rが併設され、前記電子制御装置70に各車輪30L、30R、32L、32Rの回転速度に関する情報を供給する。また、各車輪30L、30R、32L、32Rには、ブレーキ40R、40L、42R、42Lがそれぞれ設けられており、前記電子制御装置70からの指示により各車輪の回転速度を減少させるように作動させられる。   Also, each wheel 30L, 30R, 32L, 32R is provided with a wheel speed sensor 52L, 52R, 54L, 54R, respectively, and the electronic controller 70 is informed about the rotational speed of each wheel 30L, 30R, 32L, 32R. Supply. Each wheel 30L, 30R, 32L, 32R is provided with a brake 40R, 40L, 42R, 42L, respectively, and is operated so as to reduce the rotational speed of each wheel according to an instruction from the electronic control unit 70. It is done.

図2は、前記前輪用駆動装置10の骨子図である。この前輪用駆動装置10は、横置き型で、FF(フロントエンジン・フロントドライブ)型車両に好適に用いられるものであり、走行用の駆動力源としてエンジン12を備えている。ガソリンエンジン等の内燃機関にて構成されているエンジン12の出力は、流体式動力伝達装置としてのトルクコンバータ14から、前後進切換装置22、ベルト式の無段変速機(CVT)16、減速歯車36を介して差動歯車装置50に伝達され、左右の主駆動輪(前輪)30L、30Rに分配される。一方、エンジン12の出力は、エンジン12のクランク軸にプーリおよび伝動ベルトを介して機械的に入力軸が連結された発電機48に対しても伝達され、発電機48はエンジン12の出力によって回転駆動されるようになっている。この発電機48はオルタネータなどである。   FIG. 2 is a skeleton diagram of the front wheel drive device 10. This front-wheel drive device 10 is of a horizontal type and is suitably used for an FF (front engine / front drive) type vehicle, and includes an engine 12 as a driving force source for traveling. The output of the engine 12 composed of an internal combustion engine such as a gasoline engine is supplied from a torque converter 14 as a fluid power transmission device, a forward / reverse switching device 22, a belt-type continuously variable transmission (CVT) 16, a reduction gear. 36 to the differential gear device 50 and distributed to the left and right main drive wheels (front wheels) 30L, 30R. On the other hand, the output of the engine 12 is also transmitted to a generator 48 mechanically connected to the crankshaft of the engine 12 via a pulley and a transmission belt, and the generator 48 is rotated by the output of the engine 12. It is designed to be driven. The generator 48 is an alternator or the like.

トルクコンバータ14は、エンジン12のクランク軸に連結されたポンプ翼車14p、およびタービン軸28を介して前後進切換装置22に連結されたタービン翼車14tを備えており、流体を介して動力伝達を行うようになっている。また、それらのポンプ翼車14pとタービン翼車14tとの間にはロックアップクラッチ18が設けられており、ロックアップ制御装置88(図3参照)によって係合側油室および解放側油室に対する油圧供給が切り換えられることにより、係合または解放されるようになっており、完全係合させられることによってポンプ翼車14pおよびタービン翼車14tは一体回転させられる。上記ポンプ翼車14pには、無段変速機16を変速制御したり、ベルト挟圧力を発生させたり、或いは各部に潤滑油を供給したりするための油圧を発生する機械式のオイルポンプ56が設けられている。   The torque converter 14 includes a pump impeller 14p connected to a crankshaft of the engine 12 and a turbine impeller 14t connected to a forward / reverse switching device 22 via a turbine shaft 28, and transmits power via a fluid. Is supposed to do. Further, a lockup clutch 18 is provided between the pump impeller 14p and the turbine impeller 14t, and the lockup control device 88 (see FIG. 3) controls the engagement side oil chamber and the release side oil chamber. The hydraulic pressure supply is switched to be engaged or released, and the pump impeller 14p and the turbine impeller 14t are integrally rotated by being completely engaged. The pump impeller 14p includes a mechanical oil pump 56 that generates hydraulic pressure for controlling the speed of the continuously variable transmission 16, generating belt clamping pressure, or supplying lubricating oil to each part. Is provided.

前後進切換装置22は、ダブルピニオン型の遊星歯車装置にて構成されており、トルクコンバータ14のタービン軸28はサンギヤ22sに連結され、無段変速機16の入力軸58はキャリア22cに連結されている。そして、キャリア22cとサンギヤ22sとの間に配設された前進用クラッチ24が係合させられると、前後進切換装置22は一体回転させられてタービン軸28が入力軸58に直結され、前進方向の駆動力を前輪30に伝達する前進駆動状態とされる。リングギヤ22rとハウジングとの間に配設された後進用ブレーキ26が係合させられるとともに上記前進用クラッチ24が解放されると、入力軸58はタービン軸28に対して逆回転させられ、後進方向の駆動力を前輪30に伝達する後進駆動状態とされる。また、それ等の前進用クラッチ24および後進用ブレーキ26が何れも解放されると、動力伝達が遮断されるニュートラルとなる。本実施例では、この前後進切換装置22が断続装置として機能する。   The forward / reverse switching device 22 is configured by a double pinion type planetary gear device, the turbine shaft 28 of the torque converter 14 is connected to the sun gear 22s, and the input shaft 58 of the continuously variable transmission 16 is connected to the carrier 22c. ing. When the forward clutch 24 disposed between the carrier 22c and the sun gear 22s is engaged, the forward / reverse switching device 22 is rotated integrally, and the turbine shaft 28 is directly connected to the input shaft 58, and the forward direction. The forward drive state in which the driving force is transmitted to the front wheels 30 is set. When the reverse brake 26 disposed between the ring gear 22r and the housing is engaged and the forward clutch 24 is released, the input shaft 58 is rotated reversely with respect to the turbine shaft 28, and the reverse direction is reached. The reverse drive state in which the drive force is transmitted to the front wheels 30 is set. Further, when both the forward clutch 24 and the reverse brake 26 are released, a neutral state where power transmission is interrupted is obtained. In this embodiment, the forward / reverse switching device 22 functions as an intermittent device.

無段変速機16は、上記入力軸28に設けられた有効径が可変の入力側可変プーリ60と、出力軸66に設けられた有効径が可変の出力側可変プーリ64と、それらの可変プーリ60、64に巻き掛けられた伝動ベルト62とを備えており、可変プーリ60、64と伝動ベルト62との間の摩擦力を介して動力伝達が行われる。可変プーリ60、64はそれぞれV溝幅が可変で、油圧シリンダを備えて構成されており、入力側可変プーリ60の油圧シリンダの油圧が変速制御装置86(図3参照)によって制御されることにより、両可変プーリ60、64のV溝幅が変化して伝動ベルト62の掛かり径(有効径)が変更され、変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が連続的に変化させられる。   The continuously variable transmission 16 includes an input-side variable pulley 60 having a variable effective diameter provided on the input shaft 28, an output-side variable pulley 64 having a variable effective diameter provided on the output shaft 66, and variable pulleys thereof. A transmission belt 62 wound around 60 and 64 is provided, and power is transmitted through a frictional force between the variable pulleys 60 and 64 and the transmission belt 62. Each of the variable pulleys 60 and 64 has a variable V-groove width and is provided with a hydraulic cylinder. The hydraulic pressure of the hydraulic cylinder of the input-side variable pulley 60 is controlled by a transmission control device 86 (see FIG. 3). The V groove width of both variable pulleys 60 and 64 is changed to change the engagement diameter (effective diameter) of the transmission belt 62, and the gear ratio γ (= input shaft rotational speed NIN / output shaft rotational speed NOUT) is continuously increased. Can be changed.

