JP2008200859A - Warpage analysis method, its program, and warpage analysis device - Google Patents

Warpage analysis method, its program, and warpage analysis device Download PDF

Info

Publication number
JP2008200859A
JP2008200859A JP2007035853A JP2007035853A JP2008200859A JP 2008200859 A JP2008200859 A JP 2008200859A JP 2007035853 A JP2007035853 A JP 2007035853A JP 2007035853 A JP2007035853 A JP 2007035853A JP 2008200859 A JP2008200859 A JP 2008200859A
Authority
JP
Japan
Prior art keywords
branch
thickness
deformation
warpage
warpage deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007035853A
Other languages
Japanese (ja)
Other versions
JP5134259B2 (en
JP2008200859A5 (en
Inventor
Haruhiko Mitsuhata
晴彦 光畑
Satoshi Sawada
聡 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007035853A priority Critical patent/JP5134259B2/en
Publication of JP2008200859A publication Critical patent/JP2008200859A/en
Publication of JP2008200859A5 publication Critical patent/JP2008200859A5/ja
Application granted granted Critical
Publication of JP5134259B2 publication Critical patent/JP5134259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for simply and precisely predicting the shrinkage rate and warpage quantity of a molding in the injection molding process. <P>SOLUTION: In order to analyze the warpage of the molding, the total warpage quantity is calculated on the basis of (1) a branching structure warpage quantity obtained from the angle between a base part and a branching body in a branching part, the wall-thicknessward average of an inward shrinkage rate in a branching part, etc., and (2) a bimetal warpage quantity obtained from the inward and wall-thicknessward distribution of the inward shrinkage rates of the base part and the branching part in the branching part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、そり変形解析方法およびそのプログラムならびにそり変形解析装置に関する。   The present invention relates to a warp deformation analysis method, a program thereof, and a warp deformation analysis apparatus.

以下、添付図面を参照して、背景技術について説明を行う。   The background art will be described below with reference to the accompanying drawings.

図1A〜Eは、樹脂や金属などを材料とする成形品の射出成形を実施するための射出成形工程の典型例を模式的に示す図である。射出成形とは、図1Aに示すような射出成形機によって、成形品材料6を加熱溶融して流動状態にし、金型4のキャビティ5(金型空洞部)に加圧注入し金型4内で固化させることにより、キャビティ5に相当する形を賦形し、金型を開き、金型内部から固化成形品7を取り出す技術である。通常、その射出成形の工程は大きく分けて図1Bから図1Eの4つの工程に分けることができる。以下、樹脂製品の射出成形を例にとって説明する。   1A to 1E are diagrams schematically illustrating a typical example of an injection molding process for performing injection molding of a molded product made of resin, metal, or the like. In the injection molding, the molding material 6 is heated and melted into a fluid state by an injection molding machine as shown in FIG. 1A, and pressurized and injected into the cavity 5 (mold cavity) of the mold 4. In this technique, the shape corresponding to the cavity 5 is formed by solidifying with, and the mold is opened, and the solidified molded product 7 is taken out from the inside of the mold. Usually, the injection molding process can be roughly divided into four processes shown in FIGS. 1B to 1E. Hereinafter, an explanation will be given by taking injection molding of a resin product as an example.

図1Bは、樹脂製品の射出成形工程のうち、樹脂充填工程の一例を示す図である。図1Bの充填工程では、モータ1でホッパー2内に投入された粒状の成形品材料6をシリンダ3の中で溶融させ、シリンダ3の中にあるスクリューで金型4のキャビティ5内に充填させる。図1Cは、樹脂製品の射出成形工程のうち、樹脂保圧工程の一例を示す図である。図1Cの保圧工程では、溶融した成形品材料6に圧力をかけて、冷却工程初期の材料の収縮を補い、安定させる。図1Dは、樹脂製品の射出成形工程のうち、樹脂冷却工程の一例を示す図である。図1Dの冷却工程では、金型4によって、成形品材料6を冷却固化させて、キャビティ5の形状を成形品に賦形する。図1Cの保圧工程と図1Dの冷却工程をまとめて、冷却工程もしくは保圧冷却工程と呼ぶ場合もある。図1Eは、樹脂製品の射出成形工程のうち、離型工程(型開き)の一例を示す図である。図1Eの離型工程では、金型4を開き、固化した成形品7を金型4内から取り出す。射出成形は、典型的には、これら4つの工程により、金型4のキャビティ5形状を成形品に賦形し、製品を得る技術である。   FIG. 1B is a diagram illustrating an example of a resin filling step in a resin product injection molding step. In the filling process of FIG. 1B, the granular molding material 6 put into the hopper 2 by the motor 1 is melted in the cylinder 3 and filled into the cavity 5 of the mold 4 with the screw in the cylinder 3. . FIG. 1C is a diagram illustrating an example of a resin pressure holding step in the resin product injection molding step. In the pressure-holding process of FIG. 1C, pressure is applied to the melted molded article material 6 to compensate and stabilize the shrinkage of the material at the initial stage of the cooling process. FIG. 1D is a diagram illustrating an example of a resin cooling step in the resin product injection molding step. In the cooling process of FIG. 1D, the molded product material 6 is cooled and solidified by the mold 4 to shape the shape of the cavity 5 into the molded product. The pressure holding process in FIG. 1C and the cooling process in FIG. 1D may be collectively referred to as a cooling process or a pressure holding cooling process. FIG. 1E is a diagram illustrating an example of a mold release process (mold opening) in the resin product injection molding process. 1E, the mold 4 is opened, and the solidified molded product 7 is taken out from the mold 4. Injection molding is typically a technique for obtaining a product by shaping the shape of the cavity 5 of the mold 4 into a molded product through these four steps.

しかし、充填工程、保圧工程、冷却工程のいずれの工程においても、金型内部の挙動はブラックボックスとなっており、従来、射出成形を行う場合、経験や勘を頼りに試作金型を修正しながら金型を設計し、また、試行錯誤で成形条件を設定する手法がとられていた。その結果、金型試作回数が多くなり、かつ製品開発期間が長くなるため、開発コストが高くなる傾向にあった。   However, in any of the filling process, pressure holding process, and cooling process, the behavior inside the mold is a black box. Conventionally, when performing injection molding, the prototype mold is modified based on experience and intuition. The mold was designed while the molding conditions were set by trial and error. As a result, the number of mold prototyping increases, and the product development period becomes longer, which tends to increase the development cost.

一方で、経験や勘を頼りにするのではなく、事前に充填工程における金型内での溶融の流れ、成形品材料や成形品材料および強化繊維の配向、保圧冷却工程における温度や圧力などの物理的な履歴をコンピュータにより数値解析し、金型から成形品を取り出した後の収縮や変形の予測を行い、その結果を金型設計、成形条件の設定にフィードバックさせ、開発期間の短縮する手法が提案されている。   On the other hand, instead of relying on experience and intuition, the flow of melting in the mold in the filling process in advance, the orientation of the molding material, molding material and reinforcing fiber, the temperature and pressure in the holding pressure cooling process, etc. Analyzes the physical history of the machine numerically by computer, predicts shrinkage and deformation after taking out the molded product from the mold, and feeds back the result to mold design and molding condition setting, shortening the development period A method has been proposed.

図2は、特許文献1や特許文献2に示される従来の射出成形工程数値解析手法の構成の一例を示すフロー図である。従来は、図2のフロー図に示すように、射出成形解析用形状データを入力(ステップ200)し、成形品材料の注入点であるゲートを指定し、成形品材料の密度や比熱、熱伝導率、成形品材料と金型との間の熱伝達係数、成形品材料の溶融粘度特性、PVT特性(圧力−体積−温度特性。すなわち、成形品材料の比容積もしくは体積を温度と圧力の関係式で表したもの。)などの樹脂物性データと、成形温度、金型温度、射出率(または射出時間)、保圧時間、保圧圧力などの成形条件を入力(ステップ201、ステップ202)して、射出成形工程の解析(ステップ203)(充填工程解析(ステップ204)、保圧・冷却工程解析(ステップ205)、配向解析(ステップ208))を実行し、射出成形解析用形状データの各要素あるいは各節点での収縮率を算出し(ステップ206)、構造解析を実行することで、成形品のそり変形(バイメタル効果によるそり変形)を解析(ステップ207)し、出力(ステップ209)している。   FIG. 2 is a flowchart showing an example of the configuration of the conventional injection molding process numerical analysis technique disclosed in Patent Document 1 and Patent Document 2. Conventionally, as shown in the flow chart of FIG. 2, the injection molding analysis shape data is input (step 200), the gate that is the injection point of the molded product material is designated, and the density, specific heat, and heat conduction of the molded product material are specified. Rate, heat transfer coefficient between the molding material and the mold, melt viscosity characteristics of the molding material, PVT characteristics (pressure-volume-temperature characteristics, ie, the specific volume or volume of the molding material is the relationship between temperature and pressure. The physical property data such as those expressed by the formula) and molding conditions such as molding temperature, mold temperature, injection rate (or injection time), holding time, holding pressure, etc. are input (step 201, step 202). Then, analysis of the injection molding process (step 203) (filling process analysis (step 204), pressure holding / cooling process analysis (step 205), orientation analysis (step 208)) is performed, and each of the shape data for injection molding analysis is analyzed. Element The shrinkage rate at each node is calculated (step 206), and structural analysis is performed to analyze warpage deformation of the molded product (warp deformation due to the bimetal effect) (step 207) and output (step 209). .

たとえば、平板を成形したとき、平板の表裏で金型の温度に差がある場合、金型温度が高い面は室温まで冷却される際に、金型温度が低い面と比べ収縮が大きく、バイメタル効果により金型温度の高い面を凹にしたようなそり変形となるが、射出成形解析においては、金型の表裏の温度差により発生する収縮歪みだけではなく、成形品材料の密度や比熱、熱伝導率、熱伝達率、溶融粘度、PVT特性による収縮ひずみの分布を成形品のすべての部位で計算し、成形品全体としてのそり変形を算出しているため、非常に複雑な解析となる。   For example, when a flat plate is molded, if there is a difference in the mold temperature between the front and back of the flat plate, the surface with the high mold temperature will shrink more than the surface with the low mold temperature when cooled to room temperature, and the bimetal will Due to the effect, it becomes warped deformation like a concave surface with a high mold temperature, but in the injection molding analysis, not only the shrinkage distortion caused by the temperature difference between the front and back of the mold, but also the density and specific heat of the molded product material, The distribution of shrinkage strain due to thermal conductivity, heat transfer coefficient, melt viscosity, and PVT characteristics is calculated at all parts of the molded product, and the warpage deformation of the molded product as a whole is calculated. .

そり変形解析を行う射出成形解析ソフトウェアは多数あるが、梁のたわみ計算などの線形構造解析と比較して、解析精度が低く、絶対値評価はもちろん、相対値評価もできない場合があると指摘されている。これは、そり変形解析において、線形構造解析にはない射出成形における温度、圧力、樹脂データ、樹脂の流動履歴、金型から取り出した後の条件、解析のモデルなど様々な誤差要因があるためである。   There are many injection molding analysis software that performs warp deformation analysis, but it is pointed out that analysis accuracy is lower than that of linear structural analysis such as beam deflection calculation, and absolute value evaluation and relative value evaluation may not be possible. ing. This is because in warp deformation analysis, there are various error factors such as temperature, pressure, resin data, resin flow history, conditions after removal from the mold, analysis model, etc., which are not in linear structure analysis. is there.

たとえば、非特許文献1には、射出成形のそり変形量解析結果について、絶対値を求めることは困難で、どうしても比較検討の域を超える精度を出すのは困難であると書かれている。   For example, Non-Patent Document 1 states that it is difficult to obtain an absolute value for the warpage deformation amount analysis result of injection molding, and it is difficult to obtain an accuracy exceeding the range of comparative study.

特に、リブのような分岐体が形成されている平板の形状の成形品のそり変形量解析は特に困難であった。   In particular, it is particularly difficult to analyze the amount of warpage deformation of a molded product having a flat plate shape on which branch bodies such as ribs are formed.

たとえば、非特許文献2では、単純なリブ形状の成形品について、実測値と解析値の比較を行っているが、実測値と解析値でそり変形量が2倍から11倍異なっており、絶対値の評価は困難となっている。   For example, in Non-Patent Document 2, a simple rib-shaped molded product is compared between an actual measurement value and an analysis value, but the warpage deformation amount is different from 2 to 11 times between the actual measurement value and the analysis value. Evaluation of values has become difficult.

さらに、非特許文献3では、そりの結果が通常の解析条件ではあわないため、L字型形状のコーナー部位の熱伝導係数を調整するパラメータ調整をおこなうことにより実測値と解析値をあわせたと書かれており、そりについて実測値と解析値をあわせるために解析担当者の経験、ノウハウが必要であることが分かる。   Furthermore, in Non-Patent Document 3, since the result of warping is not a normal analysis condition, it is stated that the actual measurement value and the analysis value are combined by adjusting the parameter for adjusting the thermal conductivity coefficient of the L-shaped corner portion. It can be seen that the experience and know-how of the analyst are necessary to match the measured value and the analyzed value of the sled.

そして、この解析担当者の経験、ノウハウを共有化するため、非特許文献4では、材料メーカー、金型メーカー、ソフトベンダーなどが参画して、リブつき平板について実測値と解析値の比較を行っている。この中で、解析ソフト間はもちろん、解析担当者間においても解析結果に差異があることが示されている。つまり、解析担当者の経験やノウハウによって異なる結果が生じることを示唆するものであり、未だ普遍的なそり変形量解析方法が確立されていないのが現状である。   In order to share the experience and know-how of this analyst, in Non-Patent Document 4, material manufacturers, mold manufacturers, software vendors, etc. participate and compare measured values and analyzed values for ribbed plates. ing. In this, it is shown that there is a difference in analysis results not only between analysis softwares but also between analysts. In other words, it suggests that different results occur depending on the experience and know-how of the person in charge of analysis, and the present situation is that a universal warpage deformation analysis method has not yet been established.

このため、事前に数値計算により射出成形現象を予測することができないことはもちろん、数値計算による解析を行ったことにより金型の設計が誤った方向に進み、経験や勘を頼りとする手法よりも開発コストが高くなることもある。そのため、そりの解析精度を高くすることは非常に大きな課題になっている。   For this reason, the injection molding phenomenon cannot be predicted by numerical calculation in advance, and the design of the mold proceeds in the wrong direction due to the analysis by numerical calculation. However, the development cost may be high. Therefore, increasing the accuracy of warping analysis is a very big issue.

ところで、射出成形の成形品の解析はシェル要素、もしくはソリッド要素を用いておこなわれている。図3Aは、3次元のボリュームのある形状を2次元の平面(シェル要素)に置き換える方法の一例を示す図である。図3Aに示すように、2次元のシェル要素とは、3次元のボリュームのある形状を2次元の平面(シェル要素)に置き換え、その2次元平面形状に厚みのデータを持たせることによって、3次元形状を表現するものである。射出成形の成形品は、一般に、薄肉形状で構成されているため、シェル要素を用いて解析することが多い。これはシェル要素を用いると、厚み方向に解析要素を作成する必要がないため、計算コストを抑えることができる利点があること、また、肉厚の変更など形状の検討が容易であるという利点があるためである。   By the way, the analysis of the injection molded product is performed using a shell element or a solid element. FIG. 3A is a diagram illustrating an example of a method of replacing a certain shape of a three-dimensional volume with a two-dimensional plane (shell element). As shown in FIG. 3A, a two-dimensional shell element means that a shape having a three-dimensional volume is replaced with a two-dimensional plane (shell element), and thickness data is given to the two-dimensional plane shape. It represents a dimensional shape. In general, an injection-molded molded article is configured to have a thin shape, and thus is often analyzed using a shell element. This is because when shell elements are used, there is no need to create analysis elements in the thickness direction, so there is an advantage that the calculation cost can be reduced, and there is an advantage that it is easy to study the shape such as changing the wall thickness. Because there is.

図3Bはそれぞれソリッド要素301、およびシェル要素304を用いて、射出成形の充填解析を行った例である。充填解析について、ソリッド要素を用いても、シェル要素を用いてもほぼ同様の結果となる。   FIG. 3B is an example in which a filling analysis of injection molding is performed using the solid element 301 and the shell element 304, respectively. For the filling analysis, the result is almost the same whether the solid element is used or the shell element is used.

次に、L字型形状を例に、成形品のそり変形量変形解析について、説明する。図4AはL字型形状の一例であり、図4Bから図4Fは、3次元のボリュームのある形状の収縮変形とシェル要素のそり変形の挙動を模擬的に示したものである。図4AではL字型形状401の内側部分の金型面402が外側部分の金型面よりも高温であり、室温まで冷却し、収縮したとする。その場合、バイメタル効果により、L字型形状のコーナー部位で内側に倒れるそり変形403が起きる。これを図4Bのシェル要素でモデル化したとき、図4Bの各要素で、L字型形状のコーナーの内側の面が外側の面よりも収縮が大きくなるような変形計算を行う。その結果、ソリッド要素での収縮変形と同様、バイメタル効果により、L字型形状のコーナーの部分で内側に倒れるそり変形が計算機内で再現できる。これにより、L字型形状のコーナー部位については、面内方向、肉厚方向の温度分布(面内方向、肉厚方向の収縮率分布)により発生するバイメタル効果によるそり変形は、シェル要素で解析しても、3次元のボリュームのあるソリッド要素で解析してもある程度は妥当な結果を得ることができる。   Next, the warpage deformation amount deformation analysis of a molded product will be described by taking an L-shaped shape as an example. FIG. 4A is an example of an L-shaped shape, and FIGS. 4B to 4F schematically show the behavior of contraction deformation and warpage deformation of a shell element with a three-dimensional volume. In FIG. 4A, it is assumed that the mold surface 402 of the inner part of the L-shaped shape 401 is hotter than the mold surface of the outer part, cooled to room temperature, and contracted. In this case, due to the bimetal effect, a warp deformation 403 that falls inward at an L-shaped corner portion occurs. When this is modeled by the shell element of FIG. 4B, deformation calculation is performed so that the inner surface of the L-shaped corner is more contracted than the outer surface of each element of FIG. 4B. As a result, the warp deformation that falls inward at the corner portion of the L-shaped shape can be reproduced in the computer by the bimetal effect, similar to the contraction deformation in the solid element. As a result, warpage deformation due to the bimetal effect generated by the temperature distribution in the in-plane direction and the thickness direction (in-plane direction, shrinkage rate distribution in the thickness direction) is analyzed with the shell element at the corner portion of the L-shape. Even if a solid element having a three-dimensional volume is analyzed, a reasonable result can be obtained to some extent.

しかし、L字型形状のコーナー部位は平板部と異なり、バイメタル効果以外に、面内方向収縮率(この場合は、コーナー部で折れ曲がる面内の方向であって、かつ、コーナー部位を形成する交線の方向に垂直な方向(L字型形状のコーナー部位における面内折れ曲がり方向)の収縮率)と肉厚方向収縮率の違いによってもそり変形が発生するため、バイメタル効果による変形の解析では不十分である。   However, unlike the flat plate portion, the L-shaped corner portion has an in-plane shrinkage rate (in this case, an in-plane direction that is bent at the corner portion and an intersection forming the corner portion). The warp deformation also occurs due to the difference between the shrinkage rate in the direction perpendicular to the direction of the line (the shrinkage rate in the in-plane bending direction at the corner portion of the L-shaped shape) and the shrinkage rate in the thickness direction. It is enough.

このメカニズムについて図4CのL字型形状の成形品で説明する。   This mechanism will be described with reference to an L-shaped molded product in FIG. 4C.