また、出力側可変プーリ64の油圧シリンダの油圧は、伝動ベルト62が滑りを生じないように挟圧力制御装置87(図3参照)によって調圧制御される。挟圧力制御装置87は、電子制御装置70によってデューティ制御されるソレノイド弁を備えて構成されており、そのソレノイド弁によって出力側可変プーリ64の油圧シリンダの油圧が連続的に制御されることにより、ベルト挟圧力すなわち可変プーリ60、64と伝動ベルト62との間の摩擦力が増減させられる。   Further, the hydraulic pressure of the hydraulic cylinder of the output side variable pulley 64 is regulated by a clamping pressure control device 87 (see FIG. 3) so that the transmission belt 62 does not slip. The clamping pressure control device 87 includes a solenoid valve that is duty-controlled by the electronic control device 70, and the hydraulic pressure of the hydraulic cylinder of the output-side variable pulley 64 is continuously controlled by the solenoid valve. The belt clamping pressure, that is, the frictional force between the variable pulleys 60 and 64 and the transmission belt 62 is increased or decreased.

図3は、図1及び図2のエンジン12や無段変速機16などを制御するために車両に設けられた制御系統を説明するブロック線図で、電子制御装置70には、前記車輪速センサ52L、52R、54L、54Rの他、エンジン回転速度センサ72、タービン回転速度センサ73、アイドルスイッチ付きスロットルセンサ74、冷却水温センサ76、CVT油温センサ77、アクセル操作量センサ78、フットブレーキスイッチ79、レバーポジションセンサ80、前後Gセンサ71、4輪駆動スイッチ82、スノーモードスイッチ83などが接続され、各車輪30L、30R、32L、32Rの回転速度(車輪速)、エンジン12の回転速度(エンジン回転速度)NE、タービン軸28の回転速度(タービン回転速度)NT、電子スロットル弁20(図1参照)の全閉状態(アイドル状態)およびその開度(スロットル弁開度)θTH、エンジン12の冷却水温TW 、無段変速機16等の油圧回路の油温TCVT 、アクセルペダル等のアクセル操作部材の操作量(アクセル操作量)Acc、常用ブレーキであるフットブレーキの操作の有無、シフトレバー81のレバーポジション(操作位置)PSH、車両の前後G(加速度)、4輪駆動で走行する4輪駆動モードの選択、雪道等の低μ路走行に適した変速条件(変速マップなど)に従って変速するスノーモードの選択、などを表す信号が供給されるようになっている。 FIG. 3 is a block diagram for explaining a control system provided in the vehicle for controlling the engine 12 and the continuously variable transmission 16 shown in FIGS. 1 and 2, and the electronic controller 70 includes the wheel speed sensor. In addition to 52L, 52R, 54L, and 54R, an engine speed sensor 72, a turbine speed sensor 73, a throttle sensor 74 with an idle switch, a coolant temperature sensor 76, a CVT oil temperature sensor 77, an accelerator operation amount sensor 78, and a foot brake switch 79 , A lever position sensor 80, a front / rear G sensor 71, a four-wheel drive switch 82, a snow mode switch 83, etc. are connected, and the rotational speed (wheel speed) of each wheel 30L, 30R, 32L, 32R, the rotational speed of the engine 12 (engine Rotational speed) NE, turbine shaft 28 rotational speed (turbine rotational speed) NT, electronic throttle 20 fully closed state (idle state) and its opening (throttle valve opening) (see FIG. 1) theta TH, the engine 12 coolant temperature T W, a hydraulic circuit, such as the continuously variable transmission 16 oil temperature T CVT, Operation amount (accelerator operation amount) Acc of an accelerator operation member such as an accelerator pedal, presence / absence of operation of a foot brake which is a service brake, lever position (operation position) P SH of the shift lever 81, vehicle front and rear G (acceleration), 4 Signals indicating the selection of a four-wheel drive mode for traveling by wheel drive, the selection of a snow mode for shifting according to a shift condition (such as a shift map) suitable for driving on a low μ road such as a snowy road, etc. are supplied. Yes.

上記車輪速センサ52L、52R、54L、54Rからの信号に基づいて車速(車体速度)Vを算出することが可能で、その車速Vは、無段変速機16の出力軸66の回転速度(出力軸回転速度)NOUTに対応する。タービン回転速度NTは、前進用クラッチ24が係合させられた前進走行時には入力軸58の回転速度(入力軸回転速度)NINと一致する。アクセル操作量Accは運転者の出力要求量を表している。前後Gセンサ71は、車両の前後G(加速度)を検出するものであるが、その前後Gや車速Vから路面の勾配Φを求めることが可能で、勾配センサとしても機能する。また、4輪駆動スイッチ82およびスノーモードスイッチ83は、例えばシフトレバー81の周辺やインストルメントパネル等に設けられ、運転者の好みや走行条件に応じて運転者により切換操作される。   A vehicle speed (body speed) V can be calculated based on signals from the wheel speed sensors 52L, 52R, 54L, 54R, and the vehicle speed V is determined based on the rotational speed (output of the output shaft 66 of the continuously variable transmission 16). Corresponding to shaft rotation speed NOUT. The turbine rotational speed NT coincides with the rotational speed (input shaft rotational speed) NIN of the input shaft 58 during forward traveling with the forward clutch 24 engaged. The accelerator operation amount Acc represents the driver's requested output amount. The front-rear G sensor 71 detects the front-rear G (acceleration) of the vehicle, but can determine the road surface gradient Φ from the front-rear G and the vehicle speed V, and also functions as a gradient sensor. The four-wheel drive switch 82 and the snow mode switch 83 are provided, for example, around the shift lever 81, an instrument panel, and the like, and are switched by the driver according to the driver's preference and driving conditions.

電子制御装置70は、CPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより、エンジン12の出力制御や無段変速機16の変速制御、ベルト挟圧力制御、電動機48の発電制御などを実行するようになっており、必要に応じてエンジン制御用、変速制御用等に分けて構成される。図4は、この電子制御装置70の信号処理によって実行される制御機能を説明するブロック線図で、エンジン制御手段110、変速制御手段112、発電制御手段114を機能的に備えている。   The electronic control unit 70 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. The CPU uses a temporary storage function of the RAM, and signals according to a program stored in the ROM in advance. By performing the processing, output control of the engine 12, shift control of the continuously variable transmission 16, belt clamping pressure control, power generation control of the motor 48, and the like are executed. It is configured separately for control purposes. FIG. 4 is a block diagram for explaining a control function executed by signal processing of the electronic control unit 70, and functionally includes an engine control means 110, a shift control means 112, and a power generation control means 114.

エンジン制御手段110は、エンジン12の出力制御を行うもので、電子スロットル弁20を開閉制御する他、燃料噴射量制御のために燃料噴射装置84(図3参照)を制御し、点火時期制御のためにイグナイタ等の点火装置85を制御する。電子スロットル弁20の制御は、基本的には図5に示すようにアクセル操作量Accをパラメータとして定められ、アクセル操作量Accが大きくなる程スロットル弁開度θTHが大きくなるように制御する。このスロットル弁開度θTHに連動して上記燃料噴射量等も制御される。 The engine control means 110 controls the output of the engine 12, and controls the fuel injection device 84 (see FIG. 3) for controlling the fuel injection amount in addition to controlling the opening and closing of the electronic throttle valve 20, thereby controlling the ignition timing. Therefore, the ignition device 85 such as an igniter is controlled. Control of the electronic throttle valve 20 is basically defined as parameters the accelerator operation amount Acc as shown in FIG. 5, it controls the throttle valve opening theta TH greater the accelerator operation amount Acc increases increases. The fuel injection amount and the like are controlled in conjunction with the throttle valve opening θTH .

変速制御手段112は、ベルト式無段変速機16の変速制御およびベルト挟圧力制御を行う他、前後進切換装置22を電気的にニュートラルとするニュートラル制御を行うもので、変速制御については、例えば図6に示すように運転者の出力要求量を表すアクセル操作量Accおよび車速Vをパラメータとして予め定められた変速マップから入力側の目標回転速度NINTを算出し、実際の入力軸回転速度NINが目標回転速度NINTと一致するように、それ等の偏差に応じて無段変速機16の変速制御を行う。すなわち、前記変速制御装置86のソレノイド弁をフィードバック制御するなどして、入力側可変プーリ60の油圧シリンダに対する作動油の供給、排出を制御する。図6の変速マップは変速条件に相当するもので、車速Vが小さくアクセル操作量Accが大きい程大きな変速比γになる目標回転速度NINTが設定されるようになっている。また、車速Vは出力軸回転速度NOUTに対応するため、入力軸回転速度NINの目標値である目標回転速度NINTは目標変速比に対応し、無段変速機16の最小変速比γmin と最大変速比γmax の範囲内で定められている。上記変速マップは、記憶装置98(図3参照)に予め記憶されている。   The speed change control means 112 performs speed change control of the belt-type continuously variable transmission 16 and belt clamping pressure control, and also performs neutral control in which the forward / reverse switching device 22 is electrically neutral. As shown in FIG. 6, the target rotational speed NINT on the input side is calculated from a predetermined shift map using the accelerator operation amount Acc representing the driver's required output amount and the vehicle speed V as parameters, and the actual input shaft rotational speed NIN is calculated. Shift control of the continuously variable transmission 16 is performed in accordance with such deviation so as to coincide with the target rotational speed NINT. That is, the supply and discharge of hydraulic fluid to and from the hydraulic cylinder of the input side variable pulley 60 is controlled by feedback controlling the solenoid valve of the speed change control device 86. The shift map in FIG. 6 corresponds to a shift condition, and a target rotational speed NINT that sets a larger speed ratio γ as the vehicle speed V is smaller and the accelerator operation amount Acc is larger is set. Further, since the vehicle speed V corresponds to the output shaft rotational speed NOUT, the target rotational speed NINT, which is the target value of the input shaft rotational speed NIN, corresponds to the target speed ratio, and the minimum speed ratio γmin of the continuously variable transmission 16 and the maximum speed change. It is determined within the range of the ratio γmax. The shift map is stored in advance in the storage device 98 (see FIG. 3).

ベルト挟圧力制御は、例えば図7に示すように伝達トルクに対応するアクセル操作量Accおよび変速比γをパラメータとしてベルト滑りが生じないように予め定められた必要油圧(ベルト挟圧力に相当)のマップに従って、無段変速機16の挟圧力制御を行う。すなわち、前記挟圧力制御装置87のソレノイド弁に対する励磁電流のデューティ比を制御するなどして、無段変速機16のベルト挟圧力に対応する出力側可変プーリ64の油圧シリンダの油圧を調圧制御する。図7の必要油圧マップは、前記変速マップと同様に記憶装置98に予め記憶されている。   In the belt clamping pressure control, for example, as shown in FIG. 7, the required hydraulic pressure (corresponding to the belt clamping pressure) determined in advance so that belt slip does not occur with the accelerator operation amount Acc corresponding to the transmission torque and the gear ratio γ as parameters. The clamping pressure of the continuously variable transmission 16 is controlled according to the map. That is, the hydraulic pressure of the hydraulic cylinder of the output-side variable pulley 64 corresponding to the belt clamping pressure of the continuously variable transmission 16 is controlled by controlling the duty ratio of the exciting current for the solenoid valve of the clamping pressure control device 87. To do. The necessary oil pressure map of FIG. 7 is stored in advance in the storage device 98 in the same manner as the shift map.

ニュートラル制御は、前後進切換装置22の前進用クラッチ24および後進用ブレーキ26を共に電気的に解放するものである。これ等のクラッチ24およびブレーキ26は、例えばシフトレバー81に連結されたマニュアルバルブによって油圧回路が機械的に切り換えられることにより、その係合・解放状態が切り換えられ、「D」等の前進走行用のポジションへ操作された場合には前進用クラッチ24が係合させられ、「R」等の後進走行用のポジションへ操作された場合には後進用ブレーキ26が係合させられ、「P」、「N」等の駐車或いはニュートラル等の遮断用のポジションへ操作された場合にはクラッチ24およびブレーキ26が共に解放される。一方、それ等の油圧が強制的にドレーンされるように油圧回路を切り換えるソレノイド弁等が設けられ、ニュートラル制御では、そのソレノイド弁により油圧回路を切り換えることにより、クラッチ24およびブレーキ26を共に解放する。   In the neutral control, both the forward clutch 24 and the reverse brake 26 of the forward / reverse switching device 22 are electrically released. These clutches 24 and brakes 26 are switched between engaged and disengaged states by, for example, a hydraulic circuit mechanically switched by a manual valve connected to a shift lever 81, and the forward drive such as “D” is performed. The forward clutch 24 is engaged when it is operated to the reverse position, and the reverse brake 26 is engaged when it is operated to the reverse travel position such as “R”. When the parking position such as “N” or the neutral position is operated, the clutch 24 and the brake 26 are both released. On the other hand, a solenoid valve or the like for switching the hydraulic circuit is provided so that the hydraulic pressure is forcibly drained. In the neutral control, the clutch 24 and the brake 26 are released together by switching the hydraulic circuit by the solenoid valve. .