成形品材料の配向や充填材の影響で、肉厚方向の収縮407が面内方向の収縮408(コーナー部位における面内折れ曲がり方向成分)よりも大きいと仮定する。図4Dは図4Cの成形品面の折れ曲がる方向を含む面内の断面図であるが、図4Dに示すように、L字型形状のコーナー部位のL字型形状を構成する2面のなす角度を等分割する面409を境界に半分の形状について考えた場合、肉厚方向の収縮が大きいため、角度410が小さくなり、角度を等分割する面409において、収縮後の形状を組み合わせると、L字型形状のコーナーの部分で内側に倒れるそり変形が起きる。これが、面内方向収縮率(L字型形状のコーナー部位に対して直角方向成分)と肉厚方向収縮率の違いによってもそり変形が発生するそり変形である。   It is assumed that the shrinkage 407 in the thickness direction is larger than the shrinkage 408 in the in-plane direction (in-plane bending direction component at the corner portion) due to the orientation of the molded article material and the influence of the filler. 4D is an in-plane cross-sectional view including the bending direction of the molded product surface of FIG. 4C. As shown in FIG. 4D, the angle formed by the two surfaces constituting the L-shaped shape of the L-shaped corner portion. When the half shape is considered with the surface 409 that equally divides the angle as the boundary, since the shrinkage in the thickness direction is large, the angle 410 becomes small, and when the shape after the shrinkage is combined on the surface 409 that equally divides the angle, L Sled deformation that falls inward at the corners of the letter shape occurs. This is warpage deformation in which warpage deformation occurs due to the difference between the in-plane direction shrinkage rate (component perpendicular to the L-shaped corner portion) and the thickness direction shrinkage rate.

ソリッド要素を用いた場合、このようなコーナーの挙動を再現することができるが、これを図4Eのシェル要素でモデル化したとき、シェル要素は、図4Dの角度410のようなL字型形状コーナー部位の角度を考慮しないため、角度410が変化しても、シェル要素では、L字型形状のコーナー部位で内側に倒れるそり変形は発生しない。   When the solid element is used, such a corner behavior can be reproduced. When this is modeled by the shell element of FIG. 4E, the shell element has an L-shaped shape such as an angle 410 of FIG. 4D. Since the angle of the corner portion is not taken into consideration, even if the angle 410 changes, the shell element does not undergo warping deformation that falls inward at the L-shaped corner portion.

ただし、ソリッド要素を用いた場合でも、肉厚方向の収縮407が面内方向の収縮408(コーナー部位の面内折れ曲がり方向成分)よりも大きい場合の、L字型コーナー部位のそり変形を正しく解析できるとは限らない。図4Fは図4CのL字型成形品を分割数を変えてモデル化したものである。図4Fに示すように、L字型形状のコーナー部位の要素分割数が不十分なソリッド要素411の場合、L字型形状のコーナー部位の要素分割数が十分なソリッド要素412のように正しく解析することができない。これは、要素分割数が不十分なソリッド要素は、シェル要素と同様、L字型形状のコーナー部位を、面409で分割することができず、L字型形状のコーナー部位の角度変化を表すことができないためである。したがって、ソリッド要素を用いる場合は非常に多くの要素を含むモデルを作成する必要があり、計算コストやモデル作成工数の点で不利である。   However, even when a solid element is used, the warp deformation of the L-shaped corner part is correctly analyzed when the contraction 407 in the thickness direction is larger than the contraction 408 in the in-plane direction (in-plane bending direction component of the corner part). It is not always possible. FIG. 4F is a model of the L-shaped molded product of FIG. 4C with a different number of divisions. As shown in FIG. 4F, in the case of a solid element 411 having an insufficient number of element divisions in an L-shaped corner part, the analysis is correctly performed as if the solid element 412 has an adequate number of element divisions in an L-shaped corner part. Can not do it. This is because a solid element with an insufficient number of element divisions, like a shell element, cannot divide an L-shaped corner portion by a surface 409, and represents an angle change of the L-shaped corner portion. It is because it cannot be done. Therefore, when using solid elements, it is necessary to create a model including a large number of elements, which is disadvantageous in terms of calculation cost and model creation man-hours.

また、上記の通り、バイメタル効果だけを考慮した2次元シェルモデルには、面内方向収縮率と肉厚方向収縮率の違いに起因するそり変形を解析できない。   In addition, as described above, the two-dimensional shell model considering only the bimetal effect cannot analyze warp deformation caused by the difference between the in-plane direction shrinkage rate and the thickness direction shrinkage rate.

そこで、非特許文献5では、L字型形状のコーナー部位について、式(1)から式(3)のように面内方向の収縮と肉厚方向の収縮から、L字型形状のコーナー部位を挟む2面の角度が収縮の前後で角度変化を発生させることにより、L字型形状のコーナー部位の収縮、そり変形挙動を表現している。   Therefore, in Non-Patent Document 5, with respect to the L-shaped corner portion, the L-shaped corner portion is determined from the shrinkage in the in-plane direction and the shrinkage in the thickness direction as in Equations (1) to (3). The angle between the two sandwiched surfaces causes an angle change before and after the contraction, thereby expressing the contraction and warping deformation behavior of the L-shaped corner portion.

図5Aは式(1)、式(2)の角度の算出法を示す図の一例であり、L字型形状のコーナー曲面の収縮前形状および収縮後の形状を示す断面図である。また、図5Bは式(3)の角度の算出法を示す図の一例であり、L字型形状のコーナーのコーナー部の収縮前形状および収縮後の形状を示すL方形状を構成する2面のなす角度を等分割する面を境界に半分の形状の断面図である。   FIG. 5A is an example of a diagram illustrating a method of calculating the angles of Expression (1) and Expression (2), and is a cross-sectional view illustrating the shape before and after contraction of an L-shaped corner curved surface. FIG. 5B is an example of a diagram illustrating a method of calculating the angle of Expression (3), and two surfaces constituting an L-shaped shape indicating a shape before and after contraction of a corner portion of an L-shaped corner. 5 is a cross-sectional view of a half shape with a plane that equally divides the angle formed by

Figure 2008200859
Figure 2008200859

以下、図5A、および図5Bについて、詳細に説明する。   Hereinafter, FIGS. 5A and 5B will be described in detail.

ここでは、分岐部位ではなく、コーナー曲面をもつL字型形状のコーナー形状を想定している。   Here, an L-shaped corner shape having a curved corner surface is assumed instead of a branched portion.

収縮前の形状501は内径R、肉厚dであるとして、成形後熱収縮により、面内方向(円周方向)にSx、肉厚方向(半径方向)にSzの収縮率で収縮し、収縮後の形状502になったときの形状の変化を示している。この際、面内方向収縮率Sxと肉厚方向収縮率Szが等しい値であったとき、かつ、コーナー曲面の内側と外側で収縮率が等しい場合は、収縮後の角度変化が生じず、収縮後の角度の変化量Δα=0となる。しかし、面内方向収縮率Sxよりも肉厚方向収縮率Szが大きい場合は、面内方向(円周方向)と肉厚方向(半径方向)との間に歪みが生じ、式(1)、式(2)のようなコーナーの角度変化が生じる。   Assuming that the shape 501 before shrinkage is an inner diameter R and a wall thickness d, shrinkage is caused by shrinkage of Sx in the in-plane direction (circumferential direction) and Sz in the wall thickness direction (radial direction) due to heat shrinkage after molding. A change in shape when the shape 502 is changed to the later shape is shown. At this time, if the in-plane direction shrinkage rate Sx and the thickness direction shrinkage rate Sz are equal, and if the shrinkage rate is the same on the inside and outside of the corner curved surface, the angle change after shrinkage does not occur, and the shrinkage The later angle change amount Δα = 0. However, when the thickness direction shrinkage rate Sz is larger than the in-plane direction shrinkage rate Sx, distortion occurs between the in-plane direction (circumferential direction) and the thickness direction (radial direction), and the equation (1), A change in the angle of the corner as shown in Equation (2) occurs.

図5BはL字型形状のコーナー部位を、L字型形状を構成する2面のなす角度を等分割する面で分割し、図示したものである。L字型形状のコーナー部位の先端が曲面形状ではない場合、図5Bに示すモデルでコーナー部位を表現することができ、収縮前の角度αと収縮後の角度βは図5Bより式(3)に変換することができる。
なお、式(1)から式(3)は収縮前後の角度の変化量が微小であると考えたとき、実質同じものであると考えることができる。
FIG. 5B illustrates an L-shaped corner portion that is divided by a plane that equally divides an angle formed by two surfaces constituting the L-shaped shape. When the tip of the L-shaped corner portion is not a curved shape, the corner portion can be expressed by the model shown in FIG. 5B. The angle α before contraction and the angle β after contraction are expressed by the equation (3) from FIG. 5B. Can be converted to
It should be noted that equations (1) to (3) can be considered to be substantially the same when the amount of change in angle before and after contraction is considered to be minute.

このような面内方向収縮率と肉厚方向収縮率の違いを考慮したL字型形状のコーナー部位のそり変形量解析は、成形品の内部に繊維などの充填材が入っている場合、こうしたそりが特に顕著に現れるため、非特許文献5の方法は非常に有効であった。   The warpage deformation analysis of the L-shaped corner portion considering the difference between the in-plane direction shrinkage rate and the wall thickness direction shrinkage rate shows that when a filler such as fiber is contained in the molded product, Since warpage appears particularly prominently, the method of Non-Patent Document 5 is very effective.

しかしながら、本発明者らの知見によると、基盤部にリブなどの分岐体が形成されているリブ形状などの成形品の場合に分岐部位について、L字型形状のコーナー部位と同様の式(1)から式(3)を用いて解析した場合、繊維などの充填材を含む材料がそれぞれの分岐体へどのような割合で流れるによって分岐部位におけるそり変形が変化することを考慮できない問題があった。また形状としてそりを誘発するような分岐体であるかを精査していないため、たとえば、図3Cのような基盤部に対して小さな突起であるような形状であっても、大きな角度の変化量が生じると計算してしまう問題があった。
特開昭62−34282号公報 特開平2−258229号公報 米川太,“プラスチック製品のCAE解析(現状と課題)”,成形加工,日本国,2000,VOL.12,No.3,P133 大塚弘己/望月智仁/大須賀晴信,“そり変形解析によるリブ変形の予測精度”,成形加工,日本国,2001,VOL.13,No.2,P102 山田和慶/西郷栄人/田中宏尚,“射出成形品のコーナー部内そり変形予測”,成形加工,日本国,2002,VOL.14,No.8,P496 山部昌/大塚弘己/亀田隆夫/瀬戸雅宏/道井貴幸,“射出成形CAE 専門委員会活動報告−各委員による解析の実施と成形実験との比較検討−”,成形加工,日本国,2002,VOL.14,No.11,P690 A.AMMAR/V.LEO/G.REGNIER,“Corner Deformation of Injected Thermoplastic Parts” ,International Journal of Forming Processes,仏国,2003,ARTICLE VOL 6/1 −,P53
However, according to the knowledge of the present inventors, in the case of a molded product such as a rib shape in which a branched body such as a rib is formed on the base portion, the same formula (1) as the L-shaped corner portion is obtained for the branched portion. ) To Equation (3), there is a problem that it is not possible to consider that the warpage deformation at the branching portion changes depending on the flow rate of the material containing the filler such as fiber to each branching body. . In addition, since it has not been scrutinized as a shape that induces warping as a shape, for example, even if the shape is a small protrusion with respect to the base portion as shown in FIG. There was a problem that would be calculated if.
JP 62-34282 A JP-A-2-258229 Yonekawa, “CAE analysis of plastic products (current situation and issues)”, molding, Japan, 2000, VOL. 12, no. 3, P133 Hiromi Otsuka / Tomohito Mochizuki / Harunobu Osuka, “Prediction accuracy of rib deformation by warp deformation analysis”, Molding, Japan, 2001, VOL. 13, no. 2, P102 Kazuyoshi Yamada / Eihito Saigo / Hirotaka Tanaka, “Prediction of warpage deformation in corners of injection molded products”, Molding, Japan, 2002, VOL. 14, no. 8, P496 Masaru Yamabe / Hiroki Otsuka / Takao Kameda / Masahiro Seto / Takayuki Doi, “Activity Report of Injection Molding CAE Technical Committee -Comparison between Analysis and Molding Experiment by Each Member”, Molding, Japan, 2002 , VOL. 14, no. 11, P690 A. AMMAL / V. LEO / G. REGNIER, “Corner Deformation of Injected Thermoplastic Part”, International Journal of Forming Processes, France, 2003, ARTICLE VOL 6/1-, P53

このように、非特許文献5のアプローチを単純にリブ形状などの分岐を有する形状について応用するだけでは、面内方向収縮率と肉厚方向収縮率の差による分岐部位の角度の変化量を算出する際、分岐部位の流れの影響や分岐体形状の影響を考慮していなかったため、実測のそり変形量と解析のそり変形量が異なる場合があった。   As described above, simply applying the approach of Non-Patent Document 5 to a shape having a branch such as a rib shape, the amount of change in the angle of the branch portion due to the difference between the in-plane direction shrinkage rate and the thickness direction shrinkage rate is calculated. In this case, the influence of the flow at the branching part and the influence of the shape of the branching body were not taken into consideration, so that the actually measured warpage deformation amount and the analysis warpage deformation amount were sometimes different.

そこで、本発明者らの鋭意検討の結果、従来の方法の温度分布による収縮計算、温度、圧力分布による収縮計算、配向分布による異方性収縮計算、コーナー部の角度の変化量計算に加えて、分岐部位のそり変形に関して、分岐部位の形状、流動履歴を考慮に入れることにより、解析値のそり変形量を実測のそり変形量に極めて近づけることができることを見いだした。   Therefore, as a result of the diligent study by the present inventors, in addition to the shrinkage calculation based on the temperature distribution, the shrinkage calculation based on the temperature and pressure distribution, the anisotropic shrinkage calculation based on the orientation distribution, and the calculation of the change in the angle of the corner portion. Regarding the warpage deformation of the branch part, it was found that the warpage deformation amount of the analysis value can be made very close to the actually measured warpage deformation amount by taking into consideration the shape of the branch part and the flow history.

本発明の目的は、上記従来技術の問題点を鑑み、リブ形状などの分岐体を有する形状の分岐部位におけるそり変形を、精度良く、射出成形に関するそり変形量解析を実施できる射出成形解析方法およびそのプログラムを提供することを目的にしている。   An object of the present invention is to provide an injection molding analysis method capable of accurately performing a warp deformation analysis on a branch portion of a shape having a branched body such as a rib shape, in consideration of the problems of the above prior art, and a warp deformation amount analysis related to injection molding. The purpose is to provide the program.

上記目的を達成するために、本発明によれば、プログラムされたコンピュータによって成形品のそり変形を解析するためのそり変形解析方法であって、前記成形品の分岐部位におけるそり変形を、
(1)前記分岐部位における基盤部と分岐体とのなす角度、前記分岐部位における面内方向収縮率の肉厚方向平均値、および、前記分岐部位におけるの肉厚方向収縮率の肉厚方向平均値、ならびに、分岐構造パラメータに基づいて算出する分岐構造そり変形量を算出する分岐構造そり変形量算出工程と、
(2)前記分岐部位における前記基盤部および前記分岐体の面内方向収縮率の面内方向および肉厚方向分布ならびに前記分岐部位における前記基盤部および前記分岐体の肉厚方向収縮率の面内方向および肉厚方向分布と、に基づいて算出するバイメタルそり変形量を算出するバイメタルそり変形量算出工程と、
(3)前記分岐構造そり変形量算出工程およびバイメタルそり変形量算出工程の算出結果に基づいて総そり変形量を算出する分岐部位総そり変形量算出工程と、
を含むことを特徴とするそり変形解析方法が提供される。
In order to achieve the above object, according to the present invention, there is provided a warpage deformation analysis method for analyzing warpage deformation of a molded product by a programmed computer, wherein warpage deformation at a branch portion of the molded product is performed.
(1) The angle formed by the base portion and the branch body at the branch site, the average value in the thickness direction of the in-plane shrinkage rate at the branch site, and the thickness direction average of the thickness direction contraction rate at the branch site A branch structure warpage deformation amount calculating step for calculating a branch structure warpage deformation amount calculated based on the value and the branch structure parameter;
(2) In-plane direction and thickness direction distribution of in-plane direction shrinkage rates of the base portion and the branch body in the branch portion, and in-plane thickness direction shrinkage rates of the base portion and the branch body in the branch portion A bimetal warp deformation amount calculating step for calculating a bimetal warp deformation amount calculated based on the direction and thickness direction distribution;
(3) a branch part total warpage deformation amount calculating step of calculating a total warpage deformation amount based on the calculation results of the branch structure warpage deformation amount calculation step and the bimetal warpage deformation amount calculation step;
There is provided a warp deformation analysis method characterized by comprising:

また、本発明の好ましい形態によれば、前記分岐構造パラメータとして、前記分岐部位から分岐体先端までの距離、前記分岐部位における流動履歴、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比、前記分岐部位における前記基盤部の肉厚と前記分岐部位から前記分岐体の先端までの距離との比のうち少なくとも1つ以上を用いることを特徴とする特徴とするそり変形解析方法が提供される。   According to a preferred embodiment of the present invention, as the branch structure parameter, the distance from the branch site to the tip of the branch body, the flow history at the branch site, the thickness of the base portion at the branch site and the branch site At least one or more of the ratio between the thickness of the branch body and the thickness of the base portion at the branch site and the distance from the branch site to the tip of the branch body is used. A warp deformation analysis method is provided.

また、本発明の好ましい形態によれば、前記分岐構造パラメータとして、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比を用いることを特徴とするそり変形解析方法が提供される。   Further, according to a preferred embodiment of the present invention, as the branching structure parameter, a warpage deformation characterized by using a ratio between the thickness of the base portion at the branching portion and the thickness of the branching body at the branching portion. An analysis method is provided.

また、本発明の好ましい形態によれば、前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とするそり変形解析方法が提供される。   According to a preferred aspect of the present invention, there is provided a warp deformation analysis method characterized by using the following equation or a mathematically equivalent equation for calculating the branch structure warp deformation amount.

Figure 2008200859
Figure 2008200859

また、本発明の好ましい形態によれば、前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とするそり変形解析方法が提供される。   According to a preferred aspect of the present invention, there is provided a warp deformation analysis method characterized by using the following equation or a mathematically equivalent equation for calculating the branch structure warp deformation amount.

Figure 2008200859
Figure 2008200859

また、本発明の好ましい形態によれば、前記分岐構造パラメータとして、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比、および、前記分岐部位における前記基盤部の肉厚と前記分岐部位から前記分岐体の先端までの距離との比を用いることを特徴とするそり変形解析方法が提供される。   Further, according to a preferred embodiment of the present invention, as the branching structure parameter, a ratio between a thickness of the base portion at the branching portion and a thickness of the branching body at the branching portion, and the base at the branching portion. A warp deformation analysis method is provided, which uses a ratio between a thickness of a portion and a distance from the branching portion to the tip of the branching body.

また、本発明の好ましい形態によれば、前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とするそり変形解析方法が提供される。   According to a preferred aspect of the present invention, there is provided a warp deformation analysis method characterized by using the following equation or a mathematically equivalent equation for calculating the branch structure warp deformation amount.

Figure 2008200859
Figure 2008200859

また、本発明の好ましい形態によれば、前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とするそり変形解析方法が提供される。   According to a preferred aspect of the present invention, there is provided a warp deformation analysis method characterized by using the following equation or a mathematically equivalent equation for calculating the branch structure warp deformation amount.

Figure 2008200859
Figure 2008200859

また、本発明の好ましい形態によれば、前記分岐構造パラメータとして、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比、および、前記分岐部位における流動履歴を用いることを特徴とするそり変形解析方法が提供される。   Further, according to a preferred embodiment of the present invention, as the branching structure parameter, a ratio between a thickness of the base portion at the branching part and a thickness of the branching body at the branching part, and a flow history at the branching part There is provided a warp deformation analysis method characterized by using


また、本発明の好ましい形態によれば、前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とするそり変形解析方法が提供される。

According to a preferred aspect of the present invention, there is provided a warp deformation analysis method characterized by using the following equation or a mathematically equivalent equation for calculating the branch structure warp deformation amount.

Figure 2008200859
Figure 2008200859

また、本発明の好ましい形態によれば、前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とするそり変形解析方法が提供される。   According to a preferred aspect of the present invention, there is provided a warp deformation analysis method characterized by using the following equation or a mathematically equivalent equation for calculating the branch structure warp deformation amount.