前記発電制御手段114は、前記4輪駆動スイッチ82がON操作されて4輪駆動モードが選択された場合および発進時に、前記発電機48を発電制御し、発生した電力で前記電動機68が力行トルクを発生できるようにする。すなわち、発電機48は例えば図8の(a) に示すような発電特性を有し、発電機48の回転速度NGが大きくなる程大きな電力(電圧×電流に相当)を発生することができる一方、電動機68は例えば図8の(b) に示すような出力特性を有し、発電機48から供給される電力が大きくなる程大きな出力(トルク×回転速度に相当)を発生させることができる。図8(a) の実線、一点鎖線、破線のグラフは、それぞれ発生電力が等しい等電力線で、図8(b) の実線、一点鎖線、破線のグラフは、それぞれ出力が等しい等出力線であり、実線同士、一点鎖線同士、破線同士は互いに対応し、発電機回転速度NGが大きくなる程大きな出力で電動機68を作動させることができる。また、図8(a) の実線、一点鎖線、破線は、それぞれ回転速度NGに応じて定まる最大発生電力、すなわち界磁電流を100%として発電制御を行った場合であり、それぞれ界磁電流に応じて発生電力を低下させることが可能で、界磁電流=0%とすれば発生電力は0となる。したがって、界磁電流=100%で実線の発電特性となる場合には、界磁電流を低下させることにより一点鎖線或いは破線の特性で発電させることができる。   The power generation control means 114 controls the power generation of the generator 48 when the four-wheel drive switch 82 is turned ON and the four-wheel drive mode is selected and at the time of starting, and the motor 68 generates a power running torque with the generated power. Can be generated. That is, the generator 48 has a power generation characteristic as shown in FIG. 8A, for example, and can generate larger electric power (corresponding to voltage × current) as the rotational speed NG of the generator 48 increases. The electric motor 68 has output characteristics as shown in FIG. 8B, for example, and can generate a larger output (corresponding to torque × rotational speed) as the electric power supplied from the generator 48 increases. The solid line, the alternate long and short dash line, and the broken line graph in FIG. 8 (a) are isoelectric lines with the same generated power, and the solid line, the alternate long and short dash line in FIG. 8 (b) are equal output lines with the same output. The solid lines, the alternate long and short dash lines, and the broken lines correspond to each other, and the motor 68 can be operated with a larger output as the generator rotational speed NG increases. Further, the solid line, the alternate long and short dash line, and the broken line in FIG. 8 (a) are cases where the power generation control is performed with the maximum generated power determined according to the rotational speed NG, that is, the field current being 100%. Accordingly, the generated power can be reduced. If the field current = 0%, the generated power becomes zero. Therefore, when the field current = 100% and the solid line power generation characteristic is obtained, power generation can be performed with the one-dot chain line or broken line characteristic by reducing the field current.

そして、4輪駆動モードでは、例えば前後Gセンサ71によって検出される前後Gに基づいて車体の荷重を担う前輪30と後輪32との間の荷重配分比を求めるとともに、その荷重配分比や、アクセル操作量Accおよび車速Vをパラメータとして求められる運転者の要求駆動トルク、車速V、車両加速度などに基づいて前後輪の駆動力配分比を決定し、その駆動力配分比に応じて電動機68が所定の力行トルクを発生することができるように、発電機回転速度NGに応じて発電機48の発電制御、すなわち界磁電流の制御を行う。   In the four-wheel drive mode, for example, the load distribution ratio between the front wheels 30 and the rear wheels 32 that bear the load of the vehicle body is obtained based on the front and rear G detected by the front and rear G sensor 71, and the load distribution ratio, The driving force distribution ratio of the front and rear wheels is determined based on the driver's requested driving torque, vehicle speed V, vehicle acceleration, and the like, which are obtained using the accelerator operation amount Acc and the vehicle speed V as parameters, and the motor 68 depends on the driving force distribution ratio. The power generation control of the generator 48, that is, the field current is controlled according to the generator rotational speed NG so that a predetermined power running torque can be generated.

また、車速V=0からの車両発進時には、4輪駆動モードの場合を含めて4輪駆動状態で発進するように、例えば図9のフローチャートに従って発電制御を行う。車両発進時とは、例えば車速V=0から5〜10km/時程度に達するまでの間である。図9のステップR1では、車両発進時か否かを、例えば車速V=0でフットブレーキがONからOFFへ変化したか否か、或いはフットブレーキの踏込み操作力やブレーキ力(ブレーキ油圧など)が所定値以下まで低下したか否か等によって判断し、車両発進時であると判断した場合にはステップR2以下を実行する。ステップR2では、前後Gセンサ71によって検出される前後Gに基づいて路面勾配Φを算出し、ステップR3では、その路面勾配Φおよびアクセル操作量Accをパラメータとして予め定められたマップや演算式等に従って、必要モータトルクすなわち電動機68により後輪32を回転駆動して発進する際に必要な力行トルクを算出する。この必要モータトルクのマップや演算式は、雪道等の低μ路においても適切な前後輪の駆動力配分比で後輪駆動力が得られるように、且つ後輪32の分担荷重が大きくなる路面勾配Φが大きい程大きくなるように定められ、予め記憶装置98に記憶されている。また、アクセル操作量Acc=0の場合でも、車両がずり下がることがないような後輪駆動力(クリープトルクに相当)が得られるように定められ、乗車人数や積載重量等を含む車両重量を考慮して設定されるようにすることもできる。更に、本実施例では、路面勾配Φが小さい平坦路でも、4輪駆動状態で発進するように所定の必要モータトルクが設定される。   Further, when the vehicle starts from the vehicle speed V = 0, the power generation control is performed in accordance with, for example, the flowchart of FIG. 9 so that the vehicle starts in the four-wheel drive state including the case of the four-wheel drive mode. The time when the vehicle starts is, for example, a period from when the vehicle speed V = 0 to about 5 to 10 km / hour. In step R1 in FIG. 9, it is determined whether or not the vehicle is starting, for example, whether or not the foot brake is changed from ON to OFF at the vehicle speed V = 0, or the foot brake stepping force or brake force (brake hydraulic pressure, etc.). Judgment is made based on whether or not the vehicle has fallen to a predetermined value or less, and if it is determined that the vehicle is starting, step R2 and subsequent steps are executed. In step R2, the road gradient Φ is calculated based on the longitudinal G detected by the longitudinal G sensor 71, and in step R3, the road gradient Φ and the accelerator operation amount Acc are used as parameters according to a predetermined map, arithmetic expression, or the like. Then, the necessary motor torque, that is, the power running torque necessary for starting by rotating the rear wheel 32 by the electric motor 68 is calculated. This necessary motor torque map and calculation formula show that the rear wheel 32 has a large shared load so that the rear wheel driving force can be obtained with an appropriate driving force distribution ratio of the front and rear wheels even on a low μ road such as a snowy road. It is determined so as to increase as the road surface gradient Φ increases, and is stored in the storage device 98 in advance. In addition, even when the accelerator operation amount Acc = 0, the rear wheel driving force (corresponding to the creep torque) is set so that the vehicle will not slide down, and the vehicle weight including the number of passengers and the loaded weight is determined. It can also be set in consideration. Further, in this embodiment, a predetermined necessary motor torque is set so that the vehicle starts in a four-wheel drive state even on a flat road with a small road surface gradient Φ.

次のステップR4では、上記必要モータトルクで電動機68を作動させるのに必要な必要電力を、予め定められたマップや演算式などから算出する。この必要電力を求めるマップや演算式は、例えば図8の(b) に示す電動機68の出力特性等に基づいて定められ、予め記憶装置98に記憶されている。また、ステップR5では、その必要電力が得られるように発電機48を発電制御する。すなわち、発電機48の発生電力は、図8の(a) に示すように回転速度NGによって異なるため、その回転速度NGに応じて必要電力が得られるように界磁電流を制御する。発電制御手段114による発電制御のうち、図9のフローチャートに従って車両発進時に発電制御を行う部分は、発進時発電制御手段に相当する。   In the next step R4, the required power required to operate the electric motor 68 with the required motor torque is calculated from a predetermined map, arithmetic expression, or the like. The map and calculation formula for obtaining the required power are determined based on the output characteristics of the electric motor 68 shown in FIG. 8B, for example, and stored in the storage device 98 in advance. In step R5, the generator 48 is controlled to generate the necessary power. That is, since the power generated by the generator 48 varies depending on the rotational speed NG as shown in FIG. 8A, the field current is controlled so that the necessary power is obtained according to the rotational speed NG. Of the power generation control by the power generation control means 114, the part that performs power generation control at the time of vehicle start according to the flowchart of FIG. 9 corresponds to the power generation control means at start.