Figure 2008200859
Figure 2008200859

また、本発明の好ましい形態によれば、前記成形品を、樹脂材料の射出成形品とすることを特徴とするそり変形解析方法が提供される。   According to a preferred embodiment of the present invention, there is provided a warp deformation analysis method characterized in that the molded product is an injection molded product of a resin material.

また、本発明の好ましい形態によれば、前記成形品を、充填材を含有する樹脂材料の射出成形品とすることを特徴とするそり変形解析方法が提供される。   According to a preferred embodiment of the present invention, there is provided a warp deformation analysis method characterized in that the molded product is an injection molded product of a resin material containing a filler.

また、本発明の別の形態によれば、上記いずれかのそり変形解析方法の各工程をコンピュータに実行させるためのプログラムが提供される。   According to another aspect of the present invention, there is provided a program for causing a computer to execute each step of any of the above warp deformation analysis methods.

また、本発明の別の形態によれば、上記プログラムを記録したコンピュータ読みとり可能な記録媒体が提供される。   Moreover, according to another form of this invention, the computer-readable recording medium which recorded the said program is provided.

また、本発明の別の形態によれば、成形品の射出成形工程を解析するための射出成形解析装置であって、
前記成形品の分岐部位におけるそり変形を、
(1)前記分岐部位における基盤部と分岐体とのなす角度、前記分岐部位における前面内方向収縮率の肉厚方向平均値、および、前記分岐部位における肉厚方向収縮率、ならびに、分岐構造パラメータに基づいて算出する分岐構造そり変形量算出手段と、(2)前記成形品の分岐部位におけるそり変形を、前記分岐部位における前記基盤部および前記分岐体の面内方向収縮率の面内方向および肉厚方向分布ならびに前記分岐部位における前記基盤部および前記分岐体の肉厚方向収縮率の面内方向および肉厚方向分布と、に基づいて算出するバイメタルそり変形量算出手段と、
(3)前記成形品の分岐部位におけるそり変形を、前記分岐構造そり変形量算出手段の出力および前記バイメタルそり変形量算出手段の出力に基づいて算出する分岐部位総そり変形量算出手段と、
を備えてなることを特徴とする射出成形解析装置が提供される。
Moreover, according to another aspect of the present invention, an injection molding analysis apparatus for analyzing an injection molding process of a molded product,
Warpage deformation at the branch part of the molded product,
(1) The angle formed by the base portion and the branch body at the branch site, the average value in the thickness direction of the inward front direction shrinkage rate at the branch site, the thickness direction shrinkage rate at the branch site, and the branch structure parameter And (2) warpage deformation at the branch portion of the molded product, and the in-plane direction of the in-plane shrinkage of the base portion and the branch body at the branch portion, and (2) Bi-metal warp deformation amount calculating means for calculating based on the thickness direction distribution and the in-plane direction and the thickness direction distribution of the shrinkage rate in the thickness direction of the base portion and the branched body at the branch portion;
(3) a branch portion total warpage deformation amount calculation means for calculating warpage deformation at the branch portion of the molded product based on an output of the branch structure warpage deformation amount calculation means and an output of the bimetal warpage deformation amount calculation means;
There is provided an injection molding analyzer characterized by comprising:

以下に用語を定義する。   The terms are defined below.

本発明において、「成形品」とは、押出成形、ブロー成形、射出成形、射出圧縮成形、圧縮成形、トランスファー成形等の成形加工によって成形される製品である。以下、本明細書において典型的な例として射出成形を例にとって説明する。成形品はたとえば図1Aに示したような射出成形機により成形品材料を加熱して流動状態にし、閉じた金型の空洞部(キャビティ)に加圧注入し金型内で固化させることにより、金型空洞部に相当する形を賦形された製品をいう。   In the present invention, the “molded product” is a product molded by a molding process such as extrusion molding, blow molding, injection molding, injection compression molding, compression molding, transfer molding or the like. In the following description, injection molding will be described as a typical example in this specification. For example, the molded article is heated in a fluidized state by an injection molding machine as shown in FIG. 1A, and is injected into a cavity (cavity) of a closed mold and solidified in the mold. A product that is shaped to correspond to a mold cavity.

本発明において、「成形品材料」とは、射出成形等で成形に用いる高分子材料や金属材料をいい、ポリエチレン(PE)、ポリプロピレン(PP)、塩化ビニル(PVC)、ポリアミド(PA)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、シンジオタクチック・ポリスチレン(SPS) 、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリエーテルニトリル(PEN)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m−PPE)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリアリレート(PAR)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド(PI)、アクリルニトリルブタジエンスチレン(ABS)、アクリルニトリルスチレン(AS)、マグネシウム合金(Mg合金)などを挙げることができる。   In the present invention, “molded product material” refers to a polymer material or a metal material used for molding in injection molding or the like, and includes polyethylene (PE), polypropylene (PP), vinyl chloride (PVC), polyamide (PA), polyacetal. (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), liquid crystal polymer (LCP), polyether nitrile ( PEN), polycarbonate (PC), modified polyphenylene ether (m-PPE), polysulfone (PSF), polyethersulfone (PES), polyarylate (PAR), polyamideimide (PAI), polyetherimide (PEI), Thermoplastic polyimide (PI), acrylonitrile butadiene styrene (ABS), and the like acrylonitrile styrene (AS), magnesium alloy (Mg alloy).

本発明において、「L字型形状のコーナー部位」とは、面と面が180°未満の角度で折れ曲がる部分をいう。   In the present invention, the “L-shaped corner portion” refers to a portion where the surface is bent at an angle of less than 180 °.

本発明において、「分岐部位」とは成形品の基盤部の肉厚方向を含む任意の平面における断面形状が2つ以上の分岐するような部位をいう。図6Aから図6Eは分岐部位をもつ成形品形状の典型例をシェルモデルで示したものである。図6Aから図6Eに示すように、成形品の肉厚方向断面形状は、T字型、Y字型、傘型(2分岐)、X字型(3分岐)、星型(多分機)などがある。また、解析において「分岐部位」とは、シェル要素の場合、図6Fに示すように分岐部を構成する辺618を含む要素617、ソリッド要素の場合、図6Gに示すように分岐部を構成する要素の節点619を含む要素617である。   In the present invention, the “branch site” refers to a site where the cross-sectional shape in an arbitrary plane including the thickness direction of the base portion of the molded product branches into two or more. FIG. 6A to FIG. 6E show a typical example of the shape of a molded article having a branch portion by a shell model. As shown in FIG. 6A to FIG. 6E, the cross-sectional shape in the thickness direction of the molded product is T-shaped, Y-shaped, umbrella-shaped (2 branches), X-shaped (3 branches), star-shaped (maybe machine), etc. There is. Further, in the analysis, the “branch part” means that in the case of a shell element, an element 617 including a side 618 constituting the branch part as shown in FIG. 6F, and in the case of a solid element, a branch part as shown in FIG. 6G. The element 617 includes the node 619 of the element.

本発明において、「基盤部」とは成形品の主となる形状を形成する部位をいう。たとえば、T字型形状の場合、成形品のリブなどの突起形状を取り除いた残りの部位をいう。   In the present invention, the “base” refers to a part that forms the main shape of a molded product. For example, in the case of a T-shape, it refers to the remaining portion from which a protrusion such as a rib of a molded product is removed.

成形品のどの部位が「基盤部」に該当するかは、以下のように決定することができる。ただし、この手法に基づく基盤部の判定がコンピュータ内で毎回行なわれる必要はないし、手順が同じである必要もない。結果として以下の定義のような部位を基盤部と判断する場合があるようになっていれば、少なくともその場合については、本発明の目的は達成される。
(1)分岐部位において、分岐の数を認識する。2分岐の場合、分岐部位を構成する面は3つ、3分岐であれば、4つとなる。
(2)分岐部位を構成する面と面のなす角度をすべて算出する。たとえば、図6Aに示すT字型形状の場合、606面と607面のなす角度、606面と608面のなす角度、607面と608面のなす角度(0〜180°)となる。分岐部位がn分岐であるとしたとき、構成する面と面のなす角度はn×(n+1)/2個存在する。
(3)分岐部位を構成する面と面のなす角度(0〜180°)のうち、もっとも角度の大きくなる2面を基盤面と呼ぶ。
Which part of the molded product corresponds to the “base part” can be determined as follows. However, the determination of the base part based on this method does not have to be performed every time in the computer, and the procedure does not need to be the same. As a result, if there is a case where a part having the following definition is determined as the base part, the object of the present invention is achieved at least in that case.
(1) Recognize the number of branches at the branch site. In the case of two branches, the number of surfaces constituting the branch part is three, and if the number of branches is three, the number of surfaces is four.
(2) All the angles formed by the surfaces constituting the branching portions are calculated. For example, in the case of the T-shaped shape shown in FIG. 6A, an angle formed by the 606 surface and the 607 surface, an angle formed by the 606 surface and the 608 surface, and an angle formed by the 607 surface and the 608 surface (0 to 180 °). When it is assumed that the branch site is n-branch, there are n × (n + 1) / 2 angles formed by the surfaces.
(3) Of the angles (0 to 180 °) formed by the surfaces constituting the branching portion and the surfaces, the two surfaces having the largest angles are called base surfaces.

たとえば、図6Cの傘型形状について、面と面のなす角度は3つ(609面と610面のなす角度、610面と611面のなす角度、609面と611面のなす角度)存在し、そのうち609面と611面のなす角度がもっとも角度が大きいため、基盤面は609面と611面である。   For example, for the umbrella shape shown in FIG. 6C, there are three angles formed by the surfaces (the angle formed by the 609 surface and the 610 surface, the angle formed by the 610 surface and the 611 surface, and the angle formed by the 609 surface and the 611 surface). Of these, since the angle formed by the 609 plane and the 611 plane is the largest, the base planes are the 609 plane and the 611 plane.

ただし、図6DのようなX字型形状や、図6Eのような星型形状の場合、もっとも大きな角度(180°)が複数存在する可能性がある。その場合、肉厚の大きい面を基盤面とする。たとえば、図6Dで、612面が4mm、613面が3mm、614面が2mm、615面が1mmであるとした場合、612面の肉厚がもっとも大きいため、612面、およびこれと対となる面であり612面との間のなす角度が最大値の180°である614面が基盤面となる。   However, in the case of an X-shaped shape as shown in FIG. 6D or a star shape as shown in FIG. 6E, there may be a plurality of the largest angles (180 °). In that case, a surface having a large thickness is used as a base surface. For example, in FIG. 6D, if the 612 surface is 4 mm, the 613 surface is 3 mm, the 614 surface is 2 mm, and the 615 surface is 1 mm, the thickness of the 612 surface is the largest, so the 612 surface is paired with this. A surface 614 having a maximum angle of 180 ° with respect to the surface 612 is a base surface.

また、もっとも大きい肉厚の面で基盤面の判定ができない場合、(たとえば、612面が4mm、613面が4mm、614面が3mm、615面が2mmであるとした場合)、基盤面となりうる面について、肉厚がもっとも大きいと判断された面と対になる面同士(614面と615面)を比較し、大きい方(614面)を含む2面(612面と614面)を基盤面とする。なお、図6DのようなX字型形状で4つの面の肉厚が等しい場合など基盤面の判断がつかない場合は、基盤面となりうる面のどの面を基盤面とみなしてもどちらでも構わない。そして、この基盤面が属する部位が「基盤部」となる。ソリッド要素を用いる場合も、本質的に上記と同様である。     In addition, when the base surface cannot be determined with the surface having the largest thickness (for example, when the surface of 612 is 4 mm, the surface of 613 is 4 mm, the surface of 614 is 3 mm, and the surface of 615 is 2 mm), it can be the base surface. Compare the surfaces (614 and 615) that are paired with the surface that is judged to have the largest wall thickness, and the two surfaces (612 and 614) including the larger one (614 and 614) And If the base surface cannot be determined, for example, when the thickness of the four surfaces is the same in the X-shaped shape as shown in FIG. 6D, any surface that can be the base surface can be regarded as the base surface. Absent. The part to which the base surface belongs becomes a “base part”. When using a solid element, it is essentially the same as described above.

本発明において、「分岐体」とは成形品の分岐部位において、基盤部から分岐している部位をいう。   In the present invention, the “branch body” refers to a portion branched from a base portion in a branched portion of a molded product.

本発明において、「基盤部と分岐体のなす角度」とは、基盤部とそれぞれの分岐体のなす角度のことである。   In the present invention, the “angle formed between the base portion and the branch body” refers to an angle formed between the base portion and each branch body.

たとえば、図6AのT字型形状の場合、基盤部は606面および608面、分岐体は607面であり、「基盤部と分岐体のなす角度」は、分岐体607面を挟み左右に2つ存在(606面と607面のなす角度、607面と608面のなす角度)する。なお、T字型形状の場合、基盤部を構成する2面間の角度は180°であるため、基盤部を構成する2面間は、特許文献1や特許文献2に示すようなバイメタル効果による変形のみを生じさせる。   For example, in the case of the T-shaped shape of FIG. 6A, the base portions are 606 and 608 surfaces, and the branch body is 607 surfaces, and the “angle between the base portion and the branch body” is 2 on the left and right sides of the branch body 607 surface. Exist (angle formed by 606 and 607 surfaces, angle formed by 607 and 608 surfaces). In the case of a T-shaped shape, the angle between the two surfaces constituting the base portion is 180 °, and therefore the two surfaces constituting the base portion are caused by the bimetal effect as shown in Patent Document 1 and Patent Document 2. Causes deformation only.

図6Cの傘型形状の場合も同様に、基盤部は609面および611面、分岐体は610面であり、「基盤部と分岐体のなす角度」は、分岐体610面を挟み左右に2つ存在(609面と610面のなす角度、610面と611面のなす角度)する。ただし、傘型形状のように基盤部をなす構成する2面(609面と611面)が180°未満の角度で折れ曲がっている場合、T字型形状とは異なり、「基盤部をL字型形状のコーナー部位」と見なし、特許文献1に示すようなバイメタル効果による変形と非特許文献5に示されるようなL字型コーナー部の変形によって、「基盤部」を構成する2面間の角度に変化を生じさせる。   Similarly, in the case of the umbrella-shaped shape in FIG. 6C, the base portion has 609 and 611 surfaces, and the branch body has 610 surfaces, and the “angle formed by the base portion and the branch body” is 2 on the left and right sides of the branch body 610 surface. Exist (the angle between the 609 plane and the 610 plane, the angle between the 610 plane and the 611 plane). However, when the two surfaces (609 surface and 611 surface) constituting the base portion are bent at an angle of less than 180 °, such as an umbrella shape, unlike the T shape, “the base portion is an L shape. The angle between the two surfaces constituting the “base” is considered to be a “corner part of the shape” and is deformed by the bimetal effect as shown in Patent Document 1 and the L-shaped corner part as shown in Non-Patent Document 5. Make a change.

また、図6DのX字形状の場合、基盤部は612面および614面、分岐体は613面、615面であり、「基盤部と分岐体のなす角度」は、分岐体613面、分岐体615面を挟み左右にそれぞれ2つ存在(合計4つ:612面と613面のなす角度、613面と614面のなす角度、614面と615面のなす角度、615面と612面のなす角度)する。なお、4つの角度の和は、変形前においては360°であるが、計算により算出した変形後の4つの角度の和は360°になるとは限らない。その場合、角度変化をモーメント力に変換し、力の釣り合い計算により、変形後の角度を算出する。   6D, the base portions are 612 and 614 surfaces, the branch bodies are 613 surfaces and 615 surfaces, and the “angle between the base portion and the branch body” is the branch body 613 surfaces and the branch bodies. There are two on the left and right sides of the 615 plane (total of four: the angle between the 612 plane and the 613 plane, the angle between the 613 plane and the 614 plane, the angle between the 614 plane and the 615 plane, and the angle between the 615 plane and the 612 plane ) The sum of the four angles is 360 ° before the deformation, but the sum of the four angles after the deformation calculated by calculation is not always 360 °. In that case, the angle change is converted into moment force, and the angle after deformation is calculated by force balance calculation.

本発明において、「バイメタルそり変形」とは、収縮率の分布により生じるそりをいう。収縮率が大きい部分を凹とする弓なりのそり変形などがこれに含まれる。また、「分岐部位におけるそり変形」とは分岐部位における成形収縮歪みの分布により、「基盤部」と「分岐体」との組などのなす角度の変化が生じることをいう。   In the present invention, “bimetallic warpage deformation” refers to warpage caused by the distribution of shrinkage rate. This includes bow-shaped warp deformation with a concave portion having a large shrinkage rate. Further, “warp deformation at a branching portion” means that a change in an angle formed by a set of a “base portion” and a “branched body” occurs due to a distribution of molding shrinkage strain at the branching portion.

本発明において、ある部位における特定方向の「収縮率」とは、射出成形等で成形した成形品の当該部位の当該方向の寸法と射出成形等の金型における対応する部位の当該方向の寸法との差を射出成形の金型での寸法で割った値である。射出成形の解析では、「収縮率」を、射出成形工程における温度変化、PVT特性などにより生じる収縮、配向による異方性などを考慮して算出する。なお、この収縮率は、一般に、解析におけるシェル要素やソリッド要素の1つ1つについても求めることができる。   In the present invention, the “shrinkage ratio” in a specific direction at a certain part means the dimension in the direction of the part of the molded product molded by injection molding or the like and the dimension in the direction of the corresponding part in the mold such as injection molding. Is the value obtained by dividing the difference by the dimensions of the injection mold. In the analysis of injection molding, the “shrinkage ratio” is calculated in consideration of temperature change in the injection molding process, shrinkage caused by PVT characteristics, anisotropy due to orientation, and the like. In general, the shrinkage rate can be obtained for each of the shell elements and solid elements in the analysis.

以下、例を示す。図4Hはシェル要素の一例である。シェル要素の場合、1つ1つの要素414について、肉厚方向に複数の計算点415をもっており、この複数の計算点1つ1つについても、収縮率を算出する。また、肉厚方向に要素分割数が少ない場合、ソリッド要素でもシェル要素のように、肉厚方向に複数の計算点を持たせ、シェル要素のように計算することができる。
「収縮率」について、もっと大きな領域について求めるときは、その領域内の平均的な収縮率となる。厚み方向全体について平均する場合を、一般に成形収縮率(=成形品寸法/金型寸法)と呼ぶ値のことである。
Examples are given below. FIG. 4H is an example of a shell element. In the case of a shell element, each element 414 has a plurality of calculation points 415 in the thickness direction, and the shrinkage rate is also calculated for each of the plurality of calculation points. When the number of element divisions is small in the thickness direction, a solid element can be calculated like a shell element by providing a plurality of calculation points in the thickness direction like a shell element.
When the “shrinkage rate” is calculated for a larger region, the average shrinkage rate in that region is obtained. The case of averaging in the entire thickness direction is a value generally called molding shrinkage (= molded product dimension / mold dimension).

本発明において、「分岐部位の面内方向(肉厚方向)収縮率」とは、分岐部位における基盤部と分岐部の面内方向(肉厚方向)収縮率に基づいて求められる分岐部位を代表する面内方向(肉厚方向)収縮率をいう。たとえば、分岐部位における基盤部および分岐部の面内方向(肉厚方向)収縮率の平均値や重みつき平均値や分岐部位近傍の分布から得られる値を用いる場合などがある。分岐部位は、図6Fに例示したシェル要素の場合、分岐部を構成する辺618を挟み、基盤部の要素627と分岐部の要素628で構成され、図6Gに例示したソリッド要素の場合、分岐部を構成する要素619および基盤部の要素627と分岐部の要素628で構成される。これらの分岐部位を構成する要素における面内方向(肉厚方向)収縮率を平均してもよいし、分岐部位を構成する要素に隣接する要素などをさらに考慮してもよい。   In the present invention, the “in-plane direction (thickness direction) shrinkage ratio of the branching portion” represents the branching portion obtained based on the in-plane direction (thickness direction) shrinkage rate of the base portion and the branching portion at the branching portion. In-plane direction (thickness direction) shrinkage rate. For example, there may be a case where an average value or a weighted average value of the shrinkage rate in the in-plane direction (thickness direction) of the base part and the branch part at the branch part or a value obtained from the distribution near the branch part is used. In the case of the shell element illustrated in FIG. 6F, the branching portion is composed of the base element 627 and the branch element 628 with the side 618 constituting the branching portion interposed therebetween. In the case of the solid element illustrated in FIG. It comprises an element 619 constituting the part, an element 627 of the base part, and an element 628 of the branch part. The in-plane direction (thickness direction) shrinkage rate of elements constituting these branch parts may be averaged, or elements adjacent to the elements constituting the branch parts may be further considered.

本発明において、ある部位における「肉厚方向収縮率」とは、射出成形で成形した成形品の当該部位における肉厚と射出成形の金型での対応する部位における肉厚寸法の差を射出成形の金型での肉厚の寸法で割った値である。たとえば、図4Gは断面がT字型の分岐部位をもつ成形品の例であるが、図4Gの407で示すような方向の収縮率である。   In the present invention, the “thickness direction shrinkage ratio” at a certain portion is the difference between the thickness at the corresponding portion of the molded product molded by injection molding and the thickness dimension at the corresponding portion of the injection mold. It is the value divided by the thickness dimension of the mold. For example, FIG. 4G shows an example of a molded product having a T-shaped branch portion in cross section, but the shrinkage rate in the direction as indicated by 407 in FIG. 4G.

本発明において、「面内方向収縮率(面内折れ曲がり方向成分)」」とは、基盤部または分岐体の面内の方向であって、かつ、分岐部位を形成する交線の方向に垂直な方向(面内折れ曲がり方向)成分の収縮率のことである。たとえば、図4Gは断面がT字型の分岐部位をもつ成形品の例であるが、図4Gの408に示すような方向の収縮率である。   In the present invention, the “in-plane direction shrinkage ratio (in-plane bending direction component)” is a direction in the plane of the base portion or the branch body and is perpendicular to the direction of the intersecting line forming the branch portion. This is the shrinkage factor of the direction (in-plane bending direction) component. For example, FIG. 4G shows an example of a molded product having a T-shaped branch part in the cross section, but the shrinkage rate in the direction as indicated by 408 in FIG. 4G.

本発明において、「L字型コーナー構造そり変形」および「分岐構造そり変形」とは、面内方向収縮率と肉厚方向の収縮率が異なることにより発生するそり変形のことである。たとえば、図4Cのように肉厚方向収縮率407と面内方向収縮率408が異なるとき、図4Dに示すメカニズムにより発生するそり変形のことである。   In the present invention, “L-shaped corner structure warpage deformation” and “branch structure warpage deformation” are warpage deformation that occurs when the shrinkage rate in the in-plane direction and the shrinkage rate in the thickness direction are different. For example, when the thickness direction shrinkage rate 407 and the in-plane direction shrinkage rate 408 are different as shown in FIG. 4C, the warp deformation is caused by the mechanism shown in FIG. 4D.

本発明において、「収縮率分布」とは、金型壁面への熱伝達、金型壁面とのせん断による発熱、金型の温度分布などにより発生する「肉厚方向収縮率分布」もしくは「面内方向収縮率分布」のことである。これを、解析要素において考える。解析では、変位や荷重などのデータは、節点に保存され、応力やひずみや収縮率は要素に保存される。そして、シェル要素の場合、肉厚方向の情報を保存するため、肉厚方向にも計算点が存在する。図4Hはシェル要素の節点、要素、計算点を示す模式図の一例である。図4Hのシェル要素の場合、「肉厚方向収縮率分布」とは、要素414の肉厚方向計算点415の収縮率の値の分布のことであり、「面内方向収縮率分布」とは、面内に多数存在する要素414の収縮率の分布である。   In the present invention, “shrinkage distribution” means “thickness direction shrinkage distribution” or “in-plane” generated by heat transfer to the mold wall surface, heat generation due to shear with the mold wall surface, mold temperature distribution, etc. "Directional shrinkage distribution". This is considered in the analysis element. In the analysis, data such as displacement and load are stored in the nodes, and stress, strain and shrinkage are stored in the elements. In the case of the shell element, since information in the thickness direction is stored, there are calculation points in the thickness direction. FIG. 4H is an example of a schematic diagram showing the nodes, elements, and calculation points of the shell element. In the case of the shell element of FIG. 4H, the “thickness direction shrinkage distribution” is the distribution of the shrinkage value at the thickness direction calculation point 415 of the element 414. , A distribution of shrinkage rates of a large number of elements 414 existing in the plane.

本発明において、「収縮率の肉厚方向平均値」とは、肉厚方向の計算点415の収縮率の平均値のことである。「平均値」は、肉厚方向すべての計算点における平均値を用いてもよいし、複数の計算点のうち、一部の計算点の値を平均値とみなしてもよい。また、一部計算点として、肉厚方向の中心1点を用いてももちろん構わない。   In the present invention, the “average value of shrinkage rate in the thickness direction” is the average value of shrinkage rate at the calculation point 415 in the thickness direction. As the “average value”, an average value at all calculation points in the thickness direction may be used, or values of some calculation points among a plurality of calculation points may be regarded as an average value. Of course, one central point in the thickness direction may be used as a partial calculation point.

本発明において、「流動履歴」とは、射出成形充填解析において、分岐部位における全体の流量に対して、それぞれの分岐体やその先の基盤部への流量や流入方向の履歴である。たとえば、図3Bで基盤部の要素308からコーナー部方向へ流出した流量と基盤部の要素308から分岐体の要素309へ流出した量の流量や流動方向履歴のことである。ここで、履歴とは、時間的に変化する様子の各時点における値の集合でもよいし、所定期間内のその平均や積算でもよい。   In the present invention, the “flow history” is a history of a flow rate and an inflow direction to each branch body and the base portion ahead of each branch body in the injection molding filling analysis with respect to the entire flow rate at the branch site. For example, the flow rate and flow direction history of the flow rate flowing out from the base portion element 308 toward the corner portion in FIG. 3B and the amount flowing out from the base portion element 308 to the branching element 309 are shown. Here, the history may be a set of values at each point of time that changes over time, or an average or integration within a predetermined period.

本発明において、「充填材」とは、成形品の剛性、強度、耐熱性、絶縁性、耐蝕性などの物性を高めるための充填材をいう。たとえば、ガラス繊維、炭素繊維などの強化繊維、タルク、マイカ、炭酸カルシウム、アルミナ、クレー、珪藻土、石綿、硫酸バリウム、酸化チタン、カリオン、湿式または乾式シリカ、コロイド状シリカ、リン酸カルシウム、ジルコニアなどの無機物のことである。   In the present invention, the “filler” refers to a filler for enhancing physical properties such as rigidity, strength, heat resistance, insulation, and corrosion resistance of a molded product. For example, reinforcing fibers such as glass fiber and carbon fiber, inorganic substances such as talc, mica, calcium carbonate, alumina, clay, diatomaceous earth, asbestos, barium sulfate, titanium oxide, caryon, wet or dry silica, colloidal silica, calcium phosphate, zirconia That's it.

本発明において、「分岐部位から分岐体先端までの距離」とは、分岐体の面内において、分岐部位から、分岐部位を形成する基盤部と分岐体との交線に対して直交する方向の先端までの距離のことである。   In the present invention, the “distance from the branching portion to the tip of the branching body” refers to the direction perpendicular to the line of intersection between the base portion forming the branching part and the branching body from the branching portion within the plane of the branching body. It is the distance to the tip.

図6Fは断面形状がT字型形状のシェル要素の一例、図6Gは断面形状がT字型形状のソリッド要素の一例である。「分岐部位から分岐体先端までの距離」は、図6Fに示すシェル要素の場合図6F寸法620、図6Gに示すソリッド要素の場合、図6Gの寸法620となる。図6Fでは、成形品から基盤部を除いた部分の高さを用いているが、中立面(肉厚方向中央の面)を考慮し、成形品から基盤部を除いた部分の高さに基盤部の肉厚の半分の長さを加えたものを加えても構わない。   FIG. 6F shows an example of a shell element having a T-shaped cross section, and FIG. 6G shows an example of a solid element having a T-shaped cross section. The “distance from the branch portion to the tip of the branch body” is the dimension 620 in FIG. 6F for the shell element shown in FIG. 6F and the dimension 620 in FIG. 6G for the solid element shown in FIG. 6G. In FIG. 6F, the height of the part excluding the base part from the molded product is used, but considering the neutral surface (surface in the thickness direction center), the height of the part excluding the base part from the molded product is used. You may add what added the length of the half of the thickness of a base part.

ただし、環状形状やH字型形状のように分岐部位から分岐体の面内において分岐部位に対して直交する方向に先端となる形状が存在しない場合、分岐部位からL字型に折れ曲がる部分までの距離や分岐部位から2分岐以上に分岐している部分までの距離を「分岐部位から分岐体先端までの距離」とする。   However, if there is no shape that becomes the tip in the direction perpendicular to the branch site in the plane of the branch body from the branch site, such as an annular shape or an H-shaped shape, from the branch site to the part that bends in an L shape The distance or the distance from the branch site to the portion that branches into two or more branches is defined as “distance from the branch site to the tip of the branch body”.

図6Hは環状形状の一例、図6IはH字型形状の一例である。この図のような徐々に折れ曲がる形状の場合の「分岐部位から分岐体先端までの距離」は、分岐部位から分岐体の面内において分岐部位に対して直交する方向ベクトルが分岐部位における方向ベクトルとのなす角度629が45°以上となる部分までの距離とする。図6Hの場合、距離h(620)のことである。また、分岐部位から2分岐以上に分岐するまでの距離とは図6Iの距離h(620)のことである。   FIG. 6H is an example of an annular shape, and FIG. 6I is an example of an H-shaped shape. In the case of a shape that gradually bends as shown in this figure, the “distance from the branch site to the tip of the branch body” is the direction vector orthogonal to the branch site in the plane of the branch body from the branch site and the direction vector at the branch site. The distance to the portion where the angle 629 formed by the above becomes 45 ° or more. In the case of FIG. 6H, this is the distance h (620). In addition, the distance from the branch site to branching into two or more branches is the distance h (620) in FIG. 6I.

本発明によれば、簡便な計算手法でありながら、射出成形解析における各方向の収縮率およびそりの予測精度が向上し、成形品の開発コストの抑制、開発期間の短縮が実現できる。   According to the present invention, although it is a simple calculation method, the shrinkage rate in each direction and the prediction accuracy of warpage in the injection molding analysis are improved, and the development cost of the molded product can be suppressed and the development period can be shortened.

以下、添付図面を参照して、本発明の射出成形解析方法、射出成形解析装置の実施の形態について説明する。   Embodiments of an injection molding analysis method and an injection molding analysis apparatus according to the present invention will be described below with reference to the accompanying drawings.

図7は本発明の実施形態の一例の構成を示すブロック図である。本実施形態例において、図7に示すとおり、(700)はコンピュータやワークステーションなどの計算機、(701)はキーボード、(702)はマウス、(703)はディスプレイ、(704)は補助記憶装置である。(704)の補助記憶装置には、ハードディスク装置の他、テープ、FD(フレキシブルディスク)、MO(光磁気ディスク)、PD(相変化光ディスク)、CD(コンパクトディスク)、DVD(デジタル・バーサタイル・ディスク)などのディスクメモリー、USB(ユニバーサル・シリアル・バス)メモリー、メモリーカードなどのリムーバブルメディアも利用可能である。   FIG. 7 is a block diagram showing a configuration of an example of the embodiment of the present invention. In the present embodiment, as shown in FIG. 7, (700) is a computer such as a computer or workstation, (701) is a keyboard, (702) is a mouse, (703) is a display, and (704) is an auxiliary storage device. is there. The auxiliary storage device (704) includes a hard disk device, a tape, an FD (flexible disk), an MO (magneto-optical disk), a PD (phase change optical disk), a CD (compact disk), and a DVD (digital versatile disk). ) Etc., removable media such as USB (Universal Serial Bus) memory, memory cards, etc. can also be used.

補助記憶装置704には、射出成形工程を解析するためのプログラム705や射出成形解析用形状データ706もしくは射出成形解析用形状データを作成するためのプログラム705、粘度、PVT特性、弾性率、ポアソン比、線膨張係数などの成形品物性データ707、設定温度、設定圧力、設定速度、設定時間などの成形条件データ708が保存されている。   The auxiliary storage device 704 includes a program 705 for analyzing an injection molding process, a shape data for injection molding analysis 706 or a program 705 for creating shape data for injection molding analysis, viscosity, PVT characteristics, elastic modulus, Poisson's ratio. Further, molding property data 707 such as linear expansion coefficient and molding condition data 708 such as set temperature, set pressure, set speed, and set time are stored.

コンピュータやワークステーションなどの計算機700は、補助記憶装置704からプログラム705、形状データ706、成形品物性データ707、成形条件データ708などを読み出すことができるデータ読み出し手段709を具備している。また、射出成形工程を解析する射出成形工程解析手段710、収縮率算出手段711、総そり変形解析手段715、肉厚算出手段712、分岐部位から分岐体先端までの距離算出手段713、流量算出手段714、そり変形量算出手段715、形状データ706を平板部、L字型コーナー部、分岐部位のいずれかに分類する形状判別手段716、出力手段717を具備する。そして、そり変形量解析手段715はバイメタルそり変形量算出手段718、L字型コーナー構造そり変形量算出手段719、分岐構造そり変形量算出手段720、L字コーナー部位総そり解析手段721、分岐部位総そり解析手段722で構成されている。   A computer 700 such as a computer or a workstation includes data reading means 709 that can read a program 705, shape data 706, molded article property data 707, molding condition data 708, and the like from the auxiliary storage device 704. Also, an injection molding process analyzing means 710 for analyzing the injection molding process, a shrinkage rate calculating means 711, a total warp deformation analyzing means 715, a thickness calculating means 712, a distance calculating means 713 from the branch site to the tip of the branched body, a flow rate calculating means 714, a warp deformation amount calculating means 715, a shape determining means 716 for classifying the shape data 706 into one of a flat plate portion, an L-shaped corner portion, and a branching portion, and an output means 717. The warp deformation amount analysis means 715 includes a bimetal warp deformation amount calculation means 718, an L-shaped corner structure warpage deformation amount calculation means 719, a branch structure warpage deformation amount calculation means 720, an L-shaped corner portion total warp analysis means 721, and a branch portion. It comprises total warp analysis means 722.

形状データ706は、ユージーエス コーポレーション製“I−DEAS(登録商標)”のUNV形式など汎用の射出成形解析プリプロセッサーにより作成できるものであり、シェル要素、ソリッド要素などで表現する。もちろん、モデルデータを保存するファイルのフォーマットは節点、要素、要素プロパティ、材料プロパティなどが記述されるデータであれば、形状データ706の形式は限定しない。   The shape data 706 can be created by a general-purpose injection molding analysis preprocessor such as UNV format of “I-DEAS (registered trademark)” manufactured by UG Corporation, and is expressed by shell elements, solid elements, and the like. Of course, the format of the shape data 706 is not limited as long as the format of the file storing the model data is data in which nodes, elements, element properties, material properties, and the like are described.

図8は、本発明の第一〜第三の形態の実施形態のフロー図の一例である。以下、図2のフロー図と実質的に違いのないステップについては、同図と同一の符号を付して説明を省略することがある。   FIG. 8 is an example of a flowchart of the first to third embodiments of the present invention. Hereinafter, steps that are not substantially different from those in the flowchart of FIG. 2 may be denoted by the same reference numerals as those in FIG.

図8のフロー図について、以下説明する。   The flowchart of FIG. 8 will be described below.

コンピュータやワークステーションなどの計算機にCAD用形状データを読み込むか、キーボードやマウスにより入力を行う(200)。同様にして、樹脂物性データ、成形条件を読み込み、または入力する(201、202)。これらのデータを基に射出成形工程解析203を実施する。   CAD shape data is read into a computer such as a computer or a workstation, or input is performed using a keyboard or mouse (200). Similarly, resin physical property data and molding conditions are read or input (201, 202). The injection molding process analysis 203 is performed based on these data.

射出成形工程解析203は、図2のフローに示す解析手法と同様、充填工程解析204、保圧・冷却工程解析205、収縮率算出206、配向解析208を実施する。   The injection molding process analysis 203 carries out a filling process analysis 204, a pressure holding / cooling process analysis 205, a shrinkage rate calculation 206, and an orientation analysis 208, as in the analysis method shown in the flow of FIG.

また、分岐構造そり変形量解析807を実施するために、肉厚算出801、分岐体先端までの距離算出802、流量履歴算出803を行う。   In addition, in order to perform the branch structure warp deformation amount analysis 807, a wall thickness calculation 801, a distance calculation 802 to the branch body tip, and a flow rate history calculation 803 are performed.

そり変形量解析は、従来と異なり、形状判別804によって形状を平面部、L字コーナー部位、分岐部位の3つに分類し、それぞれの形状ごとにそり変形量解析を実施し(平板部では、バイメタルそり変形量解析805を実施し、L字コーナー部位では、バイメタルそり変形量解析805に加えてL字型コーナー構造そり変形量解析806が実施し、これらを統合するL字型コーナー部位総そり変形量解析808を実施し、分岐部位では、バイメタルそり変形量解析805に加えて分岐構造そり変形量解析807を実施し、これらを統合する分岐部位総そり変形量解析809を実施する)、最後に、これらを統合するそり変形量解析810を行い、出力209する。以下、分岐構造そり変形量算出手段720による分岐構造そり変形解析807について、説明する。   Unlike conventional methods, the warpage deformation amount analysis classifies the shape into three parts, that is, a plane portion, an L-shaped corner portion, and a branch portion by shape discrimination 804, and performs warpage deformation amount analysis for each shape (in the flat plate portion, Bimetal warp deformation amount analysis 805 is performed. In the L-shaped corner portion, in addition to the bimetal warp deformation amount analysis 805, an L-shaped corner structure warp deformation amount analysis 806 is performed, and the L-shaped corner portion total warpage is integrated. The deformation amount analysis 808 is performed, and the bifurcation warpage deformation amount analysis 805 is performed in addition to the bimetal warpage deformation amount analysis 805, and the branch portion total warpage deformation amount analysis 809 for integrating them is performed at the branch portion), and finally Then, a warp deformation analysis 810 for integrating them is performed and output 209. Hereinafter, the branch structure warp deformation analysis 807 by the branch structure warp deformation amount calculation means 720 will be described.

第一の実施形態では、分岐構造そり変形量算出手段720は、ステップ801で算出した分岐部位における基盤部の肉厚622(シェル要素の場合は要素の肉厚データ)と分岐体の肉厚621(シェル要素の場合は要素の肉厚データ)、基盤部の面内方向収縮率626と分岐体の面内方向収縮率624の算術平均、基盤部の肉厚方向収縮率625および分岐体の肉厚方向収縮率623の算術平均を代表値とした分岐部の面内方向収縮率の肉厚方向平均値(面内折れ曲がり方向成分)Sxおよび肉厚方向収縮率の肉厚方向平均値Sz、基盤部と分岐体のなす角度905(α)、を式(4)または式(5)に代入し、収縮後の基盤部と分岐体のなす角度の変化量Δα、または収縮後の基盤部と分岐体のなす角度βを算出する。基盤面は、分岐体を挟み、反対側にも存在するため、その反対側に存在する基盤面と分岐体との間でも、同様の処理を行う。また、分岐体が多数ある場合は、基盤部とそれぞれの分岐体との間で同様の処理を行う。   In the first embodiment, the branch structure warpage deformation amount calculation means 720 includes the base portion thickness 622 (element thickness data in the case of a shell element) and the branch thickness 621 calculated at step 801. (In the case of a shell element, the element thickness data), the arithmetic average of the in-plane direction shrinkage 626 of the base portion and the in-plane direction shrinkage rate 624 of the base portion, the thickness direction shrinkage rate 625 of the base portion, and the thickness of the branch portion The thickness direction average value (in-plane bending direction component) Sx of the in-plane direction shrinkage rate of the branching portion, which is represented by the arithmetic average of the thickness direction shrinkage rate 623, the thickness direction average value Sz of the thickness direction shrinkage rate, the base The angle 905 (α) formed between the base and the branch body is substituted into the formula (4) or (5), and the change amount Δα between the base portion after the contraction and the branch body or the base portion after the contraction branches. The angle β formed by the body is calculated. Since the base surface exists on the opposite side with the branch body interposed therebetween, the same processing is performed between the base surface and the branch body existing on the opposite side. When there are many branch bodies, the same processing is performed between the base portion and each branch body.