そして、このような発進時の発電制御で発電機48により発生させられた電力で電動機68が力行制御され、前記ステップR3の必要モータトルクで作動させられることにより、路面勾配Φに応じて適切な前後輪の駆動力配分比で後輪駆動力が発生させられるようになり、路面勾配Φが大きい低μ路などでも前後輪で駆動力を発生することにより、車両のずり下がりが抑制されるとともにアクセル操作量Accに応じて優れた発進性能が得られるようになる。   Then, the electric power of the electric motor 68 is controlled by the electric power generated by the electric generator 48 by the electric power generation control at the time of starting, and the motor 68 is operated with the necessary motor torque in the step R3, so that an appropriate value is obtained according to the road surface gradient Φ. The rear wheel driving force can be generated with the driving force distribution ratio of the front and rear wheels, and the driving force is generated on the front and rear wheels even on low μ roads with a large road gradient Φ, etc. Excellent starting performance can be obtained in accordance with the accelerator operation amount Acc.

ここで、路面勾配Φが大きい登坂路では後輪32の分担荷重が大きくなり、それに伴って電動機68の必要モータトルクや必要電力が大きくされるが、図8(a) の発電特性から明らかなように、発電機48の回転速度NGを大きくしないと、発電のための界磁電流を100%としても必要な電力が得られない。すなわち、車両停止中にエンジン回転速度NEがアイドル回転速度のままであると、発電機48の回転速度NGが遅いため、アクセルのON操作に伴ってエンジン回転速度NEが上昇するまでは、電力が不足して十分な後輪駆動力が得られないことがあるのであり、前輪30に大きな負荷が掛かってスリップしたり、車両がずり下がったりする恐れがある。   Here, on the uphill road where the road surface gradient Φ is large, the shared load of the rear wheel 32 increases, and accordingly, the necessary motor torque and the necessary power of the electric motor 68 are increased, which is apparent from the power generation characteristics of FIG. Thus, unless the rotational speed NG of the generator 48 is increased, the required power cannot be obtained even if the field current for power generation is set to 100%. That is, if the engine rotational speed NE remains at the idle rotational speed while the vehicle is stopped, the rotational speed NG of the generator 48 is slow, so that the electric power is not increased until the engine rotational speed NE increases with the accelerator ON operation. Insufficient rear wheel driving force may not be obtained due to a shortage, and there is a risk that a large load is applied to the front wheel 30 and the vehicle slips or the vehicle slides down.

これに対し、本実施例の電子制御装置70は更に、停車中発電機回転増大手段120を機能的に備えており、車両停止中に路面勾配Φに応じて予め発電機48の回転速度NGを増大させておくことにより、車両発進時に前記発電制御手段114による発電制御により速やかに大きな電力を発生させることができるようにし、当初から所定の後輪駆動力が得られるようになっている。   On the other hand, the electronic control unit 70 of the present embodiment further includes a generator rotation increasing means 120 during stoppage, and the rotation speed NG of the generator 48 is set in advance according to the road surface gradient Φ while the vehicle is stopped. By increasing the electric power, it is possible to quickly generate large electric power by the electric power generation control by the electric power generation control means 114 when the vehicle starts, and a predetermined rear wheel driving force can be obtained from the beginning.

図10は、上記停車中発電機回転増大手段120の処理内容を具体的に説明するフローチャートで、ステップS1では前記ステップR2と同様にして路面勾配Φを算出し、ステップS2では前記ステップR3と同様にして必要モータトルクを算出し、ステップS3では前記ステップR4と同様にして必要電力を算出する。その場合に、フットブレーキが踏込み操作されたブレーキON状態の車両停止中は、前記発電制御手段114による発電制御は行われないが、ここではブレーキON状態の車両停止中にも、アクセル操作量θTH=0の場合の必要モータトルクに基づいて必要電力を算出する。 FIG. 10 is a flowchart for specifically explaining the processing contents of the stopped generator rotation increasing means 120. In step S1, the road surface gradient Φ is calculated in the same manner as in step R2, and in step S2, as in step R3. Thus, the required motor torque is calculated, and in step S3, the required power is calculated in the same manner as in step R4. In this case, the power generation control by the power generation control means 114 is not performed while the vehicle is in the brake-on state where the foot brake is depressed, but here the accelerator operation amount θ Calculate the required power based on the required motor torque when TH = 0.

ステップS4では、上記必要電力を発生させるために必要な発電機48の目標回転速度NGTを、予め定められたマップや演算式などから算出する。この目標回転速度NGTを求めるためのマップや演算式は、前記図8(a) の発電特性等に基づいて、例えば界磁電流を100%として発電制御を行った場合に上記必要電力が得られるように定められ、予め記憶装置98に記憶されている。   In step S4, the target rotational speed NGT of the generator 48 necessary for generating the necessary power is calculated from a predetermined map, arithmetic expression, or the like. Based on the power generation characteristics shown in FIG. 8 (a), for example, the required power can be obtained when the power generation control is performed with the field current set to 100% based on the power generation characteristics shown in FIG. And is stored in the storage device 98 in advance.

ステップS5では、発電機48を目標回転速度NGTで回転駆動する目標エンジン回転速度NETを、それ等の間の伝動装置の変速比を用いて算出し、その目標エンジン回転速度NETでエンジン12を作動させるための目標エンジントルク、具体的には目標スロットル弁開度θTHTを算出する。この目標スロットル弁開度θTHTは、例えばエンジン回転速度NEが目標回転速度NETとなるように、それ等の偏差に応じて増減させるフィードバック制御や、前記前後進切換装置22がニュートラル状態か否か、発電機48が発電制御されているか否か、等のエンジン負荷をパラメータとして予め定められた演算式に従って求めるフィードフォワード制御により算出することが可能で、フィードフォワード制御とフィードバック制御とを併用して求めることもできる。上記目標エンジン回転速度NETには、アイドル回転速度を下限とするガードが掛けられ、アイドル回転速度以上に制限されるとともに、目標スロットル弁開度θTHTには、前記図5のマップに従ってアクセル操作量Accに応じて設定されるスロットル弁開度θTHを下限とするガードが掛けられ、そのスロットル弁開度θTH以上に制限される。 In step S5, a target engine rotation speed NET for rotating the generator 48 at the target rotation speed NGT is calculated using the transmission gear ratio between them, and the engine 12 is operated at the target engine rotation speed NET. To calculate the target engine torque, specifically, the target throttle valve opening θ TH T. This target throttle valve opening θ TH T is, for example, a feedback control that increases or decreases in accordance with a deviation such that the engine rotational speed NE becomes the target rotational speed NET, and whether the forward / reverse switching device 22 is in the neutral state. It can be calculated by feedforward control obtained according to a predetermined arithmetic expression using the engine load as a parameter, such as whether or not the generator 48 is under power generation control, and the feedforward control and the feedback control are used in combination. Can also be requested. The target engine rotational speed NET is guarded with an idle rotational speed as a lower limit, and is limited to an idle rotational speed or higher, and the target throttle valve opening θ TH T is controlled according to the map of FIG. A guard whose lower limit is the throttle valve opening degree θ TH set according to the amount Acc is applied, and is limited to the throttle valve opening degree θ TH or more.

次のステップS6では、シフトレバー81の操作ポジションが遮断用の「N」か否かを判断し、「N」の場合には未だ発進する意思が無いためそのまま終了する。「N」でない場合にはステップS7を実行し、シフトレバー81の操作ポジションが前進走行用の「D」か否かを判断し、「D」でない場合、すなわち後進走行用の「R」や駐車用の「P」の場合にはそのまま終了し、「D」の場合のみステップS8以下を実行する。これ等のステップS6、S7を、前記ステップS1の前に実行するようにしても良い。なお、変速比γの下限(高速側)が制限された所定の変速範囲内で変速制御を行う前進走行用の他の操作ポジションを備えている場合には、それ等の操作ポジションへ操作されている場合にも、ステップS8以下を実行するように定められる。   In the next step S6, it is determined whether or not the operation position of the shift lever 81 is “N” for blocking. If “N”, there is no intention to start yet, and the process ends. If it is not “N”, step S7 is executed to determine whether or not the operation position of the shift lever 81 is “D” for forward travel. If it is not “D”, that is, “R” for reverse travel or parking In the case of “P”, the process ends as it is, and only in the case of “D”, step S8 and subsequent steps are executed. These steps S6 and S7 may be executed before step S1. If there are other operation positions for forward traveling that perform shift control within a predetermined shift range in which the lower limit (high speed side) of the gear ratio γ is limited, the operation position is operated to those operation positions. Even in the case where it is, it is determined that step S8 and subsequent steps are executed.

ステップS8では、発進待機中か否かを、例えば車速V=0で且つフットブレーキが踏込み操作されたブレーキON状態か否かによって判断し、発進待機中であればステップS9でニュートラル制御を実行する。ステップS9のニュートラル制御は、前記前後進切換装置22を強制的にニュートラル(遮断状態)にするもので、具体的には前記変速制御手段112にニュートラル指令を出力することにより、その変速制御手段112によって油圧回路が切り換えられ、係合状態にある前進用クラッチ24が解放される。これにより、エンジン12から前輪30への動力伝達が遮断されるが、フットブレーキがON状態であるため、登り坂で車両が重力によってずり下がる恐れはない。   In step S8, it is determined whether or not the vehicle is waiting to start based on, for example, whether or not the vehicle speed is V = 0 and the brake is depressed so that the foot brake is depressed. If the vehicle is on standby, neutral control is executed in step S9. . The neutral control in step S9 is to forcibly set the forward / reverse switching device 22 to the neutral state (blocking state). Specifically, by outputting a neutral command to the shift control means 112, the shift control means 112 is provided. Thus, the hydraulic circuit is switched, and the forward clutch 24 in the engaged state is released. As a result, power transmission from the engine 12 to the front wheels 30 is interrupted, but since the foot brake is in an ON state, there is no fear that the vehicle will slide down due to gravity on the uphill.

また、次のステップS10では、エンジン12のスロットル弁開度θTHを前記ステップS5で求めた目標スロットル弁開度θTHTとする指令を前記エンジン制御手段110に出力する。これにより、エンジン制御手段110によってスロットル弁開度θTHが目標スロットル弁開度θTHTとされるとともに、スロットル弁開度θTHに連動して燃料噴射量等が制御され、エンジン回転速度NEが目標エンジン回転速度NETまで増大させられるとともに、それに伴って発電機48の回転速度NGが目標回転速度NGTとされる。 In the next step S10, a command for setting the throttle valve opening θ TH of the engine 12 to the target throttle valve opening θ TH T obtained in step S5 is output to the engine control means 110. As a result, the throttle valve opening θ TH is set to the target throttle valve opening θ TH T by the engine control means 110, and the fuel injection amount and the like are controlled in conjunction with the throttle valve opening θ TH. Is increased to the target engine rotational speed NET, and the rotational speed NG of the generator 48 is set to the target rotational speed NGT accordingly.

一方、上記ステップS8の判断がNO(否定)の場合、すなわちフットブレーキの踏込み操作が解除された場合には、ステップS11以下を実行する。ステップS8の判断は、発進時の発電制御を行う際に車両発進時か否かを判断する前記ステップR1と同様に定めることが望ましい。そして、ステップS11では、前記変速制御手段112にニュートラル制御を解除する指令を出力することにより、その変速制御手段112によって油圧回路が切り換えられ、前進用クラッチ24が係合させられて前進駆動状態とされ、エンジン12から前輪30に駆動力が伝達されるようになる。また、ステップS12では発進中か否か、すなわち前記発電制御手段114により発進時の発電制御が行われる所定車速(V=5〜10km/時程度)以下か否かを判断し、所定車速を超えた場合にはそのまま終了するが、所定車速以下の発進時の間は前記ステップS10を実行し、前記目標スロットル弁開度θTHTに従ってエンジン12の出力制御を行う。 On the other hand, if the determination in step S8 is NO (No), that is, if the foot brake stepping operation is released, step S11 and subsequent steps are executed. The determination in step S8 is preferably determined in the same manner as in step R1 for determining whether or not the vehicle is starting when performing power generation control at the time of starting. In step S11, by outputting a command to release the neutral control to the shift control means 112, the hydraulic control circuit is switched by the shift control means 112, the forward clutch 24 is engaged, and the forward drive state is established. Then, the driving force is transmitted from the engine 12 to the front wheels 30. In step S12, it is determined whether or not the vehicle is starting, that is, whether or not it is less than a predetermined vehicle speed (V = about 5 to 10 km / hour) at which power generation control is performed by the power generation control means 114, and exceeds the predetermined vehicle speed. However, the process is terminated as it is, but the step S10 is executed during the start of the vehicle below the predetermined vehicle speed, and the output control of the engine 12 is performed according to the target throttle valve opening θ TH T.

ここで、ステップS8の判断がNOとなった場合、すなわちフットブレーキがOFF操作(操作力やブレーキ力が所定値以下まで低下した場合を含む)された車両の発進時には、前記発電制御手段114により発進時の発電制御が行われるとともに、その発電制御で発生させられた電力で電動機68が力行制御されて後輪に所定の駆動力が発生させられるが、ステップS8の判断がYESの発進待機中から路面勾配Φに応じて求められた所定の必要電力を発生させることができる目標回転速度NGTまで発電機48の回転速度NGが増大させられているため、フットブレーキの踏込み解除に伴って発電制御が行われることにより速やかに必要電力が発生させられる。これにより、路面勾配Φが大きい登坂路でも、発電制御の開始に伴って速やかに必要電力が得られ、その発生電力で電動機68が力行制御されることにより、路面勾配Φに応じて適切な前後輪の駆動力配分比で後輪駆動力が発生させられるようになり、発電制御の開始当初に発電機48の回転速度不足で発生電力が不足して十分な後輪駆動力が得られずに、前輪30がスリップしたり車両がずり下がったりすることが抑制される。   Here, when the determination in step S8 is NO, that is, when the vehicle is started when the foot brake is turned off (including the case where the operating force or the braking force is reduced to a predetermined value or less), the power generation control means 114 While the power generation control at the time of starting is performed, the electric motor 68 is controlled by the power generated by the power generation control to generate a predetermined driving force on the rear wheel, but the determination in step S8 is a start waiting for YES Since the rotational speed NG of the generator 48 is increased to the target rotational speed NGT that can generate the predetermined required power determined according to the road surface gradient Φ, the power generation control is performed with the release of the foot brake. As a result, the necessary power is promptly generated. As a result, even on an uphill road with a large road surface gradient Φ, necessary power can be obtained quickly as the power generation control starts, and the motor 68 is power-running controlled with the generated power. The rear wheel driving force is generated with the wheel driving force distribution ratio, and the generated power is insufficient due to insufficient rotation speed of the generator 48 at the beginning of power generation control, so that sufficient rear wheel driving force cannot be obtained. The front wheel 30 is prevented from slipping and the vehicle from sliding down.