Figure 2008200859
Figure 2008200859

式(4)は変形前の基盤部と分岐体のなす角度から、変形後のなす角度の変化量を導く式、式(5)は変形前の基盤部と分岐体のなす角度から、変形後のなす角度を導く式であり、式(4)と式(5)は、テーラー展開のした場合の1次の項が同じであり、物理的にも数学的にもほぼ等価である。   Expression (4) is an expression for deriving the amount of change in the angle after deformation from the angle between the base part before the deformation and the branch body, and Expression (5) is based on the angle between the base part before the deformation and the branch body after the deformation. Equations (4) and (5) have the same first-order terms in the case of Taylor expansion, and are substantially equivalent both physically and mathematically.

式(4)および(5)は、基盤部の肉厚622(シェル要素の場合は要素の肉厚データ)に比べ、分岐体の肉厚621(シェル要素の場合は要素の肉厚データ)が小さい場合に、その分岐体の存在がコーナーにおける角度の変化量に対して与える影響が小さいという知見を盛り込んだものであり、かかる条件が成り立つ場合に高い精度を得ることができる式である。式(4)は、非特許文献5における収縮後のL字型形状のコーナー部の角度の変化量Δαを求める式(2)に基盤部の肉厚d2、分岐体の肉厚d1のパラメータ(exp(A-B×(d1/d2))を補正項として加えたものであり、式(5)は収縮後のL字型形状のコーナー部の角度βを求める式(3)に基盤部の肉厚d2、分岐体の肉厚d1のパラメータ(exp(A-B×(d1/d2))を補正項として加えたものである。すなわち、そり変形量は、基盤部と分岐体のなす角度と、基盤部の肉厚と分岐体の肉厚の比と、に基づいて分岐構造に起因するそり変形量を求めるものである。   Equations (4) and (5) show that the thickness 621 of the branch body (element thickness data in the case of a shell element) is smaller than the thickness 622 (element thickness data in the case of a shell element). This is an expression that incorporates the knowledge that the presence of the branching body has a small influence on the amount of change in the angle at the corner when the condition is small, and can provide high accuracy when such a condition is satisfied. Equation (4) is obtained by substituting Equation (2) for the angle variation Δα of the L-shaped corner portion after shrinkage in Non-Patent Document 5 with parameters for the thickness d2 of the base portion and the thickness d1 of the branch body ( exp (AB × (d1 / d2)) is added as a correction term. Equation (5) is the thickness of the base portion in Equation (3) for determining the angle β of the L-shaped corner portion after contraction. d2, the parameter of the wall thickness d1 (exp (AB × (d1 / d2))) is added as a correction term, that is, the amount of warpage is determined by the angle between the base part and the branch part and the base part The amount of warp deformation caused by the branch structure is obtained based on the ratio of the thickness of the slab to the thickness of the branch body.

バイメタルそり変形量算出手段718は、分岐部位における収縮率分布から応力の釣り合いを計算することによってバイメタル効果に起因するそりの変形量を求める805。   The bimetal warp deformation amount calculation means 718 calculates 805 the amount of warp deformation caused by the bimetal effect by calculating the balance of stress from the shrinkage rate distribution at the bifurcation site.

そして、分岐構造そり変形量算出手段720による分岐構造そり変形量解析807出力とバイメタルそり変形量算出手段718によるバイメタルそり変形量解析805出力から、再び応力の釣り合い計算を実施することによって分岐部位総そり変形量解析809を行い、2つの種類の原因によるそり変形を共に考慮した分岐部位のそり変形として出力する。   Then, by executing the stress balance calculation again from the output of the branch structure warp deformation amount analysis 807 by the branch structure warp deformation amount calculation means 720 and the output of the bimetal warp deformation amount analysis 805 by the bimetal warp deformation amount calculation means 718, the total of the branch parts is calculated. A warp deformation amount analysis 809 is performed, and the result is output as a warp deformation of a branch portion in consideration of the warp deformation caused by two types of causes.

そり変形量算出手段715は、分岐部位と同様にして計算した平板部のそり変形量出力(バイメタルそり変形量解析805により計算)、L字コーナー部位のそり変形量出力(バイメタルそり変形量解析805に加えてL字型コーナー構造そり変形量解析806により計算し、L字型コーナー部位総そり変形量解析808を実施)、および分岐部位のそり変形量出力から、成形品全体における応力の釣り合い計算を実施し、成形品全体のそり変形量解析810を実施する。   The warp deformation amount calculation means 715 outputs the warp deformation amount of the flat plate portion calculated in the same manner as the bifurcation part (calculated by bimetal warp deformation amount analysis 805), and the warp deformation amount output of the L-shaped corner part (bimetal warp deformation amount analysis 805). In addition to the L-shaped corner structure warpage deformation amount analysis 806, the L-shaped corner portion total warpage deformation amount analysis 808 is performed, and the warpage deformation amount output of the branch portion is used to calculate the balance of stress in the entire molded product. The warpage deformation amount analysis 810 of the entire molded product is performed.

第二の実施形態においては、分岐構造そり変形量算出手段720は、ステップ801で算出した分岐部位における基盤部の肉厚622(シェル要素の場合は要素の肉厚データ)と分岐体の肉厚621(シェル要素の場合は要素の肉厚データ)、ステップ802で算出した分岐部位から分岐体先端までの距離620、基盤部の面内方向収縮率626と分岐体の面内方向収縮率624の算術平均、基盤部の肉厚方向収縮率625、分岐体の肉厚方向収縮率623の算術平均を代表値とした分岐部の面内方向収縮率の肉厚方向平均値(面内折れ曲がり方向成分)、肉厚方向収縮率の肉厚方向平均値、基盤部と分岐体のなす角度905を式(6)または式(7)に代入し、収縮後の基盤部と分岐体のなす角度の変化量Δα、または収縮後の基盤部と分岐体のなす角度βを算出する。基盤面は、分岐体を挟み、反対側にも存在するため、その反対側に存在する基盤面と分岐体との間でも、同様の処理を行う。また、分岐体が多数ある場合は、基盤部とそれぞれの分岐体との間で同様の処理を行う。   In the second embodiment, the branch structure warpage deformation amount calculation means 720 calculates the thickness 622 of the base portion (the element thickness data in the case of a shell element) and the thickness of the branch body calculated in step 801. 621 (element thickness data in the case of a shell element), the distance 620 from the branching site to the tip of the branch body calculated in step 802, the in-plane direction shrinkage ratio 626 of the base portion, and the in-plane direction shrinkage ratio 624 of the branch body Thickness direction average value of the in-plane direction shrinkage rate of the branch portion, which is the arithmetic average of the arithmetic average, the thickness direction shrinkage rate 625 of the base portion, and the thickness direction shrinkage rate 623 of the branch body (in-plane bending direction component) ), The thickness direction average value of the contraction rate in the thickness direction, and the angle 905 formed by the base portion and the branch body are substituted into the formula (6) or the formula (7), and the change of the angle formed by the base portion and the branch body after the contraction Amount Δα or branch and base after shrinkage The angle β formed by the body is calculated. Since the base surface exists on the opposite side with the branch body interposed therebetween, the same processing is performed between the base surface and the branch body existing on the opposite side. When there are many branch bodies, the same processing is performed between the base portion and each branch body.

Figure 2008200859
Figure 2008200859

式(6)は変形前の基盤部と分岐体のなす角度から、変形後のなす角度の変化量を導く式、式(7)は変形前の基盤部と分岐体のなす角度から、変形後のなす角度を導く式であり、式(6)と式(7)は、ほぼ等価である。   Expression (6) is an expression for deriving the amount of change in the angle after deformation from the angle between the base part before the deformation and the branch body, and Expression (7) is based on the angle between the base part before the deformation and the branch body after the deformation. Equation (6) and Equation (7) are almost equivalent.

式(6)および式(7)は基盤部の肉厚d2に比べ、分岐体の肉厚d1が小さい場合、その分岐体が分岐部位における角度の変化量Δαに対して与える影響が小さく、そして分岐部位から分岐体先端までの距離620が分岐体の肉厚621に比べて小さい場合、その分岐体がコーナーにおける角度の変化量Δαに対して与える影響が小さいという知見を盛り込んだものであり、かかる条件が成り立つ場合に高い精度を得ることができる式である。式(6)は収縮後のL字型形状のコーナー部の角度の変化量Δαを求める式(2)に基盤部の肉厚d2、分岐体の肉厚d1、分岐部位から分岐体先端までの距離hのパラメータ(exp(A-B×(d1/d2))、(exp(D-E×(h/d1))を補正項として加えたものであり、式(7)は収縮後のL字型形状のコーナー部の角度βを求める式(3)に基盤部の肉厚d2、分岐体の肉厚d1、分岐部位から分岐体先端までの距離hのパラメータ(exp(A-B×(d1/d2))、(exp(D-E×(h/d1))を補正項として加えたものである。すなわち、そり変形量は、基盤部と分岐体のなす角度と、基盤部の肉厚と分岐体の肉厚の比と、分岐部位から分岐体先端までの距離と分岐体肉厚の比と、に基づいて分岐構造に起因するそり変形量をもとめるものである。   In the equations (6) and (7), when the thickness d1 of the branch body is smaller than the thickness d2 of the base portion, the influence of the branch body on the change amount Δα of the angle at the branch site is small. When the distance 620 from the branch part to the tip of the branch body is smaller than the thickness 621 of the branch body, it incorporates the knowledge that the branch body has little influence on the angle change amount Δα at the corner, It is an expression that can obtain high accuracy when such a condition is satisfied. Equation (6) is the equation (2) for determining the angle change Δα of the L-shaped corner after contraction. The thickness d2 of the base portion, the thickness d1 of the branch body, and the distance from the branch site to the tip of the branch body The distance h parameter (exp (AB × (d1 / d2)), (exp (DE × (h / d1))) is added as a correction term. Equation (7) is the L-shaped shape after contraction. Equation (3) for determining the angle β of the corner part is a parameter (exp (AB × (d1 / d2)) for the thickness d2 of the base part, the thickness d1 of the branching body, the distance h from the branching site to the tip of the branching body, (Exp (DE × (h / d1)) is added as a correction term.In other words, the amount of warpage deformation is the angle between the base part and the branch body, the thickness of the base part, and the thickness of the branch body. The amount of warp deformation caused by the branched structure is obtained based on the ratio, the ratio of the branched part to the tip of the branched body, and the ratio of the branched body thickness.

バイメタルそり変形量算出手段718は、上記第一の形態と同様にバイメタル効果に起因するそりの変形量を求める。   The bimetal warp deformation amount calculation means 718 obtains the deformation amount of the warp caused by the bimetal effect as in the first embodiment.

そして、分岐構造そり変形量算出手段720による分岐構造そり変形量解析807出力とバイメタルそり変形量算出手段718によるバイメタルそり変形量解析805出力から、再び応力の釣り合い計算を実施することによって分岐部位総そり変形量解析809を行い、2つの種類の原因によるそり変形を共に考慮した分岐部位のそり変形として出力する。   Then, by executing the stress balance calculation again from the output of the branch structure warp deformation amount analysis 807 by the branch structure warp deformation amount calculation means 720 and the output of the bimetal warp deformation amount analysis 805 by the bimetal warp deformation amount calculation means 718, the total of the branch parts is calculated. A warp deformation amount analysis 809 is performed, and the result is output as a warp deformation of a branch portion in consideration of the warp deformation caused by two types of causes.

そり変形量算出手段715は、分岐部位と同様にして計算した平板部のそり変形量出力(バイメタルそり変形量解析805により計算)、L字コーナー部位のそり変形量出力(バイメタルそり変形量解析805に加えてL字型コーナー構造そり変形量解析806により計算し、L字型コーナー部位総そり変形量解析808を実施)、および分岐部位のそり変形量出力から、成形品全体における応力の釣り合い計算を実施し、成形品全体のそり変形量解析810を実施する。   The warp deformation amount calculation means 715 outputs the warp deformation amount of the flat plate portion calculated in the same manner as the bifurcation part (calculated by bimetal warp deformation amount analysis 805), and the warp deformation amount output of the L-shaped corner part (bimetal warp deformation amount analysis 805). In addition to the L-shaped corner structure warpage deformation amount analysis 806, the L-shaped corner portion total warpage deformation amount analysis 808 is performed, and the warpage deformation amount output of the branch portion is used to calculate the balance of stress in the entire molded product. The warpage deformation amount analysis 810 of the entire molded product is performed.

第三の実施形態においては、ステップ801で算出した分岐部位における基盤部の肉厚622(シェル要素の場合は要素の肉厚データ)と分岐体の肉厚621(シェル要素の場合は要素の肉厚データ)、ステップ803で算出した流動履歴、基盤部の面内方向収縮率626と分岐体の面内方向収縮率624の算術平均、基盤部の肉厚方向収縮率625、分岐体の肉厚方向収縮率623の算術平均を代表値とした分岐部の面内方向収縮率の平均値(面内折れ曲がり方向成分)、肉厚方向収縮率の平均値、基盤部と分岐体のなす角度905を式(8)または式(9)に代入し、収縮後のコーナー部の角度の変化量Δα、または収縮後のコーナー部の角度βを算出する。基盤面は、分岐体を挟み、反対側にも存在するため、その反対側に存在する基盤面と分岐体との間でも、同様の処理を行う。また、分岐体が多数ある場合は、基盤部とそれぞれの分岐体との間で同様の処理を行う。   In the third embodiment, the thickness 622 (element thickness data in the case of a shell element) and the branch thickness 621 (element thickness in the case of a shell element) at a branching site calculated in step 801. Thickness data), the flow history calculated in step 803, the arithmetic average of the in-plane direction shrinkage 626 and the in-plane direction shrinkage 624 of the base, the thickness direction shrinkage 625 of the base, the thickness of the branch The average value (in-plane bending direction component) of the in-plane direction shrinkage rate of the branch portion, the average value of the thickness direction shrinkage rate, the angle 905 formed by the base portion and the branch body, with the arithmetic average of the direction shrinkage rate 623 as a representative value. By substituting into Equation (8) or Equation (9), the amount of change Δα of the angle of the corner portion after contraction or the angle β of the corner portion after contraction is calculated. Since the base surface exists on the opposite side with the branch body interposed therebetween, the same processing is performed between the base surface and the branch body existing on the opposite side. When there are many branch bodies, the same processing is performed between the base portion and each branch body.

Figure 2008200859
Figure 2008200859

Figure 2008200859
Figure 2008200859

式(8)は変形前の基盤部と分岐体のなす角度から、変形後のなす角度の変化量を導く式、式(9)は変形前の基盤部と分岐体のなす角度から、変形後のなす角度を導く式であり、式(8)と式(9)は、ほぼ等価である。   Expression (8) is an expression for deriving the amount of change in the angle after deformation from the angle between the base part before the deformation and the branch body, and Expression (9) is based on the angle between the base part before the deformation and the branch body after the deformation. Equation (8) and Equation (9) are almost equivalent.

ここで、流動履歴について詳細に説明する。流動履歴は、分岐部位のすべての部位において計算され、図3Bを例に挙げると、コーナー部と隣接する基盤部の要素308、分岐体の要素309で計算がされる。分岐部位と隣接する基盤部の要素308のうちの1要素に着目すると、周囲に基盤部の要素4つと分岐体の要素1つが存在する。充填過程の解析において、各々の要素を流入、流出する流量の総和を計算することができ、射出成形充填解析において、分岐部位における全体の流量に対して、それぞれの分岐体やその先の基盤部への流量や流入方向の履歴のことを流動履歴と呼ぶ。   Here, the flow history will be described in detail. The flow history is calculated in all of the branch portions, and taking FIG. 3B as an example, the flow history is calculated for the base portion element 308 and the branch body element 309 adjacent to the corner portion. When attention is paid to one of the elements 308 of the base part adjacent to the branch site, there are four base part elements and one branch element in the periphery. In the analysis of the filling process, the sum of the flow rates flowing in and out of each element can be calculated. In the injection molding and filling analysis, each branch body and the base part ahead of it are compared with the total flow rate at the branch site. The history of flow rate and inflow direction is called flow history.

なお、式(8)は収縮後のL字型形状のコーナー部の角度の変化量を求める式(2)に基盤部の肉厚、分岐体の肉厚、流動履歴のパラメータ(exp(A-B×(d1/d2))、(exp(F-H×(∫G(t)Vcdt/∫vmagdt))を補正項として加えたものであり、式(9)は収縮後のL字型形状のコーナー部の角度を求める式(3)に基盤部の肉厚、分岐体の肉厚、流動履歴のパラメータ(exp(A-B×(d1/d2))、(exp(F-H×(∫G(t)Vcdt/∫vmagdt))を補正項として加えたものである。すなわち、そり変形量は、基盤部と分岐体のなす角度と、基盤部の肉厚と分岐体の肉厚の比と、分岐部の流動履歴と、に基づいて分岐構造に起因するそり変形量をもとめるものである。   Equation (8) is the equation (2) for calculating the amount of change in the angle of the L-shaped corner portion after contraction. The thickness of the base portion, the thickness of the branch body, and the flow history parameters (exp (AB × (d1 / d2)), (exp (FH × (∫G (t) Vcdt / ∫vmagdt)) is added as a correction term, and equation (9) is for the corner of the L-shaped shape after contraction. Equation (3) for calculating the angle is based on the thickness of the base part, the thickness of the branch body, and the flow history parameters (exp (AB × (d1 / d2)), (exp (FH × (∫G (t) Vcdt / ∫ vmagdt)) is added as a correction term, that is, the amount of warpage is the angle between the base and the branch, the ratio of the thickness of the base and the branch, and the flow history of the branch. Based on the above, the amount of warp deformation caused by the branch structure is obtained.

バイメタルそり変形量算出手段718は、上記第一の形態と同様にバイメタル効果に起因するそりの変形量を求める。   The bimetal warp deformation amount calculation means 718 obtains the deformation amount of the warp caused by the bimetal effect as in the first embodiment.

そして、分岐構造そり変形量算出手段720による分岐構造そり変形量解析807出力とバイメタルそり変形量算出手段718によるバイメタル変形量解析805出力から、再び応力の釣り合い計算を実施することによって分岐部位総そり変形量解析809を行い、2つの種類の原因によるそり変形を共に考慮した分岐部位のそり変形として出力する。   Then, by executing the stress balance calculation again from the output of the branch structure warp deformation amount analysis 807 by the branch structure warp deformation amount calculation means 720 and the bimetal deformation amount analysis 805 output by the bimetal warp deformation amount calculation means 718, the branch portion total warpage is performed again. A deformation amount analysis 809 is performed, and the result is output as a warpage deformation of a branch portion in consideration of warpage deformation caused by two types of causes.

そり変形量算出手段715は、分岐部位と同様にして計算した平板部のそり変形量出力(バイメタルそり変形量解析805により計算)、L字コーナー部位のそり変形量出力(バイメタルそり変形量解析805に加えてL字型コーナー構造そり変形量解析806により計算し、L字型コーナー部位総そり変形量解析808を実施)、および分岐部位のそり変形量出力から、成形品全体における応力の釣り合い計算を実施し、成形品全体のそり変形量解析810を実施する。   The warp deformation amount calculation means 715 outputs the warp deformation amount of the flat plate portion calculated in the same manner as the bifurcation part (calculated by bimetal warp deformation amount analysis 805), and the warp deformation amount output of the L-shaped corner part (bimetal warp deformation amount analysis 805). In addition to the L-shaped corner structure warpage deformation amount analysis 806, the L-shaped corner portion total warpage deformation amount analysis 808 is performed, and the warpage deformation amount output of the branch portion is used to calculate the balance of stress in the entire molded product. The warpage deformation amount analysis 810 of the entire molded product is performed.

ここで、上記分岐構造そり変形量算出手段720においても用いている、式(4)から式(9)の指数部について説明する。式(10)に示すような関数をシグモイド関数と呼び、F(X)=0とF(X)=1を漸近線とするS字曲線を描く。式(4)から式(9)は、シグモイド関数の変数Xに基盤部の肉厚、分岐体の肉厚、分岐部位から分岐体先端までの距離、流動履歴の関数を代入し、それらの影響を数式化したものである。なお、このシグモイド関数の代わりに、シグモイド関数と同様に、F(X)=0とF(X)=1を漸近線とする式(11)に示すようなHILL関数などを用いても構わない。HILL関数を用いる場合、変数Xに基盤部の肉厚、分岐体の肉厚、分岐部位から分岐体先端までの距離、流動履歴の関数を代入し、それらの影響を数式化する。なお、定数kを大きな値にする、または定数nを小さくすると、F(X)=0とF(X)=1への変化が緩やかになる。なお、HILL関数はF(X)=0付近での変化がF(X)=1付近での変化よりも急になるという特徴がある。これらの関数を用いることにより、基盤部の肉厚、分岐体の肉厚、分岐部位から分岐体先端までの距離、流動履歴が、コーナー部のそりに影響に影響を与える場合と与えない場合について、数値的に連続に表現することができる。上記のような2つの極限値を有する漸近線をなす特性を同様に有する関数は本発明においては数学的に等価なものと扱う。また、ディジタル計算機を用いることに起因して数値を離散的に扱うことに関する数学的な補正などが加わる場合も数学的に等価とする。   Here, the exponent part of the equations (4) to (9), which is also used in the branch structure warp deformation amount calculation means 720, will be described. A function as shown in Expression (10) is called a sigmoid function, and an S-shaped curve having F (X) = 0 and F (X) = 1 asymptotic lines is drawn. Equations (4) to (9) substitute the function of the thickness of the base part, the thickness of the branch body, the distance from the branch site to the tip of the branch body, and the flow history into the variable X of the sigmoid function. Is a mathematical expression. Instead of this sigmoid function, a HILL function as shown in the equation (11) with F (X) = 0 and F (X) = 1 asymptotic lines may be used as in the sigmoid function. . When the HILL function is used, the function of the thickness of the base part, the thickness of the branching body, the distance from the branching part to the tip of the branching body, and the flow history is substituted into the variable X, and the influences thereof are expressed numerically. When the constant k is increased or the constant n is decreased, the change to F (X) = 0 and F (X) = 1 becomes gradual. The HILL function is characterized in that the change near F (X) = 0 is steeper than the change near F (X) = 1. By using these functions, the thickness of the base part, the thickness of the branching body, the distance from the branching part to the tip of the branching body, and the flow history may or may not affect the corner warp. Can be expressed numerically continuously. The functions having the characteristics of the asymptotic line having the two extreme values as described above are treated as mathematically equivalent in the present invention. The case where mathematical corrections relating to the discrete handling of numerical values due to the use of a digital computer are added is also mathematically equivalent.

Figure 2008200859
Figure 2008200859

以下、これらAからHまでの定数、変数の作成方法について、詳細に示す。これらの定数は、いずれも実験等により求めるパラメータである。   Hereinafter, a method for creating these constants and variables from A to H will be described in detail. These constants are parameters obtained by experiments and the like.

AからHまでの定数、変数の作成のため、実験、および解析による収縮後の角度の変化量について、比較評価を行い、解析によるコーナー部の倒れ角度を式(4)から式(9)を用いて、実測にあわせる。評価金型は、分岐部位を持つ形状であれば、T型、Y型、傘型、X字型、星型のいずれでも構わないが、評価を単純化させるため、図9Aに示すT字型形状がよい。図9Aは、本発明の評価金型で成形されるT字型形状の成形品形状の一例を表す斜視図であり、図9Bは本発明の評価金型で成形されるT字型形状の成形品の一例を示す断面図、および収縮前後の基盤部と分岐体の角度の算出方法を模式的に示した断面図である。   For the creation of constants and variables from A to H, comparative evaluation was performed on the amount of change in the angle after contraction by experiment and analysis, and the angle of inclination of the corner portion by analysis was expressed by equations (4) to (9). Use to match the actual measurement. The evaluation mold may be any of T-type, Y-type, umbrella-type, X-type, and star-type as long as it has a branched portion, but in order to simplify the evaluation, the T-type shown in FIG. 9A Good shape. FIG. 9A is a perspective view showing an example of a T-shaped molded product shape molded by the evaluation mold of the present invention, and FIG. 9B is a T-shaped molding molded by the evaluation mold of the present invention. It is sectional drawing which shows an example of goods, and sectional drawing which showed typically the calculation method of the angle of the base | substrate part before and behind shrinkage | contraction and a branching body.

T字型形状の場合、分岐体とはリブ部分のことであり、分岐体肉厚はリブ肉厚、分岐部位から分岐体先端までの距離はリブの高さとなる。基盤部と分岐体のなす角度αは図9Bに示す基盤部とリブのなす角度905のことであり、収縮後の基盤部と分岐体のなす角度βは基盤部とリブのなす角度906のことである。基盤部と分岐体のなす角度の変化量は角度905と角度906の差である。リブの左右で基盤部とリブのなす角度の変化量が異なる場合は、平均値や最大値などの代表値を用いても構わないが、コーナーに対し、材料の流入側、流出側で角度の大小が異なる場合は、流入側角度、流出側角度として分類するとよい。   In the case of the T-shape, the branch body is a rib portion, the branch body thickness is the rib thickness, and the distance from the branch site to the branch body tip is the rib height. The angle α between the base portion and the branch body is an angle 905 between the base portion and the rib shown in FIG. 9B, and the angle β between the base portion and the branch body after contraction is an angle 906 between the base portion and the rib. It is. The amount of change in the angle between the base part and the branching body is the difference between the angle 905 and the angle 906. If the amount of change in the angle between the base and the rib is different on the left and right sides of the rib, a representative value such as an average value or a maximum value may be used. If the size is different, it may be classified as an inflow side angle and an outflow side angle.

金型は入れ子構造にして、基盤部の肉厚、リブの肉厚、リブの高さを可変にし、基盤部の肉厚、リブの肉厚、リブの高さが分岐部位の倒れ角度に対する影響を評価する。   The mold has a nested structure, and the thickness of the base part, the thickness of the rib, and the height of the rib are variable, and the influence of the thickness of the base part, the thickness of the rib, and the height of the rib on the tilt angle of the branching part To evaluate.

ゲート位置は充填方向がリブに対し直角になる位置907および平行になる位置908の2通り行うことが好ましい。形状条件については、基盤部の肉厚、リブの肉厚は、1mmから4mmの間に設定することが好ましい。リブの高さは3mmから8mmの間に設定することが好ましい。また、成形条件は好ましくはそれぞれ2通り設定することが好ましいが、影響が小さいと考えられる条件については割愛しても構わない。すべてのケースを掛け合わせると、非現実な数の実験を行うことになるため、実験計画法などを用いるとよい。   It is preferable to perform two gate positions: a position 907 where the filling direction is perpendicular to the rib and a position 908 where the filling direction is parallel. As for the shape condition, it is preferable to set the thickness of the base portion and the thickness of the rib between 1 mm and 4 mm. The height of the rib is preferably set between 3 mm and 8 mm. In addition, it is preferable to set two molding conditions, respectively. However, conditions that are considered to have a small influence may be omitted. Multiplying all cases results in an unrealistic number of experiments, so it is better to use an experimental design.

また式(8)、または式(9)を用いて解析する場合、基盤部から分岐体へ流入する材料の流量履歴を計算する。   Moreover, when analyzing using Formula (8) or Formula (9), the flow volume history of the material which flows into a branch body from a base part is calculated.

評価金型の基盤部の肉厚、リブの肉厚、リブの高さの金型形状条件、流動履歴について、評価位置は任意としてよいが、肉厚方向に中心位置を代表点とするとよい。   With respect to the thickness of the base portion of the evaluation mold, the thickness of the rib, the mold shape condition of the height of the rib, and the flow history, the evaluation position may be arbitrary, but the center position in the thickness direction may be a representative point.

図10Aは、本発明の評価金型について、リブの肉厚/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合した場合の結果の一例を示す図、図10Bは、本発明の評価金型について、リブの高さ/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合した場合の結果の一例を示す図、図10Cは、本発明の評価金型について、流動履歴に対して収縮後の角度の変化量を、実測した場合した場合の結果の一例を示す図である。実測結果、解析結果をそれぞれ、図10Aから図10Cのようにグラフ化し、解析における基盤部と分岐体のなす角度の変化量を実測における基盤部と分岐体のなす角度の変化量にあわせるようにAからHの定数、変数を決定する。例として、定数AからCを決定する方法について、図10Aを用い、説明する。実測、解析の基盤部の肉厚、リブの肉厚はそれぞれ薄肉から厚肉までできるだけ9ケース以上水準を設定する。具体的には、基盤部の肉厚、リブの肉厚をそれぞれ1mm、2mm、3mmとして、それぞれの3水準を組み合わせ、合計9水準などとする。実験結果、解析結果それぞれについて、横軸を(リブの肉厚/基盤部の肉厚)、縦軸を収縮後の倒れ角度としてグラフ化する。なお、解析結果は初期値として、どのような値にしておいても良いが、たとえば、A=1、B=1、C=1などとしておく。それぞれをグラフ化すると、実験結果と解析結果、いずれも、倒れ角度が急激に変化する変化する場合がある。その場合、解析結果の変曲点が実測結果の変曲点に近くなるように最小二乗法などを用いてA、B、Cを変化させる。   FIG. 10A is a diagram showing an example of a result obtained by actually measuring the amount of change in angle after shrinkage with respect to the thickness of the rib / thickness of the base portion of the evaluation mold of the present invention, and FIG. FIG. 10C is a diagram showing an example of a result obtained by actually measuring the amount of change in angle after shrinkage with respect to the height of the rib / the thickness of the base portion of the evaluation mold of the present invention. It is a figure which shows an example of the result at the time of actually measuring the variation | change_quantity of the angle after shrinkage | contraction with respect to a flow history about this evaluation metal mold | die. The actual measurement result and the analysis result are graphed as shown in FIGS. 10A to 10C, and the change amount of the angle between the base portion and the branch body in the analysis is matched with the change amount of the angle between the base portion and the branch body in the measurement. Determine the constants and variables from A to H. As an example, a method for determining C from constants A will be described with reference to FIG. 10A. The thickness of the base of the actual measurement and analysis and the thickness of the rib should be set to 9 cases or more as much as possible from thin to thick. Specifically, the thickness of the base portion and the thickness of the ribs are 1 mm, 2 mm, and 3 mm, respectively, and the three levels are combined to obtain a total of 9 levels. For each of the experimental results and analysis results, the horizontal axis (rib wall thickness / base thickness) and the vertical axis are plotted as a tilt angle after contraction. The analysis result may be any value as an initial value. For example, A = 1, B = 1, C = 1, etc. When each is graphed, both the experimental result and the analysis result may change such that the tilt angle changes abruptly. In that case, A, B, and C are changed using a least square method or the like so that the inflection point of the analysis result is close to the inflection point of the measurement result.

定数AからC以外の定数、変数を決定する場合も、定数AからCを決定する方法と同様にする。図10Bを用いて定数A、B、C、D、Eを決定する場合は、基盤部の肉厚、リブの高さについて9ケース以上の水準を設定し、グラフの横軸を(リブの高さ/基盤部の肉厚)、縦軸を収縮後の倒れ角度としてグラフ化し、解析の結果が実測に一致するように定数を変化させる。図10Cを用いて定数A、B、C、F、H、変数G(t)を決定する場合は、基盤部の肉厚、リブの肉厚、リブの高さについて、3ケース以上の水準に設定する。実験水準を最小化するためには、実験計画法を用いる。そして、実験結果、解析結果それぞれについて、横軸を分岐部位の流動履歴を示す式で求まる値、縦軸を収縮後の倒れ角度の変化量としてグラフ化する。横軸の値について、実測結果については、計測することは、困難であるため、解析から求められる値を用いる。   The constants and variables other than the constants A to C are determined in the same manner as the method for determining the constants A to C. When determining the constants A, B, C, D, and E using FIG. 10B, set a level of 9 cases or more for the thickness of the base portion and the height of the rib, and set the horizontal axis of the graph (the height of the rib). The thickness of the base portion) and the vertical axis are plotted as the tilt angle after contraction, and the constant is changed so that the analysis result matches the actual measurement. When determining the constants A, B, C, F, H, and the variable G (t) using FIG. 10C, the base part thickness, rib thickness, and rib height should be at least three cases. Set. In order to minimize the experimental level, an experimental design is used. Then, for each of the experimental results and the analysis results, the horizontal axis is a value obtained by an expression indicating the flow history of the branch portion, and the vertical axis is graphed as the amount of change in the tilt angle after contraction. As for the value of the horizontal axis, since it is difficult to measure the actual measurement result, the value obtained from the analysis is used.

なお、実測した分岐部位の角度変化量は、分岐部位におけるバイメタル効果による変形量および分岐部位のそり変形量との和、ならびに分岐部位に続く平板部のバイメタル効果によるそり変形量の和(総そり変形量)である。そのため、解析と実測の比較により定数、変数を決定する際は、解析においても、分岐部位の角度変化量は、同様に総そり変形量を計算し、実測で測定した位置と同一の位置で角度の変化量を測定する。   The measured angle change amount of the branch part is the sum of the deformation amount due to the bimetal effect at the branch part and the warp deformation amount at the branch part, and the sum of the warp deformation amount due to the bimetal effect of the flat plate portion following the branch part (total warpage). Deformation amount). Therefore, when determining constants and variables by comparison between analysis and actual measurement, the angle change amount of the bifurcation part is also calculated in the same way by calculating the total warpage deformation, and the angle at the same position as the actual measurement position. Measure the amount of change.

[実施例1]
図9Aに示すT字型形状の成形品(幅50mm、奥行き50mm)を金型の入れ子を組み合わせることにより、基盤部の肉厚を1mm、2mm、3mm、リブの肉厚を1mm、2mm、3mm、リブの高さを1mm、3mm、5mmに設定し、合計27形状について、射出成形により成形した。成形品の材料にはポリアミド6樹脂(強化ガラス繊維30重量%含有)を用い、成形条件は樹脂温度260℃、金型温度80℃、樹脂充填時間を1秒、保圧圧力を50MPa、保圧時間を10秒、冷却時間を10秒とした。ゲート位置は流動がリブに対し直角になる位置907および平行になる位置908の2通りとした。
[Example 1]
By combining a T-shaped molded product (width 50 mm, depth 50 mm) shown in FIG. 9A with a mold insert, the thickness of the base portion is 1 mm, 2 mm, and 3 mm, and the rib thickness is 1 mm, 2 mm, and 3 mm. The height of the rib was set to 1 mm, 3 mm, and 5 mm, and a total of 27 shapes were molded by injection molding. Polyamide 6 resin (containing 30% by weight of reinforced glass fiber) is used as the material of the molded product. The molding conditions are a resin temperature of 260 ° C., a mold temperature of 80 ° C., a resin filling time of 1 second, a holding pressure of 50 MPa, and a holding pressure. The time was 10 seconds and the cooling time was 10 seconds. There were two gate positions: a position 907 where the flow was perpendicular to the ribs and a position 908 where the flow was parallel.

金型から取り出された成形品は、2日間乾燥状態で冷却し、図8Aに示すそり基準点902を3点固定し、精密三次元測定器(株式会社 ミツトヨ製 Bright−STRATO 776)により、リブの長手方向中央部の位置において、リブに対し直角となる断面909の収縮後の倒れ角度を測定した。また、解析結果についても、実測と同様、図9Aに示すそり基準点を3点固定し、収縮後の倒れ角度を計算した。   The molded product taken out from the mold is cooled in a dry state for 2 days, three warp reference points 902 shown in FIG. 8A are fixed, and ribs are measured by a precision three-dimensional measuring instrument (Bright-STRATO 776 manufactured by Mitutoyo Corporation). The tilt angle after contraction of the cross-section 909 perpendicular to the rib was measured at the position of the central portion in the longitudinal direction. As for the analysis result, as with the actual measurement, three warp reference points shown in FIG. 9A were fixed, and the tilt angle after contraction was calculated.

図11Aは、本発明の評価金型について、リブの肉厚/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合、および解析した場合の結果の示す図である。   FIG. 11A is a diagram showing the results of actual measurement and analysis of the amount of change in angle after shrinkage with respect to the rib thickness / base thickness for the evaluation mold of the present invention.

式(4)について、コーナー部の倒れ角度を実測結果と解析結果を合わせるように、定数Aを17、Bを21、Cを0.8として、コーナー部について、式(4)のように面内方向収縮率と肉厚方向率収縮、基盤部の肉厚、リブの肉厚から、基盤部とリブ(分岐体)のなす角度905の変化量を計算し、横軸を(リブの肉厚/基盤部の肉厚)、縦軸を収縮後の倒れ角度(式(4)から求めた基盤部とリブ(分岐体)のなす角度の変化量バイメタル効果により発生する角度変化の和)として、実測結果と解析結果について、まとめると図11Aに示すとおりとなった。
[比較例1]
非特許文献5の方法に基づき、分岐部位について、式(2)のように面内方向の収縮と肉厚方向の収縮から、コーナー分岐部位を挟む2面の角度が収縮の前後で角度変化を発生させることにより、収縮後のコーナーにおける倒れ角度を計算し、解析結果を横軸リブの肉厚/基盤部の肉厚、縦軸収縮後の倒れ角度の変化量(式(2)から求めた基盤部とリブ(分岐体)のなす角度の変化量バイメタル効果により発生する角度変化の和)としてまとめると図11Aに示すとおりとなった。
[実施例2]
図11Bは、本発明の評価金型について、リブの高さ/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合、および解析した場合の結果を示す図である。
For Equation (4), constant A is set to 17, B is set to 21, C is set to 0.8 so that the corner tilt angle is matched with the measurement result and the analysis result, and the corner portion is expressed as Equation (4). The amount of change in the angle 905 formed by the base part and the rib (branched body) is calculated from the inward shrinkage rate and the thickness direction rate shrinkage, the base part thickness, and the rib thickness, and the horizontal axis (rib thickness) / Thickness of the base part), the vertical axis as the tilt angle after shrinkage (the sum of the angle changes generated by the bimetal effect, the amount of change between the base part and the rib (branched body) obtained from the formula (4)), The measurement results and analysis results are summarized as shown in FIG. 11A.
[Comparative Example 1]
Based on the method of Non-Patent Document 5, with respect to the branch part, the angle between the two surfaces sandwiching the corner branch part is changed before and after the contraction due to the shrinkage in the in-plane direction and the shrinkage in the thickness direction as shown in Equation (2). By calculating, the tilt angle at the corner after contraction was calculated, and the analysis results were obtained from the change in the tilt angle after contraction of the vertical axis and the wall thickness of the horizontal axis ribs / base part (formula (2)) The amount of change in the angle formed by the base portion and the rib (branch body) can be summarized as the sum of the change in angle caused by the bimetal effect) as shown in FIG. 11A.
[Example 2]
FIG. 11B is a diagram showing the results of actual measurement and analysis of the amount of change in angle after shrinkage with respect to the rib height / base wall thickness for the evaluation mold of the present invention.

式(6)について、コーナー部の倒れ角度を実測結果と解析結果を合わせるように、定数Aを17、Bを21、Cを0.8、Dを18、Eを20して、コーナー部について、式(6)のように面内方向収縮率と肉厚方向率収縮、基盤部の肉厚、リブの高さから、基盤部とリブ(分岐体)のなす角度905の変化量を計算し、横軸を(リブの高さ/基盤部の肉厚)、縦軸を収縮後の倒れ角度(式(6)から求めた基盤部とリブ(分岐体)のなす角度の変化量バイメタル効果により発生する角度変化の和)として、実測結果と解析結果についてまとめると図11Bに示すとおりとなった。
[比較例2]
比較例1の解析結果について、横軸を(リブの肉厚/基盤部の肉厚)、縦軸を収縮後の倒れ角度の変化量としてまとめると図11Bに示すとおりとなった。
[実施例3]
図11Cは、本発明の評価金型について、流動履歴に対して収縮後の角度の変化量を、実測した場合、および解析した場合の結果を示す図である。
For equation (6), the constant A is 17, the B is 21, the C is 0.8, the D is 18, and the E is 20 so that the angle of the corner falls is matched with the actual measurement result and the analysis result. The amount of change in the angle 905 between the base part and the rib (branched body) is calculated from the in-plane direction shrinkage rate and the thickness direction rate shrinkage, the base part thickness, and the rib height as shown in equation (6). The horizontal axis is (rib height / base thickness), and the vertical axis is the tilt angle after contraction (the amount of change in the angle between the base and rib (branch) obtained from equation (6)) As the sum of the generated angle changes), the results of measurement and analysis are summarized as shown in FIG. 11B.
[Comparative Example 2]
The analysis results of Comparative Example 1 are shown in FIG. 11B when the horizontal axis is (rib thickness / base thickness) and the vertical axis is the amount of change in the tilt angle after contraction.
[Example 3]
FIG. 11C is a diagram showing the results when the amount of change in the angle after contraction with respect to the flow history is measured and analyzed for the evaluation mold of the present invention.

式(8)について、コーナー部の倒れ角度を実測結果と解析結果を合わせるように、定数Fを16、Hを20、Cを0.8、Gを1として、分岐部位について、式(8)のように面内方向収縮率と肉厚方向率収縮、分岐部位の流動履歴から、基盤部とリブ(分岐体)のなす角度905の変化量計算し、横軸をコーナー部の流動履歴を、縦軸を収縮後の倒れ角度(式(8)から求めた基盤部とリブ(分岐体)のなす角度の変化量バイメタル効果により発生する角度変化の和)として、実測結果と解析結果をまとめると図11Cに示すとおりとなった。
[比較例3]
比較例1の解析結果を、横軸を流動履歴、縦軸を収縮後の倒れ角度の変化量としてまとめると図11Cに示すとおりとなった。
[実施例4]
図12Aは、平板(幅100×100mm、肉厚4mm)に4本のリブ(幅2mm、長さ80mm、高さ2mm、リブとリブの間隔20mm)のある樹脂成形品の図である。ポリアミド6樹脂(強化ガラス繊維30重量%含有)を用い、成形条件は樹脂温度260℃、金型温度80℃、樹脂充填時間を1秒、保圧圧力を50MPa、保圧時間を10秒、冷却時間を10秒とした。ゲートは平板部の辺(リブに対して平行な辺)の中央部1201とした。
For equation (8), constant F is set to 16, corner is set to 20, C is set to 0.8, and G is set to 1 so that the corner tilt angle is matched with the measurement result and the analysis result. From the in-plane direction shrinkage rate and the thickness direction rate shrinkage, the flow amount of the branch part, the change amount of the angle 905 formed by the base part and the rib (branch body) is calculated, and the horizontal axis is the flow history of the corner part, When the vertical axis is the tilt angle after contraction (the sum of the angle changes caused by the bimetal effect, the amount of change between the base and rib (branched body) obtained from equation (8)), As shown in FIG. 11C.
[Comparative Example 3]
The analysis results of Comparative Example 1 are shown in FIG. 11C when the horizontal axis represents the flow history and the vertical axis represents the amount of change in the tilt angle after contraction.
[Example 4]
FIG. 12A is a view of a resin molded product having four ribs (width 2 mm, length 80 mm, height 2 mm, spacing between ribs 20 mm) on a flat plate (width 100 × 100 mm, wall thickness 4 mm). Using polyamide 6 resin (containing 30% by weight of reinforced glass fiber), molding conditions are resin temperature 260 ° C., mold temperature 80 ° C., resin filling time 1 second, holding pressure 50 MPa, holding pressure 10 seconds, cooling The time was 10 seconds. The gate was the central portion 1201 of the side of the flat plate portion (side parallel to the rib).

本条件で成形し、基準点(1202、1203、1204)で支え、収縮後の変形を実測したところ、図12Bのようにリブ側を凹にして、0.12mm陥没した変形となった。   Molding was carried out under these conditions, and supported by reference points (1202, 1203, 1204). The deformation after shrinkage was measured, and as a result, the rib was recessed as shown in FIG.

一方、図12Aに示す形状をシェル要素によりモデル化し、図8に示すフロー図に従い、充填工程解析、保圧・冷却工程解析、配向解析、収縮率算出、肉厚算出を行い、実施例1で算出した係数を基に、式(4)について、定数Aを17、Bを21、Cを0.8として、分岐部位は式(4)に基づき、基盤部とリブ(分岐体)のなす角度の変化量を計算した。基準点(1202、1203、1204)で支え、収縮後の変形を解析したところ、図12Bのようにリブ側を凹にして、0.13mm陥没した変形となった。
[実施例5]
図12Aに示す形状をシェル要素によりモデル化し、図8に示すフロー図に従い、充填工程解析、保圧・冷却工程解析、配向解析、収縮率算出、肉厚、分岐体先端までの距離算出を行い、実施例2で算出した係数を基に、式(6)について、定数Aを17、Bを21、Cを0.8、Dを18、Eを20として、分岐部位は式(6)に基づき、基盤部とリブ(分岐体)のなす角度の変化量を計算した。基準点(1202、1203、1204)で支え、収縮後の変形を解析したところ、図12Bのようにリブ側を凹にして、0.12mm陥没した変形となった。
[実施例6]
図12Aに示す形状をシェル要素によりモデル化し、図8に示すフロー図に従い、充填工程解析、保圧・冷却工程解析、配向解析、収縮率算出、流動履歴算出を行い、実施例3で算出した係数を基に、式(8)について、定数Fを16、Hを20、Cを0.8、Gを1として、分岐部位は式(8)に基づき、基盤部とリブ(分岐体)のなす角度の変化量計算した。基準点(1202、1203、1204)で支え、収縮後の変形を解析したところ、図12Bのようにリブ側を凹にして、0.12mm陥没した変形となった。
[比較例4]
図12Aに示す形状をシェル要素によりモデル化し、非特許文献5に示すとおり、図2に示すフロー図に従い、充填工程解析、保圧・冷却工程解析、配向解析、収縮率算出を行い、式(2)、およびバイメタル効果に基づき、収縮後の分岐部位における倒れ角度を計算した。基準点(1202、1203、1204)で支え、収縮後の変形を解析したところ、図12Bのようにリブ側を凹にして、0.46mm陥没した変形となった。
[まとめ]
従来は、射出成形解析の解析によって、定性的なそりの評価ができれば問題ないとされていたが、近年は製品開発期間が短いため、実測との誤差が±20%程度に収めることができるような定量的な評価を実施し、金型の製作期間短縮することが望まれており、比較例4のように実測との誤差が200%以上生じるような解析では、解析の予測精度として不十分である。表1に示すように、誤差率について、実施例4では8.3%、実施例5、実施例6では0%、比較例4では283%となっており、実施例は比較例4に対して大幅にそり予測精度が向上している。
On the other hand, the shape shown in FIG. 12A is modeled by a shell element, and according to the flowchart shown in FIG. 8, filling process analysis, pressure holding / cooling process analysis, orientation analysis, shrinkage rate calculation, wall thickness calculation are performed. Based on the calculated coefficient, the constant A is set to 17, B is set to 21, C is set to 0.8 for the formula (4), and the branch portion is an angle formed by the base portion and the rib (branched body) based on the formula (4). The amount of change was calculated. When the deformation after contraction was analyzed by supporting at the reference points (1202, 1203, 1204), the rib was recessed as shown in FIG.
[Example 5]
The shape shown in FIG. 12A is modeled by a shell element, and according to the flow chart shown in FIG. 8, a filling process analysis, a pressure holding / cooling process analysis, an orientation analysis, a shrinkage rate calculation, a wall thickness, and a distance to a branch body tip are calculated. Based on the coefficient calculated in Example 2, with respect to the equation (6), the constant A is 17, B is 21, C is 0.8, D is 18, E is 20, and the branch site is the equation (6) Based on this, the amount of change in the angle between the base part and the rib (branch body) was calculated. When the deformation after contraction was analyzed by supporting it at the reference points (1202, 1203, 1204), the deformation was concaved by 0.12 mm with the rib side recessed as shown in FIG. 12B.
[Example 6]
The shape shown in FIG. 12A is modeled by a shell element, and according to the flow chart shown in FIG. 8, filling process analysis, pressure holding / cooling process analysis, orientation analysis, shrinkage rate calculation, and flow history calculation are performed. Based on the coefficient, for formula (8), constant F is 16, H is 20, C is 0.8, G is 1, and the branch part is based on formula (8) and the base portion and rib (branched body) The amount of change in the angle formed was calculated. When the deformation after contraction was analyzed by supporting it at the reference points (1202, 1203, 1204), the deformation was concaved by 0.12 mm with the rib side recessed as shown in FIG. 12B.
[Comparative Example 4]
The shape shown in FIG. 12A is modeled by a shell element, and as shown in Non-Patent Document 5, according to the flow diagram shown in FIG. 2, a filling process analysis, a pressure holding / cooling process analysis, an orientation analysis, and a shrinkage rate calculation are performed. Based on 2) and the bimetal effect, the tilt angle at the branch site after contraction was calculated. When the deformation after contraction was analyzed by supporting at the reference points (1202, 1203, 1204), the rib side was recessed as shown in FIG.
[Summary]
Conventionally, it has been said that there is no problem if qualitative warpage can be evaluated by analysis of injection molding analysis. However, since the product development period is short in recent years, the error from the actual measurement can be kept within about ± 20%. It is desired to perform a quantitative evaluation and shorten the mold production period, and an analysis that causes an error of 200% or more as in Comparative Example 4 is insufficient as a prediction accuracy of the analysis. It is. As shown in Table 1, the error rate is 8.3% in Example 4, 0% in Example 5 and Example 6, and 283% in Comparative Example 4, and the example is compared to Comparative Example 4. The warpage prediction accuracy is greatly improved.

Figure 2008200859
Figure 2008200859

本発明は、射出成形品の収縮率、そりを高精度に予測することができる解析方法、および装置として利用するに限らず、射出成形品の物性評価、射出成形金型内部での射出成形品挙動の評価などに応用することができるが、その応用範囲が、これらに限られるものではない。   INDUSTRIAL APPLICABILITY The present invention is not limited to use as an analysis method and apparatus that can predict the shrinkage rate and warpage of an injection molded product with high accuracy, but also evaluates the physical properties of the injection molded product, and the injection molded product inside the injection mold. Although it can be applied to behavior evaluation and the like, the application range is not limited to these.

樹脂製品の射出成形を実施するための射出成形機の一例を示す模式図である。It is a schematic diagram which shows an example of the injection molding machine for implementing the injection molding of the resin product. 樹脂製品の射出成形工程のうち、樹脂充填工程の一例を示す模式図である。It is a schematic diagram which shows an example of a resin filling process among the injection molding processes of a resin product. 樹脂製品の射出成形工程のうち、樹脂保圧工程の一例を示す模式図である。It is a schematic diagram which shows an example of the resin holding | maintenance process among the injection molding processes of a resin product. 樹脂製品の射出成形工程のうち、樹脂冷却工程の一例を示す模式図である。It is a schematic diagram which shows an example of the resin cooling process among the injection molding processes of a resin product. 樹脂製品の射出成形工程のうち、離型工程(型開き)の一例を示す模式図である。It is a schematic diagram which shows an example of a mold release process (mold opening) among the injection molding processes of a resin product. 従来の射出成形工程解析の構成の一例を示すフロー図である。It is a flowchart which shows an example of a structure of the conventional injection molding process analysis. 3次元のボリュームのある形状を2次元の平面(シェル要素)に置き換える方法の一例を示す斜視図である。It is a perspective view which shows an example of the method of replacing a certain shape of a three-dimensional volume with a two-dimensional plane (shell element). 3次元のボリュームのある形状(ソリッド要素)、2次元の平面(シェル要素)に成形品材料を充填したときの充填解析結果の一例を示した斜視図である。It is the perspective view which showed an example of the filling analysis result when filling a molded article material in the shape (solid element) with a three-dimensional volume, and a two-dimensional plane (shell element). 基盤部に対して小さな突起であるような形状の収縮挙動の一例について、3次元のボリュームのある形状(ソリッド要素)、2次元の平面(シェル要素)を用いて解析したときの結果の一例である。An example of the results of analysis using a three-dimensional volume shape (solid element) and a two-dimensional plane (shell element) for an example of the contraction behavior of a shape that is a small protrusion relative to the base part is there. L字型形状のコーナー部内側の金型面が高温である場合におけるコーナー部のそり変形挙動の一例の斜視図である。It is a perspective view of an example of the curvature deformation | transformation behavior of a corner part when the metal mold | die surface inside a corner part of L-shape is high temperature. L字型形状のコーナー部内側の金型面が高温である場合について、シェル要素を用いて解析した場合のそり変形挙動の一例を示す斜視図である。It is a perspective view which shows an example of the curvature deformation | transformation behavior at the time of analyzing using a shell element about the case where the metal mold | die surface inside a corner part of L-shape is high temperature. 肉厚方向収縮率が面内方向収縮率(面内折れ曲がり方向成分)よりも大きい場合について、ソリッド要素で解析したときのコーナー部のそり変形挙動の一例を示す斜視図である。It is a perspective view which shows an example of the curvature deformation | transformation behavior of a corner part when it analyzes with a solid element about the case where a thickness direction shrinkage rate is larger than an in-plane direction shrinkage rate (in-plane bending direction component). 肉厚方向収縮率が面内方向収縮率(面内折れ曲がり方向成分)よりも大きい場合について、コーナー部のそり変形挙動を模式的に示す断面図である。It is sectional drawing which shows typically the curvature deformation behavior of a corner part about the case where a thickness direction shrinkage rate is larger than an in-plane direction shrinkage rate (in-plane bending direction component). 肉厚方向収縮率が面内方向収縮率(面内折れ曲がり方向成分)よりも大きい場合について、シェル要素で解析したときのコーナー部のそり変形挙動を示す斜視図である。It is a perspective view which shows the curvature deformation behavior of the corner part when analyzing by a shell element about the case where a thickness direction shrinkage rate is larger than an in-plane direction shrinkage rate (in-plane bending direction component). 肉厚方向収縮率が面内方向収縮率(面内折れ曲がり方向成分)よりも大きい場合について、要素分割が不十分な場合と十分な場合それぞれの、コーナー部のそり変形挙動の一例を示す斜視図である。The perspective view which shows an example of the curvature deformation behavior of a corner part when the element division is insufficient and when the element division is insufficient when the contraction rate in the thickness direction is larger than the contraction rate in the in-plane direction (in-plane bending direction component) It is. 断面がT字型の分岐部位を持つ成形品の一例を示す斜視図である。It is a perspective view which shows an example of the molded article which has a T-shaped branch part in a cross section. シェル要素の節点、要素、計算点を示す模式図の一例である。It is an example of the schematic diagram which shows the node of a shell element, an element, and a calculation point. 非特許文献5の収縮後の角度の算出法を示す図の一例であり、L字型形状のコーナー曲面の収縮前形状および収縮後の形状を示す断面図である。It is an example of the figure which shows the calculation method of the angle after shrinkage | contraction of the nonpatent literature 5, and is sectional drawing which shows the shape before shrinkage | contraction and the shape after shrinkage | contraction of the L-shaped corner curved surface. 非特許文献5の収縮後の角度の算出法を示す図の一例であり、L字型形状のコーナーのコーナー部の収縮前形状および収縮後の形状を示すL方形状を構成する2面のなす角度を等分割する面を境界に半分の形状の断面図である。It is an example of the figure which shows the calculation method of the angle after shrinkage | contraction of a nonpatent literature 5, Comprising: The 2 surface which comprises the L square shape which shows the shape before shrinkage | contraction of the corner part of a L-shaped corner and the shape after shrinkage | contraction It is sectional drawing of a half shape on the surface which equally divides | segments an angle. T字型形状の分岐部位を持つ成形品形状の一例をシェルモデルで示した図である。It is the figure which showed an example of the shape of a molded article with a T-shaped branch part by a shell model. Y字型形状の分岐部位を持つ成形品形状の一例をシェルモデルで示した図である。It is the figure which showed an example of the shape of a molded article which has a Y-shaped branch part. 傘型形状の分岐部位を持つ成形品形状の一例をシェルモデルで示した図である。It is the figure which showed an example of the shape of a molded article which has an umbrella-shaped branch part. X字型形状の分岐部位を持つ成形品形状の一例をシェルモデルで示した図である。It is the figure which showed an example of the shape of a molded article which has an X-shaped branch part. 星型形状の分岐部位を持つ成形品形状の一例をシェルモデルで示した図である。It is the figure which showed an example of the shape of a molded article which has a star-shaped branch part. 分岐形状について、T字型形状を例にして、シェルモデルにおける肉厚方向収縮率、面内方向収縮率、基盤部と分岐体のなす角度、分岐部位から分岐体先端までの距離を模式的に示したものである。About the branch shape, taking the T-shaped shape as an example, the thickness direction shrinkage rate, in-plane direction shrinkage rate, angle between the base part and the branch body, and the distance from the branch site to the branch body tip are schematically shown in the shell model. It is shown. 分岐形状について、T字型形状を例にして、ソリッドモデルにおける肉厚方向収縮率、面内方向収縮率、基盤部と分岐体のなす角度、分岐部位から分岐体先端までの距離を模式的に示したものである。About the branch shape, taking the T-shaped shape as an example, the thickness direction shrinkage rate, in-plane direction shrinkage rate, angle between the base part and the branch body, and the distance from the branch site to the branch body tip in the solid model It is shown. 分岐体先端が環状形状である形状の一例を示す斜視図である。It is a perspective view which shows an example of the shape where a branch body front-end | tip is cyclic | annular shape. 分岐体先端が分岐体である形状の一例を示す斜視図である。It is a perspective view which shows an example of the shape whose branch body front-end | tip is a branch body. 本発明の実施形態の一例の構成を示すブロック図である。It is a block diagram which shows the structure of an example of embodiment of this invention. 本発明の実施形態の一例のフロー図である。It is a flowchart of an example of embodiment of this invention. 本発明の評価金型で成形されるT字型形状の成形品形状の一例を示す斜視図である。It is a perspective view which shows an example of the T-shaped molded product shape shape | molded with the evaluation metal mold | die of this invention. 本発明の評価金型で成形されるT字型形状の成形品の一例を示す断面図、および収縮前後の基盤部と分岐体の角度の算出方法を模式的に示した断面図である。It is sectional drawing which shows an example of the T-shaped molded product shape | molded with the evaluation metal mold | die of this invention, and sectional drawing which showed typically the calculation method of the angle of the base | substrate part before and behind shrinkage | contraction and a branching body. 本発明の評価金型について、リブの肉厚/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合した場合の結果の一例を示す図である。It is a figure which shows an example of the result at the time of actually measuring the variation | change_quantity of the angle after shrinkage | contraction with respect to the thickness of a rib / the thickness of a base | substrate part about the evaluation metal mold | die of this invention. 本発明の評価金型について、リブの高さ/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合した場合の結果の一例を示す図である。It is a figure which shows an example of the result at the time of actually measuring the variation | change_quantity of the angle after shrinkage | contraction with respect to the height of a rib / thickness of a base | substrate part about the evaluation metal mold | die of this invention. 本発明の評価金型について、流動履歴に対して収縮後の角度の変化量を、実測した場合した場合の結果の一例を示す図である。It is a figure which shows an example of the result at the time of actually measuring the variation | change_quantity of the angle after shrinkage | contraction with respect to the flow history about the evaluation metal mold | die of this invention. 本発明の評価金型について、リブの肉厚/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合、および解析した場合の結果の示す図である。It is a figure which shows the result at the time of actually measuring and analyzing the variation | change_quantity of the angle after shrinkage | contraction with respect to the thickness of a rib / thickness of a base | substrate part about the evaluation metal mold | die of this invention. 本発明の評価金型について、リブの高さ/基盤部の肉厚に対して収縮後の角度の変化量を、実測した場合、および解析した場合の結果を示す図である。It is a figure which shows the result at the time of actually measuring and analyzing the variation | change_quantity of the angle after shrinkage | contraction with respect to the height of a rib / thickness of a base | substrate part about the evaluation metal mold | die of this invention. 本発明の評価金型について、流動履歴に対して収縮後の角度の変化量を、実測した場合、および解析した場合の結果を示す図である。It is a figure which shows the result at the time of actually measuring and analyzing the variation | change_quantity of the angle after shrinkage | contraction with respect to the flow history about the evaluation metal mold | die of this invention. 本発明の実施例で用いるリブ付射出成形品形状を示す斜視図である。It is a perspective view which shows the injection molded product shape with a rib used in the Example of this invention. 本発明の実施例で用いるリブ付射出成形品形状をシェル要素で解析したときの変形前形状と変形後形状を示す斜視図である。It is a perspective view which shows the shape before a deformation | transformation and the shape after a deformation | transformation when analyzing the injection molded product shape with a rib used in the Example of this invention with a shell element.

符号の説明Explanation of symbols

1:モータ
2:ホッパー
3:シリンダ
4:金型
5:キャビティ
6:成形品材料
7:固化成形品
301:T字型形状の成形品(ソリッド要素)
302:T字型形状の成形品基盤部
303:T字型形状の成形品リブ部
304:T字型形状の成形品(シェル要素)
305:T字型形状の成形品基盤部
306:T字型形状の成形品リブ部
307:ゲート
308:基盤部の分岐部位の要素
309:分岐体の分岐部位の要素
310:基盤部に対して小さな突起であるような形状
311:基盤部に対して小さな突起であるような形状の収縮後の形状
312:基盤部に対して小さな突起であるような形状のシェル要素
313:基盤部に対して小さな突起であるような形状のシェル要素の収縮後の形状
401:収縮前形状(L字型形状の3次元形状)
402:金型が高温な面
403:収縮後形状(L字型形状の3次元形状)
404:収縮前形状(L字型形状、シェル要素)
405:収縮後形状(L字型形状、シェル要素)
406:コーナー部位
407:肉厚方向方向収縮
408:面内方向収縮(面内折れ曲がり方向成分)
409:L字型形状を構成する2面のなす角度を等分割する面
410:L字型形状を構成する2面のなす角度を等分割する面で分割したコーナー部位の角度
413:面内方向収縮(コーナー部位の交線方向成分)
414:要素
415:計算点
501:収縮前のL型形状の成形品のコーナー部位
502:収縮後の型形状の成形品のコーナー部位
503:収縮前の基盤部
504:収縮後の基盤部
601:T字型
602:Y字型
603:傘型
604:X字型
605:星型
700:コンピュータ
701:キーボード
702:マウス
703:ディスプレイ
704:補助記憶装置
901:T字型形状の成形品
902:そり基準点
903:収縮前のT字型形状の成形品
904: 収縮後のT字型形状の成形品
905:T字型形状の成形品の平板部(基盤部)とリブ(分岐体)の収縮前のなす角度
906:T字型形状の成形品の平板部(基盤部)とリブ(分岐体)の収縮後のなす角度
907:ゲート(充填方向がリブに対し直角)
908:ゲート(充填方向がリブに対し平行)
1201:ゲート
1202:そり基準点
1203:そり基準点
1204:そり基準点
1205: 基盤部
1206:リブ(分岐体)
1207:平板中央部(陥没量測定位置)
1: Motor 2: Hopper 3: Cylinder 4: Mold 5: Cavity 6: Molded product material 7: Solidified molded product 301: T-shaped molded product (solid element)
302: T-shaped molded product base 303: T-shaped molded product rib 304: T-shaped molded product (shell element)
305: T-shaped molded product base portion 306: T-shaped molded product rib portion 307: Gate 308: Base portion branch portion element 309: Branch body branch portion element 310: With respect to the base portion Shape 311 that is a small protrusion 311: Shape after shrinking that is a protrusion that is small with respect to the base part 312: Shell element 313 that is a shape that is a small protrusion with respect to the base part 313 Shape 401 after shrinkage of shell element shaped like a small protrusion: Shape before shrinkage (L-shaped three-dimensional shape)
402: High-temperature surface of the mold 403: Shape after shrinkage (L-shaped three-dimensional shape)
404: Shape before shrinkage (L-shaped shape, shell element)
405: Shape after shrinkage (L-shaped shape, shell element)
406: Corner part 407: Thickness direction shrinkage 408: In-plane shrinkage (in-plane bending direction component)
409: A surface that equally divides an angle formed by two surfaces constituting the L-shaped shape 410: An angle of a corner portion divided by a surface that equally divides an angle formed by two surfaces constituting the L-shaped shape 413: In-plane direction Shrinkage (intersection line direction component of the corner part)
414: Element 415: Calculation point 501: Corner portion 502 of the L-shaped molded product before shrinkage 502: Corner portion 503 of the molded product after shrinkage: Base portion 504 before shrinkage: Base portion 601 after shrinkage T-shaped 602: Y-shaped 603: Umbrella-shaped 604: X-shaped 605: Star-shaped 700: Computer 701: Keyboard 702: Mouse 703: Display 704: Auxiliary storage device 901: T-shaped molded product 902: Sled Reference point 903: T-shaped molded product before shrinking 904: T-shaped molded product after shrinking 905: Shrinkage of flat plate portion (base portion) and rib (branched body) of T-shaped molded product Angle 906 formed in front: Angle formed after contraction of flat plate portion (base portion) and rib (branch body) of T-shaped molded product 907: Gate (filling direction perpendicular to rib)
908: Gate (filling direction is parallel to rib)
1201: Gate 1202: Warpage reference point 1203: Warpage reference point 1204: Warpage reference point 1205: Base portion 1206: Rib (branched body)
1207: Central portion of flat plate (depression amount measurement position)

Claims (16)

プログラムされたコンピュータによって成形品のそり変形を解析するためのそり変形解析方法であって、前記成形品の分岐部位におけるそり変形を、
(1)前記分岐部位における基盤部と分岐体とのなす角度、前記分岐部位における面内方向収縮率の肉厚方向平均値、および、前記分岐部位におけるの肉厚方向収縮率の肉厚方向平均値、ならびに、分岐構造パラメータに基づいて算出する分岐構造そり変形量を算出する分岐構造そり変形量算出工程と、
(2)前記分岐部位における前記基盤部および前記分岐体の面内方向収縮率の面内方向および肉厚方向分布ならびに前記分岐部位における前記基盤部および前記分岐体の肉厚方向収縮率の面内方向および肉厚方向分布と、に基づいて算出するバイメタルそり変形量を算出するバイメタルそり変形量算出工程と、
(3)前記分岐構造そり変形量算出工程およびバイメタルそり変形量算出工程の算出結果に基づいて総そり変形量を算出する分岐部位総そり変形量算出工程と、
を含むことを特徴とするそり変形解析方法。
A warpage deformation analysis method for analyzing warpage deformation of a molded product by a programmed computer, wherein warpage deformation at a branch portion of the molded product is performed.
(1) The angle formed by the base portion and the branch body at the branch site, the average value in the thickness direction of the in-plane shrinkage rate at the branch site, and the thickness direction average of the thickness direction contraction rate at the branch site A branch structure warpage deformation amount calculating step for calculating a branch structure warpage deformation amount calculated based on the value and the branch structure parameter;
(2) In-plane direction and thickness direction distribution of in-plane direction shrinkage rates of the base portion and the branch body in the branch portion, and in-plane thickness direction shrinkage rates of the base portion and the branch body in the branch portion A bimetal warp deformation amount calculating step for calculating a bimetal warp deformation amount calculated based on the direction and thickness direction distribution;
(3) a branch part total warpage deformation amount calculating step of calculating a total warpage deformation amount based on the calculation results of the branch structure warpage deformation amount calculation step and the bimetal warpage deformation amount calculation step;
A warp deformation analysis method comprising:
前記分岐構造パラメータとして、前記分岐部位から分岐体先端までの距離、前記分岐部位における流動履歴、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比、前記分岐部位における前記基盤部の肉厚と前記分岐部位から前記分岐体の先端までの距離との比のうち少なくとも1つ以上を用いることを特徴とする特徴とする請求項1記載のそり変形解析方法。 As the branch structure parameter, the distance from the branch site to the tip of the branch body, the flow history at the branch site, the ratio of the thickness of the base portion at the branch site and the thickness of the branch body at the branch site, 2. The warpage deformation analysis method according to claim 1, wherein at least one of ratios between a thickness of the base portion at the branching portion and a distance from the branching portion to a tip of the branching body is used. . 前記分岐構造パラメータとして、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比を用いることを特徴とする請求項2記載のそり変形解析方法。 The warpage deformation analysis method according to claim 2, wherein a ratio between a thickness of the base portion at the branch portion and a thickness of the branch body at the branch portion is used as the branch structure parameter. 前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とする請求項3記載のそり変形解析方法。
Figure 2008200859
4. The warp deformation analysis method according to claim 3, wherein when calculating the amount of deformation of the branched structure warp, the following expression or an expression mathematically equivalent thereto is used.
Figure 2008200859
前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とする請求項3記載のそり変形解析方法。
Figure 2008200859
4. The warp deformation analysis method according to claim 3, wherein when calculating the amount of deformation of the branched structure warp, the following expression or an expression mathematically equivalent thereto is used.
Figure 2008200859
前記分岐構造パラメータとして、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比、および、前記分岐部位における前記基盤部の肉厚と前記分岐部位から前記分岐体の先端までの距離との比を用いることを特徴とする請求項2記載のそり変形解析方法。 As the branching structure parameter, the ratio between the thickness of the base portion at the branching portion and the thickness of the branch body at the branching portion, and the thickness of the base portion at the branching portion and the branching portion from the branching portion The warpage deformation analysis method according to claim 2, wherein a ratio to a distance to the tip of the body is used. 前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とする請求項6記載のそり変形解析方法。
Figure 2008200859
7. The warpage deformation analysis method according to claim 6, wherein, when calculating the amount of warpage deformation of the branched structure, the following equation or a mathematically equivalent equation is used.
Figure 2008200859
前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とする請求項6記載のそり変形解析方法。
Figure 2008200859
7. The warpage deformation analysis method according to claim 6, wherein, when calculating the amount of warpage deformation of the branched structure, the following equation or a mathematically equivalent equation is used.
Figure 2008200859
前記分岐構造パラメータとして、前記分岐部位における前記基盤部の肉厚と前記分岐部位における前記分岐体の肉厚との比、および、前記分岐部位における流動履歴を用いることを特徴とする請求項2記載のそり変形解析方法。 The ratio of the thickness of the base portion at the branch site to the thickness of the branch body at the branch site and the flow history at the branch site are used as the branch structure parameters. Warp deformation analysis method. 前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とする請求項9記載のそり変形解析方法。
Figure 2008200859
10. The warp deformation analysis method according to claim 9, wherein the following equation or an equation mathematically equivalent to the following equation is used in calculating the branch structure warpage deformation.
Figure 2008200859
前記分岐構造そり変形量を算出するに際し、次式またはこれに数学的に等価な式を用いることを特徴とする請求項9記載のそり変形解析方法。
Figure 2008200859
10. The warp deformation analysis method according to claim 9, wherein the following equation or an equation mathematically equivalent to the following equation is used in calculating the branch structure warpage deformation.
Figure 2008200859
前記成形品を、樹脂材料の射出成形品とすることを特徴とする請求項1〜11のいずれかに記載のそり変形解析方法。 The warpage deformation analysis method according to claim 1, wherein the molded product is an injection molded product of a resin material. 前記成形品を、充填材を含有する樹脂材料の射出成形品とすることを特徴とする請求項1〜12のいずれかに記載のそり変形解析方法。 The warpage deformation analysis method according to claim 1, wherein the molded product is an injection molded product of a resin material containing a filler. 請求項1〜13のいずれかに記載のそり変形解析方法の各工程をコンピュータに実行させるためのプログラム。 The program for making a computer perform each process of the curvature deformation | transformation analysis method in any one of Claims 1-13. 請求項14に記載のプログラムを記録したコンピュータ読みとり可能な記録媒体。 The computer-readable recording medium which recorded the program of Claim 14. 成形品の射出成形工程を解析するための射出成形解析装置であって、
前記成形品の分岐部位におけるそり変形を、
(1)前記分岐部位における基盤部と分岐体とのなす角度、前記分岐部位における前面内方向収縮率の肉厚方向平均値、および、前記分岐部位における肉厚方向収縮率、ならびに、分岐構造パラメータに基づいて算出する分岐構造そり変形量算出手段と、(2)前記成形品の分岐部位におけるそり変形を、前記分岐部位における前記基盤部および前記分岐体の面内方向収縮率の面内方向および肉厚方向分布ならびに前記分岐部位における前記基盤部および前記分岐体の肉厚方向収縮率の面内方向および肉厚方向分布と、に基づいて算出するバイメタルそり変形量算出手段と、
(3)前記成形品の分岐部位におけるそり変形を、前記分岐構造そり変形量算出手段の出力および前記バイメタルそり変形量算出手段の出力に基づいて算出する分岐部位総そり変形量算出手段と、
を備えてなることを特徴とする射出成形解析装置。
An injection molding analyzer for analyzing the injection molding process of a molded product,
Warpage deformation at the branch part of the molded product,
(1) The angle formed by the base portion and the branch body at the branch site, the average value in the thickness direction of the inward front direction shrinkage rate at the branch site, the thickness direction shrinkage rate at the branch site, and the branch structure parameter And (2) warpage deformation at the branch portion of the molded product, and the in-plane direction of the in-plane shrinkage of the base portion and the branch body at the branch portion, and (2) Bi-metal warp deformation amount calculating means for calculating based on the thickness direction distribution and the in-plane direction and the thickness direction distribution of the shrinkage rate in the thickness direction of the base portion and the branched body at the branch portion;
(3) a branch portion total warpage deformation amount calculation means for calculating warpage deformation at the branch portion of the molded product based on an output of the branch structure warpage deformation amount calculation means and an output of the bimetal warpage deformation amount calculation means;
An injection molding analysis apparatus comprising:
JP2007035853A 2007-02-16 2007-02-16 Warpage deformation analysis method and program, and warpage deformation analysis apparatus Active JP5134259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035853A JP5134259B2 (en) 2007-02-16 2007-02-16 Warpage deformation analysis method and program, and warpage deformation analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035853A JP5134259B2 (en) 2007-02-16 2007-02-16 Warpage deformation analysis method and program, and warpage deformation analysis apparatus

Publications (3)

Publication Number Publication Date
JP2008200859A true JP2008200859A (en) 2008-09-04
JP2008200859A5 JP2008200859A5 (en) 2010-04-02
JP5134259B2 JP5134259B2 (en) 2013-01-30

Family

ID=39778852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035853A Active JP5134259B2 (en) 2007-02-16 2007-02-16 Warpage deformation analysis method and program, and warpage deformation analysis apparatus

Country Status (1)

Country Link
JP (1) JP5134259B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201822A (en) * 2009-03-04 2010-09-16 Toray Ind Inc Apparatus, method, and program for analyzing fluid flow process
JP2012101448A (en) * 2010-11-10 2012-05-31 Hitachi Ltd Calculation method and analysis program of shrinkage strain
JP2012530647A (en) * 2009-06-25 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア Axle stabilizer bearing retainer
CN104552846A (en) * 2013-10-25 2015-04-29 延锋伟世通金桥汽车饰件系统有限公司 Method for setting mould according to deformation quantity of glass fibre product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079523A (en) * 1993-06-25 1995-01-13 Sekisui Chem Co Ltd Designing method of injection molding method and injection mold
JPH11195054A (en) * 1998-01-06 1999-07-21 Toray Ind Inc Method and device for displaying deformation extent of article shape, manufacture of molding, and storage medium
JP2002292707A (en) * 2001-03-29 2002-10-09 Toyoda Gosei Co Ltd Method for estimating warp deformation of resin injection-molded product
JP2004009511A (en) * 2002-06-06 2004-01-15 Toyoda Gosei Co Ltd Estimation of warpage deformation at corner part of injection molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079523A (en) * 1993-06-25 1995-01-13 Sekisui Chem Co Ltd Designing method of injection molding method and injection mold
JPH11195054A (en) * 1998-01-06 1999-07-21 Toray Ind Inc Method and device for displaying deformation extent of article shape, manufacture of molding, and storage medium
JP2002292707A (en) * 2001-03-29 2002-10-09 Toyoda Gosei Co Ltd Method for estimating warp deformation of resin injection-molded product
JP2004009511A (en) * 2002-06-06 2004-01-15 Toyoda Gosei Co Ltd Estimation of warpage deformation at corner part of injection molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201822A (en) * 2009-03-04 2010-09-16 Toray Ind Inc Apparatus, method, and program for analyzing fluid flow process
JP2012530647A (en) * 2009-06-25 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア Axle stabilizer bearing retainer
JP2012101448A (en) * 2010-11-10 2012-05-31 Hitachi Ltd Calculation method and analysis program of shrinkage strain
CN104552846A (en) * 2013-10-25 2015-04-29 延锋伟世通金桥汽车饰件系统有限公司 Method for setting mould according to deformation quantity of glass fibre product

Also Published As

Publication number Publication date
JP5134259B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Xia et al. A numerical study of the effect of viscoelastic stresses in fused filament fabrication
JP2003510202A (en) Method and apparatus for modeling fluid injection in a mold cavity
JP5134259B2 (en) Warpage deformation analysis method and program, and warpage deformation analysis apparatus
Harris et al. Part shrinkage anomilies from stereolithography injection mould tooling
Fu et al. A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time
Sun et al. The application of modified PVT data on the warpage prediction of injection molded part
US20230105651A1 (en) Injection molding warp prediction
JP5800655B2 (en) Method for improving deformation of resin molded body and method for reducing weight of resin molded body
JP4855866B2 (en) Injection molding analysis method, warpage deformation analysis method and apparatus
Marhöfer et al. Gate design in injection molding of microfluidic components using process simulations
JP5241310B2 (en) Method and apparatus for predicting deformed shape of molded product, program for predicting deformed shape and storage medium thereof
Ho et al. Three‐dimensional numerical analysis of injection‐compression molding process
Bikas et al. Computational tools for the optimal design of the injection moulding process
JP2007083602A (en) Method for forecasting molding shrinkage rate of injection-molded article
JP2014193596A (en) Coefficient of thermal conductivity prediction method of reinforcement resin, and apparatus of the same
JP5663387B2 (en) Warpage analysis method, warpage analysis apparatus, multicolor molded product manufacturing method, program, and storage medium
Nakhoul et al. A multiphase Eulerian approach for modelling the polymer injection into a textured mould
Kastelic et al. Correction of mould cavity geometry for warpage compensation
Cao et al. Three-dimensional viscoelastic simulation for injection/compression molding based on arbitrary Lagrangian Eulerian description
JP4509065B2 (en) Simulation method and simulation apparatus
JP6660068B2 (en) Apparatus, method, program, and medium for analyzing viscoelastic structure of molded article
JP6618069B2 (en) Composite molded product design support device, composite molded product manufacturing method, computer software, storage medium
JP5889077B2 (en) Molded product shrinkage deformation prediction apparatus, molded product shrinkage deformation prediction method, and molded product shrinkage deformation prediction program
WO2015098439A1 (en) Viscoelastic structure analysis device, method and program for molded article, and medium
Magid et al. Analysis of the main factors affecting mass production in the plastic molding process by using the finite element method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5134259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250