このように、本実施例のハイブリッド車両の駆動装置6においては、ブレーキペダルが踏込み操作されたブレーキON状態の発進待機中(ステップS8の判断がYES)に、ステップS9で前後進切換装置22をニュートラルにするとともに、ステップS10でエンジン出力制御を行ってそのエンジン12により機械的に回転駆動される発電機48の回転速度NGを目標回転速度NGTまで高くし、その発電機48により発生可能な電力を増大させるため、フットブレーキがOFF操作されて発進する際に、ステップR5で発電制御手段114により発電機48が発電制御されることにより直ちに所定の電力を発生させることが可能で、その発生電力により電動機68を作動させて後輪32に所定の駆動力を速やかに発生させることができる。また、ステップS11でニュートラル制御を終了し、前後進切換装置22の前進用クラッチ24が接続されて前進駆動状態とされることにより、エンジン12によって前輪30に所定の駆動力を速やかに発生させることができるため、結局、ブレーキペダルがOFF操作された車両発進時には、前輪30および後輪32の駆動力を何れも速やかに発生させることが可能となり、前輪30のみでは発進が困難な急勾配の低μ路などでも車両を速やかに発進させることができる。   As described above, in the hybrid vehicle drive device 6 of the present embodiment, during the start-up waiting state in the brake-on state in which the brake pedal is depressed (YES in Step S8), the forward / reverse switching device 22 is set in Step S9. In addition to neutral, the engine output control is performed in step S10 to increase the rotational speed NG of the generator 48 mechanically driven by the engine 12 to the target rotational speed NGT, and the electric power that can be generated by the generator 48. Therefore, when the foot brake is turned off and the vehicle is started, predetermined power can be generated immediately by generating control of the generator 48 by the power generation control means 114 in step R5. Thus, the electric motor 68 can be operated to quickly generate a predetermined driving force on the rear wheel 32.Further, in step S11, the neutral control is terminated, and the forward clutch 24 of the forward / reverse switching device 22 is connected to enter the forward drive state, whereby the engine 12 promptly generates a predetermined driving force on the front wheels 30. As a result, when the vehicle starts with the brake pedal turned off, it is possible to quickly generate the driving force of both the front wheels 30 and the rear wheels 32, and the steep slope is difficult to start with only the front wheels 30. The vehicle can be started quickly even on μ roads.

また、本実施例では路面勾配Φが大きい程発電機48の回転速度NGが大きく増大させられ、発電機48の発生可能な電力が大きくされるため、車両発進時に電動機68により大きな駆動力を後輪32に発生させることが可能で、登坂路における車両の発進性能が一層向上する。すなわち、後輪32の駆動力が不足すると前輪30に大きな負荷が掛かるため、その前輪30がスリップして発進不能となったり、車両がずり下がったりする恐れがあるが、後輪32の駆動力が路面勾配Φに応じて大きくされることにより、そのような発進不能やずり下がりが抑制される。   Further, in this embodiment, as the road surface gradient Φ increases, the rotational speed NG of the generator 48 is greatly increased, and the electric power that can be generated by the generator 48 is increased. It can be generated on the wheel 32, and the starting performance of the vehicle on the uphill road is further improved. That is, if the driving force of the rear wheel 32 is insufficient, a large load is applied to the front wheel 30, which may cause the front wheel 30 to slip and make it impossible to start, or the vehicle may slide down. Is increased in accordance with the road surface gradient Φ, so that it is not possible to start or slide down.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

本発明が適用されたハイブリッド車両の駆動装置の概略構成図である。1 is a schematic configuration diagram of a drive device for a hybrid vehicle to which the present invention is applied. 図1のハイブリッド車両が備えている前輪用駆動装置を説明する骨子図である。FIG. 2 is a skeleton diagram illustrating a front wheel drive device provided in the hybrid vehicle of FIG. 1. 図1のハイブリッド車両が備えている制御系統を説明するブロック線図である。It is a block diagram explaining the control system with which the hybrid vehicle of FIG. 1 is equipped. 図3の電子制御装置が備えている制御機能の要部を説明するブロック線図である。It is a block diagram explaining the principal part of the control function with which the electronic control apparatus of FIG. 3 is provided. 図4のエンジン制御手段がアクセル操作量Accに応じてスロットル弁開度θTHを制御する際に用いられるマップの一例を示す図である。FIG. 5 is a diagram showing an example of a map used when the engine control means of FIG. 4 controls the throttle valve opening degree θ TH according to the accelerator operation amount Acc. 図4の変速制御手段が変速制御で目標回転速度NINTを求める際に用いられる変速マップの一例を示す図である。FIG. 5 is a diagram showing an example of a shift map used when the shift control means of FIG. 4 obtains a target rotational speed NINT by shift control. 図4の変速制御手段がベルト挟圧力の制御で必要油圧を求める際に用いられる必要油圧マップの一例を示す図である。FIG. 5 is a diagram showing an example of a required hydraulic pressure map used when the shift control means of FIG. 4 obtains the required hydraulic pressure by controlling the belt clamping pressure. 図4の発電制御手段によって発電制御が行われる発電機の発電特性、およびその発電機の発生電力で力行制御される電動機の出力特性の一例を示す図である。FIG. 5 is a diagram showing an example of the power generation characteristics of a generator that is controlled by the power generation control unit of FIG. 4 and the output characteristics of a motor that is powering controlled by the power generated by the generator. 図4の発電制御手段によって実行される発進時発電制御の処理内容を具体的に説明するフローチャートである。5 is a flowchart for specifically explaining the processing contents of start-time power generation control executed by the power generation control means of FIG. 4. 図4の停車中発電機回転増大手段の処理内容を具体的に説明するフローチャートである。FIG. 5 is a flowchart for specifically explaining the processing contents of the stopped generator rotation increasing means of FIG. 4. FIG.

符号の説明Explanation of symbols

6:ハイブリッド車両の駆動装置 12:エンジン 22:前後進切換装置(断続装置) 30L、30R:前輪(第1駆動輪) 32L、32R:後輪(第2駆動輪) 48:発電機 68:電動機 70:電子制御装置 71:前後Gセンサ 114:発電制御手段(発進時発電制御手段) 120:停車中発電機回転増大手段   6: Drive device for hybrid vehicle 12: Engine 22: Forward / reverse switching device (intermittent device) 30L, 30R: Front wheel (first drive wheel) 32L, 32R: Rear wheel (second drive wheel) 48: Generator 68: Electric motor 70: Electronic control unit 71: Front / rear G sensor 114: Power generation control means (power generation control means at start) 120: Generator rotation increasing means during stopping

Claims (2)

動力の伝達および遮断可能な断続装置を介して第1駆動輪を回転駆動するエンジンと、
該エンジンによって機械的に回転駆動されることにより電力を発生する発電機と、
該発電機で発生させられた電力が供給されることにより力行トルクを発生し、前記第1駆動輪とは異なる第2駆動輪を回転駆動する電動機と、
前記第1駆動輪および前記第2駆動輪を共に回転駆動して車両を発進させる際に、所定の力行トルクで前記電動機を作動させるのに必要な電力を発生するように前記発電機の発電制御を行う発進時発電制御手段と、
を有するハイブリッド車両の駆動装置において、
ブレーキが制動操作されている車両停止中に、前記断続装置を遮断状態とするとともに、前記エンジンにより前記発電機の回転速度を増大させて発生可能な電力を増大させる停車中発電機回転増大手段を設けた
ことを特徴とするハイブリッド車両の駆動装置。
An engine that rotationally drives the first drive wheel via an intermittent device capable of transmitting and interrupting power;
A generator that generates electric power by being mechanically driven by the engine;
An electric motor that generates a power running torque by being supplied with the electric power generated by the generator and rotationally drives a second drive wheel different from the first drive wheel;
When the vehicle is started by rotating both the first drive wheel and the second drive wheel, the power generation control of the generator is generated so as to generate electric power necessary to operate the electric motor with a predetermined power running torque. Power generation control means for starting,
In the drive device of the hybrid vehicle having
A stopping generator rotation increasing means for increasing the electric power that can be generated by increasing the rotation speed of the generator by the engine while the vehicle is stopped while the brake is being braked. A drive device for a hybrid vehicle characterized by being provided.
前記停車中発電機回転増大手段は、路面勾配に応じて該路面勾配が大きい程前記発電機の回転速度を大きく増大させる
ことを特徴とするハイブリッド車両の駆動装置。
The stopping power generator rotation increasing means increases the rotational speed of the power generator as the road surface gradient increases in accordance with the road surface gradient.
JP2007037125A 2007-02-16 2007-02-16 Drive device for hybrid vehicle Expired - Fee Related JP4992457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007037125A JP4992457B2 (en) 2007-02-16 2007-02-16 Drive device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007037125A JP4992457B2 (en) 2007-02-16 2007-02-16 Drive device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2008201182A true JP2008201182A (en) 2008-09-04
JP4992457B2 JP4992457B2 (en) 2012-08-08

Family

ID=39779122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007037125A Expired - Fee Related JP4992457B2 (en) 2007-02-16 2007-02-16 Drive device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP4992457B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070750A1 (en) * 2008-12-17 2010-06-24 トヨタ自動車株式会社 Control device for power transmission device for vehicle
JP2011006015A (en) * 2009-06-29 2011-01-13 Toyota Motor Corp Vehicle control device and vehicle control method
JP2011047458A (en) * 2009-08-26 2011-03-10 Jatco Ltd Vehicle equipped with continuously variable transmission and method for controlling the same
JP2013173495A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Drive control device for vehicle and drive control method for vehicle
WO2019116554A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Vehicle control method and vehicle control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841584B2 (en) * 2013-12-06 2016-01-13 富士重工業株式会社 Powertrain control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002142310A (en) * 2000-11-06 2002-05-17 Mitsubishi Motors Corp Motor torque controller for vehicle
JP2004320995A (en) * 2003-04-04 2004-11-11 Hitachi Ltd Electric drive device for vehicles, and hybrid engine/motor-type four-wheel drive device
JP2005059851A (en) * 1999-10-08 2005-03-10 Toyota Motor Corp Control device of four-wheel drive vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059851A (en) * 1999-10-08 2005-03-10 Toyota Motor Corp Control device of four-wheel drive vehicle
JP2002142310A (en) * 2000-11-06 2002-05-17 Mitsubishi Motors Corp Motor torque controller for vehicle
JP2004320995A (en) * 2003-04-04 2004-11-11 Hitachi Ltd Electric drive device for vehicles, and hybrid engine/motor-type four-wheel drive device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070750A1 (en) * 2008-12-17 2010-06-24 トヨタ自動車株式会社 Control device for power transmission device for vehicle
JP4888602B2 (en) * 2008-12-17 2012-02-29 トヨタ自動車株式会社 Control device for vehicle power transmission device
US8311694B2 (en) 2008-12-17 2012-11-13 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicular power transmitting system
JP2011006015A (en) * 2009-06-29 2011-01-13 Toyota Motor Corp Vehicle control device and vehicle control method
JP2011047458A (en) * 2009-08-26 2011-03-10 Jatco Ltd Vehicle equipped with continuously variable transmission and method for controlling the same
JP2013173495A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Drive control device for vehicle and drive control method for vehicle
WO2013128837A1 (en) * 2012-02-27 2013-09-06 日産自動車株式会社 Vehicle drive control apparatus, and vehicle drive control method
US9308807B2 (en) 2012-02-27 2016-04-12 Nissan Motor Co., Ltd. Vehicle drive control apparatus, and vehicle drive control method
WO2019116554A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Vehicle control method and vehicle control device
JPWO2019116554A1 (en) * 2017-12-15 2020-12-24 日産自動車株式会社 Vehicle control method and vehicle control device
RU2754011C1 (en) * 2017-12-15 2021-08-25 Ниссан Мотор Ко., Лтд. Method and device for vehicle starting control
US11794743B2 (en) 2017-12-15 2023-10-24 Nissan Motor Co., Ltd. Vehicle control method and vehicle control apparatus

Also Published As

Publication number Publication date
JP4992457B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP3835202B2 (en) Vehicle drive control device
JP4293275B2 (en) Vehicle driving force control device
JP4032639B2 (en) Vehicle regeneration control device
JP4281740B2 (en) Vehicle and control method thereof
US20150151761A1 (en) Drive control device for vehicle
JP2008265533A (en) Drive control device of hybrid vehicle
JP5790670B2 (en) Vehicle control device
WO2011161757A1 (en) Control device of automatic transmission for vehicle
JP4992457B2 (en) Drive device for hybrid vehicle
JP2011202776A (en) Control device for vehicular lockup clutch
JP5163438B2 (en) Control device for vehicle power transmission device
US20180180180A1 (en) Control system for vehicular power transmission system and control method for vehicular power transmission system
JP4297127B2 (en) Vehicle and control method thereof
JP2006074997A (en) Regenerative braking apparatus of vehicle
JP4821054B2 (en) Vehicle control device
JP2006194263A (en) Automobile and method for controlling the same
JP2006170265A (en) Automobile and method of controlling the same
JPH106806A (en) Vehicle
JP2006189113A (en) Automobile and method for controlling the same
JP2003018707A (en) Hybrid drive control device
JP2007210551A (en) Vehicle and its control method
JP2007176419A (en) Vehicle and its control method
JP5673324B2 (en) Shift control device for continuously variable transmission for vehicle
JP2004211869A (en) Control unit for continuously variable transmission for cars
JP5691733B2 (en) Lockup control device for continuously variable transmission for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees